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In Einstein-Maxwell gravity with a conformally coupled scalar field, the black hole found by

Bocharova, Bronnikov, Melnikov, and Bekenstein (BBMB) breaks when embedded in the external

magnetic field of the Melvin universe. The situation improves in the presence of acceleration, allowing

one to build a magnetized and accelerating BBMB black hole with a thin membrane. But to overcome this

and other disadvantages of BBMB spacetimes, a new class of black holes, including the rotating case, is

proposed for the conformal matter coupling under consideration.
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I. INTRODUCTION

Solution generating techniques are a very powerful tool
in general relativity. Taking advantage of the integrability
properties of the system and its symmetries, they are not
only a mere mechanism to build solutions hardly directly
integrable from the (nonlinear system of partial differen-
tial) equations of motion, but their formalism is also useful
to deepen conceptual problems in gravity, such as the
Geroch conjecture1 or black hole uniqueness.

Recently the Ernst solution generating technique, origi-
nally developed for axisymmetric spacetimes in Einstein
general relativity without a cosmological constant [2],
possibly coupled with Maxwell electromagnetism [3],
was extended to the presence of a minimally or a confor-
mally coupled scalar field in [4]. The latter theory admits
a black hole discovered by Bocharova, Bronnikov,
Melnikov, and Bekenstein (BBMB) in [5–7]. This was
the first counterexample to the no-hair conjecture for black
holes. Thanks to the generalized Ernst methods it was
possible to extend the Harrison transformation, which
allows one to embed an asymptotically flat and axisym-
metric spacetime in the Melvin magnetic universe [8]. So
the family of magnetized black holes, known as Ernst
solutions, was widened to enclose also the BBMB black
hole [4]. The presence of the scalar field, which for the
BBMB black hole is divergent on the event horizon, makes
the black hole break when immersed in an external mag-
netic field; that is, the magnetized solution displays curva-
ture singularities on some points of the horizon. In the
presence of the cosmological constant the divergence of
the scalar field can be neutralized because it is hidden
behind the event horizon, but unfortunately neither a solu-
tion generating technique nor a Harrison transformation is
available at the moment for this system. Some attempts to
adapt the Ernst method to the presence of the cosmological

constant were done in [9,10], and small progresses were
achieved there (for instance, the generalization of the
Melvin magnetic universe in the presence of the cosmo-
logical constant), but basically the problem still remains
open.
Recently also a C metric was discovered, in [11,12], for

the Einstein-Maxwell theory with a conformally coupled
scalar field, which is interpreted as a pair of accelerating
BBMB black holes. A typical feature of these accelerating
solutions is that the acceleration is provided by a conical
singularity, physically interpreted as a string or a strut
pulling or pushing, respectively, the two black holes.
Ernst, in [13], using a Harrison transformation has shown
how to regularize these accelerating (when intrinsically
charged) solutions, removing the deficit or excess angle
of the conical singularity by embedding the C metric
(in the case without the scalar field) in an external magnetic
field. Actually this regularization mechanism was invoked
in [11], but the Harrison transformation in the presence of a
scalar field was not known because the solution generating
technique [4] was not available at that time. Furthermore, it
is worthwhile to note that the accelerating BBMB solution
has a better behaved scalar field than the nonaccelerating
one, because the scalar field blows up only on one pole of
the event horizon and not on the whole surface. Similar to
the case with the cosmological constant (almost) all of the
divergences are hidden inside the event horizon.
Since now we are in possession of the technology able to

magnetize spacetimes in the Einstein-Maxwell theory with
a conformally coupled scalar field, it would be interesting
to explore the possibility of regularizing the C metric with
a scalar hair by embedding it in an external magnetic field;
this point is addressed in Sec. II. And since the accelerating
BBMB has a more regular scalar field with respect to its
static version, we hope also to be able to remove the naked
singularities present in the magnetized BBMB black hole.
Furthermore one virtue of the Ernst solution generating

technique, which at the beginning was probably the main
motivation for its discovery, is to generate rotating solu-
tions starting from a static seed, for instance, obtaining the
Kerr spacetime from the Schwarzschild black hole. So it is

*marco.astorino@gmail.com
1The Geroch conjecture was proven by Hauser and Ernst in

[1]. It states that any axially symmetric electrovacuum spacetime
can be generated from the Minkowski one by Kinnersley-Chitre
transformations.
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natural, with the help of the generalized solution technique,
to explore the possibility of generating a rotating version
of the BBMB black hole, which is still unknown.
Unfortunately, the standard methods that work for the
case without the scalar hair fails, so in Sec. III a rotating,
scalar hairy black hole is considered to overcome this and
other disadvantages typical of BBMB spacetimes.

While the existence of a (minimal or) conformally
coupled scalar field is not proven in gravitational physics,
it is theoretically widely used, especially in cosmology for
studying dark energy and dark matter. On the other hand,
the astrophysical interest in black holes embedded in an
external magnetic source, such as the Melvin universe,
comes from the fact that currents in the accretion disk
around a massive black hole, especially the ones at the
center of the galaxies, can presumably generate such kinds
of magnetic fields.

II. ACCELERATING BBMB BLACK HOLE
IN MELVIN MAGNETIC UNIVERSE

Thanks to the solution generating techniques developed
in [4] for the Einstein-Maxwell gravity theory with a
conformally (and minimally) coupled scalar field, it is
now possible to embed the accelerating, scalar hairy black
hole discovered in [11] into the Melvin magnetic universe.

A. C metric with a conformal scalar hair

Consider the action for general relativity coupled to the
Maxwell electromagnetic field and to a conformally
coupled self-interacting scalar field �,

I½g��; A�;�� ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� F��F
��

� �

�
r��r��þ R

6
�2

��
: (2.1)

The gravitational, electromagnetic, and scalar field
equations are obtained by extremizing with respect to
metric g��, the electromagnetic potential A� and the scalar

field �, respectively,

R�� � R

2
g�� ¼ �ðTðEMÞ

�� þ TðSÞ
��Þ; (2.2)

@�ð ffiffiffiffiffiffiffi�g
p

F��Þ ¼ 0; (2.3)

h� ¼ 1

6
R�; (2.4)

where

TðEMÞ
�� ¼ 1

4��0

�
F��F�

� � 1

4
g��F��F

��

�
; (2.5)

TðSÞ
�� ¼ @��@��� 1

2
g��@��@��

þ 1

6
½g��h�r�r� þG����2: (2.6)

In this section we are interested in static and axisym-
metric spacetimes characterized by two commuting killing
vectors described by the Weyl metric

ds2 ¼ �fd’2 þ f�1½R2dt2 � e2�ðdR2 þ dz2Þ�; (2.7)

where the functions f, � depend only on the coordinates
ðR; zÞ and � ¼ 8�G, while the electromagnetic potential
will be taken of the form A ¼ AtðR; zÞdtþ A’ðR; zÞd’.2
An accelerating black hole solution for this model was
found in [11] (see also [12]), for the null cosmological
constant and electromagnetic charge, and it is

ds2 ¼ 1

ð1þ Ar cos �Þ2
�
�QðrÞ

r2
dt2 þ r2

QðrÞdr
2 þ r2

Pð�Þd�
2

þ r2sin 2�Pð�Þd’2

�
; (2.8)

QðrÞ ¼ ð1� A2r2Þðr�mÞ
�
r� m

1þ 2Am

�
; (2.9)

Pð�Þ ¼ ð1þ Am cos�Þ
�
1þ Am

1þ 2Am
cos �

�
; (2.10)

�ðr; �Þ ¼
ffiffiffiffi
6

�

s
mðAr cos�þ 1Þ

rð1þ AmÞ þmðAr cos�� 1Þ : (2.11)

A and m represent, respectively, the acceleration and the
mass parameters of the black hole, and we will consider
them positive. Actually this metric (2.8) is interpreted as a
pair of black holes with a conformally coupled scalar
hair uniformly accelerating apart along the axis � ¼ 0.
The inner r�, outer rþ, and accelerating rA horizons are
given by

r� ¼ m

1þ 2Am
; rþ ¼ m; rA ¼ 1

A
: (2.12)

For the roots of the polynomial QðrÞ in (2.9) to be ordered
according to the C-metric interpretation, the parameters
have to satisfy the following relation:

0 � Ar� � Arþ � 1: (2.13)

Moreover, as explained in [15], C metrics usually have a
hidden parameter C in the range of azimuthal coordinate
’ 2 ð�C�;C��. When the acceleration parameter A goes

2It is shown by Carter in [14] (theorem 7) that this is the most
generic circular electromagnetic field, compatible with the cir-
cular metric (2.7).
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to zero, the black hole found by Bocharova, Bronnikov,
and Melnikov in [5], and then studied by Bekenstein in
[6,7], is recovered. In that case (A ¼ 0) there is no accel-
erating horizon, and both the inner and outer horizons
coincide: r� ¼ m.

It is worthwhile to examine the regularity of the axis of
symmetry because in the literature this point is often not
clear. This ambiguousness usually arises from a different
choice of the radial coordinate r. As pointed out in [16],
our radial coordinate choice is motivated by the facts that
(i) the no accelerating limits are clearer, (ii) when the C
metric is rotating, there are no torsion singularities (that is,
rotating conical singularities, which generate closed time-
like curves3), (iii) moreover, the interpretation of the ex-
tremal case is comprised in the standard case (the string
and acceleration are not disappearing in the extremal case),
and (iv) finally, the simpler algebra makes the position of
the horizon clearer. To study the conicity of the metric (2.8)
we consider a small circle around the half-axis � ¼ 0 (with
t, r constant). For the above range of ’, we obtain

circumference

radius
¼ lim

�!0

2�CPð�Þ sin �
�

¼ 2�C

�
1þ Amþ Am

1þ 2Am
þ A2m2

1þ 2Am

�
:

(2.14)

When this value is different from 2�, the metric (2.8) has at
least a conical singularity in � ¼ 0. Similarly, around the
other half axis � ¼ �, we have

circumference

radius
¼ lim

�!�

2�CPð�Þ sin �
�� �

¼ 2�C

�
1� Am� Am

1þ 2Am
þ A2m2

1þ 2Am

�
:

(2.15)

A deficit angle is interpreted as a semi-infinite cosmic
string pulling the BBMB black hole along the half axis
with a force proportional to the tension of the string (i.e., a
T�� localized on the string and proportional to the deficit

angle), and conversely an excess angle is interpreted as a
strut pushing the black hole.

Because the conicity of the conical singularities are
different on the two half axes, in general it is not possible
to remove them simultaneously, fixing the value of the
constant C. Henceforward, to avoid the conical singularity
for � ¼ 0, we will set4

C ¼
�
1þ Amþ Am

1þ 2Am
þ A2m2

1þ 2Am

��1
: (2.16)

One cannot even remove the second conical singularity by
a nontrivial fine-tuning between the parameters such that
Amþ Am

1þ2Am ¼ 0 because, apart from the trivial cases for

A ¼ 0 or m ¼ 0, corresponding to Schwarzschild or
Minkowski spacetimes in accelerating coordinates, respec-
tively, the only remaining possibility is Am ¼ �1; but
unfortunately it is outside the range of permitted parame-
ters (2.13). Note that the rotating solution of [12] lacks
conical singularity, though it is accelerating, because it
does not have a proper mass term.5

Usually, as was found by Ernst himself in [13] for the
case of a vanishing scalar field, it is possible to introduce an
external magnetic field to remove this residual conical
singularity from the charged C metric. We will do the
same with a non-null scalar field in Sec. II C.
We finally observe that, although the nonaccelerating

case of solution (2.8) has a divergent scalar field �ðr; �Þ
behavior on the whole outer horizon r ¼ m, when A is
non-null the scalar field is well behaved except on one pole
(r ¼ rþ, � ¼ �),

�ðrþ; �Þ ¼ Am cos�þ 1

Amð1þ cos �Þ ; (2.17)

where it is divergent. The scalar field divergences were the
origin of the problems in the magnetized BBMB solution
in [4], and thus a better behaved scalar field on the horizon
is favorable for magnetizing purposes.

B. C metric with a conformal scalar hair in the
Melvin magnetic universe

Here we want to embed the metric (2.8), which we will
consider our seed, in the external magnetic field of the
Melvin magnetic universe. To do that it is necessary to
have the Harrison transformation for the theory under
consideration. Using the results of [4] we can write6 such
a kind of magnetizing transformation in the solution space
of the Einstein-Maxwell theory of gravity with a confor-
mally coupled scalar field. In terms of the Ernst potentials,
for uncharged7 and static seed spacetimes, the Harrison
transformation is given by

E0 ! E ¼ E0 � B2

4 ð1� �
6 �

2Þ2E2
0

½1� B2

4 ð1� �
6 �

2ÞE0�2
;

�0 ! � ¼
B
2 ð1� �

6 �
2ÞE0

1� B2

4 ð1� �
6 �

2ÞE0

:

(2.18)

3This feature makes the two coordinate choices not physically
equivalent in the presence of rotation.

4Alternatively a new axial angular coordinate, with canonical
period 2�, can be defined dilatating the old one by a factor C�1.

5As can be seen from the vanishing acceleration limit.
6One just has to pass to the Einstein frame with a conformal

transformation, apply the desired transformation (in this case the
Harrison one), and afterwards come back to the Jordan frame.

7A Harrison transformation preserving staticity is generalized
in Sec. III C for a particular kind of charged seed.
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We recall the definition of Ernst complex potentials that,
just for this particular uncharged and static seed case,
remain real,

E :¼ f��2; � :¼ A’: (2.19)

The Ernst potentials for the seed metric (2.8) are obtained
by comparing it with the Weyl one (2.7),

�0 ¼ 0; E0 ¼ f0 ¼ � Pð�Þr2sin 2�

ð1þ Ar cos �Þ2 : (2.20)

So, while the function �ðr; �Þ remains unchanged as in
the Weyl metric (2.7), the magnetized f is given by

f ¼ E þ�2 ¼ f0
�2ðr; �Þ where

�ðr; �Þ ¼ 1� B2

4

�
1� �

6
�2

�
f0:

(2.21)

Finally the resulting magnetized version of the accelerating
C metric (2.8) becomes

ds2 ¼ �2ðr; �Þ
ð1þ Ar cos �Þ2

�
�QðrÞ

r2
dt2 þ r2

QðrÞdr
2 þ r2

Pð�Þ d�
2

þ r2sin 2�Pð�Þ
�4ðr; �Þ d’2

�
; (2.22)

supported by the magnetic field

A’ ¼
B
2 ð1� �

6 �
2Þf0

1� B2

4 ð1� �
6 �

2Þf0
: (2.23)

The conical singularity present at the point � ¼ � cannot
be removed by the addition of an external magnetic field
because, as shown in [4], the excess or deficit angle that
stems from embedding conformal scalar hairy black holes
in the Melvin universe is proportional to both the intensity
of the external magnetic field B and the ‘‘intrinsic’’ elec-
tromagnetic charge e of the seed black hole. Since in this
case the seed solution (2.8) is electromagnetically neutral,
it is not possible to do a fine-tuning between the parameters
(A, m, e, B) to elide the nodal singularity, exactly as in the
case of the null scalar field [13]. In Sec. II C, an intrinsi-
cally charged solution will be considered so that we will be
able to apply this Ernst trick.

The scalar curvature invariants of this metric (2.23), such
as R��R�� and R���	R���	, are divergent only on the

pole (r ¼ rþ, � ¼ �). As expected, this is a reminiscence
of the singular character of the field�ðr; �Þ on that pole. So

the magnetized C-metric solution is slightly better behaved
than the nonaccelerating one of [4], but still it remains
singular. Nevertheless, now it can be used, via the cut and
paste procedure of [17], to build a regular black hole on the
brane; this will be done in Appendix A.

C. Removing the conical singularity from the
scalar hairy, charged C metric

The Ernst method [13] to remove the conical singularity
typical of the C metric spacetime consists of embedding it
in an external magnetic field. To achieve that, it is essential
to have an interaction between the intrinsic charge of the
black hole (which could be of electric or magnetic type)
and the external field (which can be electric). The simpler
implementation remains within a static framework, so it is
necessary that the intrinsic electric charge and external
charge are of the same type. For instance, we will consider
an intrinsically magnetically charged accelerating BBMB
black hole embedded in an external magnetic field. It is
easy to see, via the electromagnetic duality in four dimen-
sions, that the same result can be obtained by an electri-
cally charged accelerating black hole embedded in an
external electric field. On the other hand, when the intrinsic
and external electromagnetic charges are of a different
type, the metric becomes stationary due to the appearance

of a ~E� ~B circulating momentum flux in the stress-energy
tensor, which serves as a source for a twist potential. To be
more precise in order to preserve the staticity of the seed
spacetime, even when it is not electromagnetically neutral,
the Ernst potential E must remain real.
Thus let us consider as a seed metric an accelerating

BBMB black hole with intrinsic magnetic charge g. It has
the same form as the uncharged one (2.8), but the matter
fields are

A’¼�gcosð�Þ;

�ðr;�Þ¼�
ffiffiffiffi
6

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�g2ð1þ2AmÞp ðArcos�þ1Þ
rð1þAmÞþmðArcos��1Þ :

(2.24)

Because the metric is charged, we cannot use the Harrison
transformation directly in the conformal frame, but we
have to shift it in the minimal frame, magnetize the shifted
metric, and then come back in the Jordan frame, as ex-
plained in [4]. The resulting magnetized metric remains
formally the same as the uncharged case (2.22); also the
scalar field remains the same as (2.24), but the magnetic
potential becomes

A’ ¼ �
g cos�þ B

2 g
2cos 2�þ B

2

n
1� ½m2 � g2ð1þ 2mAÞ�

h
1þAr cos�

ð1þAmÞrþmðAr cos ��1Þ
i
2
o

Pð�Þr2sin 2�
ð1þAr cos �Þ2

�ðr; �Þ ;

and �, for the charged case, modifies in
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�ðr; �Þ ¼ 1þ gB cos �þ g2B2

4
cos 2�

þ B2

4

�
1� ½m2 � g2ð1þ 2mAÞ�

�
�

1þ Ar cos �

ð1þ AmÞrþmðAr cos �� 1Þ
�
2
�

� Pð�Þr2sin 2�

ð1þ Ar cos �Þ2 :

Thus the introduction of the additional parameter B related
to the external electromagnetic field makes possible the
removal of the conical singularity from both the north and
south poles. Expanding the metric around � ¼ 0, as done
in Sec. II A, it is possible to pull out the angular deficit or
excess in � ¼ 0 by just rescaling the ’ coordinate

’V
 ¼ ’
ð1þ AmÞ½1þ Am=ð1þ 2AmÞ�

ð1þ gB=2Þ4 : (2.25)

To eliminate also the conical singularity from � ¼ � one
has to fix a particular relation between the parameters A,m,
B, g,

mA ¼ gBð4þ g2B2Þ
4� 4gBþ 6g2B2 � g3B3 þ g4B4=4

: (2.26)

From a physical point of view the removal of the conical
singularity corresponds to removing the string (or strut) in
charge to provide the acceleration to the Cmetric. It means
that the acceleration of the black hole pair is entirely
provided by the interaction force between the intrinsic
electromagnetic charge of the black hole and the external
magnetic field.

For small values of the electromagnetic field, gB � 1,
the latter equation coincides with the Newtonian force felt
by a massive magnetic monopole, of intensity g, in a
uniform magnetic field whose strength is proportional to
B (or alternatively, via electromagnetic duality, the weak
electric field limit corresponds to an electric charge in a
uniform electric field)

mA � gB:

In fact, this represents the nonrelativistic limit, i.e., A � 1,
as can be seen inverting (2.26) and expanding for small
acceleration parameter A,

gB ¼ 2

�
1þ3mA
1�mA

	
1=4 � 1�

1þ3mA
1�mA

	
1=4 þ 1

� mA:

Usually these accelerating metrics, once regularized with
the Ernst procedure, are of a certain interest because they
provide a description of pair production of black holes in a
magnetic field, as first pointed out in [18] (see also [19]).
Unfortunately, this picture in the context of the BBMB

black hole is ruined. In fact, despite the removal of the
conical singularities and the strut/string interpretation re-
lated to that, not even the addition of the electromagnetic
charge to the accelerating hairy metric is sufficient to make
it regular because of the presence of a curvature singularity
on the pole (r ¼ m, � ¼ �), hence the presence of a
singularity not hidden behind an event horizon. This is
due to the divergence of the scalar field, of the seed metric,
at that point.

III. BLACK HOLES WITH A CONFORMALLY
COUPLED CONSTANT SCALAR FIELD

As we have seen in the previous sections or as it is
known from the literature, the BBMB solution, the actual
model of a black hole with a conformally coupled scalar
field, reveals several drawbacks or disadvantages, which
are not present in ordinary black holes of the Kerr-Newman
family. Let us list some:

(i) The scalar field is divergent on the horizon.
(ii) The spacetime is unstable under linear perturba-

tions [20].
(iii) When embedded in an external magnetic field, it

breaks down: it discloses curvature singularities on
the horizon [4].

(iv) The introduction of the cosmological constant can
hide the whole scalar field singularity behind the
horizon, while the introduction of the acceleration
cures just some divergences, but not all. These
residual scalar field singularities, not hidden inside
the event horizon, often cause naked singularities in
the solution generating process, as seen in Sec. II B
and in [4].8

(v) The BBMB black hole carries just a dichotomic,
secondary hair, in the sense that there is not a
continuous parameter associated with this scalar
hair. There is no nonextremal extension, which
might make the extra parameter continuous [21].
Moreover, because of the extremality its entropy is
null.

(vi) It does not have a continuous limit to the
Schwarzschild or Reissner-Nordstrom black hole.
In [4] it is shown how, from a generalization of the
BBMB solution, the Penney one, in the conformal
frame it is possible to reach the Reissner-
Nordstrom and the Schwarzschild black hole. But
this is not an admissible physical process because,
in order to do that, one has to pass through naked
singularities.

8To be more precise, due to the scalar field divergence, some
of the SUð2; 1Þ Kinnersley symmetry transformations, studied in
[4], involve unbounded quantities when applied to the BBMB
metric in the conformal frame. In this sense the BBMB black
hole is not a ‘‘physically good’’ seed for the solution generating
technique.
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(vii) A stationary version of the BBMB black hole is
not known. The Ernst generating algorithm fails to
add rotation to the BBMB metric, and difficulties
arise also in the slow rotating approximation [22].
The rotating metric of [12] does not have a proper
mass term.

(viii) Higher dimensional flavors of the BBMB black
hole are not known.

Thus, now, our purpose is to explore the possibility of a
solution that is able to overcome these difficulties, or at least
some. We restrict our research inside the most generic sta-
tionary axisymmetric Petrov type D class of metrics, which
can be cast in the Plebanski-Demianski form. Recently this
issue, in the presence of a scalar field coupling, was dis-
cussed in [23]. To begin with, we will focus on the confor-
mal coupling for the scalar field without the cosmological
constant. The most general nonstealth solution,9 of the
above form, admitting electromagnetic and Newman-Unti-
Tamburino charges, acceleration, and in particular a stan-
dard mass10 and rotation terms, of the Kerr type in the limit
of vanishing acceleration, requires a constant scalar field,

ds2 ¼ 1

ðy� xÞ2
�
FðyÞðdt� x2d’Þ2

1þ x2y2
� 1þ x2y2

FðyÞ dy2

þ 1þ x2y2

FðxÞ dx2 þ FðxÞðy2dtþ d’Þ2
1þ x2y2

�
; (3.1)

Fð�Þ ¼ X4
i¼0

fi�
i; A ¼ eyðdt� x2d’Þ

1þ x2y2
;

� ¼ �
ffiffiffiffi
6

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

f0 þ f4

s
:

(3.2)

Constant conformally coupled scalar black hole metrics are
not a novelty; some static solutions were already discussed
in [24,25] for a slightly different theory including the
cosmological constant (and an extra conformal �4 poten-
tial term in the action, usually associated with the presence
of the cosmological constant).
Even though the scalar field is constant, it contributes

nontrivially to the equations of motion (2.2). In fact, for a
constant scalar field �0, from (2.2) we have�

1� �

6
�2

0

�
G�� ¼ �TðEMÞ

�� : (3.3)

Hence (for �0 � � ffiffiffiffiffiffiffiffiffi
6=�

p
) the presence of a constant

conformally coupled scalar field has the property of rescal-
ing the effective Newton coupling constant, thus rescaling
the relative values of the electromagnetic charges. We will
see hereinafter how the possibility of an arbitrary rescaling
of the coupling constant, depending on the strength of the
scalar field, has nontrivial physical effects. The basic
difference with respect to the case with the cosmological
constant [24,25] is that the value of the scalar field is
not constrained by the coupling constants, as can be seen
from (B6).
When the electromagnetic charges are vanishing, a new

branch of solutions is allowed with �0 ¼ � ffiffiffiffiffiffiffiffiffi
6=�

p
, whose

supporting spacetimes do not have to be Einstein manifold,
but they have to obey the weaker condition coming from
the scalar field equation (2.4): they simply are Ricci flat.
It is possible to smoothly join these two branches in a
unique family of metrics. To better clarify this point
let us consider a specialization of (3.1) without the
Newman-Unti-Tamburino term and in spherical coordi-
nates (r ¼ �1=Ay, cos� ¼ x),

ds2 ¼
½r4GðrÞ

�2 ðdtþ asin 2�d’Þ2 � �2

r4GðrÞ dr
2 þ �2sin 2�

Gð�Þ d�2 þ Gð�Þ
�2 ðadtþ ðr2 þ a2Þd’Þ2�

ð1þ Ar cos�Þ2 ; (3.4)

where

Gð�Þ ¼ ð1� �2Þð1þ rþA�Þð1þ r�A�Þ;
� ¼ fy ¼ �1=Ar; x ¼ cos�g; (3.5)

A ¼ �erdt� aresin 2�d’

r2 þ a2cos 2�
; (3.6)

� ¼ �
ffiffiffiffi
6

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

sþ e2

r
; (3.7)

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2 � e2 � s

p
; (3.8)

� ¼ r2 þ a2cos 2�; (3.9)

r� points the positions of the inner and outer horizons,
while the accelerating horizon is located at �2 ¼ 1, that is,
rA ¼ �A�1. This metric clearly describes an accelerating
Kerr-Newman black hole dressed with a conformally
coupled scalar hair, which is represented by the continuous
parameter s. In fact, when the scalar parameter s goes to
zero, the standard accelerating Kerr-Newman black hole
[15] is recovered. All subhierarchy of black holes until the
Schwarzschild can be obtained by switching on and off
the parameters (A, a, m, e, s). In this sense the hair can be
classified as primary hair, contrary to the BBMB case.
No hair theorems [26] are avoided because the scalar

field is often assumed to vanish asymptotically or because

9For some values of the parameters fi there exist a matter
configuration such that T�� ¼ 0, although the fields A� and �
are not null, so the matter does not have a backreaction with the
background spacetime.
10In the notation of [23] the mass term is related to odd powers
of the Fð�Þ function.
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it is not possible to connect this family of black holes with
the Einstein frame by a conformal transformation, in the
case of null electromagnetic charge.

The spacetime (3.4)–(3.9) admits a further straightfor-
ward generalization, in the case of the cosmological
constant (see Appendix B).

A. Scalar hairy Reissner-Nordstrom black hole

To have a clearer picture of the spacetime described by
the metric (3.4), let us consider a simpler case. When the
rotation a and acceleration A parameters are null in (3.4),
we remain with the static Reissner-Nordstrom (RN) black
hole enriched by the scalar hair s,

ds2 ¼�
�
1� 2m

r
þ e2 þ s

r2

�
dt2 þ

�
1� 2m

r
þ e2 þ s

r2

��1
dr2

þ r2d�2 þ r2sin 2�d’2: (3.10)

The scalar field remains the same as Eq. (3.7) while the
electromagnetic potential reduces to the standard RN one:
At ¼ �e=r. The total energy momentum tensor

T�
� ¼ e2 þ s

r4
diagð�1;�1; 1; 1Þ (3.11)

satisfies both dominant and strong energy conditions when-
ever s � �e2. Therefore, without violating these overall
energy conditions,11 it is even possible to erase the con-
tribution of the electromagnetic field by means of the
constant scalar field, just setting s ¼ �e2, hence recover-
ing the Schwarzschild spacetime, but in this borderline
case the scalar field becomes divergent.

Following the Ernst magnetizing method for the accel-
erating version of this metric, it is possible to remove the
conical singularity without constraining any of the physical
parameters e, B,m, A, because of the presence of the scalar
parameter s. Furthermore, this accelerating solution has
not the curvature singularity of the BBMB C metric, and
thus it is suitable to describe pair production of a scalar
hairy black hole in the presence of an external magnetic
field; these points are addressed in Sec. III C.

It is evident by the similarities to the RN metric that the
spacetime (3.10) has the same causal structure of the static
charged black hole. The only difference now is that the
position of the horizons is shifted by the presence of the
scalar field constant parameter s, as can be seen from (3.8),
setting the rotation parameter a ¼ 0. The electric charge
remains the same as that of the RN spacetime,

Q ¼ 1

4�

Z
	F ¼ e: (3.12)

On the other hand, from a thermodynamical point of view,
there are some dissimilarities with respect to the RN black

hole, for instance, about local stability; this point is
addressed in Sec. III B.

B. Thermodynamics of constant scalar hairy black hole

To analyze the thermodynamics of the charged black
hole with a conformally coupled constant scalar field (3.10)
we will use the Euclidean method, as done in [27]. The
partition function for a thermodynamical ensemble is iden-
tified, around the Euclidean continuation of the classical
solution, with the Euclidean path integral in the saddle
point approximation [28]. Thus, first of all, we consider a
minisuperspace of static Euclidean metrics given by

ds2 ¼ NðrÞ2fðrÞ2d�2 þ fðrÞ�2dr2 þ r2d�2; (3.13)

where the imaginary time �, obtained by a wick rotation
t ! i�, has period , the inverse of the temperature T. It is
obtained requiring regularity [no conical singularities in
the ð�; rÞ section] on the horizon

T ¼ 1


¼ NðrÞ

4�

d

dr
fðrÞ2jrþ ¼ rþ � r�

4�r2þ
: (3.14)

If the scalar field �ðrÞ and the electromagnetic
potential A�ðrÞ are considered to depend at most on the

radial coordinate r, then the reduced Euclidean action I
becomes12

I ¼
Z 1

rþ

�
NðrÞH ðrÞþAt

�
r2

NðrÞA
0
tðrÞ

�0�
drþB;

(3.15)

whereB is the surface term and the prime denotes the d=dr
derivative. The reduced Hamiltonian is given by

H ¼ r2

2G

�
�

6

�
f2ð�0Þ2 ���0

�
ðf2Þ0 þ 4f2

r

�
� 2�f2�00

�

þ
�
1� ��2

6

��ðf2Þ0
r

� 1� f2

r2

�
þG

ðA0
tÞ2
N

�
:

In the grand canonical ensemble the variation of the
action is implemented keeping the temperature fixed and
the ‘‘injection voltage energy’’ � ¼ Atð1Þ � AtðrþÞ. For
the Euclidean solution under consideration � / const,
N ¼ 1, H ¼ 0, and ðr2A0

tÞ0 ¼ 0, so the variation of the
action evaluated on the classical solution is just given by
the variation of the boundary term �B.

�B ¼ � 

2G

�
r

�
1� �

6
�2

�
�f2 þ 2GAt�ðr2A0

tÞ
�1
rþ

(3.16)

¼
�

e2

e2 þ s

�
1

G

�
�m� 4�rþ�rþ

2

�
� ��e; (3.17)

11Note that, when there is no electromagnetic field, the strong
energy condition for the scalar field requires the positivity of s.

12Note that there is a sign discrepancy with respect to [27]
because there the base manifold is hyperbolic.
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where the following boundary variations of the fields at
infinity and at the horizon rþ were used:

�ðr2A0
tÞj1 ¼ �ðr2A0

tÞjrþ ¼ �e; (3.18)

��j1 ¼ ��jrþ ; (3.19)

�f2j1 ¼ � 2

r
�mþOðr�2Þ; (3.20)

�f2jrþ ¼ �ðf2Þ0jrþ : (3.21)

Then defining an ‘‘effective Newton constant’’ ~G as ~G�1 ¼
G�1e2=ðe2 þ sÞ and integrating (3.17) we obtain the finite
Euclidean action, up to an arbitrary additive constant,

I ¼ Bð1Þ �BðrþÞ ¼ 
~G
m� Aþ

4 ~G
� �e: (3.22)

In the grand canonical ensemble the Euclidean action is
related (in the unit where Planck and Boltzmann constants
are ℏ ¼ �B ¼ 1) to the free energy by F ¼ I . Thus the
mass M, electric charge Q, and entropy S are obtained by
the usual thermodynamical relations,

M ¼ @I � �1�@�I ¼ m
~G
; (3.23)

Q ¼ ��1@�I ¼ e; (3.24)

S ¼ @I � I ¼ Aþ
4 ~G

: (3.25)

The first law of black hole thermodynamics is satisfied

using only the effective Newton constant ~G; this is a typical
feature of nonminimal coupling of the scalar field [27]. In
the range of values of s respecting the dominant and strong
energy conditions the entropy remains positive.

While, when the scalar field is vanishing, for s ¼ 0, the
standard results for the Reissner-Nordstrom black hole are
retrieved. It is interesting to observe that for the uncharged
case (e ¼ 0) the total mass M and the entropy S become
void. Thus the scalar hair can be considered to be primary
since it does not depend on the presence of the electric
charge; anyway some physical spacetime properties are
better behaved for e � 0.

A natural question is now whether the charged constant
hairy black hole (3.10) may decay into the Reissner-
Nordstrom one, which is also a solution of the same action
principle with a null scalar field, for a fixed temperature
and electromagnetic potential injection. Evaluating the
Euclidean action, for fixed  and �, for both RN and
(3.10) spacetimes there is not a stable thermodynamical
favored configuration, but it is possible to find numerically
a critical point beyond which phase transitions can occur,
for a certain range of parameters, that do not violate the
strong and dominant energy conditions.

The local thermal stability with respect to the tempera-
ture fluctuation or electromagnetic fluctuation can be
inferred by the analysis of the heat capacity at constant
electric potential C� and electrical permittivity at constant
temperature �T , respectively, as done for the grand canoni-
cal ensemble in [29]

C� :¼ T

�
@S

@T

�
�
¼ T

�
@T

@rþ

��1

�

�
@S

@rþ

�
�

¼ � 2�rþ
~G

r2þ � e2 � s

r2þ � e2 � 3s

e2 þ 2s

e2 þ s
: (3.26)

The local thermodynamical stability is given by the pos-
itivity of the heat capacity; thus according to (3.26) and
(3.8) in this case the presence of the scalar field improves
the local stability since there is a parametric window for
which C� � 0,

r2þ þ e2

3
� s � m2 � e2:

The electrical permittivity is defined as

�T :¼
�
@Q

@�

�
T
¼

�
@�

@rþ

��1

T

�
@Q

@rþ

�
T
: (3.27)

But since the charge Q has dependence only on terms
of the potential at the constant horizon, we have to
decompose each factor in the previous equation as�

@Q

@rþ

�
T
¼ �

�
@T

@Q

��1

rþ

�
@T

@rþ

�
Q
; (3.28)

�
@�

@rþ

�
T
¼ �

�
@T

@�

��1

rþ

�
@T

@rþ

�
�
: (3.29)

So electrical permittivity (3.27) becomes

�T ¼
�
@�

@e

��1

rþ

�
@T

@rþ

��1

�

�
@T

@rþ

�
Q
¼ rþ

r2þ � 3e2 � 3s

r2þ � e2 � 3s
:

(3.30)

Therefore even from just a naive13 thermodynamical study,
we can see how the presence of the scalar field affects the
local thermal stability of the solution (3.10) with respect to
the Reissner-Nordstrom black hole for s ¼ 0.
In the next section we will present another application

for which the presence of the scalar parameter s has
nontrivial physical consequences.

C. Magnetized accelerating constant scalar hairy
charged black hole pair

It could be of some interest to consider the magnetized
version of the constant hairy charged and accelerating
black hole, described by the metric (3.4), fixing, for

13Other thermodynamical settings may be considered, even
including an extra chemical potential for the scalar field.
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simplicity, the rotation parameter a ¼ 0. This is because it
possesses an extra free scalar parameter s, with respect to
the not hairy one (s ¼ 0), which allows us to achieve a
regular equilibrium solution (with no conical singularity)
without imposing any constraints on the mass m, charge g,
external magnetic field B, and acceleration A parameters,
as in the hairless case.

To keep the system as simple as possible we make use of
the four-dimensional electromagnetic duality, in the metric
(3.4) with a ¼ 0, to obtain, as a seed, an intrinsic magneti-
cally charged black hole instead of an electrically charged
one,

ds2 ¼ 1

ð1þ Ar cos �Þ2
�
�gðrÞdt2 � dr2

gðrÞ þ
r2d�2

pð�Þ
þ r2pð�Þsin 2�d’2

�
; (3.31)

where

gðrÞ ¼ ð1� A2r2Þ
�
1� 2m

r
þ g2 þ s

r2

�
;

� ¼
ffiffiffiffi
6

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

sþ g2

s
; (3.32)

pð�Þ ¼ 1þ 2mA cos �þ A2cos 2�ðg2 þ sÞ;
A’ ¼ �g cos�:

(3.33)

This simplifies the discussion, because the solution after
magnetization remains static. Otherwise, to guarantee stat-
icity, we might have considered alternatively the intrinsic
electric charge, but then, in that case, we should have
embedded it in an external electric field. From a mathe-
matical point of view this feature is portrayed by the fact
that the Ernst potentials remain real (in the alternative
case of an intrinsic electrically charged black hole in an
external magnetic field, the electromagnetic Ernst potential
� remains purely imaginary; conversely the rotation is
generated by fully complex potentials).

Using the results of [4], it is possible to write the
Harrison magnetizing transformation for this class of static
magnetically charged spacetimes, directly in the Jordan
frame,

f ¼ f0
�2

; � ¼ �0 þ B
2 ½ð1� k

6�
2Þf0 ��2

0�
�

; (3.34)

where �¼1�B�0�B2

4

��
1�k

6
�2

�
f0��2

0

�
: (3.35)

These are a generalization of (2.18) and (2.21) in the case
of nonvanishing intrinsic magnetic charge g, simply
expressed in terms of f and �.

From the comparison with the Weyl metric (2.7) we can
identify the needed seed functions

f0 ¼ � pð�Þr2sin 2�

ð1þ Ar cos �Þ2 and �0 ¼ �g cos�: (3.36)

Then after the action of the Harrison transform, according
to (3.34), we get the magnetized ones. Plugging these latter
ones again into the Weyl metric (2.7), we obtain the
magnetized version of (3.31),

ds2 ¼ 1

ð1þ Ar cos �Þ2
�
�2

�
�gðrÞdt2 � dr2

gðrÞ þ
r2d�2

pð�Þ
�

þ r2pð�Þsin 2�

�2
d’2

�
; (3.37)

where the functions gðrÞ, pð�Þ, and � remain the same as
the nonmagnetized solution, while the electromagnetic
potential

A’ ¼ �
g cos�þ B

2 ½ g2

g2þs
pð�Þr2sin 2�
ð1þAr cos�Þ2 þ g2cos 2��

1þ Bg cos�þ B2

4 ½ g2

g2þs
pð�Þr2sin 2�
ð1þAr cos�Þ2 þ g2cos 2��

;

which supports (3.37), includes both the intrinsic magnetic
charge of the black hole and an external Melvin-like mag-
netic field. The metric (3.37) describes a pair of accelerat-
ing magnetically charged black holes in the presence of an
external magnetic field and a conformally coupled scalar
field. When the scalar field is null, that is s ¼ 0, we recover
the Ernst solution [13].
As usual, accelerating metrics (3.37) possess a couple of

conical singularities on the poles, one (let us say around
� ¼ 0) is always easy to remove, following the same
analysis of Sec. II A, by rescaling the angular coordinate
’, such that

’ ! 
 ¼ 1þ 2mAþ A2ðg2 þ sÞ
ð1þ Bg

2 Þ4
’; (3.38)

while the second singularity can be removed thanks to a
constraint relation between the physical parameters m, g,
B, A, s. An interesting feature of the conformally coupled
constant scalar field solution is that it introduces a new
parameter s with respect to the Reissner-Nordstrom space-
time, which, when expressed in terms of mass, accelera-
tion, and intrinsic magnetic charge, allows us to remove the
second conical singularity for � ¼ �, without fine-tuning
these latter charges as in the Ernst solution [13],

s ¼ mð1þ 2
3g

2B2 þ g4B4Þ
AðgBþ B3g3

4 Þ
� 1

A2
� g2: (3.39)

Therefore, even though the effect of the constant scalar
field is not dynamical and it reduces just to an effective
rescaling of the Newton constant, it opens to the possibility
of modeling less constrained magnetized charged black
holes with respect to the null scalar field case. This feature
has the effect that more general black holes in the
pair creation process (in the spirit of [18,19]) can be
admissible in a strong magnetic background, and also the
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pair creation rate14 is affected by the extra parameter s.
This is so because the pair creation probability depends on
the position of the roots of the gðrÞ, which is modified with
respect to RN spacetime whenever s � 0.

Another possibility to regularize the spacetime (3.31),
without resorting to an external electromagnetic field, con-
sists in directly fine-tuning the constant scalar field and
rescaling the azimuthal coordinate in order to cancel the
angular singularity of the C metric. But this can be done in
a slightly different, not equivalent, radial coordinate, the
one used for the C metric before [16].

IV. COMMENTS AND CONCLUSIONS

In this paper the Ernst solution generating technique, in
the context of Einstein-Maxwell gravity conformally
coupled to a scalar field, is applied to a C-metric solution,
which describes a couple of accelerating BBMB black
holes. Through a Harrison transformation we manage to
embed the BBMB Cmetric into an external magnetic field.
The resulting solution shows more regularity than the no
accelerating one, but still it presents a curvature singularity
on a pole of the event horizon, due to a divergence of
the scalar field at that point. Thanks to this regularity
enhancement we are able to build a fully regular black
hole metric by a cut and paste procedure. The price to pay
was the introduction of extra matter on the thin shell gluing
surface.

Therefore a better behaved seed solution, which is able
to overcome several disadvantages of the BBMB space-
time, is considered for the theory under consideration. The
requirements of a proper mass term and rotation constrain
the scalar field to be constant, at least in the realm of the
Plebanski-Demianski spacetimes.15 In that case it is pos-
sible to write a regular black hole family of solutions
comprising the Kerr black hole and featuring acceleration,
mass, rotation, intrinsic electromagnetic charge, and an
extra scalar parameter. The thermodynamical properties
of a simple black hole of this family (without acceleration
and rotation) are studied and compared to the vanishing
scalar field case, the Reissner-Nordstrom black hole. By a
Harrison transformation we were able to embed some
black holes of this family in an external magnetic field. It
is interesting to note that the presence of the scalar field
introduces an extra parameter s, which can be tuned
(in terms of the other physical parameters) to cancel the

string, encoded in the conical singularity, that is pulling the
two black holes. This is the main difference compared to
the case without the scalar field s ¼ 0. A completely
regular balanced solution can be obtained without con-
straining between themselves the mass, intrinsic charge,
acceleration, and external magnetic strength. Possibly this
is an astrophysically observable feature for the black hole
family considered. Of course, another possible observable
property is the correction to the standard Newton law due
to the presence of the scalar field, which, for example, can
be tested in galaxies’ rotation curves. An upper limit con-
straint to the value of the scalar parameter s can also be
found from solar system physics.
It may also be interesting, for a future perspective,

to study whether this constant scalar field gives some
contribution on a cosmological level, in particular concern-
ing the open problems of the amount of dark energy and
dark matter.
Eventually people interested in higher dimensions may

find the four-dimensional Cmetrics presented in this paper
of some utility in building novel, topological nontrivial
solutions in five dimensions.
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APPENDIX A: THIN SHELL REGULARIZATION:
MAGNETIZED AND ACCELERATING BBMB

BLACK HOLE ON THE BRANE

It is possible to regularize at the same time both the
conical singularity and the curvature singularity of the
metric (2.22) localized at � ¼ �. We will take advantage
of the same procedure used in [17] to remove the conical
singularity from the uncharged C metric. The basic idea is
to consider the regular half part of the solution (2.22), that
is the one with 0 � � � �=2, to cut away the resting part
for �=2 � � � � and then gluing it into another copy of
the regular one. While the continuity of the metric is
assured, the price to pay is the introduction of an extra

energy momentum tensor term T�
�� ¼ �ð�2 � �ÞSijei�ej�,

localized on the �� ¼ �=2 surface �, to regularize the
discontinuity of the first fundamental form on the pasting
surface � ¼ �=2. Generalized junction conditions, for the
theory we are considering, were discussed in [30]; the thin
shell of extra matter content can be quantified as follows.
First let us define hij, the metric on the three-surface

characterized by constant �, and the normalized outward
orthogonal vector to the three-surface

14The pair creation rate is obtained (see [18,19] for details) as
the difference of the action evaluated on the lukewarm instanton
and the action evaluated on the Melvin magnetic background.
The lukewarm instanton can be produced as the Wick rotated
t ! i�metric (3.37) regularized from conical singularities, in the
Euclidean time, such that the temperature of the event and
acceleration horizons coincides.
15Therefore an eventual stationary generalization of the BBMB
black hole has to be searched for outside the Plebanski-
Demianski ansatz.
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n� ¼
2
40; 0;

ffiffiffiffiffiffiffiffiffiffi
Pð�Þp ð1þ Ar cos �Þ

r�ðr; �Þ ; 0

3
5: (A1)

So the extrinsic curvature on the three-surface is given by

Kij ¼ rinj ¼
ffiffiffiffiffiffiffiffiffi
gð�Þp ð1þ Ar cos�Þ

2r�ðr; �Þ
d

d�
hij: (A2)

The induced surface stress energy tensor is given by

SðSÞij ¼ � 1

8�G

�
½Kij� ��þ���

�
1� �

6
�2

�
� hij½K� ��þ���

�
1� �

18
�2

��

¼ Ahij

2�G�ðr; ��Þ

1� mð1þAmÞ
2rð1þ2AmÞ 0 0

0 1� mð1þAmÞ
2rð1þ2AmÞ 0

0 0 1þ @� log�ðr;�Þj ��
Ar

2
66664

3
77775

þ A�2hij

36�G�ðr; ��Þ

@� log�ðr;�Þj ��
Ar þ mð1þAmÞ

2rð1þ2AmÞ 0 0

0 @� log�ðr;�Þj ��
Ar þ mð1þAmÞ

2rð1þ2AmÞ 0

0 0 @� log�ðr;�Þj ��
�2Ar � mð1þAmÞ

rð1þ2AmÞ

2
66664

3
77775: (A3)

Eventually also the electromagnetic field contribution may
be taken into account, in the usual way,

SðEMÞ
ij ¼ lim

����¼�!0

Z þ�

��
TðEMÞ
ij dn:

APPENDIX B: ACCELERATING, ROTATING,
CHARGED CONSTANT HAIRY BLACK HOLE

WITH COSMOLOGICAL CONSTANT

A further generalization of the metric (3.4), describing
an accelerating, rotating, and intrinsically charged black
hole with a conformally coupled, constant scalar hair can
be found when we are in the presence of two additional
terms in the action due to cosmological constant 	, and
also due to an extra scalar conformally coupled potential
��4. We present it here, but because the Harrison trans-
formation in the presence of 	 is not known at the moment,

it will not be possible to embed it in an external electro-
magnetic field. The equations of motion are modified with
respect to the null cosmological ones (2.2); in fact, the

scalar energy momentum tensor TðSÞ
�� and scalar equation

became

TðSÞ
�� ¼ @��@��� 1

2
g��@��@��

þ 1

6
½g��h�r�r� þG����2 � �g���

4; (B1)

h� ¼ 1

6
R�þ 4��3: (B2)

The electromagnetic equations remain the same as (2.6),
so the potential A� also remains unchanged as in (3.7)

(and also �, �), while the metric in the presence of the
cosmological constant becomes

ds2 ¼
h
� FðrÞ

�2 ðdtþ asin 2�d’Þ2 þ �2

FðrÞ dr
2 þ �2

Gð�Þ d�
2 þ Gð�Þ

�2 sin 2�ðadtþ ðr2 þ a2Þd’Þ2
i

ð1þ Ar cos�Þ2 ; (B3)

where

FðrÞ ¼ ð1� A2r2Þ
�
r2 � 2mrþ e2 þ sþ a2

�
1þ 	

3A2

��
� 	

3

�
r4 þ a2

A2

�
; (B4)

Gð�Þ ¼ 1þ 2Am cos �þ A2cos 2�

�
e2 þ sþ a2

�
1þ 	

3A2

��
(B5)

� ¼ ��	

36

sþ e2

s
: (B6)
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The causal structure is the same as the standard accel-
erating, charged, and rotating C metric (which can be
obtained in the smooth s ! 0 limit). The basic difference
with respect to this latter case, apart from the fact that the
horizons are shifted in

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � e2 � s� a2

�
1þ 	

2A2

�s
; (B7)

is that the scalar hair parameter s allows one to set the
strength of the scalar field and thus to arbitrarily tune the
value of the coupling constants. As we have seen in
Sec. III C, this feature can have relevant astrophysical con-
sequences, at least in the balance between the string and
external magnetic field strength of the magnetizedCmetric.
The vanishing cosmological constant limit is well defined
and gives the solution (3.4)–(3.9).
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