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The lambda-CDM model is the best fit to cosmological data and to the observed galactic rotation

curves. However, in the absence of a direct detection of dark matter one should explore theories such as

modified Newtonian dynamics (MOND), and perhaps also modified gravity theories like fourth order

gravity and scalar-tensor-vector gravity (STVG) as possible explanations for the non-Keplerian behavior

of galaxy rotation curves. STVG has a modified law for gravitational acceleration which attempts to fit

data by fixing two free parameters. We show that, remarkably, the biharmonic equation which we get in

the weak field limit of the field equations in a fourth order gravity theory implies a modification of

Newtonian acceleration which is precisely of the same repulsive Yukawa form as in the STVG theory, and

the corrections could in principle be large enough to try and explain the observed rotation curves. We also

explain how our model provides a first principles understanding of MOND. We also show that STVG and

fourth order gravity predict an acceleration parameter a0 whose value is of the same order as in MOND.

DOI: 10.1103/PhysRevD.88.104036 PACS numbers: 04.50.Kd, 95.35.+d, 98.80.�k

I. INTRODUCTION

In spiral galaxies the observed rotation curve profiles are
strongly inconsistent with those predicted in Newtonian
gravity and Galilean acceleration from the distribution of
the ‘‘luminous’’ matter we detect. Dark matter is regarded
as the most plausible explanation for the observed galaxy
rotation curves. It is also strongly indicated via its pivotal
role in the formation of large-scale structures in the
Universe, providing us with the standard �-CDM model.

However, until direct detection of one or more dark
matter candidates takes place in the laboratory or through
astronomical observations, it is perhaps useful to consider
modified theories of gravity as alternative explanations for
the observed galaxy rotation curves, and explore to what
extent and to what accuracy they fit data. Such an analysis
should be looked at in the same spirit in which modifica-
tions to general relativity such as fðRÞ gravity are being
considered as alternatives to dark energy and the cosmo-
logical constant, when it comes to explaining the accelera-
tion of the Universe. It would be all the more appealing if a
single modified gravity could account for rotation curves,
cosmic acceleration and also satisfactorily explain struc-
ture formation. A preliminary attempt in this direction was
made by us in [1] using a specific fourth order modified
gravity. In the present article we provide details of the
analysis of this fourth order theory relevant to galactic
rotation curves.

Fourth order gravity theories have indeed been used
before to explain rotation curves, but to the best of our
knowledge, the field equations proposed by us below (and
which lead to a biharmonic equation in the weak field
limit) have not been considered before. Earlier works on
fourth order gravity in this context include those of Stabile
and Scelza [2], and Mannheim and Kazanas [3]. The work

[2] is based on a generalization of general relativity where
the Einstein-Hilbert Lagrangian is replaced by a generic
function of the Ricci scalar and the Ricci and Riemann
tensors. The work in [3] is based on conformal Weyl
gravity. Rotation curves in Rn gravity have been consid-
ered in [4]. Of course the fact that nonminimally coupled
theories of gravity show a modification of Poisson’s
equation has been well known for at least 30 years (see
for example the work of [5]).
There are various theoretical reasons (independent of the

need to explain rotation curves or cosmic acceleration) for
considering alternatives to general relativity (GR), includ-
ing higher derivative theories of gravity. GR admits gravi-
tational singularities, which are possibly avoided in a
quantum theory of gravity. Effective quantum corrections
arising from quantum gravity theories can generically be
interpreted as higher derivative corrections to GR.
Furthermore, higher derivative theories are generally better
behaved in the ultraviolet regime and allow for an im-
proved possibility of constructing a singularity free gravity
theory [6]. Higher order corrections to GR also arise from
considerations of unification of interactions [7].
The form of field equations considered by us below is

motivated by (though, is independent of) a study of aver-
aging of microscopic Einstein equations over a gravitation-
ally polarized region, wherein fourth order effective
corrections to Einstein equations appear owing to the ex-
istence of an underlying quadrupole moment in the mass
distribution [8,9]. Presently however, we regard our fourth
order equations as arising not from averaging over mo-
ments, but as an effective classical relic of an underlying
quantum theory of gravity.
We first present the field equations and their solution in

the weak field limit. Next, we take recourse to an earlier
tentative solution for the rotation curves problem suggested
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by Moffat and collaborators in their scalar-tensor-vector
gravity and show that this solution holds for our model too.
Lastly, we compare our work with the solution for rotation
curves proposed inmodifiedNewtonian dynamics (MOND).

II. FOURTH ORDER GRAVITYAND THE
BIHARMONIC EQUATION FOR

THE POTENTIAL

A fourth order modified gravity has been postulated in
[1] as a common explanation for the observed cosmic
acceleration and for galaxy rotation curves. Here we spe-
cialize the theory to the case of galactic dynamics and give
the details of the analysis pertinent to the structure of the
rotation curves. The modified gravity is assumed to be
described by the following effective field equations:

R�� � 1

2
g��R ¼ 8�G

c4
T�� þ k�2R����

;��; (1)

where k is a positive constant with dimensions of inverse
length.

We shall be interested in the Newtonian weak field limit
of the above equations, so that we choose the metric to be

ds2 ¼
�
1þ 2�

c2

�
c2dt2 � dx2 � dy2 � dz2; (2)

and the only nonzero component of the energy-momentum
tensor is T0

0 ¼ c2�ðrÞ where �ðrÞ is the matter density

distribution.
In this limit the modified field equations (1) reduce to the

following fourth order biharmonic equation, which is a
modification of the Poisson equation:

r4�� k2r2� ¼ �4�Gk2�ðrÞ: (3)

It will be shown that this fourth order biharmonic modifi-
cation of the Poisson equation explains the observed
galaxy rotation curves without dark matter.

We are interested here in the modification of the radial
dependence of the potential. Using separation of variables,
the radial part of this equation is given by

�0000 þ 4

r
�000 � k2�00 � 2

r
k2�0 ¼ �4�Gk2�ðrÞ; (4)

where a prime denotes a derivative with respect to r.
We find the series solution of this equation using the

standard Frobenius method around the regular singular
point r ¼ 0.

Case 1: The vacuum solution � ¼ 0 (homogeneous
equation). In this case we get the following solution for
the acceleration a ¼ �r�:

aðrÞ¼�
�
C0þC1

k

�
ekr

2kr
þ
�
C0�C1

k

�
e�kr

2kr

þ
�
C0þC1

k

�
ekr

2k2r2
þ
�
C0�C1

k

�
e�kr

2k2r2
�C2

r2
: (5)

Since we have assumed k > 0, this implies that in Eq. (5),
terms proportional to ekr ! 1 as r ! 1 which is unphys-
ical. So we set the coefficient of ekr to zero. Thus�

C0 þ C1

k

�
¼ 0 ) C1 ¼ �kC0: (6)

Hence

a ¼ C0

e�kr

kr
þ C0

e�kr

k2r2
� C2

r2
; (7)

a ¼ �C2

r2
þ C0

e�kr

k2r2
ð1þ krÞ: (8)

Equation (8) is the solution for acceleration for the vacuum
(homogeneous) case. The constants C0 and C2 can be
related by the following reasoning: For kr � 1 we assume
Newton’s law of gravitation to hold, so that C2 ¼ GMþ
C0=k

2 � G1M where G1 ¼ G½1þ C0=k
2MG�. For

kr � 1 the exponential term can be ignored, and G1
represents the effective gravitational constant at large dis-
tances. We note that overall there are two constants in the
solution, k and C0, the former from the field equations, and
the latter as a constant of integration.
Case 2: �ðrÞ � 0 (inhomogeneous solution).
Since we know the solution for the homogeneous case

(� ¼ 0), we can construct the solutions for the inhomoge-
neous case using the homogeneous solutions. As is well
known, if y ¼ auþ bv is a solution of

y00 þ PðxÞy0 þQðxÞy ¼ 0; (9)

where a and b are constants, we can find the solution of

y00 þ PðxÞy0 þQðxÞy ¼ RðxÞ; (10)

in the form

y ¼ AðxÞuþ BðxÞv; (11)

where

AðxÞ ¼ �
Z vR

W
dx; BðxÞ ¼

Z uR

W
dx; (12)

where W is the Wronskian

W ¼ uv0 � u0v: (13)

Here,

AðrÞ ¼ 4�Gk
Z

r sinh ðkrÞ�ðrÞdrþ a1;

BðrÞ ¼ �4�Gk2
Z

r cosh ðkrÞ�drþ a2:
(14)

Hence inside a medium with a density profile �ðrÞ the
acceleration is given by
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a ¼ ��0

¼ � 1

r2

Z
r2
�
4�Gk cosh ðkrÞ

r

Z
r sinh ðkrÞ�dr

� 4�Gk sinh ðkrÞ
r

Z
r cosh ðkrÞ�dr

þ a1
cosh ðkrÞ

r
þ a2

sinh ðkrÞ
kr

�
dr� a3

r2
: (15)

The last two terms in the bracket in the above equation are
same as in the homogeneous case. These two will be
reduced to a1e

�kr=k2r2ð1þ krÞ for the same reasons as
discussed before Eq. (8). Hence Eq. (15) becomes

a ¼ ��0

¼ � 1

r2

Z
r2
�
4�kG cosh ðkrÞ

r

Z
r sinh ðkrÞ�dr

� 4�Gk sinh ðkrÞ
r

Z
r cosh ðkrÞ�dr

�
dr

þ a1e
�kr

k2r2
ð1þ krÞ � a3

r2
: (16)

Equation (16) gives the acceleration for any given �ðrÞ.
One can easily read off special cases from here.

Case I: � ¼ 0,

a ¼ ��0 ¼ a1e
�kr

k2r2
ð1þ krÞ � a3

r2
; (17)

which is same as Eq. (8), as expected. Note that a3 is
related to a1 and k as mentioned below (8).

Case II: � ¼ constant ¼ �0,

a ¼ ��0

¼ � 4�G�0

r2

Z �
r2k cosh ðkrÞ

r

�Z
r sinh ðkrÞdr

��
dr

þ 4�G�0

r

Z �
r2k sinh ðkrÞ

r

�Z
r cosh ðkrÞdr

��
dr

þ a1e
�kr

k2r2
ð1þ krÞ � a3

r2
(18)

or

a ¼ � 4�G�0

3
rþ a1e

�kr

k2r2
ð1þ krÞ � a3

r2
: (19)

Equation (19) gives acceleration for a medium of constant
density. Once again, a3 is related to a1 and k, and the same
holds for the general solution (16). So in all the cases there
are two free constants, which are to be fixed by comparison
with observations of galactic rotation curves.

We now need to know the solution of the integrals in the
general expression (19) for the acceleration, once a density
profile �ðrÞ is given. This is a difficult task. However, we
can put to use the results discovered earlier in a modified
gravity theory known as scalar-tensor-vector gravity

(STVG) developed by Moffat and collaborators [10–12].
It turns out that a solution for the velocity profile found in
STVG for possibly fitting galactic rotation curves is also a
solution in our case, for realistic density profiles.
Below we briefly recall how the acceleration and veloc-

ity profile in STVG is arrived at, and in the subsequent
section we use the results of STVG for our fourth order
gravity.

III. GALAXY ROTATION CURVES IN
THE STVG THEORY

Here we briefly recall the form of the acceleration
law, as derived in STVG theory. Details can be found in
[10–12]. For a related recent discussion see [13].
The STVG theory includes, apart from standard gravity,

a massive vector field �� with a coupling ! to gravity and
mass �. In its most general form, STVG assumes the
coupling !, the mass � and the gravitational constant G
to be space-time-dependent scalar fields !ðxÞ, �ðxÞ and
GðxÞ, respectively. In STVG, the action is given by

S ¼ SGrav þ S� þ SS þ SM; (20)

where

SGrav ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

G
ðRþ 2�Þ

�
; (21)

S� ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
!

�
1

4
B��B�� þ Vð�Þ

��
; (22)

and

SS ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

G3

�
1

2
g��r�Gr�G� VðGÞ

�

þ 1

G

�
1

2
g��r�!r�!� Vð!Þ

�

þ 1

�2G

�
1

2
g��r��r��� Vð�Þ

��
: (23)

Here Vð�Þ is the potential for the massive vector field ��

having mass � and coupling !; VðGÞ, Vð!Þ and Vð�Þ are
the potentials associated with the three scalar fields GðxÞ,
!ðxÞ and �ðxÞ, respectively, and

B�� ¼ @��� � @���: (24)

Next, considerable simplification is imposed on the
model. By assuming that � ¼ 0, Vð�Þ ¼ 0, ! and � to
be constants, and by considering the motion of a test
particle coupled to gravity and to the vector field, it was
shown that the law of acceleration for the field outside a
spherical mass M is given by

aðrÞ ¼ �G1M
r2

þ K
exp ð�r=r0Þ

r2

�
1þ r

r0

�
; (25)

where G1 is defined to be the effective gravitational
constant at infinity
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G1 ¼ G

0
@1þ

ffiffiffiffiffiffiffi
M0

M

s 1
A; (26)

and r0 ¼ 1=�. Here,M0 denotes a parameter that vanishes
when! ¼ 0 andG is Newton’s gravitational constant. The
constant K is assumed to equal

K ¼ G
ffiffiffiffiffiffiffiffiffiffiffiffi
MM0

p
: (27)

The choice of K, which determines the strength of the
coupling of B�� to matter and the magnitude of the

Yukawa force modification of weak Newtonian gravity, is
based on phenomenology andM0 is a free parameter of the
theory. This particular choice of expression for K ensures
that for r � r0 the acceleration law reduces to aðrÞ ¼
�GM=r2, as may be verified by expanding the exponential
in the acceleration law (25).

By using (26), one can rewrite the acceleration in the
Yukawa form

aðrÞ ¼ �GM

r2

8<
:1þ

ffiffiffiffiffiffiffi
M0

M

s �
1� exp ð�r=r0Þ

�
1þ r

r0

��9=
;:
(28)

One can generalize this to the case of interior of a mass
distribution by replacing the factor GM=r2 in (28) by
GMðrÞ=r2:

aðrÞ ¼�GMðrÞ
r2

8<
:1þ

ffiffiffiffiffiffiffi
M0

M

s �
1� exp ð�r=r0Þ

�
1þ r

r0

��9=
;:
(29)

The rotational velocity of a star vc is obtained from
v2
cðrÞ=r ¼ aðrÞ and is given by

vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ

r

s 8<
:1þ

ffiffiffiffiffiffiffi
M0

M

s �
1� exp ð�r=r0Þ

�
1þ r

r0

��9=
;

1=2

:

(30)

Brownstein and Moffat [11] used the data of K- and
B-band luminosity, velocity, distance and redshift of these
galaxies from the works of Avilla-Reese et al. [14], Bailin
et al. [15], Begeman et al. [16] and Bekenstein [17].
Brownstein and Moffat obtained reasonably useful para-
metric fits to the rotation curves of 101 galaxies from this
data set—these rotation curves are available in Fig. 2 of
their paper [11] (here in our paper we have used a subset of
this very data set). To our understanding, their analysis and
its results, which are also arrived at by us here, come close
to achieving the universal rotation curve proposed by
Salucci et al. [18]. A good fit to a large number of galaxies
has been achieved with the parameters

M0¼9:60�1011M�; r0¼13:92 kpc¼4:30�1022 cm:

(31)

In the fitting of the galaxy rotation curves for both low
surface brightness (LSB) and high surface brightness
(HSB) galaxies using photometric data to determine the
mass distributionMðrÞ, only the mass-to-light ratio hM=Li
is employed, once the values of M0 and r0 are fixed
universally for all LSB and HSB galaxies. Dwarf galaxies
are also fitted with the parameters

M0¼2:40�1011M�; r0¼6:96 kpc¼2:15�1022 cm:

(32)

One can criticize the use of different values ofM0 and r0
for different classes of galaxies, which takes away any
possibility of them being universal numbers and instead
being chosen at will to fit observations. On the one hand
such criticism might appear well justified; on the other
hand a closer examination reveals the possibility of pro-
found underlying physics whose origins are yet to be
understood. The ratio GM0=r

2
0 for HSB and LSB galaxies

is the same as for dwarf galaxies, and this ratio is of the
order of the observed cosmic acceleration cH�1

0 (and the

MOND acceleration). The constancy of this ratio has been
observed across a family of large-scale structures (see the
remarkable Fig. 7 in [19]) and formed the basis of our
proposal [1] that cosmic acceleration and galactic rotation
curves can be explained by the same physical origin. Also,
these values of the Yukawa parameters do not violate
constraints coming from Solar System and laboratory
data (see [20] and Fig. 8 of [19]).
We will now compare the modified acceleration law of

the form Eq. (29) with the law obtained from the fourth
order gravity, and show that the above interior solution
works for the fourth order case as well.

IV. COMPARISON WITH THE SOLUTION
IN FOURTH ORDER GRAVITY

A comparison and realization of the similarity between
our fourth order gravity solution and the STVG solution
provides a useful hint that our solution is a useful candidate
for understanding rotation curves without possibly invok-
ing dark matter.
As noted above, in STVG the acceleration outside of a

body is given by

aðrÞ ¼ �G1M
r2

þ K

r2
exp

�
� r

r0

��
1þ r

r0

�
: (33)

This form matches exactly with that derived in (8) for the
biharmonic equation. Comparing Eq. (8) with Eq. (33),

C2 ¼ G1M ¼ G

0
@1þ

ffiffiffiffiffiffiffi
M0

M

s 1
AM; (34)
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C0

k2
¼ K ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffi
MM0

p
; (35)

k ¼ 1

r0
: (36)

Next, in STVG theory, the acceleration inside a spherical
mass distribution takes the form

aðrÞ ¼ �GMðrÞ
r2

8<
:1þ

ffiffiffiffiffiffiffi
M0

M

s �
1� exp ð�r=r0Þ

�
1þ r

r0

��9=
;:

(37)

This is the form used to fit galaxy rotation curves. We write
the above equation in the following form:

aðrÞ ¼ MðrÞ
M

AðrÞ; (38)

where

AðrÞ ¼ �GM

r2

8<
:1þ

ffiffiffiffiffiffiffi
M0

M

s �
1� exp ð�r=r0Þ

�
1þ r

r0

��9=
;:
(39)

Now one would like to check whether the biharmonic
equation also gives the same form of acceleration inside a
spherical mass distribution. In general this would be diffi-
cult to check; below we describe a way which suffices for
our purpose.

The solution of the biharmonic equation for any given
mass distribution�ðrÞ is given by Eq. (16). Rewriting (16),

aðrÞ ¼ � 1

r2

Z �
4�kGr cosh ðkrÞ

Z
r sinh ðkrÞ�dr

� 4�Gkr sinh ðkrÞ
Z

r cosh ðkrÞ�dr

�
drþ AðrÞ;

(40)

with

a1 ¼ k2G
ffiffiffiffiffiffiffiffiffiffiffiffi
MM0

p
; a3 ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffi
MM0

p þGM; (41)

we see that there is double integral over �ðrÞ in the above
equation. We construct a function of the acceleration and
its derivatives which is independent of integrals. Such a
function is

�ðrÞ ¼ �00ðrÞ � k2�ðrÞ; (42)

where

� ¼ 1

r

d

dr
½r2ðaðrÞ � AðrÞÞ�: (43)

From the solution of the biharmonic equation it can be
shown that (as expected)

� ¼ 4�Gk2r�ðrÞ: (44)

We also find �ðrÞ from STVG theory also using Eq. (38).
Now

aSTVGðrÞ ¼ abhðrÞ; (45)

) �STVGðrÞ ¼ �bhðrÞ; (46)

where ‘‘bh’’ stands for biharmonic equation. Equating
�STVG and �bh, we get an equation of the form

PðrÞMðrÞ þQðrÞM0ðrÞ þ RðrÞM00ðrÞ þ SðrÞM000ðrÞ þ TðrÞ
¼ 0; (47)

where

PðrÞ ¼ � e�r=r0G
ffiffiffiffiffi
M0

M

q
r40

; (48)

QðrÞ ¼ G

2
4� 2

r3
þ

ffiffiffiffiffiffiffi
M0

M

s �
� 2

r3
þ 2e�r=r0

r3
þ 3e�r=r0

r30

þ e�r=r0

rr20
þ 2e�r=r0

r2r0

�
� 4�

rr20

3
5;

RðrÞ ¼ G

0
@ 2

r2
þ 2

ffiffiffiffiffi
M0

M

q
r2

� 2e�r=r0

ffiffiffiffiffi
M0

M

q
r2

� 3e�r=r0

ffiffiffiffiffi
M0

M

q
r20

� 2e�r=r0

ffiffiffiffiffi
M0

M

q
rr0

1
A; (49)

SðrÞ ¼ G

0
@� 1

r
�

ffiffiffiffiffi
M0

M

q
r

þ e�r=r0

ffiffiffiffiffi
M0

M

q
r

þ e�r=r0

ffiffiffiffiffi
M0

M

q
r0

1
A; (50)

and

TðrÞ ¼ � e�r=r0GM
ffiffiffiffiffi
M0

M

q
r40

: (51)

∵MðrÞ ¼ 1

r2

Z
�r2dr; (52)

Eq. (47) contains one integral over�ðrÞ. Dividing Eq. (47)
by PðrÞ and then differentiating, we get a differential
equation of the form,

UðrÞ�ðrÞ þ VðrÞ�0ðrÞ þWðrÞ�00ðrÞ þ XðrÞ�000ðrÞ ¼ 0;

(53)

where

UðrÞ¼
0
@4er=r0M

ffiffiffiffiffiffiffi
M0

M

s
�r0ðrþ r0ÞþM0ðr2�6r0rþ5r20Þ

1
A;

(54)
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VðrÞ ¼ r0

2
42er=r0M

ffiffiffiffiffiffiffi
M0

M

s
r0ð2�rþ r0Þ

þM0ð�3r2 þ 11r0rþ 2ð�1þ er=r0Þr20Þ
3
5; (55)

WðrÞ ¼ r20

2
4er=r0M

ffiffiffiffiffiffiffi
M0

M

s
r0ðrþ 3r0Þ þM0ð3r2

þ ð�4þ er=r0Þrr0 þ 3ð�1þ er=r0Þr20Þ
3
5;

XðrÞ ¼ �rr30

2
4M0ðr� er=r0r0 þ r0Þ � er=r0M

ffiffiffiffiffiffiffi
M0

M

s
r0

3
5:

(56)

The solution of Eq. (53) will tell us for what value of �ðrÞ,
STVG theory and the biharmonic equation give the same
acceleration inside a mass distribution. But it is not neces-
sary to solve (53). Instead we take the observed density
profile �ðrÞ for a specific galaxy type and see whether it
satisfies (53).

Following [11] and known observational data, we
assume the following density profile �ðrÞ:

�ðrÞ ¼ 3

4�r3
�MðrÞ

�
rc

rþ rc

�
; (57)

where

MðrÞ ¼ 4�
Z r

0
dr0r02�ðr0Þ ¼ M

�
r

rþ rc

�
3�

(58)

and

� ¼
(
1 for HSB galaxies;

2 for LSB and dwarf galaxies:
(59)

The reader is referred to Sec. 2 of [11] for a detailed
discussion of the assumptions behind the choice of the
mass distribution assumed above, which is a simplified
parametric model which includes the contribution coming
from the stellar as well as the gaseous HI component, and
the choice of an assumed M=L ratio.

We have taken the data set of ten LSB, HSB and dwarf
galaxy masses from Table 3 in [11]. Then we plot the left-
hand side of Eq. (53)

STVG� BH � r0
M2

0

ðUðrÞ�ðrÞ þ VðrÞ�0ðrÞ þWðrÞ�00ðrÞ

þ XðrÞ�000ðrÞÞ (60)

after making it dimensionless using parameters r0 andM0.
We have made the assumption that k ¼ 1=r0. We have
taken the data set of ten LSB, HSB and dwarf galaxies
and for each of them we have computed STVG� BH vs r

for three ranges of r: 0.0001–1, 1–100 and 100–500 kpc.
We find that for the range 1100 kpc STVG� BH is very
small, of the order of 10�4 or 10�3. And for other ranges
STVG� BH takes high values. Since the range of length
scales of interest in a galaxy lie between 1 and 100 kpc and
STVG� BH is very small in this range, it can be said that
the solution coming from STVG theory matches with the
solution of the biharmonic equation, inside the medium,
for the observed density profile. In this sense, the modified
acceleration law resulting from the biharmonic equation is
also a candidate for explaining the observed rotation curves
from the data set used by Moffat and Brownstein if k and
M0 are assumed to take the values needed to explain
observations. In future work we plan to explicitly inves-
tigate how close the predictions of the biharmonic equation
can come to the universal rotation curve proposed by
Salucci et al. [18].
The modified gravity law (37) predicted by our fourth

order gravity and the biharmonic equation is not ruled out
by laboratory and Solar System tests of a Yukawa-type
departure from the inverse square law. This may be seen by
writing Eq. (37) in the commonly used Yukawa form

aðrÞ ¼ �GYMðrÞ
r2

�
1þ �Y

�
1þ r

�

�
e�r=�

�
; (61)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=M

q
; �Y ¼ � �

1þ �
;

GY ¼ G

1þ �Y

; � ¼ r0:
(62)

In our work the typical values for � and j�Yj are � �
1020 m and j�Yj is order unity. Various laboratory and
astronomical tests have been carried out to date to con-
strain the values of these two parameters, which, respec-
tively, measure the critical length scale over which the
departure from inverse square law becomes significant,
and the strength of the departure. These tests are discussed
in detail by Talmadge et al. [21], by Fischbach and
Talmadge (Fig. 2.13) [22], by Adelberger et al. (Fig. 4)
[20] and by Moffat and Toth (Fig. 8) [19]. These tests
include analysis of planetary orbits and planetary preces-
sion, laboratory measurements of the gravitational con-
stant, geophysical tests, orbital motion of the LAGEOS
satellite and the Moon, and lunar laser ranging (anomalous
perigee precession). As is evident from these discussions,
and especially from Fig. 8 of [19], these tests do not at
present reach out to the range necessary to rule out the
parameter values required in our fourth order theory to
explain galaxy rotation curves.

V. COMPARISON OF OUR WORK WITH MOND

MOND [23–25] is a hypothesis that proposes a modifi-
cation of Newton’s law of gravity to explain the observed
non-Newtonian galaxy rotation curves. In MOND, the
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gravitational force acting on a test particle of mass m is
assumed to be given by the relation

F ¼ ma�

�
a

a0

�
; (63)

where a is acceleration in Newtonian mechanics and a0 is
a new fundamental constant of nature having the value
2� 10�10 ms�2. For very small accelerations (large dis-
tances) it is assumed that

�

�
a

a0

�
¼ a

a0
; (64)

whereas � approaches the value 1 for accelerations
encountered in the solar neighborhood. For a detailed
discussion of MOND, including possible functional forms
for � see for instance [26].

Hence for large distances we will have the relation

GM

r2
¼ a2

a0
(65)

) a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMa0

p
r

: (66)

The virtue thus is that a falls as 1=r rather than 1=r2. Thus
equating a to the centripetal acceleration v2=r we get that

v2

r
¼ a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMa0

p
r

) v ¼ ðGMa0Þ1=4: (67)

With the numerical choice of a0 made above one gets the
desired value of the velocity.

As we have seen above, in MOND the law of motion
under a gravitational force is modified but the law of
gravity is not changed. However in our work and in
STVG as well the effective law of gravitation is modified
by a Yukawa potential while the law of motion is un-
changed. Essentially we can say that for us

F ¼ ma ¼ GM

r2
1

�
: (68)

In our work and in STVG theory as well, the accelera-
tion is of the form

aðrÞ ¼ aN
�

; (69)

where

aN ¼ GM

r2
(70)

and

1

�
¼ MðrÞ

M
AðrÞ: (71)

We will now see in what sense this form matches with
MOND in the region of interest.

We have

aðrÞ ¼ �GMðrÞ
r2

8<
:1þ

ffiffiffiffiffiffiffi
M0

M

s �
1� exp ð�r=r0Þ

�
1þ r

r0

��9=
;:

(72)

Let us write

r

r0
¼ x (73)

) aðrÞ ¼ �GMðrÞ
r20x

2

2
41þ

ffiffiffiffiffiffiffi
M0

M

s
f1� exp ð�xÞð1þ xÞg

3
5:

(74)

We consider the region r * r0 and we define

x ¼ 1þ y; (75)

where y is small and y > 0.
Hence the term in square brackets in the expression of

aðrÞ can be written as

¼
2
41þ

ffiffiffiffiffiffiffi
M0

M

s
f1� exp ð�xÞð1þ xÞg

3
5; (76)

¼
2
41þ

ffiffiffiffiffiffiffi
M0

M

s
f1� exp ð�1� yÞð2þ yÞg

3
5; (77)

¼
2
41þ

ffiffiffiffiffiffiffi
M0

M

s �
1� 2þ y

e
e�y

�
: (78)

This essentially is 1=� in the MOND notation. (Since y is
very small, e�y � 1� y) and we can write this equation as

ffi
2
41þ

ffiffiffiffiffiffiffi
M0

M

s �
1� ð2þ yÞð1� yÞ

e

�
; (79)

ffi
2
41þ

ffiffiffiffiffiffiffi
M0

M

s �
1� ð2� yÞ

e

�
: (80)

Keeping terms up to only first order in y

ffi
2
41þ

ffiffiffiffiffiffiffi
M0

M

s �
1� 2

e
þ y

e

�
: (81)

) for r * r0,

aðrÞ � �GMðrÞ
r2

2
41þ

ffiffiffiffiffiffiffi
M0

M

s �
1� 2

e
þ y

e

�35: (82)

We write this acceleration as a sum of two parts, one
falling as 1=r2 and another falling as 1=r:
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aðrÞ � �GMðrÞ
r2

2
41þ

ffiffiffiffiffiffiffi
M0

M

s �
1� 3

e

�35

�GMðrÞ
r

2
4

ffiffiffiffiffiffiffi
M0

M

s
1

r0e

3
5: (83)

Figure 1 compares the first and second terms in the
acceleration formula given above. As anticipated the sec-
ond term dominates for large r. Also, for the acceleration
to behave as 1=r in the region of interest, the second term
inside the curly braces in Eq. (72) should rise linearly with
r—this is evident from Fig. 2. The region in which the
second term dominates is where the galaxy rotation curve
becomes non-Newtonian. This is clear from Fig. 3. At even
larger distances, the second term is exponentially damped
and the falloff is again Keplerian but with an effectively
larger value of G.

In summary it is evident that in our work the observed
rotation curve arises because the Yukawa-type correction
dominates over the monopole term in the middle region,
whereas the monopole dominates at either end.
It is significant that from our work we can give an

estimate of the theoretical value of a0 in MOND. A sim-
plistic guess would be to construct a quantity with the
dimension of acceleration from our fundamental quantities
k and M0. This is nothing but

GM0k
2 ¼ GM0

r20

¼ 6:67� 10�11 � 9:60� 1011 � 2� 1030

ð13:92� 103 � 3:08� 1016Þ2 (84)

¼ 3� 10�10 ms�2; (85)

which is of the same order as a0 in MOND (a0 ¼ 2�
10�10 m=s2). The relation is made more transparent by
comparing the acceleration given by the second term of
Eq. (83) with the acceleration in MOND in Eq. (66). This
comparison yields the fundamental relation

a0 ¼ GM0

r20e
2
: (86)

It shows that the parameter a0 inMOND is of the same order
as predicted from fourth order gravity. In principle then, the
MOND effect can alternatively be attributed to a modified
fourth ordergravity. The difference fromMONDis that in the
modified gravity case the rotation curve again falls at very
large distances,whereas inMONDit continues to remainflat.

VI. CONCLUSIONS

We found the general series solution to the biharmonic
equation for the gravitational potential in the proposed
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FIG. 1. Correction to the inverse square law as described by
Eq. (83): the solid curve depicts the Newtonian falloff given by
the first term of (83), whereas the dashed curve depicts the
correction given by the second term of (83).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

1-
ex

p(
-x

)*
(1

+
x)

x=r/r0

FIG. 2. Yukawa-type term in acceleration: plot of the correc-
tion factor in Eq. (74).

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60  70  80  90  100

V
el

oc
ity

 (
km

/s
)

r (kpc)

FIG. 3. Plot of the velocity profile corresponding to the accel-
eration given by Eq. (83). Dashed curve: velocity due to first
term, dotted curve velocity due to second term. Thin curve: total
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fourth order gravity. We saw that the form of acceleration is
very similar to that in STVG [10] in vacuum. Then we
investigated further if the form of acceleration matches
inside the matter distribution also. What we found was
that both the solutions may be successful candidates for
the observed matter density profile of galaxies. As a con-
sequence our fourth order gravity model is capable of
explaining the observed rotation curves.

The fact that the modified acceleration law discussed in
this paper also arises from apparently independent consid-
erations as in STVG and MOND is intriguing and suggests
that further investigation would be of interest.
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