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We address issues with extant formulations of dissipative effects in the effective field theory (EFT)

which describe the post-Newtonian (PN) inspiral of two gravitating bodies by (re)formulating several

parts of the theory. Novel ingredients include gauge-invariant spherical fields in the radiation zone;

a system zone that preserves time reversal such that its violation arises not from local odd propagation but

rather from interaction with the radiation sector in a way that resembles the balayage method; two-way

multipoles to perform zone matching within the EFT action; and a double-field radiation-reaction action

that is the nonquantum version of the closed time path formalism and generalizes to any theory with

directed propagators including theories that are defined by equations of motion rather than an action. This

formulation unifies the treatment of outgoing radiation and its reaction force. We demonstrate the method

in the scalar, electromagnetic, and gravitational cases by economizing the following: the expression for

the radiation source multipoles; the derivation of the leading outgoing radiation and associated reaction

force such that it is maximally reduced to mere multiplication; and the derivation of the gravitational

next-to-leading PN order. In fact we present a novel expression for the þ1PN correction to all mass

multipoles. We introduce useful definitions for multi-index summation, for the normalization of Bessel

functions, and for the normalization of the gravitomagnetic vector potential.
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I. INTRODUCTION

Much is known about the post-Newtonian approximation
of a binary system and, in particular, on the effective field
theory (EFT) approach to this problem, as will be reviewed
shortly. The conservative two-body effective action is
known up to order 3PN; see the reviews [1,2] and references
therein, as well as [3]. It was reproduced within the EFT
approach in [4] and certain sectors of order 4PN were
recently determined in the EFT approach [5] and in the
Hamiltonian Arnowitt-Deser-Misner (ADM) formalism [6].

Less is known about the nonconservative sector, namely,
the emitted radiation and radiation reaction (RR) force,
which are the subject of this paper. The RR force is the
force that guarantees the system’s dissipation due to the
emitted radiation. Indeed, the RR force is known only to
orderþ1PN beyond the leading order [1,7,8]. It is true that
this apparent low order can be justified by need, since a
þ2PN correction appears only at 4.5PN. Still, the lack of
high order results could also be influenced by certain issues
with the current formulation, including the EFT approach
formulation, as we proceed to discuss.

(i) A split between theories of radiation and radiation
reaction force such that conservation laws are not
manifest.
Currently there are two lines of work: the radiation
EFT was treated by [9–12] while the EFT formula-
tion of the RR force was treated in [8,13] and earlier

papers (a similar division exists also in earlier,
non-EFT work). There are seemingly essential dif-
ferences between these two lines of work. The RR
force EFT is based on the closed time path action
formalism [14] while the radiation EFT is not; the
radiation EFT uses the Feynman propagator for ra-
diation while the RR force uses the retarded and
advanced propagators. However, the two phenomena
are clearly closely related. Hence while there is no
contradiction in the current split approach one may
wish for a unified theory. As a concrete example, the
energy carried by radiation must deplete the system’s
energy by the same amount. Yet, looking at the
expression for the acceleration due to the radiation
reaction force in Eq. (168) of the review [1] energy
balance is not at all manifest.

(ii) Seemingly overly cumbersome computations.
We note three specific cases. The computation of the
leading RR force was reproduced within EFT in
Appendix A of [8]. We notice that while the final
result is very simple the computation is not as
simple. The computation of the correction to the
mass quadrupole of a system was reproduced within
EFT in [11] and involves five diagrams, yet the
number of actual terms in the end result is smaller.
Finally, the general computation of the multipole
moments was performed in [12] and includes
combinatorial factors that we notice to be sugges-
tively similar to the Taylor coefficients of Bessel
functions.

(iii) NRG fields and real Feynman rules are not
incorporated yet.
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Nonrelativistic gravitational (NRG) fields are rou-
tinely used in computations of the conservative
two-body effective action [4,5,15], yet they were
not applied yet to the dissipative sector. In addition,
much of the literature uses imaginary Feynman rules
where all the factors of i cancel at the end to yield
real results, yet these unnecessary cancellations can
be avoided through the use of purely real (and ℏ free)
Feynman rules appropriate for a classical EFT [16].

In this paper we shall (re)formulate several parts of the
theory to achieve unity and economization. The paper,
which was at the center of our research since fall 2011, is
organized as follows. We begin in Sec. I A with a detailed
review of the background and past work. In Sec. II we
formulate the theory while introducing several new ideas.
In Sec. III we demonstrate the theory by economizing
several computations. Finally in Sec. IV we summarize
our results and discuss them.

A. BACKGROUND

Solving the two-body problem in Einstein’s gravity
is of interest both theoretically and observationally.
Observationally, binary star systems are the expected
typical source of steady gravitational waves (GWs). The
computation of the waveform of gravitational waves is
essential for the worldwide effort to detect gravitational
waves, first in order to design detection filters and later for
signal interpretation. Advanced LIGO, an upgrade of the
LIGO detector, is under construction [17] and completion
is scheduled for 2015. eLISA (evolved LISA) (or the
New Gravitational-wave Observatory—NGO) is a pro-
posed space-based detector under consideration by the
European Space Agency (ESA) for launch in 2022 [18].
Several other detectors worldwide are at some stage of
development: either at work, or undergoing construction or
upgrade, or under consideration; see [19] for a list of links,
including advanced VIRGO (Italy) [20], KAGRA (Japan)
[21], GEO (Germany), and AIGO (Australia).

Theoretically, the two-body problem in the post-
Newtonian limit is of intrinsic interest in general relativity
(GR), being an essential part of the pre-GR limit. Indeed it
occupied Einstein ever since the theory’s incubation when
misconceptions over the Newtonian limit led him astray in
1913 (see for example [22]), and it continued to occupy
him at least 22 years later when he worked to derive the
first post-Newtonian correction to the equations of motion
[23]. In addition this problem turns out to require practi-
cally all of the deep tools of perturbative field theory
including Feynman diagrams, loop computation, regulari-
zation, and renormalization. Chronologically these ideas
happened to be discovered in the context of quantum field
theory, yet we maintain that they could have been discov-
ered also in the purely classical context of the two-body
problem in GR, or in similar classical problems. Thus this
problem provides a fresh perspective on field theory and
especially on its classical limit.

In general the full GR equations for this system cannot
be solved analytically. Numerical solutions of a binary
system are now readily available after a decades long effort
(see [24] for a 2007 review). In order to reach the analytic
domain it is necessary to take certain perturbative limits. In
the binary system of two masses ðm1; m2Þ two such limits

exist: the post-Newtonian limit v
2

c2
� GM

r12c
2 � 1, where v is a

typical velocity andM ¼ m1þm2; and the extreme mass
ratio limitm1 � m2. Having both numerical and analytical
methods is not redundant but rather they complement each
other. Only numerical solutions can address the nonpertur-
bative parameter region, yet analytic methods add insight,
in particular, into the dependence of the problem on its
parameters. In addition numerics and analytics serve for
important cross-checks.

1. Key concepts

Gravitational radiation is one of the central predictions
of Einstein’s gravity [25].1 Indeed, special relativity requires
that changes in the gravitational field caused by changes in
the configuration of masses would propagate no faster than
the speed of light. These propagating perturbations are gravi-
tational waves. GR tells us that a (planar) gravitational wave
travels at the speed of light and is characterized by its
wavelength and its (transverse) polarization. The early his-
tory of the field was plagued with confusion regarding the
reality of gravitational waves including second thoughts by
Einstein himself in an unpublished manuscript (1936) [26].
An important milestone was the realization that GWs carry
energy and other conserved charges; see the sticky bead
argument (1957) [27]. In the nonrelativistic limit, GWs are
generated by a time varying mass quadrupole moment at
order 2.5PN, with subleading contributions from all mass and
current multipoles of the source.
Radiation reaction force is a direct consequence of

radiation. Conservation of energy (and other conserved
quantities) requires that the radiated energy be deducted
from the system. This happens through the interaction of
the bodies with the reaction fields which accompany ra-
diation. In GR this was understood first by Burke and
Thorne as late as 1970 [28]. These authors used an asymp-
totic matched expansion (perhaps introducing it to the GR
literature) between the system zone and the radiation zone.
They viewed the RR force as arising from a Newtonian-
like reaction potential field which enters the system zone
through matching with the radiation zone. A relevant
counterpart appears in classical electrodynamics, namely,
the Abraham-Lorentz-Dirac (ALD) force [29,30]. Dirac’s
relativistic derivation stresses that this force can be under-
stood to result from the time-reversal-odd kernel Godd :¼
ðGret �GadvÞ=2 where Gret and Gadv are the retarded and
advanced Green’s functions. A closely related concept, that

1Einstein’s work in [25] also obtained the leading quadrupolar
expression, but with a missing factor of 2.
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of the self-force, appears in the context of the extreme mass
ratio limit of the two-body problem. The self-force is a
force caused by field perturbations that were sourced by the
small body itself in the past. Considerable research effort
was devoted to this topic over the last two decades, espe-
cially to the issue of its regularization—see the reviews
[31] and references therein.

The effective field theory approach to GR was introduced
in [9]. They recognized a hierarchy of scales in the problem
(the sides of objects are much smaller than the two-body
separation, which in turn is much smaller than the radiation
wavelength) and boldly applied the ideas of effective field
theory developed within the context of quantum field the-
ory. More generally the EFT approach is designed for any
field-theoretic problem, classical or quantum, with a hier-
archy of scales. Once the scales are separated the EFT
approach proceeds to eliminate one of the scales (usually
the short distance one), replacing it by effective interac-
tions in the surviving scale. Within quantum field theory
this procedure is known as ‘‘integrating out’’ fields (in the
sense of the Feynman path integral) but field ‘‘elimina-
tion’’ is more appropriate in the nonquantum context.

2. Literature review

The Newtonian limit was central to the development of
GR by Einstein (see for example [22]) and an essentially
post-Newtonian computation appeared already in the paper
introducing GR [32], namely, the perihelion shift of
Mercury. The Lagrangian for the first post-Newtonian
correction (1PN) to the two-body motion was obtained
by the authors of [33], but was left mostly unnoticed.
Einstein predicted gravitational waves and obtained the
leading quadrupolar expression [25]. Einstein, Infeld, and
Hoffmann (1938) [23] obtained the 1PN correction to the
equations of motion. After World War II, work resumed
and the 1PN correction was promoted to the Lagrangian
level in [34]. During the 1950s two major groups pursued
and developed the subject: one led by Infeld in Poland
and one led by Fock in Russia, and their findings are
summarized in [35]. During the 1960s ‘‘golden age’’ in
GR research attention shifted to black holes. In 1970 Burke
and Thorne understood the RR force and obtained the
leading order [28]. By the early 1970s Kimura’s group in
Japan was able to attempt to proceed to the 2PN correction
to the motion [36], but still suffered from errors, noticed
and corrected by Damour [37,38] and Schäfer [39].
Wagoner and Will [40] found the þ1PN correction to the
mass quadrupole and hence to radiation. The multipolar
decomposition of GWs was given in [41].

In the early 1980s post-Newtonian study was picked
up by Damour and Deruelle [42], by Blanchet (see the
reviews [1,3]), and by Schäfer who introduced the ADM
Hamiltonian approach (see review [43]). The þ1PN cor-
rection to the RR force was obtained in [7] (1993–1995);
see also [44] within the Hamiltonian ADM approach.

The þ2PN corrections to the radiation field and energy
loss (damping) were obtained in [45].
In 2004 the EFTapproach was introduced by Goldberger

and Rothstein [9], reducing PN computations to Feynman
diagrams. Certain diagrammatic calculations appeared be-
fore, see for example [46], but while they can be consid-
ered to be precursors of the EFT approach they did not
make direct contact with field theoretic Feynman diagrams
and were not part of a complete formulation of the PN
theory. Goldberger and Rothstein [9] then reproduced both
the quadrupole formula and the 1PN correction to the two-
body motion. Black hole absorption was incorporated in
[10]. Galley and Hu [47] initiated a study of a field theory
description of the RR force in terms of the closed time
path (CTP) formalism. Porto [48] initiated a study to
incorporate spinning compact objects within EFT and it
was applied in [49] to achieve the first determination of the
next-to-leading spin-spin interaction, up to certain missing
contributions found in [50] using Hamiltonian methods
and also found later to arise from indirect contributions
in the EFT method; see also [51]. Further spin effects were
studied in [52]. Kol and Smolkin [16] introduced non-
relativistic gravitational field redefinition of the Einstein
field and real Feynman rules, while in [53] they proceeded
to apply them and economize the 1PN derivation, presum-
ably optimally. The 2PN correction to the two-body effec-
tive action was reproduced within EFT in [15] and later
3PN by Foffa and Sturani [4] (see [54] for automated
N-body at 2PN). Certain sectors of the conservative dy-
namics at order 4PN were recently determined, in the EFT
approach [5] and in the Hamiltonian ADM formalism [6].
Goldberger and Ross [11] reproduced corrections to radia-
tion at least up to orderþ1:5PN, and Foffa and Sturani [55]
reproduced the RR tail term at 4PN.
The progress in determinations of the motion enabled in

recent years higher order determinations of the radiation:
þ3PN for quasicircular orbits in [56], partial results for
þ3:5PN in [57].

II. FORMULATION OF PERTURBATION THEORY

In this section we (re)formulate an effective field theory
of post-Newtonian radiation and RR force to address the
issues mentioned in the Introduction. Even though our
main interest lies in the gravitational two-body system,
we study also the cases of scalar and electromagnetic
(EM) interactions. Indeed in this section we shall mostly
address the scalar case which exhibits most of the relevant
features in a somewhat simplified context, while making
some comments on the EM and gravitational cases. We
shall sometimes refer to the scalar, electromagnetic, and
gravitational cases as s ¼ 0, 1, 2, respectively (where s
denotes the spin of the corresponding quantized field).
A detailed study of all three cases will be given in Sec. III.
Consider then a relativistic ‘‘massless’’ 4d scalar field�

whose action is given by
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S½�� ¼
Z

d4x

�
1

8�G
@��@��� ��� Vð�Þ

�
; (2.1)

where � ¼ �ðxÞ is a general charge density and Vð�Þ
is a nonquadratic potential that will be assumed to vanish
through most of the discussion. In the scalar two-body
problem the bodies’ trajectories are denoted by x�A ¼
x�A ð�Þ where A ¼ 1, 2 indexes the bodies. In this case the

source term is given byZ
d4x�� ¼ X

A¼1;2

qA
Z

d��ðx�A ð�ÞÞ; (2.2)

where qA is theAth body’s scalar charge. Actually this theory
is not only simple but it is also directly relevant to gravita-
tion: interpreting � as the Newtonian potential this action
describes a sector of the gauge-fixed gravitational action.

The corresponding action and source term for all types
of interaction are organized in Table I.

We start in the first two subsections by specifying the
equations of motion. In Sec. IIA we specify the fields and
the zones in which they are defined. In Sec. IIB we address
the time-reversal odd propagation that is responsible for
dissipative effects. Next we lift the equations of motion to
the action level. In Sec. IIC we incorporate the matching
procedure into the EFT action and in IID we allow for
elimination of retarded fields in the action through field
doubling. Finally in Sec. II E we summarize the formulation.

A. Zones and spherical waves

The key observation that calls for an EFTapproach is that
the fields can be decomposed into several parts according to
the following hierarchy of three length scales: the compact
objects’ sizes, their separation, and the radiation wave-
length. In the non-EFT approach one uses matched asymp-
totic expansion between several zones, starting with [28].
Actually the separation of fields in EFT is completely
equivalent to the separation into zones in matched asymp-
totic expansion (see for example [16]). We shall start with
the zone point of view, and assuming the object size scale
was eliminated through the point particle approximation,2

we shall concentrate on the two others: the system zone and
the radiation zone. Figure 1 depicts the two zones, each

with a typical field configuration. The system zone is de-
fined to keep the two-body separation finite, while the
objects are pointlike and the radiation wavelength is infinite.
It is also known as the induction zone or the near zone
(although the latter is liable to be confused with the compact
object zone). In the radiation zone the wavelength is finite
while the two-body system shrinks altogether to a point.
One of the main benefits of the division into zones is that

each one has an enhanced symmetry (or an approximate
one), namely, a symmetry absent from the full problem.
The symmetry is central to making fitting choices for the
formulation of a perturbation theory in each zone including
the choice of how to divide the action into a dominant part
and a perturbation, the choice of field variables, and when
relevant the choice of gauge.
In the system zone we follow the standard formulation.

This zone is approximately stationary (time independent)
since by assumption all velocities are nonrelativistic and
hence are approximated to vanish. Accordingly the kinetic
term of (2.2) is written as

S½�� � 1

8�G

Z
d3xdt

�
�ð ~r�Þ2 þ 1

c2
_�2

�
: (2.3)

As time derivatives are small here the first term in (2.3) is
dominant and the second term is considered a perturbation
[9]. Accordingly the propagator is instantaneous

while the term with time derivatives contributes a
correction 2-vertex

We are using conventions such that the Feynman rules are
real [16], as is appropriate for a nonquantum theory.
In the radiation zone we introduce a change. We notice

that as the system has shrunk to a point this zone has a
spherical symmetry. Hence we insist on using spherical
field variables. This is different from extant EFT work
[8,10,11,13,55]) which characterizes radiation in the stan-
dard way by a wavenumber vector k� (and a polarization

h�� for gravity), namely, by a planar wave.

TABLE I. Summary of field, action, and two-body source term for each type of interaction
s ¼ 0, 1, 2. LM is the matter’s Lagrangian density. qA is the body’s scalar charge for s ¼ 0 and
its electric charge for s ¼ 1, while mA is the body’s mass.

Field Action Two-body source

Scalar �
R
d4xð 1

8�G @��@��� Vð�Þ � ��Þ �PA¼1;2qA
R
d��ðx�A ð�ÞÞ

EM A� � 1
16�

R
d4xF��F

�� � R
d4xJ�A� �PA¼1;2qA

R
dx

�
AA�ðx�A ð�ÞÞ

Gravity g��

R
d4x

ffiffiffiffiffiffiffi�g
p ð� 1

16�GR½g��� þLMÞ �PA¼1;2mA

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��ðx�A Þdx�Adx�A

q

2This approximation is valid up to a rather high order (5PN in
4d) where finite size effects first enter; see for example [9].
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We represent the spherical fields by symmetric trace-
free tensors �Lðr; tÞ where L ¼ ði1 . . . i‘Þ is a multi-index
and each ik ¼ 1, 2, 3. Separation of variables reads

�ðr; t;�Þ ¼ �Lðr; tÞxL

:¼ X1
‘¼0

1

‘!

X3
i1...i‘¼1

�i1...i‘ðr; tÞxi1 . . . xi‘ ; (2.6)

where� denotes the angular directions �,� and we define
a convention summation for multi-indices such that ‘!
factors are implicit (see Appendix A).

We note that any symmetric trace free tensor �L‘

(‘ being given), can be represented also in one of the
following equivalent ways:

(i) �‘m—standard spherical harmonic representation;

(ii) �‘ð�Þ—a function on the unit sphere.
The different forms are related by

�‘ð�Þ ¼ �L‘

xL‘

r‘
¼X

m

�‘mY‘mð�Þ: (2.7)

There is also a useful complex spinorial representation
that we will not discuss here. We found it convenient to
use the �L variables for RR force calculations (because
they are more analytic around the origin of the radiation
zone) and it is our default choice. For calculations of
emitted radiation, however, we mostly use �‘m, which is
more convenient asymptotically.
In terms of �L the propagator becomes

where ~j, ~h are Bessel functions whose normalization is
defined in Appendix A. This propagator will be derived in
detail in (3.10) and the sign convention for!will be specified.

Thus we adjust the theory to better exploit the symmetry
of each zone separately, thereby economizing computa-
tion. For s ¼ 1, 2 these adjustments will include a choice
of gauge. The price to pay is in an added complication to
the matching between the different fields and respective
gauges of the two zones.

s ¼ 1, 2.—When generalizing spherical waves from the
scalar case to electromagnetism and gravity we must ac-
count for gauge symmetry and polarization. Spherical
symmetry is a particular case of cohomogeneity 1 spaces
and hence spherical waves are actually gauge invariant
[58,59]. The detailed analysis is given in the corresponding

parts of Sec. III, and the outcome is that for both s ¼ 1, 2
there are two families of waves, electric and magnetic,
which differ by polarization and are denoted by an index
� ¼ E,M � þ,�. In all cases only modes with ‘ � s are
dynamic and represent spherical waves while modes with
0 � ‘ � s� 1 describe stationary properties of the system

rather than radiation. For example for s ¼ 2 the electric
type ‘ ¼ 0, 1 modes represent the total mass and the center

of mass fM; ~Xcmg, while the magnetic type ‘ ¼ 0, 1 modes
represent the total momentum and the angular momentum

f ~P; ~Jg. The long term variation of these modes is given by a
RG flow [60]. The field variables in each zone
(for all s) are summarized in Table II. The propagator is
nearly the same as in the scalar case and the difference is
accounted for by the factor R�

s ð‘Þ

where in order to avoid a factor of 4 in R�
2 we find it

convenient to redefine the gravitomagnetic vector potential

FIG. 1 (color online). The two relevant zones. On the left is the system zone with a typical stationarylike field configuration. On the
right is the radiation zone with its typical out-spiraling waves.
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(and consequently the gravitomagnetic spherical waves
h�¼M
L ) as explained in Appendix A.

B. Odd propagation and balayage

In the previous subsection we defined our choice of field
variables. The equations of motion are contained in
the action (2.1). These must be supplemented by relevant
boundary conditions, namely, retarded propagation. While
in the radiation zone one employs the retarded propagator
directly, the system zone needs more care since there one
uses the instantaneous propagator (2.4) which does not
account for the retarded boundary conditions.
Whereas the action (2.3) is Lorentz invariant the PN

limit and, in particular, the propagator (2.4) break it. It is
interesting to consider the dressed propagator that restores
the Lorentz symmetry (see for example [61])

The dressed propagator is relativistic by construction.
However, it is also clearly time symmetric and therefore
cannot equal the retarded propagator but rather it equals the
even propagator3 where

Geven=odd :¼ 1

2
ðGret 	GadvÞ (2.11)

defines the even and odd parts of propagation in terms of
retarded and advanced propagators.

In order to compensate for the difference we must
also account for the odd propagation. That can be done
by direct local propagation, namely, by adding to the field
the consequences of odd propagation

�oddðxÞ :¼ �
Z

dx0Goddðx0; xÞ�ðx0Þ; (2.12)

just like Dirac’s relativistic analysis of the self-force of the
electron [30].

Yet in our context there is a better way to obtain �odd.
Godd satisfies the source free wave equation and so does
�odd. Therefore the data that determines �odd can be taken
to be the asymptotic boundary conditions (the incoming
waves). However, the asymptotic boundary conditions for
the two-body zone are determined by the radiation zone.
Thus given our zone structure there is no need to compute
�odd through local propagation (2.12) but rather it is
already accounted for by matching with the radiation
zone. This is the conclusion of this section. In Sec. III we

shall confirm by direct perturbative computations that the
RR force computed via matching with radiation equals
computations through local propagation or relativistic
expressions à la Dirac.
Zoom balayage.—We comment that in this way the

source for �odd is ‘‘combed back’’ to infinity and replaced
by equivalent asymptotic boundary conditions. This phe-
nomenon resembles the balayage method (French for
sweeping, scanning) in potential theory developed by
Poincaré [62,63]. There one wishes to replace an electro-
static charge distribution within some domain D by an
equivalent charge density on the domain’s boundary @D
such that the electrostatic potential outside D remains
unaltered. One visualizes this process as sweeping the
charge from the interior of D into its boundary. In our
case the source is swept out to infinity while keeping �odd

unchanged. It can be thought to arise while zooming in
from the radiation zone to the system zone and can be
referred to as ‘‘zoom-in balayage.’’ Later we shall also
encounter a complementary case where the charges of
the system zone are swept into the origin of the radiation
zone in the course of a zoom-out balayage; see (2.18) and
(3.14).

C. Matching lifted to action: two-way multipoles

In the previous subsections we specified our approach
for the equations of motion: we chose fields, propagators,
and gauge for both zones. In the next two subsections we
shall lift the equations of motion to the level of an action to
benefit from its compactness and from the available field
theory tools (Feynman diagrams and the effective action).

TABLE II. A summary of the two zones and their main
properties. The symmetry applies to the unperturbed equa-
tions. For each field s ¼ 0, 1, 2 we list the variables used
in each one of the zones. Our novelty here is in using spherical
fields in the radiation zone, labeled here by a multi-index L.
� ¼ E, M denotes electric or magnetic spherical waves and
is a parity label. In EM and gravity these waves are gauge
invariant with ‘ � 2. In the system zone we make the standard
gauge choice: Lorentz (Feynman) for EM and harmonic for
gravity.

System Radiation

symmetry stationary spherical

� � �L

A� ð�; ~AÞ A�
L

g�� ð�; ~A; 	ijÞ h�L

3This can be seen by considering the contour around the poles
in the complex ! plane implied by (2.10).
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In this subsection we lift the matching conditions, starting
still with a scalar theory (2.1) and then generalizing to
electromagnetism (EM) and gravity. Within this subsection
we shall use the following shorthand notation:

� � �sys c � �rad (2.13)

to denote the fields in the two-body zone and in the
radiation zone.

It is known how to describe the source for the radiation
zone in terms of time-dependent multipole moments at the
origin (see for example [11]; we use the normalization
conventions of [12])

S � �
Z

dtQLðtÞ@Lc jr¼0; (2.14)

where L ¼ ðk1; . . . ; k‘Þ is a multi-index,QLðtÞ is the charge
multipole tensor that is symmetric and trace free, and we
are using the multi-index summation convention in
Appendix A.

Reaction field multipoles.—In analogy with (2.14) one
can parametrize the asymptotic boundary conditions for
� � �sys by multipole quantities PL as follows:

S � �
Z

dtPLðtÞ@uL ~�ju¼0; (2.15)

where ui ¼ ri=r2 are inverted coordinates such that ui ¼ 0
corresponds to ri ¼ 1, @uL � ð@=@uÞL and it is convenient
to define

~� :¼ �=u: (2.16)

With these definitions PL are interpreted as multipoles of
the reaction field and � is given by

� ¼ �uPLð�Þ‘@uL
G

u
¼ �Gð2‘� 1Þ!!PLx

L: (2.17)

The pair of multipole setsQL, PL precisely enumerates the
necessary boundary conditions in both zones. We refer to
this pair of multipoles as two-way multipoles.

Matching.—We recovered the correct equations of mo-
tion for �, c but it still remains to determine QL, PL and
that should be done by matching. We know that QL, the
charge multipoles, are determined by the behavior of � at
r ! 1, while PL is determined by c at r ! 0. More
precisely

QL ¼ � 1

Gð2‘� 1Þ!!@
u
L
~�ju¼0

PL ¼ � 1

Gð2‘� 1Þ!!@Lc jr¼0:

(2.18)

The first equation can be considered to be a zoom-
out balayage while the second one would be zoom-in
(see the last paragraph of Sec. II B).

Now we realize that the matching equations can be
derived as ordinary equations of motion from the action

if we promote the two-way multipoles from parameters to
action variables and add a coupling of P, Q as follows:

S ¼ 1

8�

Z
d4x½@��@��þ @�c @�c �

�
Z

dt
X1
‘¼0

½QL‘@L‘
c jr¼0 þ PL‘@uL‘

~�ju¼0

þGð2‘� 1Þ!!PL‘QL‘�: (2.19)

Indeed variation with respect to P and Q reproduces the
matching conditions (2.18), thereby the addition of the last
term accomplishes the lift of the matching conditions to the
level of the action. Note that it happened to be possible to
adjust the single coefficient of the last term such that the
two matching conditions are fulfilled.
P,Q are algebraic quadratic fields that can be eliminated

from the action to yield

S ¼ 1

8�

Z
d4x½@��@��þ @�c @�c �

þ
Z

dt
X1
‘¼0

1

Gð2‘� 1Þ!! ½@L‘
c jr¼0@

u
L‘

~�ju¼0�: (2.20)

This form makes evident the coupling of �jr¼1 and c jr¼0

that takes place in the overlap region. Yet we shall prefer to
keep the P, Q fields since they highlight the important
physical quantities that are exchanged between the zones,
namely, the charge multipoles and the reaction field multi-
poles. It would be interesting to derive this coupling
directly from the original action (2.1).
s ¼ 1, 2.—Here there are two wave polarizations:

electric and magnetic (alternatively one can use helicity
states as a basis). Accordingly we should use two sets of
two-way multipoles

ðP;QÞ ! ðP�;Q�Þ; � ¼ E;M: (2.21)

In this case there are also issues of gauge invariance. For
the multipoles to be gauge invariant we couple them to the
gauge-invariant spherical wave variables. In the radiation
zone these are natural variables, while in the two-body
zone they should be understood to be a function of the
nonrelativistic fields.
The R1;1 ring.—We comment that the ðP;QÞ variables

can be thought to belong to the R1;1 ring [64] which is
closely related to complex numbers, and then the interac-
tion term (2.19) can be expressed in terms of an inner
product (in the ring and between multipole sets).

D. Directed propagators, field doubling, and action

A problem.—In the radiation zone we use the retarded
propagator that is clearly asymmetric with respect to
exchange of its two endpoints, namely, it is directed.
This creates a problem to apply the standard Feynman
diagram techniques where the propagator is undirected.
The essentials of this problem appear already in the case
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of a nonlinear scalar theory with source (2.1) where Vð�Þ is
a nonquadratic potential.

An undirected propagator is indeed a crucial part of the
standard Feynman calculus since the propagator resulting
from an action such as (2.1) is

(in conventions of classical effective field theory [16]), and
its exchange symmetry (exchanging x and y) arises from
the commutativity of the second variation of the action
(together with exchange-symmetric boundary conditions,
which is the element violated by the retarded propagator).
Nevertheless, we would like to eliminate the radiation
zone, namely, to solve for the radiation fields through their
equations of motion and only then to pay attention to the
other fields. The substitution can certainly be done in
the remaining equations of motion, yet in order to employ
the powerful diagrammatic techniques of effective field
theory we would prefer to perform it at the level of the
action. Such elimination at the level of the action is the
classical limit of integration out in the quantum path
integral, but since the Feynman path integral does not

appear in classical physics we refrain from the abuse of
language associated with the term ‘‘integration out’’ and
replace it in this context by ‘‘elimination’’ [16]. In short,
the challenge in this subsection is to define an effective
field theory with retarded propagators.
An example and a hint.—A diagrammatic representation

for some quantities is quite apparent. For concreteness,
consider the action

S½�� ¼
Z

d4x

�
1

8�G
@��@��� ��� g

6
�3

�
; (2.23)

namely, (2.1) with V ¼ g�3=6. Suppose we wish to
calculate � ¼ ��, the value of the retarded field in the

presence of a source �ðxÞ. In this case one only needs to
refine the standard Feynman rules by attaching a direction
to each propagator, which can be thought to represent the
direction of time. The vertices remain the same and carry
the same value; only the orientation of their propagators
needs to be specified, and the correct prescription is that for
each vertex exactly one propagator should be chosen as
outgoing (and the rest as ingoing). In our example these
rules are

and �� is correctly reproduced by

While field values, namely 1-point functions, can be de-
fined in this way, it does not work for the effective action,
namely a 0-point function, which is our goal. The reason is
that in order to obtain a 0-point function the future end of at
least one retarded propagator must terminate on a source
(a 1-valent vertex), and hence that vertex would not con-
form with the requirement of having exactly one outgoing
(future directed) leg. It is instructive to observe what goes

wrong if nevertheless we define an effective action by
allowing such a vertex, for instance

Then the expansion of the effective action would be
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However, this definition does not satisfy the basic
relation 
Seff=
�ðxÞjg¼0 ¼ ��retðxÞ but rather one finds

Seff=
�ðxÞjg¼0 ¼ �2�evenðxÞ, where only the symmetric
part of the propagator appears.

Theories defined through equations of motion—a
generalization.—Having identified the essential problem to
be the directed nature of the retardedpropagatorweabstract a
moregeneral context for the problem, that of a theory defined
through equations ofmotion (and not through an action). For
concreteness we continue to assume a single scalar field
� ¼ �ðxÞ and we write its equation of motion as

0 ¼ EOMðxÞ ¼ EOM0ðxÞ þ EOM0ðxÞ � �ðxÞ; (2.28)

where EOM0 is a dominant linear part, EOM0 is a perturba-
tion, and �ðxÞ is a source. We note that such theories are
inherently classical and do not allow a definition of a quan-
tum theory. This class of theories can be naturally described
by directed propagators as we proceed to explain.
Even though the theory has no action, it is still

possible to define properly generalized Feynman rules
which compute the solutions for � as follows (see for
example [65]):

Note that the propagator is directed because generally


EOM0ðxÞ

�ðyÞ �


EOM0ðyÞ

�ðxÞ : (2.30)

Moreover, each vertex has precisely one outgoing propaga-
tor that represents the field which is being solved for, while
the ingoing propagators represent a source term. The proof
that these diagrammatic rules produce the correct solution
for � (2.25) is by induction on the number of vertices.4

The discussion above can be generalized to several fields
�i, i ¼ 1; . . . ; N. In such a case there are even more
opportunities for the propagators to be directed, namely
asymmetric, since (2.30) becomes


EOMi0ðxÞ

�jðyÞ �


EOMj0ðyÞ

�iðxÞ : (2.31)

The challenge is to find a diagrammatic effective action
formulation for the equations of motion (2.28).

Solution.—First we try to to define an action Ŝ such as to
reproduce the directed Feynman rules (2.29). We can obtain
a direction for the propagator by adding an auxiliary dou-

bling field �̂ such that the propagator connects� and �̂ and
the exchange symmetry is manifestly broken. To reproduce
the vertices of (2.29) from an action we must take a product

of EOM0
i and �̂. Both requirements above are satisfied by

the following definition of a double field action:

Ŝ½�; �̂� :¼
Z

dxEOM�ðxÞ�̂ðxÞ; (2.32)

where we now added a subscript � to the equations
of motion in order to stress that they are the equations

of motion for �, not for �̂. Actually, this definition
implies that the new equation of motion with respect

to �̂ reproduces the original one for �, namely,


Ŝ=
�̂ðxÞ ¼ EOM�ðxÞ.
The definition (2.32) reproduces correctly the diagrams

for the 1-point function of �. Yet, in order to eliminate �
and define an effective action we also need to define a zero
point function (no external � legs). For that purpose we
must have a source (or sink) vertex for �—note that the

original source �ðxÞ in (2.28) is coupled to �̂ in Ŝ. Now we

add to Ŝ an auxiliary source �̂ for � as follows:

4A single vertex diagram is equivalent to a term in an equation
of motion, and given an arbitrary tree one identifies the vertex
attached to the external leg and applies the assumption to the
subtrees that are connected to it.
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Ŝ½�; �̂;�; �̂�
:¼

Z
dx

�
EOM�ðxÞ�̂ðxÞ þ 
EOM�ðyÞ


�ðxÞ �̂ðxÞ�ðyÞ
�
:

(2.33)

This is the final form of Ŝ in the general case. It allows for a
general dependence of EOM� on �, and in the case of

(2.28) the last term becomes S � �R
dx�̂ðxÞ�ðxÞ.

It is natural to wonder what is the meaning of �̂ and �̂.
Let us consider the new equation of motion, namely,

0 ¼ 
Ŝ


�ðxÞ ¼
Z

dx0

EOM�ðx0Þ


�ðxÞ �̂ðx0Þ � �̂ðxÞ: (2.34)

This means that �̂ satisfies an equation for linearized
fluctuations around the background � with a source �̂
and reversed propagation (as a source for reversed propa-
gation �̂ can be termed a sink). In particular, in the absence

of its source �̂ vanishes, namely,

�̂ ¼ 0 ) �̂ ¼ 0: (2.35)

We view � and � as being physical observables, unlike �̂
and �̂. Indeed we set in the equations of motion �̂ ¼ 0 as a

physical condition and hence �̂ ¼ 0. So �̂, �̂ which de-
scribe the hypothetical linearized perturbation of the sys-
tem as a result of a hypothetical reversed propagation
source �̂ are considered auxiliary fields introduced for
the purpose of the formalism, and do not reflect a genuine
doubling of the system’s degrees of freedom.

Specializing back to retarded propagators.—Now that
we have defined an action formulation of a general system
with directed propagators, we can specialize back to the
case of retarded propagators. In this case the double field or
radiation reaction action (2.33) becomes

Ŝ½�; �̂;�; �̂� :¼
Z

dx

�

S½��

�ðxÞ �̂ðxÞ þ 
S½��


�ðxÞ �̂ðxÞ
�
:

(2.36)

This is the central result of the current subsection. In this

case �̂ describes the hypothetical linearized perturbation
of the system as a result of advanced propagation from a
hypothetical source �̂.

Returning to the example.—Given the action (2.23) the
double field action (2.36) is given by

Ŝ¼
Z
d4x

�
1

4�G
@��@��̂�g

2
�2�̂���̂� �̂�

�
: (2.37)

The Feynman rules arising from Ŝ are precisely those
anticipated in (2.24), namely, a directed version of the
Feynman rules for the original action (2.23) where the

arrow on each propagator points from �̂ to �, together
with the addition of the new vertex

which replaces the failed attempt (2.26).
Field doubling and zones.—In our problem there are two

zones, and directed propagators appear only in the radiation
zone. Therefore we need to specify which fields are to be
doubled. The radiation fields should clearly be doubled
together with their sources Q. The source Q, in turn,
depends on the fields of the system zone including the
trajectories ~xAðtÞ. This leads us to proceed and double also
the fields in the two-body zone including x. However, there
is no need to perform any system zone computation with
hatted fields since owing to the undirected nature of the
propagator any hatted quantity in the system zone can be
readily obtained from the unhatted ones through lineariza-

tion. In particular Q̂ can be obtained from Q ¼ Q½xðtÞ� by

Q̂½x; x̂� ¼
Z

dt

Q½x�

xiAðtÞ

x̂iAðtÞ: (2.39)

Therefore we distinguish between the essential doubling
of the radiation fields and the inessential doubling, or
cloning of the system zone fields.
Discussion: relation with closed time path formalism.—

The field doubling theory of this section is closely related
to the closed time path formalism [14] (also known as the
in-in formalism) in quantum field theory. In CTP (see for
example the description in [13]), given a general action
S ¼ S½�� one doubles the fields and defines the following
action for them:

ŜCTP½�1; �2� :¼ S½�1� � S½�2�; (2.40)

together with a physical condition to be imposed at the
level of the equations of motion

�1 ¼ �2; (2.41)

and with the propagators between�A and�B, A, B ¼ 1, 2,
arranged in a matrix

GF �G�
�Gþ GD

 !
; (2.42)

where GF is the Feynman propagator, GD � GF
 is the
Dyson propagator, and the propagators G	 are defined in
Appendix C of [13].
It is useful to change basis and use the Keldysh

representation �, �̂

�1 ¼ �þ 1

2
�̂; �2 ¼ �� 1

2
�̂: (2.43)

The double field action (2.40) becomes

Ŝ ¼ S

�
�þ 1

2
�̂

�
� S

�
�� 1

2
�̂

�

¼ 
S½��

�

�̂þ 1

6


3S½��

�3

�̂3 þ � � � : (2.44)
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In the nonquantum limit, second and higher powers of �̂ do
not contribute to the equations of motion due to the physi-

cal condition (2.41), which becomes �̂ ¼ 0, and we repro-
duce (2.36). Here we wish to note a difference between our
formulation and CTP. In our formulation we do not impose

the physical condition �̂ ¼ 0, but rather the equation of
motion with respect to the fact that � yields the linear

relation �̂ ¼ �̂ð�̂Þ and thus can be substituted back into
the action. Since the physical condition is not imposed, the
field doubled actions (2.36) and (2.44) are inequivalent and
we find that in the nonquantum limit the Keldysh basis
appears to be the preferred and only basis to be used.

The propagator matrix becomes

0 �iGadv

�iGret
1
2GH

 !
; (2.45)

where GH � f�ðxÞ; �ðyÞg is the Hadamard function. In the

nonquantum limit the propagator between �̂ and itself can

be taken to vanish (since the action expanded in �̂ is
truncated after the first order), and hence we recognize
that the propagator matrix reduces to the propagator used
here (2.24), once the convention for real Feynman rules is
accounted for. Now we recognize the current theory in
the context of retarded propagators to be the nonquantum
(classical) limit of CTP (however, the general theory founded
on equations of motion cannot have a quantum relative).

Normally physical theories are superseded by more gen-
eral ones that reduce to the original theory in the appropriate
limit (the correspondence principle). However, it can some-
times happen that this order is reversed, namely, first a more
general theory is formulated and only later it is realized that a
nontrivial theory can be defined through one of its limits. This
is the case at hand where the quantum theory was formulated
before its classical limit was known. We may refer to the
current theory as the classical ‘‘origin’’ of CTP, where origin
is in quotes since while it could have been defined in classical
physics and then used as an origin for a quantum theory the
actual chronological order was reversed. For a discussion of
the extant literature on the classical limit see Appendix B.

E. Summary of formulation

We shall now collect all the ingredients introduced
in this section and summarize our formulation. We con-
sider a two-body problem and three cases of interactions
between them: scalar, electromagnetic, and gravitational
(s ¼ 0, 1, 2 in short). The problem’s action for each case is
summarized in Table I.

Field variables and zones.—In the post-Newtonian ap-
proximation one uses two zones: the system zone and the
radiation zone, and accordingly each field is defined over
(or has modes in) each zone. We note that each zone has an
enhanced symmetry and that guides us in the choice of
field variables. In the system zone we use nonrelativistic

field variables, while in the radiation zone we use spherical
wave variables (2.6); see Table II.
Action and Feynman rules.—The bulk action is the same

in both zones, only expressed in the appropriate field
variables. In the system zone the propagator is taken to
be instantaneous (2.4).
We define a coupling between the zones through the

introduction of two-way matching multipoles variables PL,
QL. These are algebraic fields which can be thought to
reside in the overlap region and their action is given in
(2.19). The equations of motion with respect to P, Q
reproduce the matching conditions.
In the radiation zone we define the action

Srad½�L;QL� :¼S½�ðxÞ
¼�Lðr;tÞxL��

Z
dtQLðtÞ�LðtÞjr¼0; (2.46)

namely, we express the scalar action (1) in terms of the
spherical fields�L (2.6) together with the coupling term to
the radiation source multipolesQL (2.14). For concreteness
we present here the scalar case.
In order to use the retarded (and hence directed)

propagator (2.8) we double the fields and sources by

introducing �̂, Q̂ and define the radiation reaction action
to be [see (2.36)]

Ŝ½�; �̂;Q; Q̂�
:¼

Z
d4x

�

S½�;Q�

�ðxÞ �̂ðxÞ þ 
S½�;Q�


QðxÞ Q̂ðxÞ
�
: (2.47)

The Feynman rules can be read from these actions.
Elimination.—At this point the perturbation theory is

formulated. In the next section we proceed to demonstrate
it via explicit computations, eliminating fields to obtain
effective actions involving the bodies and the radiation.
Two-body effective action.—Elimination of system

zone fields with no coupling to radiation produces the usual
two-body effective action

which accounts for conservative interactions. The heavy
lines denote the bodies.
Radiation source multipoles Q½x� are defined through

the elimination of near zone fields in the presence of one
external leg of radiation

namely, the source vertex in the radiation zone is defined
through matching with the system zone. The double heavy
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line represents the system (in the radiation zone), while a
single heavy line represents one of the bodies (in the
system zone), and finally the dashed vertical line separat-
ing the zones represents their interaction (through the P, Q

sector). The doubled source Q̂ is defined to be the lineari-
zation of Q (2.39). In practice we compute first Q ¼ Q½��
for an arbitrary charge distribution � (in the system zone)
and then substitute the charge distribution of a system of
point particles � ¼ �½x� obtaining altogether

Q½x� :¼ Q½�½x��: (2.50)

In computingQ½�� we extrapolate the spherical wave from
the radiation zone and the overlap region into the system
zone and up to the last vertex there.
Outgoing radiation is defined through the asymp-

totic form of the radiation field. Diagrammatically it re-
quires elimination of the radiation fields (except for the
asymptotic modes) by

where the last equality uses the diagrammatic definition of Q½x� (2.49).5 From this quantity we can isolate �outðu;�Þ
defined by

�ðr; t;�Þ � 1

r
�outðt� r;�Þ at r ! 1: (2.52)

Next the radiated power can be obtained by integrating over the asymptotic radial energy flux (or using the optical
theorem).

The radiation reaction effective action ŜRR and associated RR force.—Elimination of radiation fields through diagrams
without external legs yields the radiation reaction effective action

If onewishes one can obtain the reaction field�sys
L jr!1 and

reaction source multipoles PL as follows:

�rad
L jr¼0 � �

sys
L jr!1 � �Gð2‘� 1Þ!!PL ¼ �
Ŝ½Q; Q̂�


Q̂
:

(2.54)

To obtain ŜRR in terms of x and x̂, we substituteQ½x� and
Q̂½x; x̂� in (2.53),

ŜRR½x; x̂� ¼ ŜRR½Q½x�; Q̂½x; x̂��: (2.55)

This quantity encodes in it the RR force through the
following contribution to the equations of motion6:

0 ¼ 
S2bd½x�

xiA

þ 
ŜRR½x; x̂�

x̂iA

; (2.56)

namely, the RR force is

ðFRRÞiA :¼ 
ŜRR½x; x̂�

x̂iA

: (2.57)

Dissipated power.—Now one can compute the power
dissipated by the RR force (summed over all bodies)

PRR ¼ � _xiAðFRRÞiA ¼ � _xiA

ŜRR½x; x̂�


x̂iA

¼ � _xiA

Z
dt0


Ŝ


Q̂Lðt0Þ

Q̂Lðt0Þ

x̂iA

¼ _xiA

Z
dt0


Ŝ


Q̂Lðt0Þ

QLðt0Þ

xiA

; (2.58)

where PRR, _xiA as well as 
x̂iA, 
x
i
A all occur at time t and

we used (2.57) in the second equality and (2.39) in the
fourth. In the scalar theoryQ depends only on x and not on
its time derivatives and hence

5We remark that the usage of diagonally tilted bubbles in our
Feynman diagrams indicates the inclusion of a time-directed
propagator.

6It is possible to define
^̂S½x; x̂� :¼ Rð
S=
xiAÞx̂iA þ Ŝ½x; x̂� such

that the equations of motion have a more familiar form 0 ¼
ð
 ^̂S=
x̂iAÞ, namely, to consist of the variation of a single action

functional. However, we find it more convenient not to use ^̂S.
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QLðt0Þ

xiAðtÞ

_xiAðtÞ ¼
dQ

dt

ðt� t0Þ; (2.59)

and hence

PRR ¼ �dQL

dt


Ŝ


Q̂L

: (2.60)

Actually this holds for any Q of electric type. More
generally, namely, for Q of magnetic type, (2.59) holds
only after averaging over t and hence the time averaged
power is given by

hPRRi ¼ �
�
dQL

dt


Ŝ


Q̂L

�
: (2.61)

In the next section we shall confirm that PRR is equal on
average to the radiated power.

Discussion: relation between radiation and RR force is
made more apparent.—This is due to both quantities
depending on the source multipoles Q and moreover,

each diagram that contributes to Ŝ½Q; Q̂� can be associated
with one that contributes to �out simply by erasing the

(double heavy) line for Q̂. The equality (on average) of
dissipated and radiated power will be seen quite directly;
see for example (3.32) in the scalar case.

Bottleneck for T violation.—While time reversal
symmetry (T) is broken by the retarded propagator, it is
still a symmetry of the system zone due to its instantaneous

propagation and S2bd½x� is T symmetric. Moreover, Ŝ½x; x̂�
violates T and causes dissipation starting only at a high PN
order (2.5PN in gravity, 1.5PN in electromagnetism). We
explain that by the observation that T violating interactions
in the system zone can only appear from diagrams which
communicate with the radiation sector which thereby be-
haves as a bottleneck that increases the PN order. In other
words the radiation sector is a T-breaking sector while T is
preserved in the system sector, and the violation of this
symmetry (or anomaly) is communicated only through
zone coupling (namely, the P, Q messengers).

Characterization of radiation reaction and its relation
with the self-force.—In the introduction we loosely
defined the RR force to be the force that guarantees
that the system dissipates to ensure overall conservation
when radiation is accounted for. The precise definition
(2.57) means that the RR force is the one that arises
from the elimination of the radiation zone, or equiva-
lently it is caused by system zone fields that originate
from the overlap region. This definition is rooted in
the post-Newtonian (PN) context as it assumes the ex-
istence of the various zones. However, the RR force is
not defined by a specific PN order. This suggests that it
might be possible to define it in a wider context than PN.

A related issue is to characterize the RR force, namely,
to distinguish it by expression and not by the way it is
computed. The system zone and hence the conserving

force preserve T, conserve M, ~J, ~P, and finally are
independent of the choice of wave boundary conditions

(retarded, advanced etc.). It might be that violation of some
of these properties can serve as characterization.
The RR force is closely related to the notion of self-force.

The self-force is defined to be a force that is affected by a
field which was sourced by the very same body in its past. In
gravity this notion is natural in the extrememass ratio (EMR)
and it is usually reserved for a force of orderOðm2Þ wherem
is the smaller mass. The two concepts can be compared and
distinguished in a double limit which assumes both PN and
EMR,7 as can be seen from the following two examples.
In this limit the 1PN conserving (and hence non-RR) force
that arises from the gravitation of potential energy has the
scaling of a self-force, while on the other hand the leading
quadrupole RR force has a component proportional to mM,
where M is the large mass, and hence would not be consid-
ered self-force (at least as long as equations of motion are not
substituted in the expression). However, in certain cases the
two forces coincide, for example in the context of a single
body coupled to the electromagnetic field the ALD force is
both RR and self-force.

III. DEMONSTRATION

In this section we demonstrate the formulation presented
in the previous section through explicit perturbative calcu-
lations of radiation source multipoles Q½J�, the outgoing
radiation, and the RR force in the cases of a scalar, elec-
tromagnetic, and gravitational fields. We start with a scalar
field in Sec. III A where we employ spherical waves; we
economize the EFT expression for Q½J� by including re-
tardation effects through Bessel functions; the RR force is
conveniently formulated in terms of a double field action
and is derived through a 1-line evaluation of a Feynman
diagram. Next we proceed to the electromagnetic case in
Sec. III B where one must account for the two possible
polarizations and we add to the previous ingredients a
gauge-invariant formulation of waves and sources.
Finally we reach the gravitational case including its
nonlinearities in Sec. III C. In addition to obtaining an
expression for the linearized radiation sources economized
by Bessel functions, we compute the leading radiation
reaction effective action and the associated RR force as
well as the next-to-leading corrections in a way that uses
fewer Feynman diagrams and thereby economizes the
computation in [11]. We moreover compute certain new
higher order terms. In many cases we take [12] as a basis
for comparison, as it is a thorough treatment of radiation
source multipoles and more within the EFT approach.

A. Scalar case: spherical waves and double-field action

We first examine the RR force acting on a charge
distribution interacting through a scalar field. We take the
action to be

7For interesting tests in this double limit see [66] and refer-
ences therein.
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S�¼þ 1

8�G

Z
ð@�Þ2r2drd�dt�

Z
��r2drd�dt; (3.1)

which is the same as (2.1) with V ¼ 0.
Spherical waves: conventions.—We shall work in the

frequency domain and use the basis of spherical multipoles
by decomposing the field and the sources as

�ð~r; tÞ ¼
Z d!

2�

X
L

e�i!t�L!ðrÞxL;

�ð~r; tÞ ¼
Z d!

2�

X
L

e�i!t�L!ðrÞxL;
(3.2)

where for a multi-index L ¼ ðk1k2 . . . k‘Þ, xL is the
symmetric-trace-free (STF) multipole

xL ¼ ðxk1xk2 . . . xk‘ÞSTF � r‘nL: (3.3)

The multipole basis satisfies [following (2.7)]

Z
xL‘

ðr;�ÞxL0
‘0 ðr;�Þd�¼ 4�r2‘

ð2‘þ1Þ!!
‘‘0
L‘L
0
‘0
;

Z
g��0

@�xL‘
@�0xL

0
‘0d�¼cs

4�r2‘

ð2‘þ1Þ!!
‘‘0
L‘L
0
‘0
;

(3.4)

where cs :¼ ‘ð‘þ 1Þ, g��0
is the metric on the

two-dimensional unit sphere (for summation convention
and definitions, see Appendix A 1). We shall also use the
inverse transformation

�L!ðrÞ ¼
Z

�!ð~rÞxL ð2‘þ 1Þ!!d�
4�r2‘

¼
ZZ

dtei!t�ð~r; tÞxL ð2‘þ 1Þ!!d�
4�r2‘

: (3.5)

Spherical waves: dynamics.—In the new notation, using
�L�! ¼ �


L!, the action (3.1) becomes

S�¼1

2

Z d!

2�

X
L

Z
dr

�
r2‘þ2

ð2‘þ1Þ!!G�

L!

�
!2þ@2rþ2ð‘þ1Þ

r
@r

�
�L!�ð��

L!�


L!þc:c:Þ

�
; (3.6)

with the source term defined as

��
L!ðrÞ ¼

4�r2‘þ2

ð2‘þ 1Þ!!�L!ðrÞ ¼ r2
Z

d��!ð ~rÞxL: (3.7)

From (3.6) we derive the equation of motion

0 ¼ 
S


�

L!

¼ r2‘þ2

ð2‘þ 1Þ!!G
�
!2 þ @2r þ 2ð‘þ 1Þ

r
@r

�
�L! � ��

L!:

(3.8)

Changing to the dimensionless variable x :¼ !r the
homogenous part of this equation becomes

�
@2x þ 2ð‘þ 1Þ

x
@x þ 1

�
~j‘ ¼ 0; (3.9)

and its solutions ~j‘, ~h
þ
‘ are Bessel functions up to normal-

ization (see Appendix A 2). Thus the propagator for
spherical waves is

We turn to derive the source term in the radiation zone through matching with the system zone according to the
diagrammatic definition [see (2.49) where the diagrammatic notation is explained]

In the radiation zone we think of the sources QL! as located at the origin or r ¼ 0. Hence the radiation zone field can be
written as
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On the other hand, in the full theory (or equivalently in the system zone) we can also use spherical waves to obtain the field
outside the source as

�L!ðrÞ ¼ �
Z

dr0��
L0!ðr0ÞG�

retðr0; rÞ ¼ �G

�Z
dr0~j‘ð!r0Þ��

L!ðr0Þ
� �i!2‘þ1

ð2‘þ 1Þ!!
~hþ‘ ð!rÞ

¼ �G

�Z
d3x0~j‘ð!r0Þ�!ð ~r0Þx0L

� �i!2‘þ1

ð2‘þ 1Þ!!
~hþ‘ ð!rÞ: (3.13)

By comparing the expressions for the field (3.12) and
(3.13) and using identity (3.5) to return to the time
domain we find that the radiation source multipoles
are

QL ¼
Z

d3x~j‘ðir@tÞxSTFL �ð~r; tÞ: (3.14)

Using the series expansion (A8), we see that the scalar
multipoles coincide with Ross’s multipoles [12]
Eqs. (10) and (11). We note that we can think of this
process as a zoom out balayage of the original charge
distribution �ðrÞ into QL carried out through propaga-
tion with ~j‘ð!rÞ. We also note a useful representation
of this result

QL ¼
Z

d3x xSTFL

Z 1

�1
dz
‘ðzÞ�ð ~r; uþ zrÞ; (3.15)

where we have used the generating time-weighted
function (following [67,68])


‘ðzÞ ¼ ð2‘þ 1Þ!!
2‘þ1‘!

ð1� z2Þ‘;
Z 1

�1
dz
‘ðzÞfð~r; uþ zrÞ ¼ Xþ1

p¼0

ð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!

� ðr@uÞ2pfð~r; uÞ: (3.16)

Altogether the Feynman rules in the radiation zone for
the propagator and sources are

where for future use we included �, a possible polarization label, and Rs, a rational l-dependent factor that is absent in the
scalar case, namely, Rjs¼0 ¼ 1.

1. Outgoing radiation and the RR effective action

We can now use these Feynman rules to obtain our central quantities.
Outgoing radiation.—It can now be found diagrammatically as

where we used the asymptotic form of ~hðxÞ (A9) and ~jðwr0Þjr0¼0 ¼ 1 for the source at r0 ¼ 0. Using (3.2) we find that the
outgoing radiation is
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�ð~r; tÞ �G

r

X
L

nL@‘t QLðt� rÞ as r ! 1; (3.20)

which coincides with [12] [Eq. (21); note a 4� normalization factor which must be accounted for due to our different
normalization of the action].

Radiation reaction effective action.—It encodes the RR force and is given by

where now both vertices are at r ¼ r0 ¼ 0, and we regu-
larized to zero the divergent (and time symmetric) ~y‘ part
of ~hð1Þ‘ . Using (3.5) we return to the time-domain finding
the radiation reaction effective action to be

Ŝ� ¼ G
Z

dt
X
L

ð�Þ‘þ1

ð2‘þ 1Þ!! Q̂
L@2‘þ1

t QL; (3.22)

where QL was given by (3.14) and according to (2.39)

Q̂L ¼ 
QL


�
�̂ ¼ 
QL


xi
x̂i ¼ @QL

@xi
x̂i þ @QL

@vi v̂
i

þ @QL

@ai
âi þ � � � : (3.23)

Note that the computation reduces to a mere multiplica-
tion: vertex–propagator–vertex.

2. Applications and tests

Perturbative expansion of the RR force.—Consider the
case of a single charged body with a prescribed trajectory
(‘‘being held and waved at the tip of a wand’’) interacting
with a scalar field. A fully relativistic force expression
is known, analogous to the Abraham-Lorentz-Dirac self-
force [30] familiar from electromagnetism. In this case the
notion of RR force and self-force coincide. We compute
our perturbative expansion up to orderþ1PN and compare
it with the ALD-like expression.

The ALD self-force of radiation reaction on an accel-
erating scalar charge can be derived in analogy with the
electromagnetic case and is found to be

F�
ALD � dp�

d�
¼ 1

3
Gq2

�
d3x�

d�3
� d3x�

d�3
dx�
d�

dx�

d�

�
: (3.24)

The leading and next-to-leading-order terms in the PN
expansion of this force are

~FALDLO ¼ 1

3
Gq2 _~a; (3.25)

~FALDNLO ¼ Gq2
�
1

3
v2 _~aþ ð ~v � ~aÞ ~aþ 1

3
ð ~v � _~aÞ ~v

�
; (3.26)

where all derivatives are now with respect to t, namely
vi :¼ dxi=dt, ai :¼ d2xi=dt2, and _ai :¼ d3xi=dt3.
We compared our result of the RR force directly to these

ALD terms, obtaining a perfect match up to next-to-
leading order. Our method derives the RR force from the
action and multipoles (3.14) and (3.22) in three stages: by
using a source term of a point particle for �, by matching
the appropriate �̂, and by finally calculating the contribu-
tion from generalized Euler-Lagrange equation 
S=
x̂i

[following (2.56)]. The source term corresponding to a
scalar-charged point particle with a trajectory ~xðtÞ is

�ð ~x0; tÞ ¼ q
Z


ð4Þðx0 � xÞd� ¼ q

�

ð3Þð ~x0 � ~xÞ

¼ X1
s ¼0

�ð2s� 3Þ!!v2s

ð2sÞ!! 
ð3Þð ~x0 � ~xÞ: (3.27)

Thus we find

QL ¼ ð2‘þ 1Þ!! X1
p¼0

X1
s¼0

ð2s� 3Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!ð2sÞ!! @

2p
t ðv2sr2pxLTFÞ;

Q̂L ¼ ð2‘þ 1Þ!! X1
p̂¼0

X1
ŝ¼0

ð2ŝ� 3Þ!!
ð2p̂Þ!!ð2‘þ 2p̂þ 1Þ!!ð2ŝÞ!! @

2p̂
t





xi
ðv2ŝr2p̂xLTFÞx̂i:

(3.28)
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Accordingly we obtain the Lagrangian, which after moving 2p̂ time derivatives from the x̂L multipoles to the xL multipoles
by partial integration becomes

L̂� ¼ Gq2
X
L

ð�Þ‘þ1ð2‘þ 1Þ!! X1
p¼0

X1
s¼0

X1
p̂¼0

X1
ŝ¼0

ð2s� 3Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!ð2sÞ!!

ð2ŝ� 3Þ!!
ð2p̂Þ!!ð2‘þ 2p̂þ 1Þ!!ð2ŝÞ!! x̂

i

� 



xi
ðv2ŝr2p̂xLTFÞ@2‘þ2pþ2p̂þ1

t ðv2sr2pxLÞ: (3.29)

In the Euler-Lagrange equation, the RR force contribution
is given by the variation by x̂j,

Fj ¼ 
Ŝ


x̂j
¼
�
@L̂

@x̂j
� d

dt

�
@L̂

@ _̂xj

��
: (3.30)

We thus find the leading force (‘ ¼ 1, p¼p̂¼s¼ ŝ¼0),
namely, the leading dipole term, shown in Table III
to coincide with the leading-order ALD result (3.25).
Out of the 15 possible action terms in the next-to-
leading order (for different ‘, p, p̂, s, ŝ), we find using
the Euler-Lagrange equation nine nonzero contributions
to the force (recorded in Table IV). Adding these con-
tributions we exactly reproduce the ALD result to this
order (3.26).

Dissipated power.—We calculate the total power dissi-
pated by the RR force by substituting (3.22) in (2.61)

PRR ¼ X
L

ð�Þ‘G
ð2‘þ 1Þ!!@tQ

L@2‘þ1
t QL: (3.31)

Using ‘ integrations by parts, we find the time-averaged
power to be

hPRRi ¼
X
L

G

ð2‘þ 1Þ!! hð@
‘þ1
t QLÞ2i

¼X
L

G

‘!ð2‘þ 1Þ!! hð@
‘þ1
t QSTF

k1k2...k‘
Þ2i ¼ Prad: (3.32)

This result coincides with the average power emitted by the
radiation, Prad, which can be calculated directly from the
energy flux of the outgoing radiation (3.20), or alternatively
through Eq. (15) of [12], (accounting again for a 4� nor-
malization factor, and for comparison we reintroduced the
1
‘! where the notation is nonmulti-index; see Appendix A 1).

B. Electromagnetism: gauge-invariant waves

The EM action is given by

S ¼ � 1

16�

Z
F��F

��r2drd�dt�
Z

A�J
�r2drd�dt:

(3.33)

Working in spherical coordinates ðt; r;�Þ and reducing
over the sphere as in (3.2), we decompose the EM field
and sources

At=r ¼
Z d!

2�

X
L

AL!
t=r xLe

�i!t;

A� ¼
Z d!

2�

X
L

ðAL!
S @�xL þ AL!

V xL�Þe�i!t;

Jt=r ¼
Z d!

2�

X
L

Jt=rL!x
Le�i!t;

J� ¼
Z d!

2�

X
L

ðJSL!@�xL þ JVL!x
�
L Þe�i!t;

(3.34)

where the scalar multipoles xL (3.4) are now supple-

mented by the divergenceless vector multipoles xL�¼
���0@�

0
xL¼ð ~r� ~rxLÞ�. The complete normalization

conditions are

Z
xL‘

xL
0
‘0d� ¼ 4�r2‘

ð2‘þ 1Þ!!
‘‘0
L‘L
0
‘0
;

Z
g��0

@�xL‘
@�0xL

0
‘0d� ¼ 4�csr

2‘

ð2‘þ 1Þ!!
‘‘0
L‘L
0
‘0
;

Z
x�L‘

x
L0
‘0

� d� ¼ 4�csr
2‘

ð2‘þ 1Þ!!
‘‘0
L‘L
0
‘0
;

Z
g��0

gPP
0
D�x

L‘

P D�0x
L0
‘0

P0 d� ¼ 8�c2sr
2‘

ð2‘þ 1Þ!!
‘‘0
L‘L
0
‘0
;

(3.35)

where cs :¼ ‘ð‘þ 1Þ and D� is the covariant derivative
on the sphere. Accordingly we shall also use the inverse
transformations:

TABLE III. Leading-order contribution to the scalar self-force.

‘ p p̂ s ŝ L̂=ðGq2Þ Fj=ðGq2Þ
1 0 0 0 0 1

3 x̂
i@3t xi

1
3 _aj
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JtL!ðrÞ ¼
ð2‘þ 1Þ!!
4�r2‘

Z
�!ð ~rÞxLd� ¼ ð2‘þ 1Þ!!

4�r2‘

ZZ
dtei!t�ð~r; tÞxLd�;

JrL!ðrÞ ¼
ð2‘þ 1Þ!!
4�r2‘

Z
~Jwð ~rÞ � ~nxLd� ¼ ð2‘þ 1Þ!!

4�r2‘

ZZ
dtei!t ~Jð~r; tÞ � ~nxLd�;

JVL!ðrÞ ¼
ð2‘þ 1Þ!!
4�csr

2‘

Z
~Jwð ~rÞ � ½ ~r� ~rxL�d� ¼ ð2‘þ 1Þ!!

4�csr
2‘

ZZ
dtei!t ~Jð ~r; tÞ � ½~r� ~rxL�d�:

(3.36)

We note that only three inverse transformations are needed, as we henceforth replace JSL! using the equation of current
conservation

0 ¼ D�J
�
L! ¼ iwJtL! þ

�
@r þ ‘þ 2

r

�
JrL! � csJ

S
L!: (3.37)

We plug (3.34) into Maxwell’s action (3.33) to obtain

S¼1

2

Z d!

2�

X
L

1

ð2‘þ1Þ!!SL!;

SL!¼
Z
drr2‘þ2

��								i!AL!
r � 1

r‘
ðr‘AL!

t Þ0
								2þcs

r2
ji!AL!

S �AL!
t j2�cs

r2

								 1

r‘
ðr‘AL!

S Þ0�AL!
r

								2

þcs

�
!2

r2
�cs
r4

�
jAL!

V j2�cs
r2

								 1

r‘
ðr‘AL!

V Þ0
								2
�
�4�½AL!

r Jr
L!þAL!
t Jt
L!þcsA

L!
S JS
L!þcsA

L!
V JV
L!þc:c:�



; (3.38)

where 0 :¼ d
dr , and we have used AL�! ¼ A


L!, JL�! ¼
J
L! since A�ðxÞ, J�ðxÞ are real. We notice that AL!

r is an
auxiliary field, i.e. its derivative A0

r does not appear in
(3.38). Therefore, its EOM is algebraic and is solved to
yield

Ar
L!¼� 1

!2� cs
r2

�
i!

r‘
ðr‘At

L!Þ0þ
cs
r‘þ2

ðr‘AS
L!Þ0�4�JrL!

�
:

(3.39)

Substituting the solution into the action, it can be seen that
the action depends on only two gauge-invariant variables:
one is AL!

V , as it appears already in (3.38), coupled to the
vector source term

�V
L!

:¼ JVL!; (3.40)

and the other is

~A L!
S

:¼ AL!
t � i!AL!

S ; (3.41)

which is coupled to its corresponding source term

�S
L!

:¼ �JtL! þ i

!r‘þ2

�
r‘þ2 �

�� 1
JrL!

�0
; (3.42)

where � :¼ !2r2

cs
, and we have used (3.37). The action

can now be concisely decoupled to a scalar part and a
vector part [omitting hereafter the field indices (L!) for
brevity]:

SEM ¼ 1

2

Z d!

2�

X
L

½SL!S þ SL!V �; (3.43)

TABLE IV. Next-to-leading-order contribution to the scalar self-force.

‘ p p̂ s ŝ L̂=ðGq2Þ Fj=ðGq2Þ
2 0 0 0 0 � 1

30 x̂
k 


xk

½xixj � 1
3 x

2
ij�@5t ðxixjÞ � 1
15 ½@5t ðxixjÞxi � 1

3@
5
t ðx2Þxj�

1 0 1 0 0 1
30 x̂

k 


xk

½xix2�@5t xi 1
30 ½x2@5t xj þ 2xjxi@

5
t x

i�
1 1 0 0 0 1

30 x̂
i@5t ðx2xiÞ 1

30 @
5
t ðx2xjÞ

1 0 0 0 1 � 1
6 x̂

k 


xk

½v2xi�@3t xi � 1
6v

2@3t x
j þ 1

3 @t½vjxi@3t xi�
1 0 0 1 0 � 1

6 x̂
i@3t ðv2xiÞ � 1

6 @
3
t ðv2xjÞ

0 1 1 0 0 � 1
18 x̂

jxj@
5
t x

2 � 1
18 x

j@5t x
2

0 1 0 0 1 1
6 v̂

jvj@
3
t x

2 � 1
6@t½vj@3t x

2�
0 0 1 1 0 1

6 x̂
jxj@

3
t v

2 1
6 x

j@3t v
2

0 0 0 1 1 � 1
2 v̂

jvj@tv
2 1

2@t½vj@tv
2�
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SL!S ¼
Z

dr
r2‘þ2

ð2‘þ 1Þ!!
�

1

1��

								 1

r‘
ðr‘ ~ASÞ0

								2þ cs
r2

j ~ASj2

þ 4�ð ~AS�
S

L! þ c:c:Þ

�
; (3.44)

SL!V ¼
Z

dr
r2‘þ2

ð2‘þ 1Þ!! cs
��

!2

r2
� cs

r4

�
jAVj2

�
								 1

r‘þ1
ðr‘ ~AVÞ0

								2�4�ð ~AV�
V

L! þ c:c:Þ

�
; (3.45)

and we treat them separately. We also note here that for
‘ ¼ 0we have �S

L! ¼ 0 [see Eqs. (3.37) and (3.42)] as well
as SV ¼ 0, and so only ‘ � 1 need be considered.

1. The scalar part of the EM action

We derive the equation of motion for the scalar action

from SL!S (3.44) by treating (r‘ ~AS) as the field, and finding

equations for its conjugate momentum ð r‘�S

ð2‘þ1Þ!!Þ,�
r‘�S

ð2‘þ 1Þ!!
�
:¼ @L

@ðr‘ ~A

SÞ0

¼ r2ðr‘ ~ASÞ0
ð2‘þ 1Þ!!ð1��Þ ; (3.46)

�
r‘�S

ð2‘þ 1Þ!!
�0

:¼ @L

@ðr‘ ~A

SÞ

¼ ‘ð‘þ 1Þ
ð2‘þ 1Þ!! ðr

‘ ~ASÞ þ 4�r‘þ2�S
L!

ð2‘þ 1Þ!! : (3.47)

Differentiating (3.47) with respect to r, substituting (3.46),

and renaming the field AE and source term �AE

L! [recalling
(3.36) and (3.42)] as

AE ¼ �S

‘r
;

�AE

L! ¼ 4�r‘þ1ðr‘þ2�S
L!Þ0

ð‘þ 1Þð2‘þ 1Þ!!
¼ 1

‘þ 1

Z
d�rxL

�
�r2�!ð~rÞ

þ i

!

�
r2

�

�� 1
~Jwð~rÞ � ~n

�0�0
; (3.48)

we find the equation

0 ¼ r2‘þ2

ð2‘þ 1Þ!!
‘

‘þ 1

�
!2 þ @2r þ 2ð‘þ 1Þ

r
@r

�
AE � �AE

L!:

(3.49)

This equation is of the same form as (3.8), up to replacing
G by the factor

Rþ
1 ¼ ‘þ 1

‘
; (3.50)

thus from its solution we find a propagator similar
to (3.10),

GAE
ret ðr0; rÞ ¼ �i!2‘þ1

ð2‘þ 1Þ!!R
þ
1
~j‘ð!r1Þ~hþ‘ ð!r2Þ
LL0 ;

r1 :¼ min fr0; rg; r2 :¼ max fr0; rg:
(3.51)

We again present the EFT Feynman rules following the
steps (3.12)–(3.14). In the radiation zone, the field can be
written as

AL!
E ðrÞEFT ¼ �QE

L!

�i!2‘þ1

ð2‘þ 1Þ!!R
þ
1
~hþ‘ ð!rÞ; (3.52)

where QE
L! are the sources (3.11). In the full theory the

solution outside the sources is given [see (3.49)] by

AL!
E ðrÞ ¼

Z
dr0�AE

L!ðr0ÞGAE
ret ðr0; rÞ

¼ �
�Z

dr0~j‘ð!r0Þ�AE

L!ðr0Þ
� �i!2‘þ1

ð2‘þ 1Þ!!R
þ
1
~hþ‘ ð!rÞ;
(3.53)

and the sources can be read off and identified [using (3.9),
(3.36), and (3.49) and integration by parts] to be

QE
L! ¼

Z
dr0~j‘ð!r0Þ�AE

L!ðr0Þ ¼
1

‘þ 1

Z
dr0~j‘ð!r0Þ

�
Z

d�0r0x0L
�
�r02�!ð ~x0Þ

þ i

!

�
r02

�

�� 1
~J!ð ~x0Þ � ~n0

�0�0
¼ 1

‘þ 1

Z
d3x0x0L

�
1

r0‘
ðr0‘þ1~j‘ð!r0ÞÞ0�!ð ~x0Þ

� i!~j‘ð!r0Þ ~J!ð ~x0Þ � ~x0
�
: (3.54)

Returning to the time domain using (3.36) we find the
electric type radiation source multipoles [compare (3.14)]

QL
E ¼ 1

‘þ 1

Z
d3xxLTF

�
1

r‘
ðr‘þ1~j‘ðir@tÞÞ0�ð ~xÞ

� ~j‘ðir@tÞ@t ~Jð ~x0Þ � ~x
�
; (3.55)

Q̂L
E ¼
QL

E


Ji
Ĵi ¼
QL

E


xi
x̂i ¼ @QL

E

@xi
x̂iþ@QL

E

@vi v̂
iþ@QL

E

@ai
âiþ��� :

(3.56)

We note here that by expanding ~j‘ with (A8) this PN
multipole expansion reproduces Eq. (47) of [12] [after
using current conservation, Eq. (49) there].
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2. The vector part of the EM action

For the vector sector of the action, we rewrite (3.45) in
4d in a form similar to (3.6),

SL!V ¼ 1

R�
1

Z
dr

�
r2‘þ2

ð2‘þ 1Þ!!A


M

�
!2þ@2r þ 2ð‘þ 1Þ

r
@r

�
AM

�ð�AM

L!A


M þ c:c:Þ

�
; (3.57)

where we have defined the prefactor, field, and source term
[recalling (3.36)] as

R�
1 ¼ ‘

‘þ 1
; AM ¼ ‘AV

r
;

�AM

L! ¼ 4�‘r2‘þ3

ð2‘þ 1Þ!!�
V
L!ðrÞ ¼ ‘r2

Z
~Jwð~rÞ � ½~r� ~rxL�d�:

(3.58)

Again this action (3.57) is identical to (3.6) up to the global
prefactor of R�

1 , with a source similar to (3.7). Thus the
propagator is [compare (3.10) and (3.51)]

GAM
ret ðr0; rÞ ¼ �i!2‘þ1

ð2‘þ 1Þ!!R
�
1
~j‘ð!r1Þ~hþ‘ ð!r2Þ
LL0 ;

r1 :¼ min fr0; rg; r2 :¼ max fr0; rg: (3.59)

We find these sources QM
L! by again matching �AM

L!ðrÞ
for large r and from the diagrammatic representation
[in analogy with (3.12)–(3.14), (3.52), (3.53), and (3.55)],
to find

QM
L! ¼

Z
d3x~j‘ð!rÞð~r� ~Jwð ~rÞÞðk‘xL�1Þ; (3.60)

where we have used (3.36) and (3.40). Returning to the time
domain we find the magnetic radiation source multipoles
[compare (3.14) and (3.55)],

QL
M ¼

Z
d3x~j‘ðir@tÞ½ð~r� ~Jð~rÞÞk‘xL�1�STF; (3.61)

Q̂L
M ¼ 
QL

M


Ji
Ĵi ¼ 
QL

M


xi
x̂i ¼ @QL

M

@xi
x̂i þ @QL

M

@vi v̂i þ @QL
M

@ai
âi

þ � � � : (3.62)

Presenting ~j‘ as a series expansion using (A8), these
coincide with Eq. (48) of [12].

3. Outgoing EM radiation and the RR effective action

Both polarizations of outgoing EM radiation can now be
found diagrammatically [compare (3.19)] as

In the time domain, we find for either polarization �

A�ð~r; tÞ ¼ 1

r
R�
1nL@

‘
t Q

L
� ðt� rÞ: (3.64)

The EM double field effective action can be written using our Feynman rules as a sum of the scalar and vector action
diagrams (again at r ¼ r0 ¼ 0, and without ~y‘), finding
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where QL
E, Q̂

L
E, Q

L
M, Q̂

L
M were given by (3.55), (3.56),

(3.61), and (3.62).

4. Applications and tests

Perturbative expansion of the RR force and comparison
with ALD.—For the radiation reaction force on a single
accelerating electric charge we have the Abraham-Lorentz-
Dirac formula [30],

F
�
ALD � dp�

d�
¼ 2

3
q2
�
d3x�

d�3
� d3x�

d�3
dx�
d�

dx�

d�

�
: (3.66)

This expression is the same as in the scalar (3.24) case up to
a prefactor. Expanding in PN orders, the leading order and
next-to-leading order are

~FALDLO ¼ 2

3
q2 _~a; (3.67)

~FALDNLO ¼ q2
�
2

3
v2 _~aþ 2ð ~v � ~aÞ ~aþ 2

3
ð ~v � _~aÞ ~v

�
: (3.68)

We also successfully compared this expansion with a
method of local odd propagation described in Appendix C.
For our gauge-invariant RR force calculation on a point

charge q along a path ~xðtÞ, we rewrite the action

ŜEM ¼
Z

dtL̂EM; L̂EM ¼ L̂S
EM þ L̂V

EM; (3.69)

as a PN series expansion. With (3.55), (3.61), and (3.65)
we find

L̂S
EM ¼ q2

X
L

ð�Þ‘þ1ð2‘þ 1Þ!!
‘ð‘þ 1Þ � X1

p̂¼0

@2p̂t
ð2p̂Þ!!ð2‘þ 2p̂þ 1Þ!!





xi
½ð2p̂þ ‘þ 1Þr2p̂xL � @tðr2p̂xL ~v � ~rÞ�x̂i � @2‘þ1

t

� X1
p¼0

@2pt
ð2pÞ!!ð2‘þ 2pþ 1Þ!! ½ð2pþ ‘þ 1Þr2pxL � @tðr2pxL ~v � ~rÞ�STF (3.70)

for the scalar part and

L̂V
EM ¼ q2

X
L

ð�Þ‘þ1‘ð2‘þ 1Þ!!
ð‘þ 1Þ

X1
p̂¼0

@2p̂t
ð2p̂Þ!!ð2‘þ 2p̂þ 1Þ!!





xi
½r2p̂ð~r� ~vÞk‘xL�1�x̂i � @2‘þ1

t

� X1
p¼0

@2pt
ð2pÞ!!ð2‘þ 2pþ 1Þ!! ½r

2pð ~r� ~vÞk‘xL�1�STF (3.71)

or the vector part. Similarly to the scalar RR calculation,
we move the 2p (or 2pþ 1) time derivatives from the x̂L

multipoles to the xL multipoles by partial integration, and
use the Euler-Lagrange equation (3.30) for x̂j. We thus find
the leading self-force, arising from the electric dipole term
(‘ ¼ 1, p ¼ p̂ ¼ 0, sources �, �̂ as recorded in Table V),
to be as expected from the ALD result (3.67).

TABLE V. Leading-order contribution to the EM self-force
(only electric � ¼ þ).

‘ p p̂ src L̂=q2 Fj=q2

1 0 0 � �̂ 2
3 x̂

i@3t xi
2
3 _aj
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The next-to-leading order includes five contributions to
the scalar sector, summarized in Table VI, as well as the
leading vector contribution (Table VII). Their sum is iden-
tical with the ALD result (3.68). Note that while this term is
the same as in the scalar case (3.26) up to a constant

prefactor the individual terms in the EM case (Table VI)
are completely different from the scalar case (Table IV).
Dissipated power.—Similarly to (3.31), we calculate the

power of the RR force on the accelerating charge, now
using (3.65):

PRR ¼ � ~v � ~F ¼ �dxi

dt


L̂


x̂i

								 ~̂x! ~x
¼ X

L

ð�Þ‘
ð2‘þ 1Þ!!

�
‘þ 1

‘


QL
E


xi
dxi

dt
@2‘þ1
t QE

L þ ‘

‘þ 1


QL
M


xi
dxi

dt
@2‘þ1
t QM

L

�								 ~̂x! ~x
: (3.72)

The time-averaged power is found usingZ
dt

dxi

dt

@QL
E

@xi
¼
Z

dt
dQL

E

dt
;

Z
dt

dxi

dt


QL
M


xi
¼
Z

dt
dQL

M

dt
; (3.73)

followed by ‘ integrations by parts, to be

hPRRi ¼
X
L

1

ð2‘þ 1Þ!! hR
þ
1 ð@‘þ1

t QL
EÞ2 þ R�

1 ð@‘þ1
t QL

MÞ2i

¼ X
L

ð‘þ 1Þ
‘ð2‘þ 1Þ!!

��
d‘þ1

dt‘þ1
QL

E

�
2
�
þX

L

‘

ð‘þ 1Þð2‘þ 1Þ!!
��

d‘þ1

dt‘þ1
QL

M

�
2
�

¼ X
‘

ð‘þ 1Þ
‘‘!ð2‘þ 1Þ!!

��
d‘þ1

dt‘þ1
Qk1k2...k‘

E;STF

�
2
�
þX

‘

‘

ð‘þ 1Þ!ð2‘þ 1Þ!!
��

d‘þ1

dt‘þ1
Qk1k2...k‘

M;STF

�
2
�
¼ Prad: (3.74)

We recognize this result as Ross’s Eq. (52) [12] (with a 4�
normalization factor, reintroducing the 1

‘! factor for compari-
son, where the notation is nonmulti-index; seeAppendixA 1).

C. Gravity: nonlinearity

As in the electromagnetic case, linearized gravitational
perturbations in four dimensions are described by two
gauge-invariant master functions that describe even-parity
(or scalar) and odd-parity (or vector) perturbations.8 In this
section we will not derive explicitly the 1D reduced action,
rather we will use a convenient shortcut: we use the 1D
reduced equations of motion derived by Martel and
Poisson in [69] valid for gravitational perturbations of the
Schwarzschild geometry. Taking the BH mass to zero
(M ¼ 0) gives the correct equations of motion for gravita-
tional perturbations of flat spacetimes with sources. In this

section we will use mostly plus signature (�þþþ) to
conform with the notation of [69].
The action for general relativity with a linearized source

term is

S ¼ 1

16�G

Z ffiffiffiffiffiffiffi�g
p

Rd4x� 1

2

Z
h��T

��d4x: (3.75)

The energy momentum tensor obeys

r�T
�� ¼ 0: (3.76)

We write the full metric as a perturbation around
Minkowski spacetime

g�� ¼ ��� þ h��; (3.77)

where ��� is the flat space metric. Next, we work in

spherical coordinates and decompose the perturbation
into tensor spherical harmonics according to

TABLE VI. Next-to-leading-order contribution to the EM self-force, scalar (electric � ¼ þ)
sector.

‘ p p̂ src L̂=q2 Fj=q2

2 0 0 � �̂ � 1
20 x̂

j 


xj

½xixk�@5t ½xixk � 1
3 x

2
ik� � 1
10 ½xi@5t ðxixjÞ � 1

3 x
j@5t x

2�
1 1 0 � �̂ 2

15 x̂
j 


xj

½x2xi�@5t xi 2
15 ½x2@5t xj þ 2xjxi@

5
t x

i�
1 0 1 � �̂ 2

15 x̂i@
5
t ðxix2Þ 2

15@
5
t ðx2xjÞ

1 0 0 jr �̂
1
3 x̂

j 


xj

½vkx
kxi�@4t xi 1

3 ½xivi@4t x
j þ vjxi@

4
t x

i � d
dt ðxjxi@4t xiÞ�

1 0 0 � ĵr � 1
3 x̂

i@4t ½vkx
kxi� � 1

3@
4
t ðxjxiviÞ

8In d > 4 there is an additional tensor sector that is absent in
4d; see for example [59].
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hab ¼
X
L

Z d!

2�
HL!

ab xLe
�i!t;

ha� ¼ X
L

Z d!

2�
½HL!

ðEÞa@�xL þHL!
ðMÞa���@

�xL�e�i!t;

h�� ¼ r2
X
L

Z d!

2�

�
HL!

ðEÞ ~g��xL þ ~HL!
ðEÞ

�
D�D� þ 1

2
‘ð‘þ 1Þ~g��

�
xL þHL!

ðMÞ���0���0D�0
D�0

xL

�
e�i!t;

(3.78)

where lowercase Latin indices stand for nonsphere coordinates a ¼ ðt; rÞ and upper case Greek indices stand for
coordinates on the sphere � ¼ ð�;�Þ. ~g�� and ��� are the metric and Levi-Civita tensor, respectively, on the 2-sphere.
We decompose the energy-momentum tensor in a similar way

Tab ¼ X
L

Z d!

2�
TL!
ab xLe

�i!t;

Ta� ¼ X
L

Z d!

2�
½TL!

ðEÞa@
�xL þ TL!

ðMÞa�
��@�xL�e�i!t;

T�� ¼ X
L

Z d!

2�

�
TL!
ðEÞ ~g

��xL þ ~TL!
ðEÞ

�
D�D� þ 1

2
‘ð‘þ 1Þ~g��

�
xL þ TL!

ðMÞ�
��0

���0
D�0D�0xL

�
e�i!t:

(3.79)

In terms of these variables, the 1D-reduced action
describing linearized GR with material sources is

SðE=MÞ ¼ 1

2

Z d!

2�

X
L

Z
dr

�
r2‘þ2ðR�

2Þ�1

ð2‘þ 1Þ!! h
ðE=MÞ

�
�
!2 þ @2r þ 2ð‘þ 1Þ

r
@r

�
hðE=MÞ

� ðh
ðE=MÞT ðE=MÞ þ c:c:Þ
�
; (3.80)

where

R�
2
:¼ ‘þ 2

‘� 1

�
‘þ 1

‘

�
�
; (3.81)

and we will suppress at times the (L!) indices or part of
them. The even-parity master-function is given by

hLðEÞ :¼
1

‘

�
‘þ 2

2
~KL þ 1

ð‘� 1Þ
�
~HL
rr � r

�
@r þ ‘

r

�
~KL

��
;

(3.82)

where

~KL :¼ HL
ðEÞ þ

1

2
‘ð‘þ 1Þ ~HL

ðEÞ

� 2

r

�
HL

ðEÞr �
1

2
r2
�
@r þ ‘

r

�
~HL
ðEÞ

�
;

~HL
rr :¼ HL

rr � 2

�
@r þ ‘

r

��
HL

ðEÞr �
1

2
r2
�
@r þ ‘

r

�
~HL
ðEÞ

�
:

(3.83)

The even parity source term is given by

T ðEÞ :¼ 2�‘

ð‘þ 2Þ
r2‘þ2

ð2‘þ 1Þ!!
�
�
8rTr

ðEÞ � 2r2ð‘� 1Þð‘þ 2Þ ~TðEÞ

þ 2

‘ð‘þ 1Þ
�
�2r

�
@r þ ‘

r

�
ðTrr � TttÞ

þ 4r2TðEÞ þ ð‘ð‘þ 1Þ � 4ÞðTrr � TttÞ
�

: (3.84)

The odd-parity master function is given by

hLðMÞ :¼
‘

2ð‘� 1Þ
��

@r þ ‘

r

�
~Ht � @t ~Hr � 2

r
~Hr

�
; (3.85)

where

TABLE VII. Next-to-leading-order contribution, from vector (magnetic � ¼ �) sector.

‘ p p̂ L̂=q2 Fj=q2

1 0 0 1
6 x̂

i 


xi

½~r� ~v� � @3t ð~r� ~vÞ ½23vjð ~v � _~aÞ � 2
3
_ajv2 � 5

6
€ajð ~x � ~vÞ

þ 1
3 x

jð ~v � €~aÞ þ 1
2v

jð ~x � €~aÞ � 1
3
_ajð ~x � ~aÞ

þ 1
3a

jð ~x � _~aÞ � 1
6 x

2@3t a
j þ 1

6 x
jð ~x � @3t ~aÞ�

THEORY OF POST-NEWTONIAN RADIATION AND REACTION PHYSICAL REVIEW D 88, 104037 (2013)

104037-23



~H L
r ¼ HL

ðMÞr �
1

2

�
@r þ ‘

r

�
H‘m

ðMÞ þ
1

r
HL

ðMÞ;

~HL
t ¼ HL

ðMÞt �
1

2
@tH

L
ðMÞ:

(3.86)

The odd parity source term is given by

T ðMÞ :¼ 8�ð‘þ 1Þ
ð‘þ 2Þ

r2‘þ2

ð2‘þ 1Þ!!
�
�
i!r2Tr

ðMÞ þ
�
@r þ ‘

r

�
ðr2Tt

ðMÞÞ
�
: (3.87)

The action (3.80) is identical to (3.6) apart for a factor
of ðR�

2Þ�1 instead of G in front of the part that is
quadratic in hðE=MÞ. The Feynman rules are derived as

in the scalar case. The propagator is identical (up to a
factor of R�

2) to the scalar propagator, and the vertices,
as in Sec. III A, are read off by matching the full theory
with the EFT in the radiation zone. After reinserting
Cartesian components of the stress-energy tensor in
place of the components defined in (3.79), the multi-
poles read

QL
ðEÞ ¼

1

ð‘þ 1Þð‘þ 2Þ
Z

d3x xL½r�‘ðr‘þ2~j‘ðri@tÞÞ00ðT00 þ TaaÞ � 4r�‘�1ðr‘þ2~j‘ðri@tÞÞ0@tT0axa þ 2~j‘ðri@tÞ@2t Tabxaxb

þ r2~j‘ðri@tÞ@2t ðT00 � TaaÞ�

¼ X1
p¼0

ð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!

�
1þ 8pð‘þ pþ 1Þ

ð‘þ 1Þð‘þ 2Þ
��Z

d3x@2pt T00r2pxL
�
STF

þ X1
p¼0

ð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!

�
1þ 4p

ð‘þ 1Þð‘þ 2Þ
��Z

d3x@2pt Taar2pxL
�
STF

� X1
p¼0

ð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!

4

‘þ 1

�
1þ 2p

‘þ 2

��Z
d3x@2pþ1

t T0ar2pxaL
�
STF

þ X1
p¼0

ð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!

2

ð‘þ 1Þð‘þ 2Þ
�Z

d3x@2pþ2
t Tabr2pxabL

�
STF

(3.88)

QL
ðMÞ ¼

1

‘þ 2

Z
d3xfr�‘�1ðr‘þ2~j‘ðri@tÞÞ0ð2 ~x� ð ~T0aÞÞk‘xL�1 � ~j‘ðri@tÞ2�k‘ba@tTacxbcL�1g

¼ X1
p¼0

ð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!

�
1þ 2p

‘þ 2

��Z
d3x@2pt r2pð2 ~x� ð ~T0aÞÞk‘xL�1

�
STF

� X1
p¼0

ð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!!

1

‘þ 2

�Z
d3x2�k‘ba@2pþ1

t Tacr2pxbcL�1

�
STF

: (3.89)

These expressions are a compact form of those in [12]

Eqs. (5.15)–(5.16) and are very close to [67] Eq. (2.27). The

gravitational Feynman rules are summarized in equa-

tions (3.17) and (3.18) with s ¼ 2 together with the defi-

nition of the R�
2ð‘Þ factor (3.81).

Our definition of the master functions (3.82) and (3.85)

and the sources (3.84) and (3.87) is the same as that of

[69] apart from an r-independent factor which we deter-

mined such that the source will coincide with the standard

radiation source multipoles such as in [12]. This affects

the form of the propagator and results in the appearance

of R�
s ð‘Þ.

1. Leading radiation and RR force

The linearized gravitational radiation at infinity is given by

wherewe used (A9) and ~jðwr0Þjr0¼0 ¼ 1. The radiated energy
is given by

Prad ¼
X
L

GR�
2

ð2‘þ 1Þ!! hð@
‘þ1
t QLÞ2i ¼

X
L

G

‘!ð2‘þ 1Þ!!
‘þ 2

‘� 1

�
‘þ 1

‘
hð@‘þ1

t QðEÞSTF
k1k2���k‘Þ2i þ

‘

‘þ 1
hð@‘þ1

t QðMÞSTF
k1k2���k‘Þ2i

�
: (3.91)
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The linearized double field effective action for a source in a gravitational field

where as in the scalar and EM cases we take r ¼ r0 ¼ 0 in
the propagator since we are in the radiation zone and
regularize by taking only the ~j part out of the ~hþ. The
balance of energy

hPRRi ¼ Prad; (3.93)

is seen to hold from (3.91) and (3.92) just as in the previous
cases (3.32) and (3.74).

Leading RR force.—The leading-order RR force is
computed from (3.92) where as in the scalar and electro-
magnetic cases the leading contribution comes from the
lowest l electric channel, which for gravity is the mass
quadrupole, namely, ð‘�Þ ¼ ð2þÞ. One obtains

ŜLO ¼ � 2G

5

Z
dtQ̂I2

E @
5
t Q

I2
E � �G

5

Z
dtQ̂ij

E@
5
t Q

ij
E ;

(3.94)

where for the leading part of the mass quadrupole it
suffices to use

Qij
E ! Qij

Eð0Þ :¼
X2
A¼1

mA

�
xixj � 1

3

ijx2

�
A
: (3.95)

The resulting RR force is

Fi
SF ¼ 
Ŝ


x̂iðtÞ ¼ �G

5


Qij
E


x̂iðtÞ @
5
t Q

ij
E ; (3.96)

which is identical to the force derived from the Burke-
Thorne potential [28]

VBTðx; tÞ ¼ Gm

5
@5t Q

ij
E ðtÞxixj: (3.97)

We would like to discuss the following points regarding
the leading RR force.

Gauge invariance.—The leading RR effective action
(3.94) is gauge invariant in the following sense. In the
Newtonian limit space-time is flat and coordinates are
absolute. As corrections are accounted for we must allow
for generators of coordinate redefinition which are small in
the PN expansion, namely, �ð ~x; tÞ ¼ Oð1PNÞ. Clearly
any such gauge variation of terms in the conservative

part S2bd cannot generate terms in Ŝ (since it cannot gen-
erate doubled, or hatted, fields) while a variation of (3.94)

will be of a higher PN order. Therefore (3.94) is gauge
invariant.
Analyzing the components of (3.94) we observe that the

leading quadrupole mass moment QE2 is gauge invariant,
and so are the spherical waves in the radiation zone. Hence
so is PE2, the source of reaction fields. Still, the reaction
fields themselves are gauge dependent. Indeed, at least two
gauges are discussed in the literature, the Burke-Thorne
gauge where only the h00 component is excited, and the
harmonic gauge [70] (corrected by [71]).9 The force, which
is naturally computed in the system zone, is found to be
gauge-dependent and can be thought to include terms that
arise from gauge variation (of order 2.5PN) of the

Newtonian force. Our observation that ŜRR is gauge invari-
ant at leading order suggests that there might be a way
to naturally decompose the standard RR force into an
‘‘essentially RR part’’ which would be gauge invariant
and a gauge variation of an essentially conservative force.
Comparison with [8,13].—The derivation of the gravi-

tational RR force within the EFTapproach was first derived
in [13] and later derived again in [8], Appendix A. Our
derivation is significantly shorter, consisting essentially of
a mere multiplication vertex–propagator–vertex according
to the Feynman rules (3.17) and (3.18). Differences in
method include a somewhat different diagram that distin-

guishes theQ and Q̂ sources unlike Fig. 1 of [8] or Fig. 2 of
[13]; gauge-invariant spherical waves and the associated
propagators involving Bessel functions; and no need to
compute potentially contributing diagrams at order 0.5PN
and 1.5PN as in Fig. 1 of [13] since we are not reproducing
the odd propagation locally in the system zone, but rather
from interaction with the radiation zone.
Higher order terms.—Equation (3.92), which produces

the leading RR force through the E2 channel, computes
higher terms when other channels are considered. In par-
ticular, the current quadrupole M2 and the mass octopole
E3 contribute þ1PN corrections as follows:

9These are the prominent gauges discussed in the Lagrangian
formulations: the Hamiltonian formulation features the ADM
gauge, by which the potential and the force are found in
[43,72,73]. We followed and compared with Lagrangian meth-
ods. In the ADM gauge the analog for (3.94) is equivalent to it by
two integrations by parts.
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ŜNL � G
Z

dt

�
� 8G

45
Q̂I2

M@
5
t Q

I2
M þ 2G

63
Q̂I3

E @
7
t Q

I3
E �

� G
Z

dt

�
� 4G

45
Q̂ij

M@
5
t Q

ij
M þ G

189
Q̂ijk

E @7t Q
ijk
E

�
;

(3.98)

where the leading part of the current quadrupole and mass
octopole are

Qij
M ! Qij

Mð0Þ :¼
X2
A¼1

mA½ð ~x� ~vÞixj�TFA ;

Qijk
E ! Qijk

Eð0Þ :¼
X2
A¼1

mAðxixjxkÞTFA :

(3.99)

2. Next-to-leading correction

Corrections of the RR force can arise either from cor-

rections toQ½x� at the system zone or from corrections to Ŝ
at the radiation zone. System zone corrections are sup-
pressed at least by GM

R � v2, namely by þ1PN, while

nonlinear interactions in the radiation zone are suppressed
at least by GM

� , namely þ1:5PN (the GM factor comes

from an additional vertex and it must be divided by �
which is the length scale of the radiation). Therefore the
leadingþ1PN corrections arise from the system zone only
and there is no need to consider radiation zone corrections.

The leading nonlinear effect arising from interactions in
the radiation zone is the above mentioned þ1:5PN correc-
tion, also known as the tail effect as it induces propagation
inside the light cone. The leading tail effect was first
computed in [74,75]. In EFT methods, the leading correc-
tion to radiation was computed in [11], and to radiation
reaction in [76]. The tail effect arises from scattering of the
emitted wave off the background curvature generated by
the mass of the entire system. In order to account for it, we
must supplement the spherical wave variables hðE=MÞ by the
stationary modes (mentioned in Sec. II A) and take account
of the corresponding (nonquadratic) interaction terms
(beyond (3.80)). The diagrams in Fig. 2 represent the
leading tail correction as treated in previous EFT works
and as could be treated within (an extension of) our formal-
ism. The diagram should reproduce nothing but the first
term in the long distance expansion (in GM

r ) of the Zerilli/

Regge-Wheeler equations, as we are using spherical wave
variables. Higher order effects that originate from interac-
tions in the radiation zone can be treated in an analogous
manner and should reproduce higher order terms in the
Zerilli/Regge-Wheeler equations as well as nonlinear wave
interaction.

Corrections due to the M2 and E3 channels were already
discussed in (3.98). It remains to study the leading-order
corrections to the mass quadrupoleQE2 ¼ QE2½T��� (3.88)
and substitute back into (3.94). For that purpose we need to
clarify the definition of the source energy-momentum

tensor T�� for the case at hand. Considering the standard
coupling of matter to weak gravity

Sh�T ¼ � 1

2
h��T

�� (3.100)

we define

namely, T�� is defined as the source for h�� or equiva-

lently as a 1-pt diagram. This definition is equivalent to the
one given in [77] [��� in Eq. (2.16) there]. Considering
moreover that in the system zone we use the NRG fields
(A10) rather than h��, we find it useful to define a

corresponding change of source variables

T�� $ TNRG :¼ ð��; ~J;�
ijÞ; (3.102)

defined by

Sh�T ¼ ����þ ~J � ~A� 1

2
�ij	ij; (3.103)

which altogether implies

We call �� the gravitational mass density, ~J the gravita-

tional source current, and �ij the stress.
In terms of TNRG we rewrite the expression for the

radiation source multipoles (3.89) as follows:

FIG. 2. Computation of the tail effect in EFT methods:
(a) correction to the radiation in [11]; (b) correction to the
radiation reaction in [76]; (c) correction to the radiation reaction
in our formalism.
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QL
E ¼ 1

ð‘þ 1Þð‘þ 2Þ
Z

d3x xL½r�‘ðr‘þ2~j‘ðri@tÞÞ00��

� 4r�‘�1ðr‘þ2~j‘ðri@tÞÞ0 ~x � _~J � 2~j‘ðri@tÞxaxb €�ab

þ r2~j‘ðri@tÞ@2t ð�� þ 2�Þ�;
QL

M ¼ 1

‘þ 2

Z
d3xfr�‘�1ðr‘þ2~j‘ðri@tÞÞ0�k‘abxaL�1Jb

þ ~j‘ðri@tÞ�k‘abxacL�1 _�bcg: (3.105)

Now we can proceed to compute the sources for the
two-body problem

TNRG ¼ TNRG½ ~xAðtÞ�; (3.106)

and the next-to-leading corrections to the mass quadrupole.
The gravitational mass up to NL order is given by

For ~J, �ij it suffices to use the leading-order expressions

~J ¼ X
A

mA ~vA
ðx� xAÞ;

�ij ¼ X
A

mA ~v
i
A ~v

j
A
ðx� xAÞ:

(3.108)

Substituting back into (3.105) we find


QL
E ¼ X

A

�
3

2
mv2 �m1m2

r
� 4

lþ 1
m@t ~v � ~x

þ lþ 9

2ðlþ 1Þð2lþ 3Þm@2t x
2

�
A
xLA: (3.109)

In particular the required correction to the quadrupole is


QL2

E ¼X
A

�
3

2
mv2�m1m2

r
�4

3
m@t ~v � ~xþ11

42
m@2t x

2

�
A
xL2

A ;

(3.110)

where the time derivatives act on everything to their right
including the xL factor. This result was obtained in [78] and
was reproduced in [11] within the EFT approach.

In summary, collecting (3.94), (3.95), (3.98), and (3.110)
the next-to-leading RR force is encoded by the next-to-
leading part of the body-radiation effective action

Ŝ ¼ G
Z

dt

�
� 1

5
Q̂ij

E@
5
t Q

ij
E � 4

45
Q̂ij

M@
5
t Q

ij
M

þ 1

189
Q̂ijk

E @7t Q
ijk
E

�
; (3.111)

where the radiation source multipoles up to this order are
given by

Qij
E ¼ X2

A¼1

mA

�
1þ 3

2
v2 �mB

r
� 4

3
@tð ~v � ~xÞ þ 11

42
@2t x

2

�
A

�
�
xixj � 1

3

ijx2

�
A
;

Qij
M ¼ X2

A¼1

½mð ~x� ~vÞixj�TFA ;

Qijk
E ¼ X2

A¼1

ðmxixjxkÞTFA ; (3.112)

where given A, mB stands for the other mass.

3. Discussion

It is interesting to compare this þ1PN relativistic cor-
rection with the þ1PN relativistic correction to the
(conservative) two-body effective action, known also as
the Einstein-Infeld-Hoffmann (EIH) action. In the case of
EIH it was possible to identify each term in the action with
one of the following physical effects: kinetic contribution to
gravitational mass, potential contribution to gravitational
mass, retardation and an additional channel of current-
current interaction [53]. In this case a very similar inter-
pretation is possible: the first term in (3.110) represents a
kinetic contribution to the gravitational mass, the second
term a contribution from the potential energy [both terms
originate in the diagram in (3.107)], the last two terms can
be thought to represent retardation effects, and finally one
must also account for additional M2 and E3 channels.
Comparing our derivation with the derivation of

Goldberger and Ross [11] who first obtained this correction
within the EFT approach, we see that our derivation requires
fewer diagrams and ismore general. In [11] the first two terms
in (3.110) are obtained as a sum of five diagrams as follows:
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while we used only two diagrams in (3.107) through the use
of NRG fields. In addition our expression (3.109) gives not
only the NL correction to the quadrupole, but also for any
l-pole, and therefore constitutes a new result, rather than an
economized derivation of a known result. In particular we
can write explicitly the correction to the mass octopole that
would contribute to radiation and RR force at orderþ2PN


Q
L3

E ¼ X
A

�
3

2
mv2 �m1m2

r
�m@t ~v � ~xþ 1

6
m@2t x

2

�
A
x
L3

A :

(3.114)

IV. SUMMARYAND DISCUSSION

We summarized our formulation and its novel features in
Sec. II E and herewe summarize the results from Sec. III and
discuss the paper as a whole. We demonstrated the formu-
lation though application to scalar, electromagnetic, and
gravitational theories (s ¼ 0, 1, 2). We showed how to
obtain the Feynman rules (3.17) and (3.18). Our definitions
are such that the propagator in the radiation zone is the same
for all cases s ¼ 0, 1, 2 apart for the factor R�

s ð‘Þ which is
summarized in (2.9) and was derived in (3.10), (3.50), (3.58),
and (3.81). The expressions for the radiation source multi-
poles QL for all cases were found in (3.14), (3.55), (3.88),
and (3.89). Our expressions for QL simplify extant expres-
sions by incorporating Bessel functions to account for re-
tardation (which were missing from [12] but present in [41])
while significantly economizing the expressions in [41].

In our formulation the propagator in the two-body sector
is restricted to the even part under time reversal and the odd
propagation was argued to be accounted for indirectly
through interaction with radiation. To confirm this we
computed perturbatively the RR force in our formulation
and found it to coincide with known nonperturbative re-
sults such as ALD in electromagnetism; see Tables III–VII.
In addition, we further confirmed it with an independent
computation using direct local propagation à la Dirac
(Appendix C).

The scalar sector already demonstrates some of the
important features of our formulation, namely, the spheri-
cal waves in the radiation sector, the above mentioned form
of odd propagation, two-way matching multipoles, and
field doubling. In the electromagnetic sector the novel

features are gauge invariance of the radiation fields and
matching multipoles, as well as the polarization of radia-
tion into both electric and magnetic modes. The R�

1 factor
appears in expressions for radiation and RR force.
Our method was demonstrated further in the gravitational

case (for which it was constructed). Here we demonstrated
how at leading order our formulation reproduces the known
results while economizing the computation to a mere vertex-
propagator-vertex multiplication (3.92) and (3.94). We pro-
ceeded to reproduce and economize the next-to-leading order
where five diagrams that represent relativistic corrections to
T�� are replaced by two diagrams with a clear physical
interpretation, namely, the kinetic and potential energy con-
tributions to the gravitational mass (3.107) and (3.111). We
obtained new results for theþ1PN correction to QL

E for all l
(3.109) and (3.114), and we expect that our formulation will
facilitate additional higher order computations.
Finally we introduced several useful definitions and

conventions in Appendix A: a multi-index summation
convention that takes care of factors of ‘!, a normalization
of Bessel functions that is useful for our radiation zone
propagators, and a normalization of the gravitomagnetic
vector potential that avoids unnecessary factors of 2 which
appear in spin interactions.

A. Discussion

Our work addressed the issues mentioned in the intro-
duction. The current formulation renders manifest the
close ties between radiation and radiation reaction force:
both of them appear in the same theory which uses uni-
formly the retarded propagator and doubled fields; both of
them use the same radiation fields, the same Feynman rules
and in particular the same radiation source multipoles QL;
finally the energy balance is rather manifest and was
demonstrated in (3.32), (3.74), and (3.93) (see also the
discussion part in Sec. II E). Our formulation resulted in
several economizations including in the leading and next-
to-leading gravitational RR force and in the expressions for
the radiation source multipoles QL. Finally we incorpo-
rated NRG fields and real Feynman rules, and these were
some of the reasons which allowed for the previously
mentioned economization.
It would be interesting to further refine the computa-

tions by substituting in the bodies’ unperturbed equations
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of motion as in [1], only here at the level of the action. It also
seems that our method can be naturally extended to treat the
problems of radiation and radiation reaction in generic
spacetime dimensions. This will be explored in [79].

1. Discussion summary

We presented several novel ingredients to the EFT
formulation of radiation and RR force. These include
gauge-invariant spherical radiation fields instead of plane
waves, matching lifted to the level of the action through the
introduction of two-way multipoles; novel insights into
double-field action (classical origin of the closed time
path formalism) including its applicability to arbitrary
directed propagators, and the special role of the Keldysh
basis in the classical theory. We confirmed our formulation
through several tests, demonstrated its utility by perform-
ing several economized computations, and obtained a new
result (3.109).
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APPENDIX A: USEFUL DEFINITIONS
AND CONVENTIONS

In this appendix we collect several definitions and
conventions used in this paper.

1. Multi-index summation convention

Multi-indices are denoted by capital letters

I � Il :¼ ði1 . . . ilÞ; (A1)

where each ik ¼ 1, 2, 3 is an ordinary spatial index, and l is
the number of indices. We define a multi-index summation
convention by

PIQJ :¼
X
l

PIlQJl
:¼ X

l

1

l!
Pi1...ilQj1...jl : (A2)

This means that not only are repeated multi-indices
summed over as in the standard summation convention,
but moreover a division by l! is implied. When l is
unspecified the summation is over all l.

In addition a multi-index delta function is defined
through


IlJl
:¼ l!
i1j1 . . .
iljl : (A3)

The definitions are such that factors of l! are accounted
for automatically.

2. Normalizations of Bessel functions

We find it convenient to define a nonstandard origin
biased normalization of Bessel functions. We start with a
conventionally normalized solution of the Bessel equation�

@2x þ 1

x
@x þ 1� �2

x2

�
B�ðxÞ ¼ 0; (A4)

where B � fJ; Y;H	g, namely, B represents both Bessel
functions of the first or second kind and Hankel functions,
and � denotes their order. For integer l we define

~b‘ :¼ ð2‘þ 1Þ!!b‘ðxÞ
x‘

:¼
ffiffiffiffi
�

2

r
ð2‘þ 1Þ!!B‘þ1=2ðxÞ

x‘þ1=2
;

(A5)

where blðxÞ is a spherical Bessel function and can be
expressed in terms of trigonometric functions.

The origin normalized Bessel functions ~b‘ satisfy the
nice equation�

@2x þ 2ð‘þ 1Þ
x

@x þ 1

�
~b‘ðxÞ ¼ 0: (A6)

The purpose of the definition is to have a simple behavior
of ~j around the origin x ¼ 0

~j ‘ðxÞ ¼ 1þOðx2Þ: (A7)

More precisely the Taylor expansion for ~j‘ðxÞ at x ¼ 0 is
given by

~j ‘ðxÞ ¼
X1
p¼0

ð�Þpð2‘þ 1Þ!!
ð2pÞ!!ð2‘þ 2pþ 1Þ!! x

2p: (A8)

The asymptotic form is best stated in terms of the Hankel

functions ~h	 :¼ ~j	 i~y

~h	
‘ ðxÞ � ð2‘þ 1Þ!! ðiÞ‘þ1e	ix

x‘þ1
; (A9)

for x ! 1.

3. Normalization of gravitomagnetic vector potential

The gravitational field in the system zone is parame-

trized as nonrelativistic gravitational fields ð�; ~A; 	ijÞ as
follows [16,53]:

ds2 ¼ e2�ðdt� 2 ~A � d~xÞ2 � e�2�ð
ij þ 	ijÞdxidxj;
(A10)

where � is called the Newtonian potential, ~A is the
gravitomagnetic vector potential and 	ij is the spatial

THEORY OF POST-NEWTONIAN RADIATION AND REACTION PHYSICAL REVIEW D 88, 104037 (2013)

104037-29



metric. This definition redefines Ai relative to [16,53]
(and all previous literature) by

Anew
i

:¼ 1

2
Aold
i ; (A11)

which turns out to clean up certain factors of 2 in the theory
as we proceed to explain.

The new definition avoids a factor of 4 in the propagator
for Ai which becomes (in Feynman gauge)

This means that the kinetic terms for the new A is normal-
ized just like in the Maxwell action. The price to pay is an
added factor of 2 in the basic source coupling and the
associated vertex

namely, we define ~J the gravitational source current to be
twice the mass current. However, when considering both
spin interaction and gravitational waves this normalization
actually appears advantageous. For a small nonrelativistic
loop of mass current the magnetic dipole moment is now
nothing but the intrinsic angular momentum (or spin) of the
system

QM
i ¼ Si (A14)

and the spin coupling and the associated vertex become

As a result the derivation of the spin-spin interaction avoids
unnecessary cancellations that appeared in the old varia-
bles Ss1s2 � ð12S1Þð4GÞð12 S2Þ ¼ GS1S2 where the r depen-

dence and spatial indices were suppressed. Moreover the
current multipoles defined in terms of the new gravitational

source current ~J are such that they eliminate a relative
factor of 4, which used to appear in the power formula
(see for example [12]).

APPENDIX B: EXTANT LITERATURE ON THE
CLASSICAL LIMIT OF CTP

The utility of the CTP formalism in the EFT approach to
GR was already recognized and it was applied in several
papers including [8,13,80,81]. Moreover, in [80] Galley
recognized the importance of an intrinsically classical
formulation of the classical limit of CTP and put forward
such a formulation. Here we wish to point out differences
between that approach and ours.
(i) Reference [80] takes its starting point to be the prob-

lem of Hamilton’s least action principle with initial

value, and uses it to motivate the definition of Ŝ as an
integral from ti to tf and back, namely (2.40). Thus

the starting point is in the ð�1; �2Þ basis, which must
be supplemented by an extra requirement that the
action is expanded to the first order in �1 ��2

(or equivalently by imposing a physical condition).
In the current formulation the starting point is in the

Keldysh representation ð�; �̂Þ without imposing a
physical condition and by construction the double

field action is first order in the �̂.

(ii) Equation (5) of [80] defines Ŝ and contains a func-
tion K that is not specified in terms of the problem’s
data, namely S ¼ S½��. The current formulation
does not contain such a function.

APPENDIX C: ALD SELF-FORCE FROM
LOCAL PROPAGATORS

As mentioned in Sec. II B, the dissipative part of the
action can be calculated using Godd. For example, we

present the calculation for an electromagnetic field A� ¼
ð�; ~AÞ. The field equation in the Lorentz gauge is

hA� ¼ 4�j�; (C1)

with the source given by the 4-current, created by a charge
q with trajectory xpðtÞ

j�¼ð�; ~jÞ; �¼q
ð3Þðx�xpðtÞÞ; ~j¼� ~vp: (C2)

The retarded/advanced propagators are known to be
(with �t ¼ t� t0, �r ¼ j~r� ~r0j)

G�
ret=advð ~r; t; ~r0; t0Þ ¼ �
ð�t	 �rÞ

�r
;

GA
ret=advð ~r; t; ~r0; t0Þ ¼ þ
ij


ð�t	 �rÞ
�r

;

(C3)

for the scalar� and vector Ai potential components, respec-
tively. By expanding the 
 functions as Taylor series in �r
around �t and using (2.11), we find the time-odd propaga-
tors, which contain only the terms with odd time derivatives
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G�
oddð ~r; t; ~r0; t0Þ ¼ �X1

n¼0


ð2nþ1Þð�tÞð�rÞ2n
ð2nþ 1Þ! ; GA

oddð ~r; t; ~r0; t0Þ ¼ þ
ij

X1
n¼0


ð2nþ1Þð�tÞð�rÞ2n
ð2nþ 1Þ! : (C4)

Now we can write the action as

where �rp ¼ j~rpðtÞ � ~r0pðt0Þj, and we remark that all the t
derivatives are to be computed before setting t0 ¼ t.

This presents a natural expansion of the two-body
action in PN orders. Using the technique of field dou-
bling [8], we can derive the Euler-Lagrange equations
for ~r0p, then substitute ~r0p ! ~rp, and obtain the self-force

on q, order by order. We note that for each n, the term
coming from the vector potential is always one order

higher than the scalar potential term of the same n. We
thus see that only the terms linear in �rp in the

Lagrangian can contribute to the self-force, and easily
find the leading contributions (n ¼ 1 from the scalar
potential, n ¼ 0 from the vector potential). We have
also found the next-to-leading contributions in the
same manner, and they match the ALD results (3.67)
and (3.68) as expected.
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