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Quantum effects due to conformal matter in a black hole background result in universal logarithmic

corrections to black-hole entropy. The universality resides in the connection of the log term coefficient

with those of type-A and type-B Weyl anomalies, regularization-scheme independent quantities. We

presently study the case of extremal black holes within Wald’s Noether charge formalism. In the

conformal class of flat metrics, we are again able to unveil the log term in the entropy from the horizon

value of the solution to the Q-curvature uniformization problem. Beyond conformally flat backgrounds,

type-B Weyl anomaly becomes an obstruction to considering flat space as the fiducial metric and the

search for a metric of constant Q-curvature remains open. Notwithstanding, by a uniform scaling

argument we show that the results based on heat kernel and Euclidean computations (namely entropy

function and conical defect) can also be derived as Wald entropy, that is, as Noether charge of the

integrated anomaly or conformal index. We finally comment on the relation with entanglement entropy.
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I. INTRODUCTION

Black holes in Einstein gravity are endowed with en-
tropy given by the celebrated Bekenstein-Hawking (BH)
area law [1,2]. Deviations from the area law are naturally
expected to occur in more general classical gravitational
theories and also due to quantum effects. This is certainly
the case in string theory where the effective low-energy
theory, in addition to Einstein-Hilbert action, contains
higher curvature terms due to a finite size of strings (�0)
as well as quantum loop corrections (gs). Here, a certain
class of extremal black holes has a dual microscopic
description and the statistical entropy resulting from the
microscopic counting is found to be in remarkable agree-
ment, for large charges, with the macroscopic counterpart
that takes into account higher local curvature invariants
from finite-size and quantum corrections (see, e.g., [3–5]).
Crucial to this agreement is the fact that the corresponding
macroscopic entropy, which deviates from the area law, is
Wald entropy, that is, it satisfies the modified form of the
first law derived by Wald [6] for a wide class of generally
covariant actions; in Wald’s formalism, the role of the
entropy is played by the integral of a geometric density,
the Noether potential, over a spatial cross-section of the
horizon. In this respect, the ‘‘entropy function formalism’’
[7,8] has been developed as an efficient computational tool
that exploits the attractor mechanism for extremal black
holes; it can be shown that the entropy function is in fact
Wald entropy.

Regarding quantum one-loop effects due to conformal
matter, the leading correction to the black hole (bh)
entropy in the semiclassical limit of large charges seems

to be universally given by the logarithm of the horizon area
(cf. [9,10])

Sbh ¼ SBH þ const � ln SBH þOð1Þ; (1)

with a coefficient that involves those of the type-A and
type-B trace anomalies [11]. This deep connection be-
tween trace anomaly and entropy had been established in
the Euclidean formalism after renormalization of one-loop
UV-divergent contribution of matter fields to the entropy
[12,13], in the tunneling and exact differential formalisms
[14,15], in the thermodynamics of certain black hole solu-
tions stemming from an anomalous energy-momentum
tensor [16] and, more recently, via the ‘‘quantum entropy
function’’ [17–23]. Despite the many different approaches,
there was little hope for a direct derivation based onWald’s
formalism mainly due to the unavailability of the one-loop
effective action, which in general contains nonlocal terms.
Notwithstanding, for the conformally flat class of black
hole backgrounds we were able to establish the connection
between type-A trace anomaly and the logarithmic correc-
tion to the black hole entropy via Wald’s Noether charge
formalism [24]. The rationale behind our approach was to
focus on the ‘‘anomaly-induced effective action’’ (ASanom),
which suffices to correctly reproduce the anomalous trace
of the energy-momentum tensor, and to render it local by
the introduction of an auxiliary field� to finally useWald’s
formula to read off the contribution to the black hole
entropy as Noether charge.
The purpose of the present note is to further elaborate on

the Wald approach to log-corrections in two ways. We first
study the extremal black hole case within the conformally
flat class; second, we consider the general case where the
type-B trace anomaly comes into play. We are able to
obtain the log term, as was already done in nonextremal
cases, from the solution the uniformization problem for
Q-curvature. Beyond conformal flatness, the type-B Weyl
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anomaly enters the game and introduces ambiguities in the
definition of the Q-curvature; it also becomes an obstruc-
tion for flat metric to be considered as the ‘‘fiducial’’ one
and the search for a metric of constantQ-curvature remains
open. Notwithstanding, by a uniform scaling argument we
show that the results based on heat kernel and Euclidean
computations (namely entropy function and conical defect)
can also be derived as Wald entropy, that is, as Noether
charge of the integrated anomaly or conformal index. We
finally comment on the relation with entanglement entropy.

II. NOETHER CHARGE OF THE ANOMALY
INDUCED ACTION

Let us first highlight the main steps of our previous work
in establishing a connection between the type-A trace
anomaly and the logarithmic correction to the black hole
entropy via Wald’s Noether charge formalism [24].

As said, the rationale behind our approach was to focus
on the anomaly-induced effective action (ASanom), which
suffices to correctly reproduce the anomalous trace of the
energy-momentum tensor, and to render it local by the
introduction of an auxiliary field �. The type-A trace
anomaly in four dimensions is given by the term involving
the Euler density in the expectation value of the trace of the
energy-momentum tensor

hTi ¼ � a

16�2
E4; (2)

with

E4 ¼ Riem2 � 4Ric2 þ R2: (3)

The anomaly induced effective action is a conformal primi-
tive of the trace anomaly that generalizes Polyakov’s origi-
nal computation in two dimensions [25]. In analogy with
Liouville’s local form of Polyakov’s action, an auxiliary
field can be introduced to cast the action in local form (see,
e.g., [26,27])

ASanom ¼ � a

32�2

Z
dx4

ffiffiffiffiffiffiffi�g
p f���4�þQ�g: (4)

This four-dimensional analog involves the Q-curvature
[28,29]

Q ¼ E4 � 2

3
�R; (5)

and the Paneitz’s operator [31] (squared Laplacian plus
lower curvature terms) [32]

�4 ¼ �2 þ 2r�

�
R�� � 1

3
g��R

�
r�: (6)

To correctly reproduce the anomaly from the metric varia-
tion of this action, the auxiliary field � must satisfy

�4� ¼ 1

2

�
E4 � 2

3
�R

�
; (7)

that is, � must solve the uniformization problem for the
Q-curvature with the fiducial metric (flat one) having
vanishing Q-curvature.
The corresponding Noether charge can be computed

(see [24] for further details) and yields a leading correction
to BH entropy

Sbh ¼ AH

4
� a � �H ��H þ � � � : (8)

Here �H is the (2 dimensional) Euler characteristic of the
horizon, �H ¼ �ðrþÞ is the value at the horizon of the
auxiliary field and the ellipsis stands for terms involving
only derivatives of � at the horizon. The derivatives of �,
and its powers, translate into inverse powers of the area, so
that they do not talk to the logarithmic correction [35] and
are absorbed in the Oð1Þ term.
This neat formula for the quantum correction to

nonextremal black hole entropy due to one-loop quantum
field theoretic effects was the main outcome of our
previous work [24].

III. EXTREMAL BLACK HOLES: NEAR-HORIZON
GEOMETRY

We start by considering the near-horizon geometry of a
black hole in the extremal limit. It is well known that this
geometry factorizes in an AdS2 times a transverse compact
space [13,37] but the limiting procedure has its own
subtleties. Let us briefly examine this limit in the
following simple Euclidean spherically symmetric situ-
ation, described by the metric

ds2 ¼ fðrÞd�2 þ fðrÞ�1dr2 þ r2d�; (9)

where d� is the metric of the compact transverse part. If
we expand around the outer horizon rþ

fðrÞ ¼ aðr� rþÞ þ bðr� rþÞ2 þOððr� rþÞ3Þ (10)

¼ ðr� rþÞ
�
r� rþ þ a

b

�
bþOððr� rþÞ3Þ; (11)

the extremal limit is then achieved by sending a ! 0 (i.e.,
r� ! rþ) and rescaling the Euclidean time coordinate �,
where �� �þ 4�=a. In suitable coordinates x, �

r� rþ ¼ a

b
sinh 2 x

2
; (12)

a�

2
¼ �; �� �þ 2�; (13)

a two-dimensional hyperbolic H2 factor shows up

ds2 ¼ 1

b
ðdx2 þ sinh 2xd�2Þ þ r2þd�2: (14)

The horizon is mapped to the center x ¼ 0 of H2 and the
conformal boundary to x ! 1.
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A. Extremal Reissner-Nordström

As an illustration let us examine the conformally flat
near-horizon geometry H2 � S2 of the extremal Reissner-
Nordström

ds2 ¼ r2þðdx2 þ sinh 2xd�2 þ d�2Þ: (15)

In order to solve the uniformization problem for the
Q-curvature, we choose Fefferman-Graham coordinates
and set rþ ¼ 1 for convenience,

	

2
¼ e�x; x ¼ 0 � 	 ¼ 2; x ! 1 � 	 ! 0;

(16)

so that the H2 metric becomes

ds2H ¼ d	2 þ ð1� 	2=4Þ2d�2
	2

: (17)

The Paneitz operator gets factorized in terms of the
Laplacian as �4 ¼ �2 � 2� and the solution, which is
required to be regular at the horizon, has the following
logarithmic term

�ð	Þ � 2 ln
ð	þ 2Þ2

	
: (18)

Nowwe read off the logarithmic dependence on rþ,�H �
2 ln rþ � lnAH , and the logarithmic correction to the
entropy in (8)

4 Sbh ¼ �2a lnAH : (19)

IV. BEYOND CONFORMAL FLATNESS: TYPE-B
WEYL ANOMALY

When the background is not conformally flat, the type-B
Weyl anomaly comes into play and things are more
complicated

hTi ¼ � a

16�2
E4 þ c

16�2
W2: (20)

The anomaly induced effective action becomes ambigu-
ous, essentially due to the ambiguity in the Q-curvature.
One is free to shift any Q-curvature by the locally confor-
mal invariant Weyl-squared term while preserving the
linear transformation law under Weyl rescaling of the
metric g ! ĝ ¼ e2wg

ffiffiffî
g

p
Q̂ ¼ ffiffiffi

g
p ðQþ�4wÞ and

ffiffiffî
g

p
Ŵ2 ¼ ffiffiffi

g
p

W2: (21)

This ambiguity carries over into the uniformization prob-
lem and we have, a priori, no preferred choice for the
Q-curvature.

Now, as long as one is interested in the dependence on an
overall scale factor, things are easier. Consider a uniform
scaling of the metric g ! ĝ ¼ �2g; the variation of the
one-loop effective action (log of the functional determinant
of the kinetic operator A of the free conformal field) is
given by the associated zeta function at zero (see, e.g. [38])

Ŝ eff � Seff ¼ � 1

2
log

det Â

detA
¼ 
Að0Þ log�: (22)

Modulo zero mode contributions, this is essentially the
integrated trace anomaly or conformal index


Að0Þ ¼
Z ffiffiffi

g
p

d4xhTi ¼ 1

16�2

Z ffiffiffi
g

p
d4xð�aE4 þ cW2Þ:

(23)

We simply apply Wald’s prescription to translate the
dependence on the overall scale� from the effective action
into the black hole entropy. That is, we compute the
Noether charge of the above local quantity.
It is convenient to split the Weyl-square term as follows

W2 ¼ E4 þ 2Ric2 � 2

3
R2; (24)

and compute the Noether charge of

�Seff ¼�log�

16�2

Z ffiffiffi
g

p
d4x

�
ða�cÞE4þ2c

3
R2�2cRic2

�
:

(25)

The contribution of the first term in the right-hand side
gives, upon integration, the Euler characteristic of the
horizon (�H ); the second, two times the Ricci scalar (R)
of the four-dimensional space; and the third, the Ricci
scalar of the four-dimensional space along the transverse
directions to the horizon [36,39]

�Sbh¼�log�

16�2
4�

Z
�

ffiffiffi
h

p
d2x

�
2ða�cÞR�þ4c

3
R�2cRaa

�
:

(26)

where Raa is the projection of the Ricci scalar perpendicu-
lar to the horizon.
In all, we end up with the following general relation

between the correction to black hole entropy, logarithmic
in the overall scale, and the type-A and type-B anomaly
coefficients

�Sbh ¼ log�2

�
ðc� aÞ�H � 2c

3
�̂RH þ c�̂RH

aa

�
;

(27)

where �̂ stands for the horizon area over 4� and RH and

RH
aa are the average values on the horizon of the corre-

sponding quantities. In what follows, let us examine some
illustrative examples.

A. Extremal Reissner-Nordström

This is just a crosscheck, the near-horizon geometry
H2 � S2 is conformally flat and therefore the type-B anom-
aly plays no role. The necessary inputs are

�H ¼ 2; �̂ ¼ 1; RH ¼ 0; RH
aa ¼ �2;

(28)
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so that the log-correction is given by

�Sbh ¼ �4a log�; (29)

in agreement with what we obtained before (19), noting
that the area scales as �2, and with the results via conical
defect [13]. It is worthwhile to notice that the answer
remains the same even if one considers the full geometry
of the extremal Reissner-Nordström and not just the near-
horizon one, very reminiscent of an underlying attractor
mechanism.

B. Extremal topological black hole

We consider a family of extremal topological black
holes [40]. The near-horizon geometries of these black
holes have the form H2 � T2 and H2 �H2=�, the trans-
verse compact space is a space of zero or constant negative
curvature.

1. Torus

Starting with the torus, the inputs to the log-correction
expression are

�H ¼ 0; �̂ ¼ 1; RH ¼ �2; RH
aa ¼ �2;

(30)

resulting in

�Sbh ¼ � 4c

3
log�: (31)

This result is in conformity with [13] when one modifies
the heat kernel computation to account for the conformal
coupling of the scalar field.

2. Hyperbolic surface

For the case of a transverse hyperbolic surface of
genus g

�H ¼ 2� 2g; �̂ ¼ g� 1;

RH ¼ �4; RH
aa ¼ �2;

(32)

resulting in

�Sbh ¼ 4

�
a� 2

3
c

�
ðg� 1Þ log�; (33)

in agreement with [13] adapted to the conformal scalar
field.

3. Schwarzschild

This case is also amenable to treat, since there is only
one dimensionful parameter, namely the radius of the
horizon,

�H ¼ 2; �̂ ¼ 1; RH ¼ 0; RH
aa ¼ 0; (34)

resulting in

�Sbh ¼ 4ðc� aÞ log�; (35)

which is easily compared with [12,41].

4. Reissner-Nordström

The nonextremal Reissner-Nordström can also be
worked out

�H ¼ 2; �̂ ¼ 1; RH ¼ 0; RH
aa ¼ � 2r�

rþ
:

(36)

The log term is then given by

�Sbh ¼ 4

�
c� c

r�
rþ

� a

�
log�: (37)

This is in concordance with [42], for the scalar field
(a ¼ 1=360, c ¼ 1=120)

�Sbh ¼ 2rþ � 3r�
90rþ

log�: (38)

V. ENTANGLEMENT ENTROPY

It is a general belief that the proper interpretation of
entanglement entropy in a black hole background is that of
quantum correction to black hole entropy, with the event
horizon playing the role of the entangling surface. We
notice that recent computations of entanglement entropy
[43] account for the connection between the logarithmic-
in-the-cutoff term and trace anomaly coefficients. Also by
means of a scaling argument, one can track down the trace
anomaly dependence on the entanglement entropy; the
computation requires the deformation of the background
geometry by a conical defect. The final results (see also
[44,45]) coincide with those derived here as Wald entropy;
in fact, one can even show a posteriori that they are
precisely given by Wald’s formula [46]. The subtle differ-
ence with our approach is that we claim the correction to be
Wald entropy from the outset.
It is worthwhile to stress that we get Wald entropy of the

integrated conformal anomaly times the (logarithm of the)
overall scale as a consistency requirement of our proposal to
read off the entropy from the one-loop effective action. The
scaling argument implies that we should getWald entropy of
the local conformal index. This is conceptually different
from the observation (see, e.g., [45,47,48]) that the entropy
obtained by the off-shell procedure (entanglement entropy)
introducing a conical deformation is the same as the Wald
entropy of the divergent piece of the off-shell action. This
result is first derived and then recognized as the same asWald
entropy; in this formalism, there seems to be no a priori
reason for this to happen. In fact, entanglement entropy for
a general entangling surface is far more complicated,
depending also on the extrinsic curvature [44,46]. We
have recently learned that a ‘‘squashed-cone’’ regularization
[49] in the off-shell approach has been proposed; in four
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dimensions it correctly reproduces the logarithmic terms in
entanglement entropy that had been found invoking a
holographic argument [44]. We believe that these quantum
corrections to entanglement entropy are to be interpreted as
quantum corrections to gravitational entropy (see, e.g.,
[50,51]), where the latter are not captured byWald’s formula
in general but rather correspond to the ‘‘Wald-like’’ contri-
butions recently proposed in a holographic setting [52].

Our scaling argument for stationary black holes, where
Wald’s formula applies, goes in the direction of the quan-
tum entropy function, where calculations are done in the
regular geometry (see, e.g., discussion in [19], pp. 7). In all,
we get another instance where Wald’s formula agrees with
Euclidean and other approaches within their domains of
applicability, this time including one-loop effects.

VI. CONCLUSION

The purpose of this short article was to further study the
connection between trace anomaly and quantum correc-
tions to black hole entropy within Wald’s Noether charge
formalism. The plan was to pursue the universality of this
connection: even if in general it is not possible to know the
full one-loop effective action, the part that is able to
correctly reproduce the trace anomaly did suffice to track
down the effect of the anomaly. This piece is given by the
anomaly induced effective action which is rendered local
by means of an auxiliary field. In conformally flat back-
grounds, where only type-A trace anomaly plays a role, the
on-shell condition for this auxiliary field corresponds to
the mathematical problem of finding a Weyl scaling of the
black hole metric to a fiducial one which in this case is
nothing but the flat one where the Q-curvature vanishes.
We showed that even in the extremal limit one is able to
find a solution regular at the horizon and read off a term
logarithmic in the horizon area. Beyond conformal flatness
some difficulties are encountered, the nonvanishing Weyl

tensor becomes an obstruction to considering flat metric as
the fiducial one and the definition of the Q-curvature is
plagued by ambiguities that, at this moment, we have been
unable to tackle [53].
A more modest progress is achieved by considering the

dependence on an overall scale. The change in the effective
action is logarithmic in the scale factor and contains a local
conformal invariant functional, namely, the integrated trace
anomaly or conformal index. The effect of this term on the
entropy can then be obtained à la Wald by computing its
contribution to the Noether charge. We find agreement
between this direct derivation via Wald entropy and the
logarithmic terms in the entanglement entropy; the latter
being derived by deformation of the effective action in the
presence of a conical defect. In this respect, we close our
initial program of providing a derivation à la Wald of the
already known connection between trace anomaly (type A
and type B) and the log-correction to (extremal and non-
extremal) black hole entropy. For the case of nonconfor-
mally flat backgrounds, the dependence on the overall scale
is correctly obtained; however, as already mentioned, the
uniformization problem for the Q-curvature including
type-B trace anomaly deserves further clarification.
Finally, let us comment that agreement is also found in

the case of extremal black holes with the results via
‘‘quantum entropy function,’’ at least the dependence of
the logarithmic term on the trace anomaly [17–23,56]. At
the level of the classical action, the entropy function is
precisely Wald entropy; our present derivation lends sup-
port to considering that the quantum entropy function is
also Wald entropy of the one-loop effective action.
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