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Many generic arguments support the existence of a minimum spacetime interval L0. Such a

‘‘zero-point’’ length can be naturally introduced in a locally Lorentz invariant manner via Synge’s world

function biscalar �ðp; PÞ which measures squared geodesic interval between spacetime events p and

P. I show that there exists a nonlocal deformation of spacetime geometry given by a disformal coupling

of metric to the biscalar �ðp;PÞ, which yields a geodesic interval of L0 in the limit p ! P. Locality is

recovered when �ðp; PÞ � L2
0=2. I discuss several conceptual implications of the resultant small-scale

structure of spacetime for QFT propagators as well as spacetime singularities.
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I. INTRODUCTION

The existence of a minimal length scale is one of the
most generic implications of attempts to combine the
fundamental principles of quantum field theory (QFT)
and general relativity (GR) [1]. This length scale is often
believed to be of the order of Planck length, i.e., L0 ¼
Oð1Þ‘? where ‘? ¼ ðGℏ=c3Þ1=2 ¼ 10�33 cm.1, and serves
as a universal regulator for divergences in QFT and the
singularities in classical solutions of GR [3]. Various
attempts have been made in the past to quantify this idea
at the level of effective field theory. In particular, Bryce
DeWitt in 1981 proposed an effective action for quantum
gravity, which was motivated by his earlier result [4]
in which he studied the Bethe-Salpeter amplitudes for
graviton exchange between scalar particles in the ladder
approximation, and found that resummation of relevant
diagrams implies (in the limit of large momentum transfer)
that the singularity of the effective gravitational interaction
is shifted away from the light cones, onto a spacelike
hyperboloid of size L0. Specifically, the structure of
the propagator acquires a modification of the form
2G1ðp; PÞ � ½�ðp; PÞ��1 ! ½�ðp; PÞ � 2L2

0��1, where

�ðp; PÞ ¼ 1

2
ð�ðPÞ � �ðpÞÞ

Z �ðPÞ

�ðpÞ
½gabtatb�ðxð�ÞÞd� (1)

is the Synge world function biscalar [5] and ta is tangent
vector of the geodesic connecting event P to p, with affine
parameter �. An independent line of work, based on
quantum conformal fluctuations of the spacetime metric,
was also shown to lead to a similar result (see, for e.g., [6]).
Yet another analysis leading to the same result, based on
path-integral over gravitational field hab ¼ gab � �ab, was
presented in [7]. (Henceforth, for clarity, I will work with

the geodesic distance �2ðp; PÞ ¼ 2�ðp; PÞ, and often
employ coordinates x ¼ xðpÞ, X ¼ XðPÞ, etc. to represent
spacetime events. I will also assume that p 2 N ðPÞ, the
normal convex neighborhood of P. All differentiations in
the manuscript are w.r.t. x.)
The main implication of these older results can be

captured in the following geometric, and locally Lorentz
invariant, statement: if �ðp; PjgabÞ denotes the geodesic
distance between the spacetime points p and P in the
background metric gab, then quantum gravitational fluctu-
ations lead to

h�2ðp; Pjðg � hÞabÞi ¼ �2ðp; PjgabÞ þ �L2
0; (2)

where ‘‘h��...’’ represents all (scalar, tensor . . .) possible
quantum fluctuations of the background metric gab, and
ðg � hÞab symbolically represents the deformation of gab
produced by these fluctuations. The brackets ‘‘h. . .i’’ repre-
sent a suitable path integral average over the fluctuations.2

A complete framework of quantum gravity is, of course,
expected to specify both the precise form of the fluctuations
and the prescription for averaging over them. In this context,
it is worth mentioning that a particularly elegant connection
exists between Eq. (2) and the so-called ‘‘duality’’ trans-
formation of (infinitesimal) relativistic point particle action:
ds ! dsþ L2

0=ds (ds is the arc-length), which essentially

makes the path amplitude invariant under the inversion
ds ! L2

0=ds. This was pointed out by Padmanabhan in [8],

and it’s connection with the notion of T-duality in string
theory was explored in [9]; the latter was again shown to
yield a result consistent with Eq. (2).
Given its relevance, it is therefore of significance to ask

whether, given a spacetime metric gab, there exists some
deformation of it which directly leads to the result in

Eq. (2). That is, whether one can find a metric g
?
ab such that

*dawood@physics.iitm.ac.in
1One exception is the Hoyle-Narlikar action-at-a-distance

theory, in which the relevant QFT cutoff comes from ‘‘response
of the universe’’ [2]. I thank Prof. Narlikar for pointing this out
to me.

2The factor � ¼ �1 represents an ambiguity in precisely how
L2
0 gets added to the spacetime intervals. Although relevant for

singularity structure of the propagator, I will absorb this factor
into L2

0; it can always be restored by replacing L2
0 ! �L2

0.
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�2ðp; qjg?abÞ ¼ �2ðp; qjgabÞ þ L2
0: (3)

The idea that the existence of a minimal length might
require modification of geometry is not new [10], although
a precise, mathematical characterization of the modifica-
tion has not been attempted before. In this paper, I show
that not only does there exist an ‘‘effective spacetime

metric’’ g
?
ab which yields the desired result, but it turns

out to have an unexpectedly simple form in terms of a
disformal coupling of the spacetime metric to the biscalar
A½�;L0� ¼ 1þ L2

0=�
2ðp; qÞ. Several conceptual impli-

cations of this result are discussed.
The main results of this paper are contained in Eqs. (6),

(7), (11), and (12).

II. CONSTRUCTING THE MODIFIED METRIC

It is easiest to begin with flat spacetime, since this is the
context in which the results quoted above were first
derived. In flat spacetime, the propagator of a massive
scalar field gets modified to

Gðx; XÞ ¼
�

4m2

��2
� � L2

0

�
1=2

Hð2Þ
1 ½mð��2

� � L2
0Þ1=2�;

where�2
� ¼ �abðxa � XaÞðxb � XbÞ. I take this asmy start-

ing point and ask if it is possible to deform/reparametrize the
standard flat Minkowski metric �ab such that the above
propagator naturally arises as the kernel of the modified
d’Alembartian operator. Then, if this modification is expres-
sible in a covariant form, generalization to curved spacetime
will be immediate. In fact, for flat spacetime, one can achieve
the desired modification by introducing a ‘‘hole’’ of size L0

around the event X. This requires a diffeomorphism which
is singular at X, and yields the following modified metric
(see Appendix A for details)

�
?
abðx;XÞ ¼ ð1þ L2

0=�
2
�Þ�ab ��ðxa � XaÞðxb � XbÞ;

�½��;L0� ¼ ð1=�2
�ÞðL2

0=�
2
�Þð1þ ½1þ L2

0=�
2
���1Þ: (4)

The argument X in �
?
abðx;XÞ is important; it is a reminder

that the modified metric depends on two points, the field
point x and the base point X around which the modification
is being sought; this metric may then be interpreted as an
‘‘effective metric’’ near X.

To generalize to curved spacetime, note that: rðxÞ
a �2

� ¼
2�abðxb � XbÞ in flat spacetime. This allows us to rewrite
(4) as [replacing �ab ! gab, �� ! �g]:

g
?
abðx;�2

gÞ ¼ ð1þ L2
0=�

2
gÞgabðxÞ

� L2
0

4

�
2þ L2

0=�
2
g

1þ L2
0=�

2
g

�
@aðln j�2

gjÞ@bðln j�2
gjÞ:

(5)

This is the desired covariant form of Eq. (4), and I will now

show that g
?
ab can be recast into a remarkably simple form,

which is essentially a disformal transform [11] of the
original metric involving the biscalar �ðx; XÞ.
To do this, recall that the affinely parametrized tangent

to the geodesic from p to P at p (and pointing away from

P) is given by ta ¼ ð@a�2Þ=2
ffiffiffiffiffiffiffiffiffi
��2

p
, where t2 ¼ � ¼ �1.

Using this, we finally obtain

g
?
abðp;PÞ ¼ AgabðpÞ � �ðA�A�1Þtatb;

g
?abðp;PÞ ¼ A�1gabðpÞ þ �ðA�A�1Þqaqb;

where A½�;L0� ¼ 1þ L2
0=�

2
g; (6)

where g
?
acg

?cb ¼ �b
a, g

ab � ðg�1Þab and qa ¼ gabtb. Note

that, for �2
g � L2

0, A ! 1 and g
?abðp;PÞ ! gabðpÞ.

I must emphasize that the above modification is nontrivial

in that g
?
=2 Diff½g� but rather describes a genuinely different

spacetime—i.e., in general, K½g?� � K½g�, where K
represents some curvature invariant. It is only when

Riem½g� ¼ 0 that we have g
? 2 Diff½g�.

Although a direct proof of this is difficult, involving the

formidable task of computing curvature invariants for g
?
ab

in terms of those of gab, one can see why it must be true in
at least two different ways. First, the example given below
(see Sec. II B) of maximally symmetric space(time)s
clearly illustrate the point, since these are the simplest
space(time)s which exhibit all the symmetries of a flat
space(time) but have constant, nonzero curvature.
Further, Appendix A gives the modified Ricci scalar,
evaluated in the manner described in Sec. II B, for a
deformed 2-sphere (a case which MAPLE can handle).
Since a 2-sphere represents the simplest possible curved

space, it very well illustrates the fact that the metrics g
?
ab

and gab will generically have different curvature invari-
ants, unless the original metric is flat. For the second
argument, which is somewhat indirect, see the comment
below Eq. (11).
It is now straightforward to prove the following identity:

g
?ab

@að�2
g þ L2

0Þ@bð�2
g þ L2

0Þ ¼ 4ð�2
g þ L2

0Þ (7)

and recall that the defining equation for�2
g is the Hamilton-

Jacobi equation gabð@a�2
gÞð@b�2

gÞ ¼ 4�2
g. Equation (7)

therefore gives us our key result. It shows that �2
g þ L2

0

is indeed the geodesic distance for metric g
?
ab. That such a

simple result should follow from a nontrivial modification
of the metric (which, in a genuine curved spacetime, will
not even have the same curvature as the original metric) is
in itself remarkable.
Relationship with conformal fluctuations: We can

identify Ta ¼ ta=
ffiffiffiffiffiffi
A

p
as the properly normalized tangent

vector w.r.t. g
?
ab. This allows us to write

g
?
ab � �TaTb ¼ A½�;L0�ðgab � �tatbÞ; (8)
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which shows that it is the induced geometry on �2
g ¼ const

surface which undergoes a conformal deformation.
Extrinsic curvature of this surface can be shown to be

K
?

�� ¼ A3=2K�� þ ð1=2ÞA1=2qk@kA h�� (9)

and can be used to study L0 corrections to focusing of
geodesics [12].

Above comments connect and contrast the present
analysis with an older one based on quantum conformal
fluctuations [13], in which quantum fluctuations of the
conformal factor simply lead to

gðq:c:f:Þab ¼ A½�;L0�gab: (10)

A. Green’s function

Using identities given in Appendix B we can show that

h
? ð�2

g þ L2
0Þ � 2D ¼ ð1þ L2

0=�
2
gÞðh�2

g � 2DÞ: (11)

Now, in a general curved spacetime,�2 satisfies the equation
h�2 ¼ 2Dþ ðterms Involving curvatureÞ. Equation (11)
therefore provides a quick confirmation of the fact that
the modified spacetime is Riemann flat if (and only if) the
original spacetime is Riemann flat. Using again Appendix B,
we get another remarkable resultffiffiffiffiffiffiffi
�g
?

q
h
? ð�2

g þ L2
0Þ�D�2

2 ¼ ffiffiffiffiffiffiffi�g
p

h ð�2
gÞ�D�2

2 ;ffiffiffiffiffiffiffi
�g
?

q
h
?

ln ð�2
g þ L2

0Þ ¼ðD¼2Þ ffiffiffiffiffiffiffi�g
p

h ln�2
g

(12)

in an arbitrary curved spacetime. Since ð1=�2
gÞD�2

2 is the

leading term in the scalar propagator Gðp; PjgabÞ in any
metric gab, and since the propagator satisfiesffiffiffiffiffiffiffi�g

p
hgGðp; PjgabÞ ¼ �Dðp; PÞ; (13)

Eq. (12) immediately implies that the leadingmodification
to the propagator is obtained by replacing �2

g ! �2
g þ L2

0,

which generalizes the flat spacetime result for which, of
course, this replacement gives an exact propagator.

B. Spacetime singularities

We now turn to the second relevant implication of
minimal length: the modification to invariant properties
of spacetime such as its curvature invariants. Once the
world function is known in a given spacetime, a symbolic
package such as MAPLE can be used to obtain expressions

for, say, any modified curvature invariant K
?

ðp;P; L0Þ. It’s
behavior at any spacetime event P can then be deduced

from K
?

ðP;L0Þ ¼ lim
p!P

K
?

ðp;P; L0Þ. Unfortunately, exact
expression for the world function is rarely obtainable,
and its approximate expansion in coordinate intervals
(which is what is often resorted to in the literature) is often

inadequate near singularities. However, the following
results can be obtained in a straightforward manner:
(1) Flat spacetime: By construction, for a flat space-

time, R
?

abcdðp;PÞ ¼ 0, and hence R
?

abcdðP; L0Þ ¼
lim
p!P

R
?

abcdðp;P; L0Þ ¼ 0.

(2) Symmetric spacetimes: For maximally symmetric
spaces, �ðp; PÞ is known in a closed form, and a

MAPLE computation gives: K
?

ðP; L0Þ ¼ KðPÞ½1þ
cKKðPÞL2

0�, where cK is a numerical coefficient.

(3) Schwarzschild singularity: The world function is not
known in this case, but one can restrict to radial
timelike geodesics hitting the singularity r ¼ 0.
This gives a modified Kretschmann invariant which
behaves as �1=ð1þ �ÞL4

0 instead of �M2=r6 as

r ! 0. Although still divergent since � ¼ �1, the
divergence is of a drastically different character
and, being independent of M, can presumably be
regularized.

For nonsingular spacetime events, it should be possible to
employ Riemann normal coordinates (RNC) and establish
(1) and (2) generically. Investigation is currently in
progress as to whether something generic can be said about
curvature singularities.

III. DISCUSSION

The modified metric derived here has several conceptual
connotations. I begin with the most relevant one—the
analytic structure of the metric in the coincidence limit
(this has also been emphasized by Brown [14,15]): the term
ð1þ�Þ�1, with� ¼ L2

0=�
2 in the modified metric can be

represented as a series S ¼ P1
n¼0ð��Þn when j�j< 1,

i.e., when �2 > L2
0. It is quite possible that one arrives at

some such series by doing a perturbative analysis for small
�. Any such series would not be valid beyond its region of
convergence (j�j ¼ 1), and there might be many different
ways to extract from it a term nonanalytic at �2 ¼ 0. In the
present analysis, the term ð1þ�Þ�1 which arises naturally
is the analytic continuation of the series S beyond it’s
region of convergence. (See also [14].)
As already stated, when spacetime is flat, the modified

metric can be mapped back, via a singular coordinate
transformation, to the original flat spacetime, but with a
region (a ‘‘hyperboloid’’) of size L0 around the base point
(X above) removed. (Incidentally, this also naturally sug-
gests existence of a maximal acceleration, amax � L�1

0 in

flat spacetime. See Appendix C.) Usually, for a smooth
curved manifold with metric gab, one employs the standard
metric expansion in RNC [yi ¼ xi � Xi]

gabðx;XÞ 	 �ab � ð1=3ÞRacbdðXÞycyd þOðy3Þ: (14)

However, there are (at least) two important cases when
such an approximation is unjustified: (i) for extremely
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small spacetime intervals, for which continuous structures
such as Rabcd are unlikely to make much sense, and
(ii) near spacetime singularities, where the curvature tensor
and/or its derivatives might blow up. Motivated by several
earlier results on minimal length, we have arrived at a
metric which can serve as an effective metric at small
scales. The nonlocality of this metric is best understood
by comparing it with the above RNC expansion: in the
modified case, the metric at x 2 N ðXÞ depends not only
on curvature at X, but also on the spacetime interval
between x and X. The resultant nonlocality is therefore
natural, an outcome of our starting assumption that space-
time intervals have a lower bound. This also suggests
analyzing the modified metric in the context of ‘‘spacetime
foam.’’ (See also [16].)

It would be insightful to set up an effective action which
is extremized by the modified metric. Such an action will
necessarily be nonlocal, but should be relatively straight-
forward to set up given the disformal form of the metric.
One earlier work with somewhat similar motivation is by
DeWitt (see the second reference in [4]).

As already emphasized, our result captures the essence
of several earlier works on the topic. More importantly,
the closed form expression for the modified metric
should make it possible to perform explicit computations
in the modified geometry. All one needs is an expression
for the world function �ðp; PÞ in the background geome-
try, either under some (valid) approximation, or exact if
available. In fact, our analysis also suggests a conceptu-
ally appealing possibility in which the world function
might play a more fundamental role than the spacetime
metric itself. This is very much possible, since almost
all the information about spacetime geometry can be
shown to be encoded in the coincidence limit (denoted
below by ‘‘½. . .�’’) of covariant derivatives of �ðp; PÞ.
For e.g. [5],

ga0b0 ¼ gab ¼ ½rarb�ðx; x0Þ� ¼ ½ra0rb0�ðx; x0Þ�
Ra0ðc0d0Þb0 ¼ ð3=2Þ½rarbrcrd�ðx; x0Þ�

and so on. One can therefore ‘‘reconstruct’’ spacetime
from �ðp; PÞ, and study how modifying �ðp; PÞ affects
the reconstructed spacetime, which is essentially what we
have done [17]. In this sense, the ‘‘local’’ nature of
familiar gravitational actions also seems to be an illusion
which would break down when 2�ðp; PÞ & L2

0.

Finally, I must mention that the entire analysis presented
here is for timelike/spacelike separated events. The case
of null separated events bring in several subtleties, both
technical, and more importantly conceptual, since all argu-
ments in the literature for minimal length deal with bounds
on timelike/spacelike intervals only, and there are no such
arguments for null separated events. We hope to study this
case in subsequent work.
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APPENDIX A: DERIVATION OF EQ. (4)

We look for a reparametrization of flat space(time) such
that geodesic distances have a natural lower bound, and we
do so by introducing a ‘‘hole’’ in flat space(time). The
analysis is most easily done in flat Euclidean space, and
then analytically continuing back to Lorentzian signature.
Consider therefore an event P in a D dimensional flat
Euclidean space (for simplicity, I set its coordinates
Xk ¼ 0 without loss of generality; they can be easily
restored in final expressions). The result in Eq. (4) is
derived via following steps: start with standard Cartesian
coordinates for flat space, transform to spherical-polar
like coordinates with the ‘‘radial’’ coordinate being the
geodesic distance �E, introduce a new coordinate via

�E !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

E þ L2
0

q
, and then revert to Cartesian like coor-

dinates using standard transformations. (For the Lorentzian
case, the only difference is the appearance of hyperbolic,
instead of standard trig, function in one of the transforma-
tions.) These steps are straightforward, and lead to the
following reparametrization

xkE !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2

0

�abx
a
Ex

b
E

s
xkE (A1)

which must be treated as an active diffeomorphism
(notice that it becomes singular in the coincidence limit).
The above diffeomorphism then yields the Euclidean ana-

logue of the metric �
?
ab given in Eq. (4) of the paper

(in which we have reintroduced the coordinates Xk of
P ). After some further manipulations, we can also obtain
the Euclidean analogue of the form given in Eq. (6):

�
?

ab ¼ A�ab � ðA� A�1ÞnEanEb ; (A2)

where nEa ¼ �abx
b
E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mnx

m
Ex

n
E

p
with n2E ¼ þ1 is the nor-

malized geodesic tangent vector connecting Xk to xkE.
Analytic continuation to Lorentzian signature: The final

step is the analytic continuation from Euclidean to
Lorentzian signature, in which the only nontriviality con-
cerns the nEan

E
b term in the metric. For the Lorentzian

signature, the normalized geodesic tangent vector is given by

na ¼ �abx
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��mnx
mxn

p ; n2 ¼ � ¼ �1: (A3)
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The correct analytic continuation, nEan
E
b ! �nanb, is most

easily deduced by starting from

�
?
abðx;XÞ ¼ A�ab � K�ðA� A�1Þnanb (A4)

and showing that the desired result requires K ¼ 1. More
specifically, evaluate the inverse metric

�
?abðx;XÞ ¼ A�1�ab þ F�ðA� A�1Þnanb;

F ¼ ½1þ ðK�1 � 1ÞA2��1:
(A5)

To fix F, we appeal to the Hamilton-Jacobi equation, which
yields

�
?ab

@að�2 þ L2
0Þ@bð�2 þ L2

0Þ ¼ 4�2

�
FAþ 1� F

A

�
: (A6)

To get the desired result 4ð�2 þ L2
0Þ ¼ 4A�2 on the

right-hand side, we must therefore have F ¼ 1, which fixes
K ¼ 1.

It is instructive to explicitly analyze what our modifica-
tion gives when applied to a 2-sphere, the simplest possible
example of a curved space. The geodesic distance between
points on a 2 sphere of radius L is given by

� ¼ Lcos�1�;

� ¼ cos � cos �0 þ sin � sin �0 cos ð	�	0Þ:
(A7)

An explicit MAPLE computation shows that the Ricci scalar
for the modified metric, in the limit � ! �0 and 	 ! 	0
(along the shortest geodesic) becomes

R
? ¼ 2

L2

�
1� 1

15

L2
0

L2

�
: (A8)

APPENDIX B: SOME IDENTITIES

The following identities, which are relevant for the analy-
sis of Green’s function in aD dimensional curved spacetime,
can be proved in a straightforward (although lengthy)manner
using the modified metric. To begin with, one may use the
matrix determinant lemma: det ðMþ uvTÞ ¼ ðdetMÞ 

ð1þ vTM�1uÞ, where M is an invertible square matrix,
and u, v are column vectors (of same dimension as M), to

obtain:

ffiffiffiffiffiffiffi
�g
?

q
¼

ffiffiffiffiffiffiffi
�g
?

q
ð1þ L2

0=�
2
gÞðD�2Þ=2. Using this, one

can show that (with� � L2
0=�

2)

h
? ð�2

g þ L2
0Þ�m

2 ¼ ð1þ�Þ�m
2

�
hð�2

gÞ�m
2 �mðm�Dþ 2Þ



�

�

1þ�

�
ð�2

gÞ�1�m
2

�
;

h
?

ln ð�2
g þ L2

0Þ ¼ h ln�2
g þ

�
�

1þ�

��
4� 2D

�2
g

�
:

APPENDIX C: MINIMAL LENGTH AND
MAXIMAL ACCELERATION

That our Lorentz invariant modification of geodesic dis-
tances �2 ! �2 þ L2

0 has implications for maximal accel-

eration in flat spacetime is essentially a consequence of the
fact that uniformly accelerated observers with acceleration g
in flat spacetime are given by contours of �2ðp; PÞ ¼ g�2

whereP is the origin (the points on the contours are therefore
connected toP by spacelike geodesics).A lower bound on�2

should therefore also imply an upper bound on acceleration.
One can explicitly demonstrate this in flat spacetime as
follows. For simplicity, we will work in ð1þ 1ÞD which
suffices for our purpose. Set up the deformed metric in a
spacelike neighborhood of P, in the so-called right Rindler
wedge, in Rindler coordinates. The standard Rindler metric
is given by ds2 ¼ �NðxÞ2dt2 þ dx2, where NðxÞ ¼ 1þ gx
and x 2 ½�1=g;1Þ. The acceleration of any x ¼ const
curve is given by a ¼ g=ð1þ gxÞ, which diverges at
x ¼ �1=g, the Rindler horizon. To construct the deformed
metric, we need the geodesic distance between two events
in Rindler coordinates; this is given by �2ðp;PÞ¼
g�2½N2ðxÞþN2ðXÞ�2NðxÞNðXÞcoshg�t�. Although the
final form of the metric is unwieldy, one may set up a
MAPLE routine to evaluate the acceleration of a x ¼ const

curve; this yieldsa
� ¼ g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðxÞ2 þ g2L2

0

q
. SinceNðxÞ ¼ 0 at

x ¼ �1=g, we get a
�
max ¼ 1=L0.

Note that this result hinges on the fact that uniformly
accelerated observers in flat spacetime move along orbits
of the boost Killing field, which are hyperbolas given by
contours of the geodesic interval �2. Its generalization to
curved spacetime is currently under investigation.
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