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We study quantum dissipative effects due to the accelerated motion of a single, imperfect, zero-width

mirror. It is assumed that the microscopic degrees of freedom on the mirror are confined to it, like in

plasma or graphene sheets. Therefore, the mirror is described by a vacuum polarization tensor ���

concentrated on a time-dependent surface. Under certain assumptions about the microscopic model for the

mirror, we obtain a rather general expression for the Euclidean effective action, a functional of the time-

dependent mirror’s position, in terms of two invariants that characterize the tensor ���. The final result

can be written in terms of the TE and TM reflection coefficients of the mirror, with qualitatively different

contributions coming from them. We apply that general expression to derive the imaginary part of the

‘‘in-out’’ effective action, which measures dissipative effects induced by the mirror’s motion, in different

models, in particular for an accelerated graphene sheet.
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I. INTRODUCTION

One of the most remarkable manifestations of the
quantum nature of the electromagnetic (EM) field is the
so-called ‘‘motion induced radiation’’ or ‘‘dynamical
Casimir effect’’ (DCE), whereby the accelerated motion
of a mirror can make the EM field vacuum to evolve to an
excited state, namely, one containing a nonvanishing num-
ber of photons [1].

Predictions about potentially observable DCE phe-
nomena have been obtained for a variety of geometries
and systems, and by means of quite different theoretical
tools [2]. In this paper we concentrate on the calculation of
the DCE for the case of ‘‘imperfect mirrors,’’ by which we
mean those that do not necessarily impose perfect conduc-
tor boundary conditions.

To conduct this study, we shall follow our previous work
for scalar and spinorial vacuum fields [3,4] in which we
used the particularly convenient functional approach pro-
posed in Ref. [5]. This approach is based on the introduc-
tion of auxiliary fields inside the functional integral for the
vacuum field, whose role is to impose the proper boundary
conditions for the scalar field on each mirror. We shall
here use an adapted version of the method, designed to deal
with the case of imperfect mirrors, in the presence of the
quantum EM field.

In a recent work [6], the DCE for imperfect mirrors has
been analyzed using a scattering approach, for the case of a
quantum scalar field. Here, instead, we will consider the
EM case, and for mirrors that can be described by means of
their vacuum polarization tensors (VPT), which in turn are
assumed to come from the integration of charged micro-
scopic degrees of freedom constrained to them. Our results
are therefore applicable, for instance, to plasma and
graphene sheets.

Formally, we will compute the Euclidean effective ac-
tion, and use analytic continuation to obtain the imaginary
part of the real-time ‘‘in-out’’ effective action. The latter is
proportional to the probability of vacuum decay, an effect
due to the mirror’s acceleration.
The paper is organized as follows: in Sec. II, we describe

the kind of system that we shall consider, and define the
corresponding effective action, within the framework of a
perturbative expansion in powers of the departure of the
mirror from its equilibrium position (a planar, static con-
figuration). We obtain a general expression for the effective
action at the second order in that expansion, in terms of two
scalar functions which entirely define the response func-
tions of the mirror. Moreover, up to this order, the result
can be written as an integral that involves the transverse
electric (TE) and transverse magnetic (TM) reflection
coefficients of the mirror.
In Sec. III we evaluate the Euclidean effective action

for different examples, discarding terms that do not con-
tribute to the imaginary part of the vacuum energy (i.e., to
the vacuum decay probability) when rotated back to
Minkowski spacetime. The examples considered are dis-
tinguished by the different choices for the mirror’s VPT.
We consider, in particular, the VPT corresponding to a
graphene sheet described by massless fermions.
We present our conclusions in Sec. IV.

II. THE MODEL AND ITS EUCLIDEAN
EFFECTIVE ACTION

A. The model

We shall begin by defining here the characteristics of the
system and its geometry, as well as the conventions and
approximations adopted to describe it.
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Euclidean spacetime coordinates x0, x1, x2, x3, with the
metric ðg��Þ ¼ diagð1; 1; 1; 1Þ are used. The (vacuum)

fluctuating field is assumed to be an Abelian gauge field
A�, with � ¼ 0, 1, 2, 3, interacting with a zero-width

mirror. This interaction is realized, in a linear response
approximation, via the VPT due to a medium confined to a
surface. An approximation will be implemented here, re-
garding this object: the surface curvatures shall be assumed
to be sufficiently small as to allow for a description where
the linear response function corresponding to a plane can
be used locally. In other words, at each tangent plane, we
shall use the VPT due to a plane mirror. The rationale
behind this approximation, as well as the kinds of effects
that are neglected by its implementation are discussed
below.

The most general kind of motion we shall deal with
amounts to a mirror whose shape and position can be
defined by a single scalar function c , such that x3 ¼
c ðxkÞ, where xk � ðx0; x1; x2Þ. Inside this general situation
we shall focus on an interesting particular case, namely, a
situation where the mirror’s surface is defined by an equa-
tion of the form x3 ¼ qðx0Þ, i.e., a rigidly moving infinite
plane. The reason for considering this case is that it will
allow us to find explicit expressions for some interesting
models. Nevertheless, expressions corresponding to more
general functions will also be presented in the result for the
effective action.

We would like to stress that, to make the calculations in
Euclidean spacetime is in no way mandatory; rather, it is a
technique that, in some situations, may simplify the inter-
mediate calculations without altering the underlying phys-
ics. For the particular problem of moving mirrors, the
Euclidean formalism has already been used in Ref. [5].
The connection with the in-out and ‘‘in-in’’ formalisms has
been discussed in detail in our previous work [3]. For more
general discussions, see Ref. [7].

The Euclidean action S is assumed to fall under the
general structure:

S ¼ SðA; c Þ ¼ S0ðAÞ þ SIðA; c Þ; (1)

where S0 denotes the free action for the electromagnetic
field

S0ðAÞ ¼ 1

4

Z
F��F��; (2)

where �, � and, in general, indices from the middle of the
Greek alphabet are assumed to run from 0 to 3. On the other
hand, SIðA; c Þ accounts for the coupling between A and
the microscopic degrees of freedom on the moving mirror.
To construct it, we start by defining it in the case of a flat
and static mirror at x3 ¼ c 0 ¼ constant:

SIðA; c 0Þ ¼ 1

2

Z
xk;yk

A�ðxk; c 0Þ���ðxk � ykÞA�ðyk; c 0Þ;

(3)

where ���ðxk � ykÞ denotes the VPT for the medium on

the plane sheet, and �, � ¼ 0, 1, 2. It depends, in this case,
on the difference between its arguments, because of the
(assumed) homogeneity of the medium. We are working in
the usual linear response approximation, in which one
retains only the quadratic terms in the gauge field.
Note that the component of the gauge field which is

normal to the mirror’s plane (A3) does not couple to the
medium, something which is perfectly consistent with the
assumption about the mirror to have zero width, since in
this case the current associated to the microscopic degrees
of freedom is confined to the plane.
We consider now the general form of the interaction

term for a moving and deformed mirror described by
x3 ¼ c ðxkÞ. Formally, the integration of the microscopic

degrees of freedom must be performed in a curved hyper-
surface, whose induced metric reads

g��ðxkÞ ¼ ��� þ @�c ðxkÞ@�c ðxkÞ: (4)

Therefore, on general grounds we expect the interaction
term to have the covariant expression

SIðA; c Þ ¼ 1

2

Z
xk;yk

ffiffiffiffiffiffiffiffiffiffiffi
gðxkÞ

q ffiffiffiffiffiffiffiffiffiffiffi
gðykÞ

q
A�ðxk; c ðxkÞÞ

����
g ðxk; ykÞA�ðyk; c ðykÞÞ; (5)

where gðxkÞ ¼ det ½g��ðxkÞ� ¼ 1þ @�c ðxkÞ@�c ðxkÞ.
The components of the gauge fields which are parallel to

the mirror (A�) can be written in terms of the components
in the laboratory frame (A�) using three tangent vectors to

the world volume swept by the mirror during its time
evolution,

e
�
� ðxkÞ ¼ �

�
� þ �

�
3 @�c ðxkÞ; (6)

as follows:

A�ðxkÞ ¼ e
�
� ðxkÞA�ðxkÞ: (7)

Note that, unlike for a flat and static mirror, the interaction
term contains the laboratory frame component A3.

���
g ðxk; ykÞ in Eq. (5) denotes the VPT for the medium

on the curved mirror (the subindex g emphasizes the
dependence of the VPT with the induced metric). For an
arbitrary c , this is a rather involved object, which can be
computed, in principle, using techniques of quantum field
theory in curved spacetimes. We shall assume that the
induced metric is almost flat, i.e. g�� ’ ���. Physically,

this means that at each time the mirror is gently curved, and
that its motion involves nonrelativistic velocities, so that
@�c ðxkÞ@�c ðxkÞ � 1.

We proceed as usual and expand the VPT around the flat
metric,

���
g ðxk; ykÞ ’ ���ðxk � ykÞ þ����

g ðxk; ykÞ
¼ ���ðxk � ykÞ þOðc 2Þ; (8)
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where the first term is the flat VPT and the first correction,
linear in the metric, will be quadratic in c . One could

compute ����
g ðxk; ykÞ, using, for instance a covariant

perturbation theory [7]. However, as we will see, the flat
VPT will be enough for our purposes.

Our next step is to introduce �ðc Þ, the effective action
for the mirror’s configuration:

e��ðc Þ ¼ Zðc Þ
Zð0Þ ; (9)

where

Zðc Þ ¼
Z
½DA�e�SðA;c Þ; (10)

and [DA] is the path integral measure including gauge
fixing.

B. Auxiliary fields

Then we use an equivalent way of writing the SI term, by
means of an auxiliary field ��ðxkÞ, a vector field in 2þ 1
dimensions:

e�SIðA;c Þ ¼ N
Z

D��ðr � �Þ

� e
�1

2

R
xk ;yk

��ðxkÞ���ðxk;ykÞ��ðykÞþi
R

x
J�ðxÞA�ðxÞ

;

(11)

where we introduced J�ðxÞ, a current concentrated on the
mirror’s world volume:

J�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
gðxkÞ

q
e
�
� ðxkÞ�ðx3 � c ðxkÞÞ��ðxkÞ; (12)

and ���ðxk; ykÞ is the inverse (with respect to continuous

and discrete indices) of ���
g ðxk; ykÞ. The inverse is under-

stood on the space of fields satisfying r��
� ¼ 0, the cova-

riant divergence of the auxiliary field. The reason for
introducing the factor with a functional � function of this
divergence has to dowith the transverse nature of the vacuum
polarization tensor (Ward-Takahashi identities): the Gaussian
representation used in Eq. (11) has to be constructed not with
unconstrained vector fields but rather only with transverse

ones. Indeed, ���
g is invertible, and has ��� as its inverse,

on the subspace of transverse fields. Besides, the condition on
the divergence of the auxiliary field implies the conservation
of J�, and hence the invariance of the action under gauge
transformations A� ! A� þ @�!.

Using now Eq. (11) in Eq. (10), and integrating out A, we
see that

Zðc Þ ¼ Z0N
Z

D��ðr � �Þe�Seff ð�Þ; (13)

whereZ0 is the vacuum amplitude for the free electromag-
netic field, and

Seffð�Þ ¼ 1

2

Z
xk;yk

��ðxkÞK��ðxk; ykÞ��ðykÞ; (14)

where

K��ðxk; ykÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
gðxkÞ

q
e�� ðxkÞG��ðxk � yk; c ðxkÞ

� c ðykÞÞe��ðykÞ
ffiffiffiffiffiffiffiffiffiffiffi
gðykÞ

q
þ���ðxk; ykÞ;

(15)

with G��ðx� yÞ denoting the gauge field propagator. We

have found it convenient to use the Feynman gauge, so that

G��ðx� yÞ ¼ ���

Z d4k

ð2�Þ4
eik�ðx�yÞ

k2
: (16)

Note that, since the auxiliary field is constrained to verify
r � � ¼ 0, in Eq. (14) we may discard from K�� any

contribution which vanishes when acting on the subspace
of fields satisfying that condition.

C. Second-order expansion

Let us now implement the second-order perturbative
expansion for the effective action �ðc Þ to the second order
in c , the departure of the mirror from its average position.
We first note that the formal result of integrating out the
auxiliary field is

�ðc Þ ¼ 1

2
½Tr logK� Tr logKjc�0�: (17)

Denoting by KðaÞ the ath-order term in an expansion in
powers of c , we obtain the corresponding expansion of �.
The 0th-order term vanishes, as well as the first-order term,

while the second-order term �ð2Þ becomes

�ð2Þðc Þ ¼ 1

2
Tr½ðKð0ÞÞ�1Kð2Þ�: (18)

In this approximation, the effective action will be of the
form

�ð2Þðc Þ ¼ � 1

2

Z
xk;x0k

c ðxkÞFðxk; x0kÞc ðx0kÞ (19)

for some two-point function F. As we are interested in

dissipative effects, we may neglect any contribution to �ð2Þ
which is local in derivatives of c . This will simplify the
calculations below.
The explicit form of the zeroth-order kernel, which is

translation invariant, is

Kð0Þ
��ðxk; ykÞ ¼

Z d3kk
ð2�Þ3 e

ikk�ðxk�ykÞ ~Kð0Þ
��ðkkÞ; (20)

where

~Kð0Þ
��ðkkÞ ¼

1

2jkkjP
?
��ðkkÞ þ ~�ð0Þ

��ðkkÞ; (21)

~�ð0Þ
�� is the Fourier transform of the inverse of the flat VPT

and P?
�� � ��� � k�k�

k2k
.
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Regarding the second-order object Kð2Þ, it receives
many different contributions. However, as already stressed,
we are here interested only in the calculation of dissipative
terms. Thus, we may ignore any term producing a local
contribution. In particular, as the deviation of the induced
metric from the identity tensor is already quadratic in c ,
we can replace it by the identity tensor. For the same
reason, we can omit the corrections to the flat VPT in

Eq. (8), and replace ��� by �ð0Þ
�� in Eq. (15). Note, how-

ever, that there will be a nontrivial contribution from the
tangent vectors e

�
� , that contain terms linear in c . Thus,

Kð2Þ
��ðxk; ykÞ ¼ � 1

2
c ðxkÞc ðykÞ

Z d3kk
ð2�Þ3 e

ikk�ðxk�ykÞjkkj���

þ @�c ðxkÞ@�c ðykÞ
Z d3kk

ð2�Þ3
eikk�ðxk�ykÞ

2jkkj :

(22)

We may obtain a more explicit formula for the second-
order contribution to �, by taking into account the structure

of the VPT, which appears in ~Kð0Þ. Under the assumption
of invariance under spatial rotations on x3 ¼ constant
planes, this tensor can be decomposed into orthogonal
projectors. Indeed, since

k� ~��� ¼ 0; (23)

the irreducible tensors (projectors) along which ~��� may

be decomposed must satisfy the condition above and may
be constructed using as building blocks the objects: ���,

k�, and n� ¼ ð1; 0; 0Þ. By performing simple combinations

among them, we also introduce �k� � k� � k0n� and
���� � ��� � n�n�.

Then we construct two independent tensors satisfying
the transversality condition, P t and P l, defined as follows:

P t
�� � ���� �

�k� �k�
�k2

(24)

and

P l
�� � P?

�� � P t
��: (25)

Defining also

P k
�� � k�k�

k2
; (26)

we find the following algebraic properties:

P? þ P k ¼ I; P t þ P l ¼ P?;

P tP l ¼ P lP t ¼ 0; P kP t ¼ P tP k ¼ 0;

P kP l ¼ P lP k ¼ 0; ðP?Þ2 ¼ P?; ðP kÞ2 ¼ P k;

ðP tÞ2 ¼ P t; ðP lÞ2 ¼ P l: (27)

For a general medium, we shall have

~���ðkÞ ¼ gtðk0;kkÞP t
�� þ glðk0;kkÞP l

��; (28)

where gt and gl are model-dependent scalar functions.
In what follows, we particularize to the case of the rigid

motion of a flat mirror along its normal direction, i.e.

c ðxkÞ ¼ qðx0Þ. In this case �ð2Þ has the form

1

L2
�ð2Þ ¼ � 1

2

Z
x0;x

0
0

qðx0Þfðx0 � x00Þqðx00Þ

¼ 1

2

Z
dp0

~fðp0Þj~qðp0Þj2; (29)

where L2 denotes the area of the x1, x2 space. Using the
projectors introduce above, after some algebra, we see that
~fðp0Þ, the Fourier transform of f, naturally decomposes as
follows:

~fðp0Þ ¼ ~ftðp0Þ þ ~flðp0Þ; (30)

where

~ftðp0Þ ¼
Z d3kk

ð2�Þ3 rtðkkÞjkkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ p0Þ2 þ k2

k
q

; (31)

and

~flðp0Þ ¼
Z d3kk

ð2�Þ3 rlðkkÞ
2
4jkkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ p0Þ2 þ kk

2
q

� kk
2p2

0

jkkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ p0Þ2 þ kk

2
q

3
5; (32)

where

rt;lðjkkjÞ ¼ 1

1þ 2jkkj
gt;lðkkÞ

: (33)

The decomposition in Eqs. (30)–(32), the main general
result of this article implies that the EM field problem is
decomposed into two independent contributions, one due
to rt and the other to rl, which, as we will see below, are the
Euclidean version of the TE and TM mirror’s reflection
coefficients.
The dissipative effects can be obtained from the imagi-

nary part of the real time in-out effective action �ð2Þ
in-out,

which is related to the probability P of producing a photon
pair out of the vacuum [8] through

P ’ 2 Im½�ð2Þ
in-out�: (34)

The in-out effective action can be obtained from the
Euclidean effective action performing a Wick rotation.
From Eq. (29) we obtain

�ð2Þ
in-out
L2

¼ 1

2

Z
dp0½~ftðip0Þ þ ~flðip0Þ�j~qðp0Þj2; (35)
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where ~qðp0Þ denotes the Fourier transform of the physical
trajectory in Minkowski spacetime.

It is noteworthy that the coefficients rt;l appearing in

Eq. (33) and in the final formula for the effective action are
just the static TE and TM reflection coefficients of the
mirror. Indeed, in Ref. [10] it has been shown that for a
thin mirror characterized by its VPT, the Euclidean reflec-
tion coefficients are given by

rTM ¼ 1

1þ 2k2
k

jkkj ~�00

; (36)

rTE ¼ �k2k ~�00 þ k2
k ~���

�k2k
~�00 þ k2

k
~��� þ 2jkkjk2

k
: (37)

From Eq. (28) and the definitions of the transverse and
longitudinal projectors it is easy to see that

~�00 ¼
k2
k

k2k
gl; ~��� ¼ gl þ gt: (38)

Inserting these results into Eqs. (36) and (37), one can
verify that rt ¼ rTE and rl ¼ rTM.

An important remark is in order here, namely, that there

are still in ~f, as given by (31), contributions that are
canceled by the subtraction of c ¼ 0, time-independent
effects. In Fourier space we shall simply implement that by

subtracting from ~f its value at p0 ¼ 0. Besides, depending
on the large momentum behavior of the rt;l functions, we
may also need to perform the subtraction of more terms
inside the momentum integral. Indeed, depending on the
superficial degree of divergence, we shall need to subtract
from the integrand a polynomial of a higher degree in pk.
Note that these terms will not affect the imaginary part
of the effective action, and could be absorbed by redefining
the mass and, eventually, terms with higher derivatives in
the classical action for the mirror.

In what follows we evaluate the resulting ~f and its
analytic continuation for some interesting examples.

III. EXAMPLES

A. The thin perfect conductor

We start by considering the simplest case of perfect
conductivity, for which rt;l ¼ 1.

To evaluate the contribution of the TE mode, we need to
evaluate the integral,

~ftðp0Þ ¼
Z d3kk

ð2�Þ3 jkkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ p0Þ2 þ kk

2
q

; (39)

or, using spherical coordinates,

~ftðp0Þ ¼ 1

4�2

Z 1

0
dk

Z �

0
d�k3 sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þp2

0 þ 2kp0 cos�
q

:

(40)

This integral is of course divergent. As mentioned in the

previous section, to renormalize the form factor ~ft we
subtract from the integrand its Taylor expansion in p2

0

around 0, up to the order p4
0 (dictated by the superficial

degree of divergence).
After the subtraction, the integrals in � and k can be

performed analytically [11]. The result is

~ftðp0Þ ¼ � jp0j5
360�2

(41)

which is the well-known result for TE contribution [12].
We now consider the TM contribution. Using again

spherical coordinates, the form factor is given by

~flðp0Þ ¼ 1

4�2

Z 1

0
dk

Z �

0
d�k3 sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

0 þ 2kp0 cos�
q

�
�
1� p2

0sin
2�

k2 þ p2
0 þ 2kp0 cos�

�
: (42)

Following the same steps as before we obtain

~flðp0Þ ¼ � 11jp0j5
360�2

(43)

which reproduces the TM contribution computed using
different methods [12].
The perfect conductor limit is useful not only as a

consistency check of our calculations. Indeed, as pointed
out in Ref. [13], there is a subtle difference in the boundary
conditions for thin and thick perfect conductors. Although
this difference is not manifested in the static Casimir effect,
it influences the Casimir-Polder interaction. We have seen
that this is not the case for the DCE.

B. A medium with constant functions gt;l

We shall consider here the case in which the functions
gt;l are constant; namely, gt;l ¼ 	t;l. The calculation can be

performed following the same steps as for the perfect
conductor case, inserting into the integrals the reflection
coefficients,

rt;lðjkkjÞ ¼ 1

1þ 2jkkj
	t;l

: (44)

It is worth stressing that the expression for the TE
contribution coincides exactly with that of a quantum
scalar field with a � potential that was considered in
Ref. [3]. Therefore, a VPT with a constant function gt
yields, for the TE mode, the natural EM generalization of
the scalar problem, which was considered in several pre-
vious works to analyze the static and DCE [14].
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Using again spherical coordinates, we first subtract the
Taylor expansion up to the order p4

0, and then compute the

integral in �. The resulting expression can be integrated in
k analytically. The result is

~ftðp0Þ ¼ �jp0j5’t

�jp0j
	t

�
; (45)

where

’tð�Þ ¼ 24�5 � 60�4 � 220�3 � 150�2 � 30�

5760�2�6

þ 15ð2�þ 1Þ3 log ð2�þ 1Þ
5760�2�6

: (46)

In the strong coupling (almost perfectly conducting
mirror) limit, we get the expansion:

~ftðp0Þ ¼ � jp0j5
360�2

þ jp0j6
420�2	t

� jp0j7
420�2	2

t

þ � � � (47)

Among these terms, only the ones involving odd powers of
jp0j contribute, when continued to real time, to the imagi-
nary part of the effective action:

Im½~ftðip0Þ� ¼ jp0j5
360�2

� jp0j7
420�2	2

t

þ � � � ; (48)

where we recognize the leading term as identical to the one
for a scalar field with Dirichlet boundary conditions, and to
the one of the TE modes of the electromagnetic field for
perfect conductors.

In the weak coupling limit, we obtain the expansion:

~ftðp0Þ ¼ �jp0j4	t

240�2
þ jp0j3	2

t

96�2

� jp0j2ð�11þ 6 log ð2jp0jÞ � 6 log	tÞ	3
t

288�2
þ � � � ;
(49)

where we neglected terms of higher order in 	t. Therefore
we obtain, to leading order,

Im½~ftðip0Þ� ¼ jp0j3	2
t

96�2
: (50)

The form factor associated to the TM reflection coeffi-
cient can be computed along the same lines. The result can
be written as

~flðp0Þ ¼ �jp0j5’l

�jp0j
	l

�
; (51)

where

’lð�Þ ¼ �872�5 þ 1020�4 þ 20�3 � 690�2 � 210�

28800�2�6

þ 15ð2�þ 1Þ3ð8�2 � 12�þ 7Þ log ð2�þ 1Þ
28800�2�6

:

(52)

In the strong coupling limit we obtain

~flðp0Þ ¼ � 11jp0j5
360�2

þ jp0j6
60�2	l

� 17jp0j7
1260�2	2

l

þ � � � (53)

that reproduces the perfect conductor result for 	l ! 1.

In Fig. 1 we plot the imaginary part Im½~fðip0Þ� divided
by the TE-perfect conductor result, as a function of the
external frequency. The solid line represents the result of
Eq. (45) that, in the limit of jp0j=	 ! 0, goes to 11, as it is
remarked in Ref. [12]. The dashed line corresponds to
Eq. (51) and it approaches to 1 in the zero frequency limit
(coincides with the perfect conductor limit for the TE
mode). Dissipative effects grow with p0.

C. Evaluation of ~fðpkÞ for graphene
For the case of graphene, we may apply the tools intro-

duced in the previous section to decompose the vacuum
polarization tensor in terms of the irreducible projectors:

~���ðkÞ¼ e2Njmj
4�

F

�
k20þv2

Fk
2

4m2

��
P t

��þ
k20þk2

k20þv2
Fk

2
P l

��

�
;

(54)

where

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

|p
0
|/λ

Im
[ f

(i 
p 0)]

/λ
5

FIG. 1. Im½~ftðip0Þ�=	5 divided by the TE-perfect conductor
result, as a function of jp0j=	 for a rigid motion in a medium
with constant gt ¼ 	 in the dashed line. The solid line plot is the
Im½~flðip0Þ�=	5 divided by the TE-perfect conductor result, as a
function of jp0j=	. While he dashed line coincides with the TE
perfect conductor result for small jp0j=	, the solid line goes to
11, which is the correct limit [12].
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FðxÞ ¼ 1� 1� xffiffiffi
x

p arcsin ½ð1þ x�1Þ�1
2�; (55)

m is the mass (gap), N the number of two-component
Dirac fermion fields, and vF the Fermi velocity (in units
where c ¼ 1).

Usually, the most relevant case corresponds to m ¼ 0;
when that is the case,

~��� ¼ e2N

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2

Fk
2

q �
P t

�� þ k20 þ k2

k20 þ v2
Fk

2
P l

��

�

¼ e2N

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k2

q 2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 þ v2
Fk

2

k20 þ k2

s
P t

��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k2

k20 þ v2
Fk

2

s
P l

��

3
5: (56)

Then, coming back to the general formulas, we see that
(with massless fermions) the reflection coefficients are

rtðkkÞ ¼ 1

1þ 32
e2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
þkk

2

k20þv2
Fkk

2

r (57)

and

rlðkkÞ ¼ 1

1þ 32
e2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
þv2

Fkk
2

k2
0
þkk

2

r : (58)

As there are no dimensionful constants in the VPT,
dimensional analysis implies that

~fðp0Þ ¼ jp0j5CðNe2; vFÞ; (59)

that is, the result is proportional to that of a perfect
conductor. The dimensionless function C depends on the
coupling constant and the Fermi velocity.

In order to compute explicitly this function, we insert
the graphene reflection coefficients into Eqs. (31) and (32),
subtract the Taylor expansion up to order p4

0, and evaluate

the integrals using spherical coordinates. Unlike the pre-
vious examples, the complicated dependence of the reflec-
tion coefficients with the angle � makes it not possible to
analytically compute this integral. Therefore we computed
the form factors numerically for different values of the
coupling constants and Fermi velocity. The results are
shown in Fig. 2. As expected, the form factors tend to the
perfect conductor limit C ! �1=ð30�2Þ as Ne2 ! 1, and
vanish in the weak coupling limit Ne2 ! 0. Note that, for
small values of the Fermi velocity, the behavior is non-
monotonous with the coupling constant. Most notably, for
some values of the parameters, the dissipative effects can
be larger for graphene than for perfect conductors.

In the particular case vF ! 1, relativistic fermion limit,
the reflection coefficients become constants, and the results
for the TE and TM form factors are those of the perfect
conductor divided by the factor 1þ 32=ðe2NÞ.

We end this section pointing out that it would be inter-
esting to compute the VPT in the framework of quantum
fields in curved spaces, beyond the weak field approxima-
tion, and check explicitly the validity of the approximation

���
g ’ ��� used in Eq. (8).

IV. CONCLUSIONS

We have obtained a general expression for the effective
action corresponding to a single imperfect mirror coupled
to the EM field, to second order in the departure of the
mirror from its equilibrium position. The resulting formula
decomposes into two scalarlike contributions, in terms of
two scalar functions that define the VPT. The final expres-
sion for the effective action can be written in a very
compact way in terms of the TE and TM reflection coef-
ficients of the mirror. These results can be considered as a
generalization to the electromagnetic case of those in
Ref. [3], where we considered scalar and spinorial vacuum
fields and modeled the interaction between an imperfect
mirror and the vacuum field using a � potential.
We have evaluated explicitly the effective action for

some examples, which in our context correspond to the
use of the corresponding VPT. We have obtained the
vacuum decay amplitude using a proper analytic continu-
ation of the Euclidean results.
We have shown that our results reproduce correctly the

TE and TM contributions in the case of perfect conductors.
For the particular case of graphene, we have shown that the
imaginary part of the effective action is that of a perfect
conductor times a function that depends on the coupling
constant and the Fermi velocity. We computed explicitly
this function and found a nonmonotonous behavior with
the coupling constant. Moreover, for some values of the

0 0.5 1 1.5 2 2.5 3
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0 x 10
−3

Ne2

C
 (

N
e

, v F
)

FIG. 2. CðNe2; vFÞ as a function of the dimensionless coupling
constant Ne2 for two different Fermi velocities vF ¼ 0:5 in the
solid line plot, and vF ¼ 0:05 for the dashed line (in units in
which c ¼ 1). The form factors vanish in the weak coupling
limit Ne2 ! 0, and tend slowly to the perfect conductor limit
�1=ð30�2Þ as Ne2 ! 1
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parameters, the dissipative effects may be larger than those
for a perfect conductor.

It would be of interest to compute the VPT beyond the
weak field approximation, in particular for the case of
massless fermions. We hope to address this relevant issue
in a forthcoming work. This kind of system would require a

fuller knowledge of the dependence of the VPT on the
geometry. Even in the absence of coupling to the gauge
field, a curved monolayer graphene can be considered
as a physical realization of quantum field theory in curved
spacetimes [15], providing condensed matter analogues of
semiclassical gravitational effects.
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