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In the context of the Randall-Sundrum braneworld, the minimal geometric deformation approach

is used to generate an analytic interior solution to four-dimensional effective Einstein field equations

for a spherically symmetric compact distribution. This solution represents the braneworld version

of the well-known Tolman IV solution in general relativity. By using this analytic solution, an

exhaustive analysis of the braneworld effects on realistic stellar interiors is developed, finding strong

evidence in favor of the hypothesis that compactness is reduced due to bulk effects on stellar

configurations.
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I. INTRODUCTION

In recent years, there has been great interest in finding
alternative theories to general relativity (GR) [1,2], mainly
due to the inability of the latter to explain satisfactorily
some fundamental issues associated with the gravitational
interaction, such as the dark matter problem, the dark
energy problem, as well as the impossibility to reconcile
GR with the standard model of particle physics. Extra-
dimensional theories, which are mostly inspired by string
or M theory, are among the theories that lead to gravity
beyond GR. One of these extra-dimensional theories is the
braneworld (BW) proposed by Randall and Sundrum (RS)
[3] which has been largely studied and which explains one
of the fundamental problems of physics, i.e., the hierarchy
problem (see also the Arkani-Hamed–Dimopoulos–Dvali
model [4,5]). Because of this, its study and impact on GR
are fully justified and are of great importance [6].

Even though we have a covariant approach that is useful
to study many fundamental aspects of the theory of RS BW
[7], we are still far from fully understanding its impact
on gravity, mainly due to the lack of the complete five-
dimensional solution (bulk plus brane), which could help
to explain certain key issues that remain unresolved, such
as the existence of black holes in RS BW [8–11] and
the bulk effects on stellar configurations [12]. Since the
complete five-dimensional solution remains unknown so
far, finding exact solutions to four-dimensional effective
Einstein field equations in the brane is a convenient way to
clarify some aspects of the five-dimensional geometry,
essentially because we could use Campbell-Magaard
theorems [13,14] to extend the brane solution through the
bulk, locally at least. However, GR during its almost
century of history has taught us that to find a physically
acceptable exact solution of Einstein’s field equations is an

extremely difficult task [15]. This mainly due to the com-
plexity of the field equations. If we deal with internal
stellar solutions [16], the task is much more complicated,
and, in fact, just a few internal solutions are known [17].
On the other hand, in the context of BW, two important
features, completely new and different from GR, greatly
complicate the searching for solutions to four-dimensional
Einstein field equations in the astrophysical scenario:
(i) The system remains indefinite due to nonlocal correc-
tions from the five-dimensional bulk. (ii) The presence
of nonlinear terms in material fields due to high-energy
corrections [6,7]. Because of the latter, to find exact and
physically acceptable stellar interior solutions to effective
four-dimensional Einstein field equations seems an impos-
sible task to carry out. However, these two problems can be
solved simultaneously on the brane when a GR solution is
considered by using the minimal geometric deformation
principle (MGD) [18]. Indeed, by using this approach, an
exact and physically acceptable solution on the brane was
found in Ref. [19]. The MGD has allowed one, among
other things, to generate physically acceptable interior
solutions for stellar systems [20], to solve the tidally
charged exterior solution found in Ref. [21] in terms of
the Arnowitt-Deser-Misner mass and to study (micro)black
hole solutions [22,23], as well as to help to elucidate the
role of exterior Weyl stresses from bulk gravitons on
compact stellar distributions [24] and the behavior of black
string models with variable brane tension [25].
In this paper, an analytical solution to Einstein field

equations for a nonuniform stellar structure is found on
the brane and used to elucidate the effects of bulk gravitons
on compact stellar structures. The MGD approach will be
used to modify the perfect fluid solution represented by a
well-known general relativistic solution, namely, the
Tolman IV solution [26], generating thus its braneworld
version in an exact analytical form. The reason to inves-
tigate the Tolman IV solution in the braneworld context by
using the MGD approach is quite obvious: Among hun-
dreds of known exact solutions in GR, the Tolman IV
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solution is one of few with physical meaning [27], and this
physical relevance is naturally inherited by its braneworld
version.

This paper is organized as follows. In Sec. II, the
Einstein field equations in the brane for a spherically
symmetric and static distribution of density � and pressure
p are recalled. In Sec. III, the MGD approach is discussed,
as well as the general matching conditions between an
interior deformed metric and the exterior one associated
to a Weyl fluid with dark pressure Pþ and dark radiation
Uþ. In Sec. IV, an analytical stellar interior solution to the
effective four-dimensional Einstein field equations is gen-
erated by using the well-known Tolman IV GR solution
through the MGD approach. In Sec. V, the far-field correc-
tion to the Newtonian potential in the BW is used
to construct an exterior geometry associated with this
potential. In this approximation, the bulk effects on stellar
configurations are elucidated. In the last section, the con-
clusions are presented.

II. GENERAL FRAMEWORK

In the context of the braneworld, the five-dimensional
gravity produces a modification on Einstein’s field equa-
tions in our (3þ 1)-dimensional observable universe, the
so-called brane, which effectively can bewritten as follows:

G�� ¼ �k2TT
�� ��g��; (2.1)

where k2 ¼ 8�GN and � is the cosmological constant on
the brane. These modifications can be seen through the
effective energy-momentum tensor TT

��, which has new

terms carrying five-dimensional consequences onto the
brane:

T�� ! T��
T ¼ T�� þ 6

�
S�� þ 1

8�
E�� þ 4

�
F ��; (2.2)

where � is the brane tension, with S�� and E�� the high-

energy and nonlocal (from the point of view of a brane
observer) corrections, respectively, and F �� a term which

depends on all stresses in the bulk but the cosmological
constant. In this paper, only the cosmological constant will
be considered in the bulk; hence, F �� ¼ 0, which implies

there will be no exchange of energy between the bulk and
the brane, and therefore r�T�� ¼ 0. The high-energy S��

and Kaluza-Klein E�� corrections are given by

S�� ¼ TT��

12
� T��T

�
�

4
þ g��

24
½3T��T

�� � T2�; (2.3)

where T ¼ T�
�, and

k2E�� ¼ 6

�

�
U

�
u�u�þ 1

3
h��

�
þP��þQð�u�Þ

�
; (2.4)

withU,P��, andQ� the bulkWeyl scalar, the anisotropic

stress, and energy flux, respectively, and u� the quadrive-
locity with h�� ¼ g�� � u�u� the projection tensor. In this

paper, we will consider spherically symmetric static distri-
butions; hence, Q� ¼ 0 and

P�� ¼ P
�
r�r� þ 1

3
h��

�
; (2.5)

where r� is a unit radial vector. Furthermore, the line

element will be given by Schwarzschild-like coordinates

ds2 ¼ e�ðrÞdt2 � e�ðrÞdr2 � r2ðd	2 þ sin 2	d
2Þ; (2.6)

where � ¼ �ðrÞ and � ¼ �ðrÞ are functions of the areal
radius r, which ranges from r ¼ 0 (the star’s center) to
r ¼ R (the star’s surface). In this paper, we will be focused
on BW consequences on perfect fluids; hence, the energy-
momentum tensor T�� in Eq. (2.2) corresponds to a perfect

fluid, given by

T�� ¼ ð�þ pÞu�u� � pg��; (2.7)

where u� ¼ e��=2��
0 is the fluid four-velocity field in

the reference frame where the metric takes the form in
Eq. (2.6) (for early works on astrophysics in the braneworld
context, see, for instance, Refs. [28–32]).
The metric (2.6) must satisfy the effective 4D Einstein

field equations (2.1), which, for � ¼ 0, explicitly read
(for details, see Ref. [23])

k2
�
�þ 1

�

�
�2

2
þ 6

k4
U

��
¼ 1

r2
� e��

�
1

r2
� �0

r

�
; (2.8)

k2
�
pþ 1

�

�
�2

2
þ �pþ 2

k4
U

�
þ 4

k4
P
�

�

¼ � 1

r2
þ e��

�
1

r2
þ �0

r

�
; (2.9)

k2
�
pþ 1

�

�
�2

2
þ �pþ 2

k4
U

�
� 2

k4
P
�

�

¼ 1

4
e��

�
2�00 þ �02 � �0�0 þ 2

�0 � �0

r

�
: (2.10)

Moreover,

p0 ¼ ��0

2
ð�þ pÞ; (2.11)

where f0 � @rf. We then note that four-dimensional
GR equations are formally recovered for ��1 ! 0, and
the conservation equation (2.11) then becomes a linear
combination of Eqs. (2.8), (2.9), and (2.10).
The Israel-Darmois matching conditions [33] at the

stellar surface � of radius r ¼ R give

½G��r
��� ¼ 0; (2.12)

where ½f�� � fðr ! RþÞ � fðr ! R�Þ. Using Eq. (2.12)
and the general field equations (2.1), we find

½TT
��r

��� ¼ 0; (2.13)
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which in our case leads to�
pþ 1

�

�
�2

2
þ �pþ 2

k4
U

�
þ 4

k4
P
�

�
�
¼ 0: (2.14)

Since we assume the distribution is surrounded by a
Weyl fluid Uþ, Pþ, p ¼ � ¼ 0 for r > R, this matching
condition takes the final form

pR þ 1

�

�
�2
R

2
þ �RpR þ 2

k4
U�

R

�
þ 4

k4
P�

R

�

¼ 2

k4
Uþ

R

�
þ 4

k4
Pþ

R

�
; (2.15)

where f�R � fðr ! R�Þ, with pR � p�
R and �R � ��

R .
Equation (2.15) gives a general matching condition

for any static spherical BW star [12,34], i.e., the second
fundamental form. In the limit ��1 ! 0, we obtain the
well-known GR matching condition pR ¼ 0 at the star
surface. In the particular case of the Schwarzschild exterior,
Uþ ¼ Pþ ¼ 0, the matching condition (2.15) becomes

pR þ 1

�

�
�2
R

2
þ �RpR þ 2

k4
U�

R

�
þ 4

k4
P�

R

�
¼ 0: (2.16)

This clearly shows that, because of the presence ofU�
R and

P�
R , the matching conditions do not have a unique solution

in the BW.

III. STAR INTERIOR AND GEOMETRIC
DEFORMATION

Two important aspects regarding the system of Eqs. (2.8),
(2.9), (2.10), and (2.11) are worth being highlighted. First
of all, it represents an indefinite system of equations
in the brane, an open problem for which the solution
requires more information of the bulk geometry and a

better understanding of how our four-dimensional space-
time is embedded in the bulk [8–10,35,36]. Second, to find
exact and physically acceptable analytic functions
ð�; p; �; �;U;P Þ being a solution of the system (2.8),
(2.9), (2.10), and (2.11) seems an impossible task. Even
though the second point is quite obvious, we will see that it
is possible to build an exact and physically acceptable
solution by using the MGD approach [18]. In order to
accomplish this, the first step is to rewrite field equations
(2.8), (2.9), and (2.10) as follows:

e�� ¼ 1� k2

r

Z r

0
x2
�
�þ 1

�

�
�2

2
þ 6

k4
U

��
dx; (3.1)

1

k2
P
�

¼ 1

6
ðG1

1 �G2
2Þ; (3.2)

6

k4
U
�

¼ � 3

�

�
�2

2
þ �p

�
þ 1

k2
ð2G2

2 þG1
1Þ � 3p; (3.3)

with

G1
1 ¼ � 1

r2
þ e��

�
1

r2
þ �0

r

�
(3.4)

and

G2
2 ¼

1

4
e��

�
2�00 þ �02 � �0�0 þ 2

�0 � �0

r

�
: (3.5)

Now, by using Eq. (3.3) in Eq. (3.1) an integro-
differential equation for the function � ¼ �ðrÞ is found,
something completely different from the GR case, and a
direct consequence of the nonlocality of the BWequations.
The only general solution known for this equation is given
by [18]

e�� ¼ 1� k2

r

Z r

0
x2�dx

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
GR solution

þ e�I
Z r

0

eI

�0
2 þ 2

x

�
Hðp; �; �Þ þ k2

�
ð�2 þ 3�pÞ

�
dxþ �ð�Þe�I

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Geometric deformation

� �ðrÞ þ fðrÞ; (3.6)

where

Hðp; �; �Þ � 3k2p�
�
�0

�
�0

2
þ 1

r

�
þ�

�
�00 þ �02

2
þ 2�0

r
þ 1

r2

�
� 1

r2

�
(3.7)

and

I �
Z ð�00 þ �02

2 þ 2�0
r þ 2

r2
Þ

ð�0
2 þ 2

rÞ
dr; (3.8)

with �ð�Þ a function of the brane tension � which must be
zero in the GR limit. In the case of interior solutions, the
condition �ð�Þ ¼ 0 has to be imposed to avoid singular
solutions at the center r ¼ 0. Note that the function

�ðrÞ � 1� k2

r

Z r

0
x2�dx ¼ 1� 2mðrÞ

r
(3.9)

contains the usual GR mass function m, whereas the
function Hðp; �; �Þ encodes anisotropic effects due to
bulk gravity consequences on p, �, and �.
A crucial observation is now that, when a given (spheri-

cally symmetric) perfect fluid solution in GR is considered
as a candidate solution for the BW system of Eqs. (2.8),
(2.9), (2.10), and (2.11) [or, equivalently, Eq. (2.11) along
with Eqs. (3.1), (3.2), and (3.3)], one obtains
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Hðp; �; �Þ ¼ 0; (3.10)

therefore, every (spherically symmetric) perfect fluid
solution in GR will produce a minimal deformation on
the radial metric component (3.6), given by

f�ðrÞ ¼ 2k2

�
e�IðrÞ Z r

0

xeIðxÞ

x�0 þ 4
ð�2 þ 3�pÞdx: (3.11)

The expression given by Eq. (3.11) represents a minimal
deformation in the sense that all sources of the deformation
in (3.6) have been removed, except for those produced by
the density and pressure, which will always be present in a
realistic stellar distribution.1 It is worth emphasizing that
the geometric deformation fðrÞ shown in Eq. (3.6) indeed
‘‘distorts’’ the GR solution given in Eq. (3.9). The function
f�ðrÞ shown in Eq. (3.11) will therefore produce, from
the GR point of view, a ‘‘minimal distortion’’ for any GR
solution one wishes to consider, this distortion f�ðrÞ being
the source of the anisotropy induced in the brane, whose
explicit form may be found through Eq. (3.2), leading to

48�

k4
P
�

¼
�
1

r2
þ �0

r

�
f� � 1

4

�
2�00 þ �02 þ 2

�0

r

�
f�

� 1

4

�
�0 þ 2

r

�
ðf�Þ0: (3.12)

It is clear that this minimal deformation will produce a
minimal anisotropy onto the brane.

In this approach, the interior stellar geometry is generi-
cally described by the MGD metric, which explicitly reads

ds2 ¼ e�ðrÞdt2 � dr2

ð1� 2mðrÞ
r þ f�ðrÞÞ� r2ðd	2 þ sin 2	d
2Þ:

(3.13)

As is shown by Eq. (3.11), the geometric deformation f�ðrÞ
in Eq. (3.13) satisfies f�ðrÞ � 0; hence, it always reduces
the effective interior mass, as is seen further below in
Eqs. (4.6) and (4.7).

A. Matching conditions: Interior MGD metric
and exterior Weyl fluid

The MGD metric in (3.13), characterizing the interior
stellar r < R, must be matched with an exterior solution
associated to the Weyl fluid Uþ, Pþ, p ¼ � ¼ 0 for
r > R, which can be written generically as

ds2¼e�
þðrÞdt2�e�

þðrÞdr2�r2ðd	2þsin2	d
2Þ; (3.14)

therefore, the continuity of the first fundamental form at
the stellar surface r ¼ R,

½ds2�� ¼ 0; (3.15)

leads to

e�
�ðRÞ ¼ e�

þðRÞ; (3.16)

1� 2M

R
þ f�R ¼ e��þðRÞ; (3.17)

whereas the second fundamental form (2.15) leads to

pR þ f�R
8�

�
�0
R

R
þ 1

R2

�
¼ 2

k4
Uþ

R

�
þ 4

k4
Pþ

R

�
: (3.18)

The expressions given by Eqs. (3.16), (3.17), and (3.18)
are the necessary and sufficient conditions for the
matching of the MGD metric to a spherically symmetric
‘‘vacuum’’ filled by a BW Weyl fluid.

IV. AN INTERIOR SOLUTION

As already was mentioned, the system of Eqs. (2.8), (2.9),
(2.10), and (2.11) [or, equivalently, Eq. (2.11) along with
Eqs. (3.1), (3.2), and (3.3)] represents an indefinite system
of equations in the brane, an open problem whose answer
requires the complete five-dimensional solution. Given that
there is no such solution, the first obvious question is to ask
what restrictions we should impose on the brane to close the
system of Eqs. (2.8), (2.9), (2.10), and (2.11). However, it is
not necessary to impose any restriction at all when a given
GR perfect fluid solution is considered as a candidate solu-
tion for Eqs. (2.8), (2.9), (2.10), and (2.11). In this case, the
geometric deformation is minimal, and the open system of
Eqs. (2.8), (2.9), (2.10), and (2.11) will be automatically
satisfied; in consequence, a BW version of the given GR
solution will be automatically generated. The virtue of the
MGD approach lies in the above fundamental fact, and its
usefulness is obvious when physically acceptable GR solu-
tions are investigated in the BW context, as wewill see next.
Let us start by considering the Tolman IV solution for a

perfect fluid in general relativity ð�; �; �; pÞ, which now is
deformed by five-dimensional effects through f�ðrÞ:

e� ¼ B2

�
1þ r2

A2

�
; (4.1)

e�� ¼ ð1� r2

C2Þð1þ r2

A2Þ
1þ 2r2

A2

þ f�ðrÞ; (4.2)

�ðrÞ ¼ 3A4 þ A2ð3C2 þ 7r2Þ þ 2r2ðC2 þ 3r2Þ
8�C2ðA2 þ 2r2Þ2 ; (4.3)

and

pðrÞ ¼ C2 � A2 � 3r2

8�C2ðA2 þ 2r2Þ : (4.4)

In GR, i.e., when f�ðrÞ¼0, A, B, and C have specific
values written in terms of the compactness of the distribu-
tion, that is, in terms of M=R, with M and R the mass and

1There is a MGD solution in the case of a dust cloud, with
p ¼ 0, but we will not consider it in the present work.
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radius of the distribution, respectively, which are free
parameters satisfying the constraint M=R< 4=9 [see fur-
ther below Eqs. (5.4), (5.5), and (5.6)]. However, as is well
known, in the braneworld scenario the matching conditions
are modified, and consequently there are five-dimensional
effects on these constants which must be considered.
Indeed, in the MGD approach, A, B, and C in general are
functions of the brane tension �, the � dependence being
determined by matching conditions. We want to stress that,
as long as the brane tension � remains constant, A, B, and
C will not be functions of the spacetime but functions of
the parameters M, R, and �. On the other hand, in general
relativity the second fundamental form, which leads to
pðrÞ jr¼R¼ 0 at the stellar surface r ¼ R, produces

C2 ¼ A2 þ 3R2: (4.5)

We will keep the physical pressure vanishing on the
surface, even though this condition may be dropped in
the braneworld scenario [37].

From the point of view of a brane observer, the geomet-
ric deformation f�ðrÞ in Eq. (4.2) produced by five-
dimensional effects modifies the perfect fluid solution
[represented by Eqs. (4.1), (4.2), (4.3), and (4.4) when
f�ðrÞ ¼ 0], introducing thus imperfect fluid effects through
the braneworld solution for the geometric function �ðrÞ,
which is obtained by using Eqs. (4.1), (4.3), and (4.4) in
Eq. (3.6), leading to

e��ðrÞ ¼ 1� 2 ~mðrÞ
r

; (4.6)

where the interior mass function ~m is given by

~mðrÞ ¼ mðrÞ � r

2
f�ðrÞ; (4.7)

with f�ðrÞ the minimal geometric deformation for the
Tolman IV solution, given by Eq. (3.11), whose explicit
form is obtained by using Eqs. (4.1), (4.3), and (4.4) in
Eq. (3.11), and hence

f�ðrÞ ¼ � 1

�

1

384�rðA2 þ 3R2Þ2ð2A2 þ 3r2Þ3=2
8<
:ðA2 þ r2Þ

2
436r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A2 þ 3r2

p

ðA2 þ 2r2Þ3 f5A8 þ 7A6r2 þ 10A2r6 þ 12r8

þ 4ð6A6 þ 10A4r2 � 3A2r4 � 6r6ÞR2 þ 2ð15A4 þ 35A2r2 þ 18r4ÞR4g � 216ðA2 þ 2R2Þ2 arctan
�

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A2 þ 3r2

p
�

� 48
ffiffiffi
3

p ðA2 þ 3R2Þ2 log ð3rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6A2 þ 9r2

p
Þ
3
5
9=
;: (4.8)

The function mðrÞ in Eq. (4.7) is the GR mass function, given by the standard form

mðrÞ ¼
Z r

0
4�x2�dx ¼ r3ð2A2 þ 3R2 þ r2Þ

2ðA2 þ 3R2ÞðA2 þ 2r2Þ ; (4.9)

and hence the total GR mass is obtained as

M � mðrÞ jr¼R¼ R3

A2 þ 3R2
: (4.10)

Finally, the Weyl functions P and U associated with the geometric deformation shown in Eq. (4.8) are written as

P
�

¼ 4�

3

ðA4 þ 2A2r2 þ 2r4Þ
r2ðA2 þ r2Þ2 f�ðrÞ; (4.11)

U
�

¼ 4�ðA4 þ 8A2r2 þ 5r4Þ
3r2ðA2 þ r2Þ2 f�ðrÞ � 1

�

9ð2A4 þ 3A2r2 þ 2r4 þ 3A2R2 þ 2r2R2Þð2A4 þ A2r2 � 2r4 þ 5A2R2 þ 6r2R2Þ
4ðA2 þ 2r2Þ4ðA2 þ 3R2Þ2 :

(4.12)

The expressions Eqs. (4.1), (4.2), (4.3), and (4.4) along with
Eqs. (4.11) and (4.12) represent an exact analytic solution
to the system Eqs. (2.8), (2.9), (2.10), and (2.11). We want
to emphasize that the expressions for p, �, and � in
our solution are the same than those for the Tolman IV
solution; in consequence, when these expressions are used
in Eq. (3.7), the condition in Eq. (3.10) is obtained.

It can be shown by Eq. (4.8) that the geometric defor-
mation f�ðrÞ depends only on the parameter A, which has a

well-defined expression in terms of the compactness M=R
in GR, as will be shown in the next section.

V. ANALYSIS OF THE SOLUTION

A. GR case

In order to see the physical consequences due to
BW, first let us start recalling the GR case, that is, to match
the Tolman IV solution to the exterior Schwarzschild
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solution. The exterior metric in (3.14) will be the
Schwarzschild one

e�
þ ¼ e��þ ¼ 1� 2M

r
; (5.1)

therefore, at the stellar surface r ¼ R we have

B2

�
1þ R2

A2

�
¼ 1� 2M

R
; (5.2)

ð1� R2

C2Þð1þ R2

A2Þ
1þ 2R2

A2

¼ 1� 2M

R
; (5.3)

whereas the condition (3.18) with f�R ¼ Uþ
R ¼ Pþ

R ¼ 0
leads to the expression in Eq. (4.5). Now by using Eq. (4.5)
along with Eqs. (5.2) and (5.3), the constants A, B, and C
are found in terms of the compactness of the stellar distri-
bution, as shown below:

A2=R2 ¼ 1� 3M=R

M=R
; (5.4)

B2 ¼ 1� 3M=R; (5.5)

C2=R2 ¼ ðM=RÞ�1: (5.6)

The values given by Eqs. (5.4), (5.5), and (5.6) guarantee
the geometric continuity at r ¼ R when this discontinuity
is crossed, for instance, from the interior geometry, de-
scribed by the Tolman IV solution (4.1) and (4.2) (f� ¼ 0),
to the exterior Schwarzschild geometry, which represents
the unique exterior solution for spherically symmetric dis-
tributions in GR. Next we will see that the BW case is quite
different.

B. Braneworld case

When a spherically symmetric and static self-gravitating
system of radius r ¼ R is considered in the RS BW theory,
the spacetime r > R surrounding the stellar system,
contrary to GR, is not empty but filled by the so-called
dark radiationUþ and dark pressure Pþ. It is well known
that, from the point of view of a brane observer, extra-
dimensional effects modify the Schwarzschild solution
through these fields. However, the effects of bulk gravitons
on self-gravitating structures are not quite understood so
far [24].

On the other hand, the gravitational collapse of spheri-
cally symmetric stellar distributions on the brane could
lead to a nonstatic exterior [38,39], at least when standard
matter is the source of the gravitational field and the
configuration has vanishing surface pressure. Even in this
extreme scenario without the Birkhoff theorem, a static
exterior is eventually expected. The reason is that the
(unknown) nonstatic exterior solution should be transient
[38,40]; hence, it is reasonable to assume that the exterior
metric will be static at late times and tend to Schwarzschild

at large distances. However, by using more general
assumptions than the Oppenheimer-Snyder BW model
used in Ref. [38], it was found that a static exterior can
exist for a collapsing star in the radiative bulk scenario [41]
and also for a near-dust-like perfect fluid [37]. Moreover,
recently it was proven that a realistic interior solution
having a very thin dark energy atmosphere can be matched
consistently to a Schwarzschild exterior [42]. In summary,
the above shows that the presence or not of static black
holes remains an open issue in BW.
Since the exterior spacetime of spherically symmetric

configurations remains unknown on the brane due to the
lack of a five-dimensional solution, there are many ways to
modify the Schwarzschild solution; i.e., there are many
black hole solutions for a spherically symmetric static
‘‘vacuum’’ in five-dimensional gravity in the RS BW
scenario [8,10,21,28]. Next, regarding the weak-field limit
in the BW, an approximate exterior solution is developed
and considered in the matching conditions at the stellar
surface r ¼ R.

C. Far-field correction to the Newtonian potential

As we have mentioned, the Weyl stresses imply that the
exterior solution for a spherically symmetric distribution is
no longer the Schwarzschild metric, and therefore there are
many possible solutions to the effective four-dimensional
vacuum Einstein equations [7], namely, any metric such
that

R�� � 1

2
g��R

�
� ¼ E�� ) R�

� ¼ 0: (5.7)

The solution to Eq. (5.7) must satisfy the weak-field
limit [43], which is given by

� ¼ �GM
r

�
1þ 2‘2

3r2

�
; (5.8)

where ‘ is the curvature radius of AdS5. Unfortunately,
none of the few known analytical solutions to Eq. (5.7)
satisfy the weak-field limit in Eq. (5.8) and therefore
cannot describe the end state of collapse. Indeed, to our
knowledge, an exact spherically symmetric exterior solu-
tion on the brane satisfying the weak-field limit in Eq. (5.8)
remains unknown so far. For instance, while it is true that
the well-known tidally charged metric found in Ref. [21]
shows the correct 5D behavior of the potential at short
distances, and therefore could be a good approximation
in the strong-field regime for micro black holes [22,23],
the astrophysical scenario is quite different. Likewise,
although the vacuum braneworld solution found by
Casadio, Fabbri, and Mazzacurati in Ref. [28] is tremen-
dously useful to elucidate the specific role played for both
Weyl functions [24], it does not satisfy the limit in Eq. (5.8).
Moreover, its condition of null dark energy is too strong,
and therefore this solution should be considered just an
useful (unphysical) toy model in the astrophysical scenario.
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(For a resent study regarding this solution in the bulk,
see Ref. [44].)

Since we want to elucidate the effects of bulk gravitons
on stellar structure, and we lack an exterior solution, the
potential in Eq. (5.8) could be helpful to obtain some
relevant information. For instance, it is reasonable to as-
sume that the unknown four-dimensional solution should
be close to the solution associated to the potential in
Eq. (5.8) (G ¼ 1):

gþ00 � 1� 2M
�
1

r
þ 2‘2

3r3

�
; (5.9)

ðgþ11Þ�1 � 1� 2M
�
1

r
þ ‘2

3r3

�
: (5.10)

In this approximation, the exterior Weyl fluid behaves as

6Pþ

k2�
�M‘2

3r5

�
84ðM=rÞ2 � 91ðM=rÞ þ 25

ð1� 2M=rÞ2
�
; (5.11)

6Uþ

k2�
�� 2M‘2

3r5

�
36ðM=rÞ2 � 37ðM=rÞ þ 10

ð1� 2M=rÞ2
�
; (5.12)

where the expressions in Eqs. (5.9) and (5.10) have been
used in Eqs. (3.2) and (3.3) [with p ¼ � ¼ 0].

Therefore when the deformed Tolman IV interior
solution, given by Eqs. (4.1) and (4.6), is used along with
the exterior solution in Eqs. (5.9) and (5.10) in the match-
ing conditions (3.16) and (3.17), we have

B2

�
1þ R2

A2

�
� 1� 2M

R
� 4M‘2

3R3
; (5.13)

M�M� R
2 f

�
R

1þ ‘2

3R2

�M� R

2
f�R �M‘2

3R2
; (5.14)

where in Eq. (5.14) the approximation f�Rð‘=RÞ2 �
��1ð‘=RÞ2 � 0 has been used.

Then when Eq. (5.14) is used in the condition (5.13),
we obtain

B2

�
1þ R2

A2

�
� 1� 2M

R
þ �f�R; (5.15)

where the bar function

�f�R � f�R � 2M‘2

3R3
(5.16)

represents the bulk effects on the right-hand side of
Eq. (5.2). These effects can be written in terms of the brane
tension � or the curvature radius of the bulk ‘ when the
second fundamental form (3.18) is used, that is, by using
Eqs. (5.11) and (5.12) and pR ¼ 0 in the condition (3.18);
thus, a relationship between the geometric deformation
f�ðrÞ and the curvature radius of the bulk ‘ is found at
the stellar surface r ¼ R as

f�R � 10M‘2

3R3

�
1� 2M=R

1� 2M=R

��
1� 8M

5R

�
þOð‘4=R4Þ

� 10M‘2

3R3

�
1� 8M

5R

�
; (5.17)

and in consequence the expression in Eq. (5.16) may be
written as

�f�R � 8

3

�
1� 2M

R

�
M‘2

R3
� 4

5

ð1� 2M
R Þ

ð1� 8M
5RÞ

f�R; (5.18)

showing thus that the bar function in Eq. (5.18) is always
positive.
The expression (5.15) clearly shows that the values of A

and B cannot be those from Eqs. (5.4) and (5.5), because
those values would lead to the trivial Schwarzschild
condition �f�R ¼ 0. Therefore, the GR values of A and B,
hereafter called A0 and B0, have been modified by five-
dimensional effects and cannot be constants anymore but
functions of the brane tension � [or the curvature radius of
the bulk ‘, according to Eq. (5.18)], as will be shown next.
The expression in (5.15) represents a condition which

must be used to find two unknown functions A and B;
hence, the problem at the surface seems not closed,
and therefore additional information should be added.
However, we will see that no additional information is
needed, as explained below.
First of all, the BW effects on the GR condition (5.2)

is explicitly shown in the right-hand side of Eq. (5.15),
showing that these modifications are proportional to the
geometric deformation f�R, which is proportional to ��1

[see Eq. (4.8)]. Therefore the unknown functions A and B
can be written as

A ¼ A0 þ �A; (5.19)

B ¼ B0 þ �B; (5.20)

where � represents the modification due to five-
dimensional effects, which are functions of the brane
tension �. Hence, the problem is reduced to finding the
unknown � functions in Eqs. (5.19) and (5.20) by using the
condition in Eq. (5.15). On the other hand, since the con-
stants shown in Eqs. (5.4), (5.5), and (5.6) are modified by
bulk gravity effects, this must occur by a change in the
compactness M=R, as clearly shown in the right-hand side
of Eqs. (5.4), (5.5), and (5.6), but R is a constant free
parameter; therefore, the five-dimensional effects on A
and B are produced by bulk gravity effect �M on GR
mass M0:

M ¼ M0 þ �M; (5.21)

and hence �A and �B have the same source and are not
independent. Therefore all we need to do is to find
A ¼ AðBÞ by using the compactness as a common variable,
as shown by Eqs. (5.4) and (5.5); hence,
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A2 ¼ 3R2 B2

ð1� B2Þ ; (5.22)

and in consequence the problem at the surface is closed.
Having clarified this point, the next step is to examine
the five-dimensional effects on the physical variables. For
instance, to see bulk gravity consequences on the pressure
p, all we have to do is to use Eq. (5.19) in Eq. (4.4), and
hence the modification �p will be found. Therefore we
need to determined �A in Eq. (5.19), as shown below.

Using Eqs. (5.19) and (5.20) in (5.15) yields

ðB0 þ �BÞ2
�
1þ R2

ðA0 þ �AÞ2
�
� 1� 2M0

R
þ �f�R; (5.23)

whereM0 is used to stress that theM in Eq. (5.15) actually
is the GR value of M. Now keeping in Eq. (5.23) linear
terms in �, we have

B2
0

�
1þR2

A2
0

�
þ2B0

�
1þR2

A2
0

�
�B�2

B2
0R

2

A3
0

�A�1�2M0

R
þ �f�R;

(5.24)

and by using Eq. (5.2) [the GR case, where B ¼ B0] in
Eq. (5.24) we obtain

2B0

�
1þ R2

A2
0

�
�B� 2

B2
0R

2

A3
0

�A� �f�R: (5.25)

In order to find �A in Eq. (5.25), �B must be determined.
To accomplish this, the expression in Eq. (5.22) is used,
yielding

�A ¼ 3R2

A

B

ð1� B2Þ2 �B: (5.26)

Using Eq. (5.26) in Eq. (5.25) leads to

�Að�Þ � A3
0

4R2B4
0

�f�R; (5.27)

and therefore the function A in Eq. (5.19) is written as

Að�Þ � A0 þ A3
0

4R2B4
0

�f�Rð�Þ þOð��2Þ: (5.28)

At this stage, we have all the necessary tools needed
to examine the five-dimensional effects on the physical
variables. For instance, to see bulk gravity consequences
on the pressure pðr; �Þ, we rewrite Eq. (4.4) as

pðr; �Þ ¼ 3ðR2 � r2Þ
8�ðA2 þ 3R2ÞðA2 þ 2r2Þ : (5.29)

As the bar function �f�R in Eq. (5.18) is positive, then from
Eq. (5.27) we can see that �A > 0; in consequence, it is

straightforward to see that the pressure in Eq. (5.29) is
always reduced by five-dimensional effects.
Finally, by using Eqs. (5.4), (5.5), and (5.26) in Eq. (5.27),

�M may be written as

�Mð�Þ � �R

2
�f�R; (5.30)

and hence the bulk effects on the compactnessM=Rmay be
expressed as

�½Mð�Þ=R� � � �f�R=2 (5.31)

or, according to Eq. (5.18), in terms of the brane tension� or
curvature radius of the bulk ‘:

�½Mð�Þ=R� � � 4

3

�
1� 2M

R

�
M‘2

R3
�� 2

5

ð1� 2M
R Þ

ð1� 8M
5RÞ

f�R:

(5.32)

The pressure in (5.29) may be written in terms of the
compactness as

pðr; �Þ ¼ 3ð1� r2=R2Þ
8�R2½1� ð3� 2r2=R2ÞMð�Þ

R �
�
Mð�Þ
R

�
2
;

(5.33)

where Mð�Þ in Eq. (5.33) is given by

Mð�Þ ¼ M0 þ �Mð�Þ: (5.34)

The expressions in Eqs. (5.31) and (5.33) clearly show
that BW consequences on pressure occur through bulk
graviton effects on the compactness of the stellar structure.
The result shown by Eq. (5.32) strongly suggests that
the effects of bulk gravitons on stellar configurations act
in such a way that always reduces the compactness, in
agreement with the results found in Ref. [12].

VI. CONCLUSIONS

In this paper, an analytic interior solution to four-
dimensional effective Einstein field equations for a
nonuniform stellar structure was found in the context of
the Randall-Sundrum braneworld. By using this analytic
solution, an exhaustive analysis of the extra-dimensional
consequences on realistic stellar interiors is developed,
finding strong evidence in favor of the hypothesis that
compactness and pressure are always reduced due to bulk
effects on stellar configurations.
The interior solution was constructed from a well-known

spherically symmetric stellar solution for a perfect fluid in
GR, namely, the Tolman IV solution. In order to produce
the braneworld version containing the anisotropic effects
necessary for realistic stellar models, the MGD approach
was used to modify the perfect fluid solution represented
by the Tolman IV solution, thus generating exact analytic
expressions for the Weyl fields on the brane, namely, the
scalar U and anisotropy P .
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As the Tolman IV solution is a solution to 4D Einstein
field equations in GR, it removes all the nonlocal sources
from the geometric deformation fð�; �; pÞ in the generic
expression given by Eq. (3.6), leaving only the high-energy
terms shown explicitly in Eq. (3.11), which are quadratic
terms in the density and pressure. Hence the higher the
density, the more geometric deformation will be produced,
and as a consequence the anisotropy induced will be higher
for more compact distributions, as can easily seen through
Eq. (4.11). Finally, we want to stress that, while it is true
that both the pressure and density in (4.3) and (4.4) are
modified through the change A ! Að�Þ, their physical
acceptability is not lost, given that is inherited from the
Tolman IV solution. In other words, the deformation
undergone by the density and pressure is not enough to
jeopardize the physical acceptability of the BW system.

On the other hand, since we lack an exterior solution, the
far-field correction to the Newtonian potential in the BWwas
used to construct an exterior geometry associated with this

potential. In this approximation, it was found that bulk effects
always reduce the compactness of stellar configurations, in
agreement with the conjectured hypothesis in Ref. [12].
The analytic four-dimensional solution developed

in this paper represents the point of view of a brane
observer, and hence it is not known whether the bulk
eventually constructed will be free of singularities.
Despite the above, it was found that the MGD principle
represents a powerful tool in the search for analytic solu-
tions in the braneworld context. Hence it could be useful in
the study of the five-dimensional geometry. Indeed, we
could use the Campbell-Magaard theorems [13,14] to ex-
tend the generic solution represented by theMGDmetric in
(3.13) through the bulk, locally at least. Also one could
investigate the consequences of the MGD metric in (3.13)
on five-dimensional bulk by introducing an extra dimen-
sion y dependence in the MGD metric, similar to the study
developed in Ref. [45]. All this certainly deserves further
investigation [46].
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