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We develop an adiabatic formalism to study the Hawking phenomenon from the perspective of Unruh-

DeWitt detectors moving along nonstationary, nonasymptotic trajectories. When applied to geodesic

trajectories, this formalism yields the following results: (i) though they have zero acceleration, the

temperature measured by detectors on circular orbits is higher than that measured by static detectors at the

same distance from the hole, and diverges on the photon sphere, (ii) in the near-horizon region, both

outgoing and incoming modes excite infalling detectors, and, for highly bound trajectories (E � 1), the

latter actually dominate the former. We confirm the apparent perception of high-temperature Hawking

radiation by infalling observers with E � 1 by showing that the energy flux measured by these observers

diverges in the E ! 0 limit. We close with a discussion of the role played by spacetime curvature on the

near-horizon Hawking radiation.
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I. INTRODUCTION

Hawking has famously predicted [1,2] that the gravita-
tional collapse of a (say spherically symmetric) matter
distribution of mass M will be perceived by observers
at future infinity in the form of a stationary, outgoing
thermal flux of massless particles with temperature TH ¼
ð8�MÞ�1. Like other general-relativistic effects, this
‘‘Hawking phenomenon’’ is a priori observer dependent,
and it is not immediately clear what different observers,
especially nonasymptotic ones, would measure in this
context. To investigate this question, Unruh introduced in
[3] a very enlightening approach, based on a simple parti-
cle detector model (referred to as an ‘‘Unruh-Dewitt
(UDW) detector’’). In the case of static UDW detectors
at ‘‘radius’’ r in a Schwarzschild spacetime, a classic
computation shows that the temperature measured by

UDW detectors is THð1� 2M=rÞ�1=2 (see e.g. [4]); this
shows that Hawking radiation satisfies the Tolman equilib-
rium condition [5], just like a normal thermal bath.

Another interesting class of trajectories for UDW detec-
tors are infalling geodesics. Since these are not tangent to a
timelike Killing field, one cannot use any Tolman-like
a priori argument to infer the temperature measured by
UDW detectors along these trajectories, and in particular
when they cross the Schwarzschild horizon. Would they
record Hawking radiation there? Or would they not, be-
cause Hawking radiation is created at some distance away
from the black hole [6]?

Unruh addressed this question in [3]. Taking his cues
from the geometric similarity between the Schwarzschild
and Rindler horizons, and the observation that the Unruh
temperature TU ¼ a=2� of geodesic observers in Rindler

spacetime is zero (because their acceleration a is zero), he
argued that ‘‘a geodesic detector near the horizon will not
see the Hawking flux of particles’’. This conclusion—
although not supported by an explicit calculation
in [3]—fits with the general view put forward in that paper
that, near the horizon, the in-vacuum of gravitational col-
lapse is not different from the Minkowski vacuum.
The reduction of the (curved spacetime) Hawking effect

to the (flat spacetime) Unruh effect in the near-horizon
region [7] is further supported by the following fact: the

Hawking temperature THð1� 2M=rÞ�1=2 perceived by a
static observer at a radius r > 2M in Schwarzschild

spacetime approaches the Unruh temperature ðM=r2Þð1�
2M=rÞ�1=2=2� for a observer with the same acceleration in
Minkowski spacetime when R ! 2M. Singleton and
Wilburn have described this fact by saying that ‘‘the
equivalence principle is restored at the horizon’’ [4].
For all that, heuristic arguments as well as actual com-

putations have recently challenged this conclusion. In the
former category, Helfer has argued [8] that ‘‘the vicinity of
a black hole is a region in which essentially quantum-
gravitational, Planck-scale, physics must dominate’’; for
Almheiri et al. [9], the principle of information conserva-
tion and other quantum-information-theoretic constraints
suggest the presence of a ‘‘firewall’’ at the horizon. While
interesting in themselves, these arguments remain unfortu-
nately too sketchy to lead to a definite prediction concern-
ing the fate of horizon-crossing geodesic detectors.
Following a more conventional semiclassical approach,
Barbado et al. [10] recently devised a framework, based
on the notion of ‘‘effective temperature,’’ to study the
nature of Hawking radiation near the horizon more explic-
itly. Somewhat surprisingly, they found that the effective
temperature of the detector dropped with zero initial ve-
locity from infinity will keep rising, reaching the value 4TH

at the horizon crossing. This result appears to contradict
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Unruh’s aforementioned conclusion [3], and does not
accredit the notion that the Hawking effect reduces to the
Unruh effect in the near-horizon region (at least in the
sense that acceleration and temperature of UDW detectors
are proportional).

Very appealing for its conceptual simplicity, the ‘‘effec-
tive temperature’’ approach of [10] has several technical
limitations which could legitimate some skepticism about
this result. First, the actual response function of a trans-
horizon geodesic detector is not explicitly evaluated in [10],
nor is any solid argument given to the effect that the
‘‘effective temperature’’ defined by these authors is indeed
the one measured by an Unruh-DeWitt detector. Second,
the framework used in [10], being entirely based on the
retarded Eddington-Finkelstein time coordinate u, does not
apply to the interior region of the black hole; hence one
could speculate that the effect found in [10] is perhaps an
artifact of the horizon being singular with respect to the
u-coordinate. Third, the vacuum state used in the definition
of the ‘‘effective temperature’’ function in [10] is not the
standard Unruh vacuum, but a new, unconventional state in
the extended Schwarzschild geometry. One may fear that
this new state is perhaps unsuitable to describe the physics
of Hawking radiation. Fourth—and more crucially—the
fact that a radially infalling geodesic detector clicks at the
horizon, and even records a finite temperature there, does
not mean by itself that it perceives ‘‘Hawking radiation.’’
The local spacetime geometry is not stationary along a
radial geodesic, and actually changes more and more rap-
idly as the horizon (and then the singularity) is approached;
it could be that the temperature measured at the horizon is
due to this (trivial) curvature effect, and not to the peculiar
structure of the vacuum which is the true origin of Hawking
radiation. Rather than ‘‘does a near-horizon detector record
a nonzero temperature?’’, the question which should be
addressed is therefore ‘‘does a near-horizon geodesic
detector record a nonzero temperature that cannot be
explained away by a time-varying gravitational potential’’?

The purpose of this paper is to shed more light on these
questions by reconsidering the response of geodesic UDW
detectors during and after gravitational collapse. We ad-
dress the four concerns above as follows:

(1) We define and study a suitably defined time-
dependent ‘‘temperature’’ function, as in [10], but
also related it explicitly to UDW response functions
by an adiabatic expansion.

(2) We only use globally defined coordinates, regular on
the horizon as well as everywhere else (except at the
singularity).

(3) We avoid working with the extended Schwarzschild
spacetime, where the effect of gravitational collapse
must be mimicked by a suitable choice of vacuum
state (the ‘‘Unruh vacuum’’ [3]). Instead, we con-
sider gravitational collapse geometries and the
corresponding—uniquely defined—in-vacuum state.

(4) In the final section, we also consider generalized
(non-Schwarzschild) black hole geometries, where
the degeneracy between the surface gravity and the
curvature scale at the horizon is lifted. This allows
us to disentangle curvature effects and Hawking
radiation at the horizon.

Another assumption made in [10] which we relax in this
paper is that only outgoing modes couple to UDW detec-
tors. In fact, we will see that there exists a class of infalling
trajectories for which the response of UDW detectors is
actually dominated by incoming modes. This is a some-
what surprising upshot of our analysis, which, to our
knowledge, was not anticipated in the literature.
The plan of the paper is as follows. In Sec. II, we

introduce the model of gravitational collapse used in the
paper (the Vaidya ingoing shell), and discuss our ‘‘quasi-
temperature formalism’’ to study the response of UDW
detectors on arbitrary trajectories in that spacetime. We
apply this formalism in Sec. III to various geodesic trajec-
tories: circular orbits, radially infalling trajectories, and
inspiral orbits; our findings are tested against a flux com-
putation in Sec. IV. In Sec. V, we address in more detail the
role played by the local spacetime curvature on the re-
sponse of near-horizon geodesic detectors, by means of an
artificial black hole model where the curvature vanishes
near the horizon. Section VI contains a discussion of our
results and our conclusion. Details on adiabatic expansions
of UDW-like response functions are given in Appendix B.

II. THE HAWKING EFFECTALONG
GENERAL TRAJECTORIES

The Hawking effect is the perception of an outgoing
thermal flux at temperature TH � ð8�MÞ�1 by asymptotic
inertial observers at rest relative to a Schwarzschild black
hole. In this section we introduce a formalism to study the
response of particles detectors moving along more general
trajectories. This allows us to consider two aspects of the
Hawking phenomenon which are not often described in
the literature: the onset of black hole evaporation after the
horizon has formed, and the time-dependence of the spec-
tra recorded by nonstationary detectors.
Throughout this paper, we shall make the following

assumptions and approximations:
(i) We only consider minimally coupled massless sca-

lar fields.
(ii) We neglect the contribution of nonspherically sym-

metric (l � 0) field modes as well as all backscat-
tering effects, so that the dynamics of the field is
effectively two-dimensional.

(iii) We neglect any backreaction of Hawking radiation
on the background spacetime.

A. Collapse geometry and null coordinates

Our model of gravitational collapse in this paper is the
Vaidya ingoing shell. (Another collapse geometry will be
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discussed in Sec. V.) As is well known, this spacetime
consists of two patches separated by a null thin-shell: a
flat region inside the shell, and a Schwarzschild region
outside the shell. Its metric is conveniently written in
Eddington-Finkelstein advanced coordinates ðv; rÞ as

ds2 ¼ �
�
1� rs

r
�ðvÞ

�
dv2 þ 2dvdrþ r2d�2; (1)

where rs � 2M is twice the mass of the shell (with
equation v ¼ 0), �ðvÞ is the Heaviside function and
d�2 ¼ d�2 þ sin 2�d’2 is the standard angular metric.
The surface gravity of the black hole is � � ð2rsÞ�1.

To analyze the Hawking phenomenon in such a collapse
model, it useful to introduce globally defined null coordi-
nates ðvþ; v�Þ for the ðv; rÞ sector of spacetime. These are
constructed as follows. For each event x, consider the two
null rays (incoming and outgoing) meeting at x, and define
vþðxÞ and v�ðxÞ as their respective Eddington-Finkelstein
advanced time at past null infinity, with v�ðxÞ � vþðxÞ ¼
vðxÞ (see Penrose diagram in Fig. 1).

The physical interpretation of the ðvþ; v�Þ coordinates
is tied to the eikonal approximation for the propagation of
massless fields �ðxÞ, according to which

�ðxÞ
r

� lim
r!1

�ðvþðxÞ; rÞ ��ðv�ðxÞ; rÞ
r

: (2)

In this approximation, the field at a given point x is ex-
pressed as the superposition of two spherical waves ema-
nating from past null infinity J�: a convergent wave,
arriving directly from vþðv; rÞ (first term above), and a
divergent wave, arriving from v�ðv; rÞ after a reflection off
the origin (second term above), as in Fig. 1. (For a har-
monic mode e�i!v on J�, the phases of these two waves

at a given point x are !v�ðxÞ). For this reason, we call
ðvþ; v�Þ the eikonal coordinates of x.
In the case of the Vaidya metric (1), it is possible to give

the ðv; rÞ � ðvþ; v�Þ mapping in closed form. By con-
struction, we have vþ ¼ v, and, when ðv; rÞ is inside the
shell, v�ðv; rÞ ¼ v� 2r; for a point ðv; rÞ outside the shell
(v > 0), we must integrate the equation ds2 ¼ 0 from
ðv; rÞ back to the point ð~v ¼ 0; ~rÞ where it meets the shell,
and then write v�ðv; rÞ ¼ �2~r. This gives

v�ðv; rÞ ¼
8<
:
v� 2r for v< 0

�2rs½1þWð�e���vÞ� for v� 0;
(3)

where � � r=rs � 1, � ¼ 1=2rs and WðzÞ denotes the
Lambert W-function, defined as the principal solution of

WðzÞeWðzÞ ¼ z. [For the reader’s convenience, the graph of
WðzÞ plotted in Fig. 2.]
Since WðzÞ � z as z ! 0, the relation (3) immediately

gives the equation of the event horizon as v� ¼ �2rs.
More importantly, this relation also reveals the peculiar
disruption of phase fronts induced by the gravitational
collapse: from (3) we see that v� is constant where
�e���v is constant, and in particular v� ’ �2rs where
�e���v � 1. Due to the peculiar analytic form of the
function � � �e���v for each v � 0, the region where
�e���v � 1 is very sharply defined. Inside this region,
which expands away from the horizon as v grows (until it
eventually covers the whole of space), the phase of a
vacuum fluctuation emerging from the shell after bouncing
off its center is almost exactly equal to �2rs; this is where
the Hawking phenomenon takes place. We call it the
Hawking region. The level curves of v�ðv; rÞ are repre-
sented in Fig. 3; in pictorial terms, Fig. 3 shows how
gravitational collapse ‘‘opens up’’ the in-vacuum.
Notice that, in the Hawking region, the eikonal coordi-

nate v� takes the same functional form as the Kruskal-
Szekeres U coordinate for eternal black holes. Defining

indeed, à la Kruskal-Szekeres, Uðv; rÞ � �2rse
��uðv;rÞ

FIG. 1. Definition of the (globally defined) ‘‘eikonal co-
ordinates’’ ðvþ; v�Þ for spherically-symmetric gravitational
collapse.

FIG. 2. The Lambert W-function, defined on ½e�1;1Þ by
WðzÞeWðzÞ ¼ z and such that WðzÞ � z for z ! 0.
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with uðv; rÞ � v� 2r� 2rs log�, we see from (3) and the
asymptotic formula WðzÞ � z as z ! 0 that

v�ðv; rÞ �Uðv; rÞ � 2rs (4)

when �e���v � 1. The relation (4) can be thought of as
providing the physical interpretation of Kruskal’s and
Szekeres’ U coordinate: U captures the structure of out-
going phase fronts in the Hawking region of a (noneternal)
black hole.

B. Unruh-DeWitt detectors

Unruh-DeWitt (UDW) detectors [3,11] are pointlike
monopole detectors, which measure the Wightman func-
tion Gðx; yÞ of the field along a given trajectory �ð�Þ. To
first order in perturbation theory, the response function of a
UDW detector reads

Rð�Þ ¼ 2Re
Z 1

�1
du�ðuÞ

Z 1

0
ds�ðu� sÞe�i�sGð�ðuÞ;

�ðu� sÞÞ: (5)

Here,� is the energy gap between two stationary states of
the detector, Gð�ðuÞ; �ðu� sÞÞ is the pull-back of the
Wightman function to the detector’s world line, and �ðuÞ
is a nonnegative ‘‘switching’’ or ‘‘window’’ test function.
The introduction of a switching function in the definition of
the UDW response function ensures that Rð�Þ is well
defined and consistent with causality: choosing a switching
function such that �ðuÞ ’ 0 for u � � and u � �� ��
ensures that Rð�Þ only depends on the time interval ��

in the past of �. Motivated by this causality issue, Svaiter
and Svaiter introduced in [12] the simple ansatz �ðuÞ ¼
�ðu� �� ��Þ�ð�� uÞ, which in the �� ! 1 limit
leads to a transition rate (�-derivative of the response
function R)

_Rð�Þ ¼ 2Re
Z 1

0
ds e�i�sGð�ð�Þ; �ð�� sÞÞ: (6)

However appealing at first sight, this ansatz has two
unpleasant features, which are due to the fact that �ðuÞ ¼
�ðu� �� ��Þ�ð�� uÞ is not a proper test function (it is
not smooth): first, the standard �i0 prescription for the
Wightman function yields non-Lorentz-invariant transition
rates [13] and must be replaced by a more complicated
prescription [13–16]; second, the ultraviolet behavior
(large � limit) is qualitatively different on stationary and
nonstationary trajectory [17,18]. Both of these shortcom-
ings disappear if a smooth switching function is used
instead [18,19].

C. Wightman function in the (s-wave) in-vacuum

As mentioned earlier, in this paper we restrict our atten-
tion on the s-wave sector (spherically symmetric field
configurations) of the in-vacuum. In this approximation,
standard arguments [20,21] show that Gðx; yÞ takes the
logarithmic form

Gðx; yÞ / ln ððvþðxÞ � vþðyÞ � i0Þðv�ðxÞ � v�ðyÞ � i0ÞÞ:
(7)

Using the relation (4), this expression can be identified in
the Hawking region with the one given in [3] to describe a
radiating eternal black hole and known as the ‘‘Unruh
vacuum,’’

GUðx; yÞ / ln ððvðxÞ �vðyÞ � i0ÞðUðxÞ �UðyÞ � i0ÞÞ: (8)

These states—the collapse vacuum (7) and the Unruh
vacuum (8), in the s-wave sector—have a peculiar prop-
erty, which is not shared by more general vacua: the
incoming and outgoing modes couple to UDW detectors
independently. This means that the UDW response func-
tion R splits as R ¼ Rþ þR�, where R� is given
by (5) with Gðx; yÞ replaced by

ln ðv�ð�ðuÞÞ � v�ð�ðu� sÞÞ � i0Þ: (9)

The thermal properties ofRþ andR� can thus be studied
independently, and are completely determined by the be-
havior of each eikonal coordinate v� along the detector’s
trajectory. In particular, in the case of stationary trajecto-
ries leading to a thermal spectrum, the thermality (a.k.a.
detailed balance) condition for Rþ and R� defines two
temperatures Tþ and T�, by

R�ð��Þ ¼ e�=T�R�ð�Þ: (10)

Hawking region

0 2 4 6 8 10

5

0

5

10

15

20

r M

v
M

FIG. 3. ‘‘Portrait of the vacuum’’: level curves of the eikonal
coordinate v�ðv; rÞ in the Vaidya spacetime. The dashed hori-
zontal line is the collapsing shell, the dotted vertical line is the
event horizon, and the region in the top-left corner is the
‘‘Hawking region’’.
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These temperatures need not coincide in general. This is
clear in the asymptotic Hawking effect, where Tþ ¼ 0 and
T� ¼ TH ¼ �=2�.

D. Hawking temperature from
the peeling of outgoing modes

The mechanism responsible for the perception of
Hawking radiation has been described by many authors
as an ‘‘exponential redshift’’ or ‘‘peeling’’ effect. After [2],
this statement is usually expressed in terms of the canoni-
cal mapping from Jþ to J� which relates the retarded
and advanced Eddington-Finkelstein times of a given
null ray. From the perspective of UDW detectors, how-
ever, it is more natural to state the ‘‘peeling’’ condition in a
trajectory-dependent way, as follows: if �ð�Þ is the trajec-
tory of an asymptotic observer at rest relative to the hole,
the quantity v�ð�ð�ÞÞ satisfies

� €v�ð�ð�ÞÞ
_v�ð�ð�ÞÞ ¼ �: (11)

(From now on, we shall drop the explicit reference to �, the
trajectory being understood from the context.). Integrating
this condition gives

v�ð�Þ � v�ð�� sÞ / e��ð2��sÞ=2 sinh ð�s=2Þ: (12)

If we plug this relation into (9) and perform the standard
residue integration [20] (see Appendix A for details), we
obtain the thermal spectrum at temperature TH ¼ �=2�

_R�ð�Þ / 1

�ðe2��=� � 1Þ : (13)

(The � ! 0 divergence is of course an artifact of the
two-dimensional approximation.)

The main advantage of this trajectory-based formulation
of the exponential redshift argument is that it applies
mutatis mutandis to any trajectory where €v�= _v� is a
constant: for the same reasons that asymptotic observers
such that j €v= _vj ¼ � perceive a thermal spectrum at tem-
perature �=2�, nonasymptotic observers such that j €v= _vj is
constant perceive a thermal spectrum at temperature

T� ¼ 1

2�

��������
€v�
_v�

��������: (14)

This is the case e.g. for (late-time) static observers at any
radius r > rs: from the estimate (4), we compute��������

€v�
_v�

��������¼ � _vðrÞ: (15)

The time-derivative _vðrÞ along a static trajectory can be

read off from the metric (1), as _vðrÞ ¼ ð1� rs=rÞ�1=2, and
therefore the temperature of outgoing modes measured by
static UDW detector is readily found to be

Tstat� ðRÞ ¼ THð1� rs=rÞ�1=2: (16)

Again, this is consistent with the Tolman equilibrium
condition [5].

E. Nonstatic trajectories: Quasitemperature
and adiabatic approximation

It has been argued in [10] that the approximate con-
stancy of T�ð�Þ � j €v�ð�Þ= _v�ð�Þj=ð2�Þ, expressed as

	� �
��������

_T�
T2�

��������� 1; (17)

is a sufficiently condition for the perception of thermal
Hawking radiation. This ‘‘adiabaticity condition,’’ consid-
ered previously [22] in the context of evolving black holes,
allows us to study the response of UDW detectors along
nonstationary trajectories in a very straightforward way,
simply by computing T�ð�Þ. Heuristically, when 	� � 1,
the response function Rð�;�Þ of a UDW detector
switched off (smoothly) at time � will be indistinguishable
from a thermal spectrum with �-dependent temperature
T�ð�Þ. In fact, even when 	 is not small, this relationship
still holds in the ultraviolet limit, where � 	 T�ð�Þ.
Following this rationale, we call quasitemperature of a

time-dependent spectrum Rð�;�Þ a function Tð�Þ such
that, at any given time �, the detailed balance condition
holds in the ultraviolet limit,

Rð�;��Þ � e�=Tð�ÞRð�;�Þ for j�j 	 T�ð�Þ: (18)

See Appendix B for more details on the adiabatic
approximation.

F. Two quasitemperatures for Hawking radiation

Our approach to the study of Hawking radiation along
general trajectories is based on this adiabatic approxima-
tion. For a given trajectory, we will compute the quasitem-
peratures of both outgoing and incoming modes as

T�ð�Þ ¼ 1

2�

��������
€v�ð�Þ
_v�ð�Þ

��������: (19)

As we will see, these quasitemperatures together with the
corresponding adiabaticity parameters

	� �
��������

_T�
T2�

��������� 1; (20)

provide a valuable handle on the response of UDW detec-
tors to Hawking radiation, especially in the large � limit.

III. RESPONSE OF GEODESIC DETECTORS

In this section, we apply the quasitemperature formalism
to the case of geodesic trajectories in the Schwarzschild
region (v > 0) of the Vaidya collapse geometry described
above.
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A. Schwarzschild geodesics

Timelike Schwarzschild geodesics are characterized by
two orbital parameters: their energy per unit rest mass E
and their angular momentum per unit rest mass L ¼ r2 _’.
In Eddington-Finkelstein coordinates, the geodesic
equations read

8<
:

_r2 þ ð1� rs=rÞð1þ L2=r2Þ ¼ E2

�ð1� rs=rÞ _v2 þ 2 _v _rþL2=r2 ¼ �1:
(21)

From these equations and (3), we can in principle obtain
vþ ¼ v, v� and their derivatives—hence the quasitemper-
atures T� and the adiabaticity parameters 	�—along any
geodesic ðE; LÞ. This approach is illustrated in Fig. 4 for
one inspiral trajectory with ðE; LÞ ¼ ð1; 3Þ, obtained by a
numerical integration of (21). This plot shows interesting
phenomena: the setting off of Hawking radiation after
gravitational collapse, the increase of the quasitemperature
of outgoing modes, and of the quasitemperature of incom-
ing modes as the horizon is approached.

In order to get an analytical understanding of this plot,
and in particular of the dependence of T� and 	� on E and
L, we now consider special regimes of interest (circular
orbits, radial trajectories in the asymptotic and near-
horizon regimes) separately. Our presentation is pedes-
trian. We have found, indeed, that the details of the
computation of T� and 	� provide a good deal of insight
into the inner workings of the Hawking phenomenon: they
display in a very transparent way the interplay between the
geometry of spacetime (and its geodesics) and the structure
of the in-vacuum which is responsible for the evaporation
of black holes.

B. Circular orbits

Circular orbits are characterized by their Schwarzschild
radius r > 3rs=2, or equivalently by � ¼ r=rs � 1> 1=2.1

By virtue of their stationarity, these orbits have constant _v,
given by

_vð�Þ ¼
�

1þ �

�� 1=2

�
1=2

: (22)

In particular, €v ¼ 0, hence Tþ ¼ 0: incoming modes do
not couple to UDW detectors on circular orbits. On the
other hand, from(3) we get for the outgoing modes

€v�ð�Þ
_v�ð�Þ ¼ �� _vð�Þ

�
1þ �e���v W

00ð�e���vÞ
W 0ð�e���vÞ

�
; (23)

where primes denote derivative with respect to z ¼
�e���v. Using (22) and the standard formula for the
derivative of the Lambert W-function,

W 0ðzÞ ¼ WðzÞ
zð1þWðzÞÞ ; (24)

we arrive at

T�ðv;�Þ ¼ TH

�
1þ�

�� 1=2

�
1=2



��������1�

Wð�e���vÞð2þWð�e���vÞÞ
ð1þWð�e���vÞÞ2

��������: (25)

In this expression, the second term represents the transient
regime before the orbit has been ‘‘swallowed’’ by the
Hawking region. After this transient, T�ðv; �Þ reaches
the stationary value

Tcirc� ð�Þ � lim
v!1T�ðv; �Þ ¼ TH

�
1þ �

�� 1=2

�
1=2

: (26)

Observe that, in spite of the fact that circular orbits have
zero acceleration, this temperature is always larger than
the temperature measured by static detectors at the same
distance from the hole [compare with (16)], and actually
diverges on the photon sphere (r ¼ 3rs=2). These results
are illustrated in Fig. 5.

C. Radial trajectories

Radially infalling trajectories (L ¼ 0, _r < 0, _v > 0) are
parametrized by their energy E, with E � 1 corresponding
to unbound states and E< 1 to bound states. (The limiting
case E ¼ 1 describes a detector dropped from infinity with
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FIG. 4 (color online). The quasitemperature of outgoing (con-
tinuous) and incoming (dashed) as a function of proper time
along the inspiral geodesic ðE; LÞ ¼ ð1; 3Þ until it reaches the
horizon. The inset shows the geodesic in the equatorial plane.
The step at � ’ 300 corresponds to the moment when the
trajectory enters the Hawking region.

1The corresponding energies and angular momenta are
given by

EcircðrÞ ¼ rs

�
�2

ð�þ 1Þð�� 1=2Þ
�
1=2

;

LcircðrÞ ¼ rs

� ð1þ �Þ2
2ð�� 1=2Þ

�
1=2

:
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zero velocity into the black hole.) In addition to the time-
dependence of the Hawking phenomenon itself [the tran-
sient represented by v-dependent terms in (25)], these
trajectories are intrinsically nonstationary: as the black
hole is approached (� ! 0) the local Riemann curvature
becomes larger and larger. To avoid mixing up these two
effects, from now on we will assume that the trajectory is
well inside the Hawking region. This allows us to focus on
the time-dependent effects arising from the trajectory
itself.

1. Outgoing modes

Consider first the behavior of outgoing modes.
Using (3), we have

€v�
_v�

’ ð�e���vÞ��
ð�e���vÞ�

¼
€�ð1þ �Þ þ ð _�� � _vÞð2 _�þ �ð _�� � _vÞÞ � �� €v

_�þ �ð _�� � _vÞ :

(27)

Let us now focus on the aforementioned limiting cases: the
asymptotic limit (� 	 1) and at horizon crossing (� ¼ 0).

In the asymptotic limit (which requires E � 1 to exist),

the system (21) gives _���ðE2 � 1Þ1=2=rs, _v� E�
ðE2 � 1Þ1=2, €� ’ 0, and €v ’ 0, hence from (27) with
� 	 1,

€v�
_v�

��������asymp
’ _�� � _v ¼ ��ðEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
Þ: (28)

Thus, in this limit we get

Tasymp� ðEÞ ¼ THðEþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
Þ: (29)

This formula is consistent with Hawking’s original
prediction, with a Doppler factor accounting for the rela-
tive motion between the detector and the black hole when
E> 1. In this regime the adiabaticity parameter 	asymp� ðEÞ
is of course vanishingly small.
At horizon crossing (� ¼ 0), on the other hand, the

equations of motion (21) give _� ¼ �E=rs and _v ¼
1=2E, and, by differentiation of the radial equation,
€� ¼ �1=2r2s . Plugging this into (27) now gives

€v�
_v�

��������hor
¼

€�þ 2 _�ð _�� � _vÞ
_�

¼ � 2E

rs
¼ �4�E (30)

and therefore

Thor� ðEÞ ¼ 4ETH: (31)

Thus, not only is the quasitemperature not zero on the
horizon, but for unbound states (E � 1) it is actually larger
than the Hawking temperature perceived by static observ-
ers at infinity. The formula (31) is consistent with the result
of [10].2

We have stressed that the near-horizon regime is not
stationary, hence that whether (31) can be interpreted as a
temperature depends on the value of 	�ðEÞ there. Further
differentiation of (21) and (27) gives

	hor� ðEÞ ¼ �

4

�
2þ 1

E2

�
: (32)

This number is of order 1 for all unbound trajectories
(E � 1), and never smaller than �=2 ’ 1:6: detectors
with frequency � ’ Thor� ðEÞ will not confuse the vacuum
state with a thermal state. Large-frequency detectors [� 	
Thor� ðEÞ], on the other hand, will not be able to make this
difference.

2. Incoming modes

Let us now consider the behavior of incomingmodes. As
we saw earlier, these do not couple to UDW detectors on
stationary trajectories (static or circular); it may therefore
seem appropriate to assume that the same holds along
radial trajectories. This is indeed the case in the asymptotic
limit, where we have seen that €v ’ 0—but what about the
near-horizon regime?
We have obtained _v ¼ 1=2E on the horizon. To get

the corresponding value of €v, we differentiate the second
equation of (21). On the horizon, this gives €v ¼ ��=4E2,
and therefore

Thorþ ðEÞ ¼ TH

2E
: (33)

For unbound states (E � 1), this quasitemperature is
always smaller than that of outgoing modes. The situation

0.5 1.0 1.5 2.0 2.5 3.0
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T

TH

static

circular

FIG. 5. Stationary trajectories: the temperature measured by
static detectors (dashed line) and by geodesic detectors on a
circular orbit (continuous line) around a Schwarzschild black
hole as a function of � ¼ r=rs � 1.

2Considering an ‘‘observer freely falling from infinity,’’ they
find that ‘‘in the last stages of his approach to the horizon, and
surprisingly at first sight, the effective temperature rises reaching
exactly four times HawkingÕs temperature’’ [10].
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is different for bound states (E< 1): for any E< 1=
ffiffiffi
8

p
we

have Thorþ ðEÞ> Thor� ðEÞ, i.e. the incoming modes dominate
the outgoing modes, and in the limit where E ! 0 (detec-
tors dropped with zero velocity from close to the horizon),
the quasitemperature of incoming modes grows larger
and larger.

To assess the meaning of this result, we must (as before)
consider the value of the adiabaticity parameter at horizon
crossing. We get

	horþ ðEÞ ¼ 2�j1� 8E2j: (34)

Thus, just like for outgoing modes, 	horþ is bounded from
below by a number of order one (actually 2� ’ 6:2): that
is, the adiabatic approximation is not good in this regime,
and (33) can only be interpreted as the ultraviolet decay
rate of detector spectra. This notwithstanding, the fact that
Thorþ ðEÞ becomes large as E ! 0 indicates that, in this
regime, ingoing modes play a key role in the Hawking
process.

D. Inspiral orbits

It is not difficult to generalize the above results to
inspiral trajectories with nonzero angular momentum. As

before, the equations of motion (21) give _�, €�, etc., as
functions of E and L in the various regimes, and using (27)
it is a simpler matter to derive Thor� ðE; LÞ. We do not repeat
this computation here; the results are

Thor� ðE; LÞ ¼ 4ETH (35)

and

Thorþ ðE; LÞ ¼ TH

2E

��������1þ L2

r2s

�
1� 8E2

1þ L2=r2s

��������� (36)

and similar formulas for 	hor� which we do not give here.
Thus, while the quasitemperature of outgoing modes at
horizon crossing is independent of the angular momentum
of the trajectory, the quasitemperature of incoming modes
is not. Instead, it is given by the above (nonmonotonous)
function of E and L.

IV. HAWKING FLUX ALONG RADIAL
TRAJECTORIES

It is well known that the response of UDW detectors to
vacuum radiation is a priori independent from the exis-
tence of a nonzero energy-momentum tensor hTabi.3 In the
Hawking effect, however, it turns out that hTabi � 0 after
the collapse: at future infinity, one finds hTuui ¼ �T2

H=12
(and all other components zero), showing that a
Schwarzschild black hole indeed produces a stationary
outgoing flux—that it actually evaporates.

What flux would infalling observers measure at horizon
crossing? Given the intriguing results we have obtained
for the response function of UDW detectors in the limit
E ! 0, it is interesting to consider also the flux

F ðEÞ ¼ �hTabiuanb (37)

along radially infalling trajectories uaðEÞ as a function of
their energy E, say in the direction nb orthogonal to ua in
the outward direction. This quantity has been considered
previously by several authors, see [23–25], and has two
advantages over UDW response functions:

(i) It is local: one does not require a trajectory extend-
ing sufficiently far in the past of the detection event
to define F ðEÞ.

(ii) It is exact: one does not need to rely on an intricate
approximation scheme (such as the adiabatic expan-
sion of UDW response functions) to computeF ðEÞ.

Is F ðEÞ also divergent as E ! 0?
To answer this question, we can indeed rely on standard

results on vacuum energy-momentum tensor in two-
dimensional spacetimes: given null coordinates ðvþ; v�Þ,
the vacuum energy-momentum tensor can be written as
[20,26,27]

hTv�v�i ¼ � 1

12�
C1=2@2v�C

�1=2

hTvþv�i ¼ hTv�vþi ¼
RC

96�
;

(38)

where C is the conformal factor such that

ds2 ¼ �Cðvþ; v�Þdvþdv� (39)

and R ¼ �4C�1@vþ@v� lnC the two-dimensional scalar

curvature.
In our case—which, by virtue of our assumption of

spherical symmetry, is effectively two-dimensional—the
factor Cðvþ; v�Þ can be obtained from the Vaidya metric
(1) by inverting the relation (3) between v� and ðv; rÞ.
This gives

Cðvþ; v�Þ ¼ a� 1

a

Wð�ae�aþ�vþÞ
1þWð�ae�aþ�vþÞ (40)

where a � 1þ �v�. Applying the formulas (38) and
considering the v� ! �1=� limit (Hawking region) for
�v 	 1 (late times), we compute

hTvþvþihor ¼ ��T2
H

12
hTv�v�ihor �

�T2
H

2
e2�v: (41)

Note that the incoming component hTvþvþi at the horizon is
minus the outgoing component hTv�v�i at infinity.
Contracting (41) with the radial 4-velocity ua (with

components _v ¼ 1=2E and _v� ¼ 2Ee��v at the horizon)3In the Unruh effect, for instance, one hasR � 0 but hTabi¼0.
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and its outward-pointing unit normal nb (with components
nþ ¼ 1=2E and n� ¼ �2Ee��v), we arrive at

F horðEÞ ¼ �T2
H

�
2E2 þ 1

48E2

�
: (42)

This describes an outgoing flux, which—like the quasi-
temperature Thor� —diverges when E ! 0. This expression
is to be compared with the asymptotic flux, given by

F asympðEÞ ¼ �T2
H

12
ðEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
Þ2: (43)

We plot both functions of E in Figs. 6 and 7. Numerically,
an observer dropped with zero velocity from e.g. r ¼
100rs=99 (i.e. such that E ¼ 0:1), the flux given by (42)
is ’ 25 times larger than the Hawking value �T2

H=12.

V. ROLE OF CURVATURE IN NEAR-HORIZON
HAWKING RADIATION

We have found that UDW detectors crossing the horizon
of a Schwarzschild black hole will in general record non-
zero quasitemperatures and flux. Howmuch of this effect is
due to the structure of the collapse vacuum, and how much
to the mere fact that spacetime is curved on the horizon? It
is impossible to answer this question within the framework
of Schwarzschild black holes because both their surface
gravity (hence TH ¼ �=2�) and their Riemann curvature
on the horizon are controlled by the same parameter,
namely the mass. To get some insight into the role played
by curvature in the Hawking effect, we therefore consider
artificial black holes with non-Schwarzschild geometry, in
the spirit of the ‘‘analogue gravity’’ program [28].

A. Artificial black holes with flat horizons

Since we are interested in models of gravitational
collapse, we shall consider generalizations of the Vaidya
metric of the form

ds2f ¼�ð�ð�vÞþ�ðvÞfðrÞÞdv2þ2dvdrþ r2d�2; (44)

where fðrÞ could in principle be essentially any func-
tion of r. In particular, a function fðrÞ such that
(i) fðrsÞ ¼ 1, (ii) f0ðrsÞ ¼ 2�, (iii) lim r!1fðrÞ ¼ 1 and
(iv) lim r!0fðrÞ ¼ �1 will yield a black with the same
asymptotic structure and surface gravity � as the
Schwarzschild black hole, but with a different Riemann
curvature distribution. Here we will focus on an artificial
collapse metric of the form fðrÞ ¼ ðr=rs � 1Þ�ðrÞ, where
�ðrÞ is constant near the horizon but ensures that condi-
tions (iii, iv) above is satisfied. This corresponds to a
spacetime where curvature [in the ðv; rÞ sector] is concen-
trated on two locations: at the shell (v ¼ 0), where it has a
�-function singularity, and at large radii (say r � rc),
where the derivatives of �ðrÞ start taking nonzero values.
So long as we only consider trajectories contained within
the domain F � fv > 0; r < rcg, we can think of this
model as describing a ‘‘flat black hole.’’ Does this space-
time radiate in the same way as the Schwarzschild black
hole?
Repeating the computation leading to (3) in the Vaidya

case, we find for this ‘‘flat black hole’’

v�ðv; rÞ ¼ �2rsð1þ �e��vÞ: (45)

Just like the Vaidya case, this equation defines a ‘‘Hawking
region’’ where v� ’ ���1; the only difference with the
Schwarzschild case is that this region grows relatively
faster as a function of v, as can be confirmed by comparing
the conditions �e��v � 1 (flat) and �e���v � 1 (Vaidya).

B. Quasitemperatures at the flat horizon

To estimate the quasitemperatures measured by UDW
detectors in geodesic motion around this flat black hole,
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FIG. 7. The flux F ðEÞ perceived by radially infalling observ-
ers with energy E, both in the asymptotic region (‘‘asym’’) and at
horizon crossing (‘‘hor’’). Compare with Fig. 6.
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FIG. 6. Radially infalling trajectories: quasitemperature of out-
going and incoming modes in different regimes, as functions of
the energy E. For small energies E � 1 (bound states), incoming
modes dominate.
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we repeat the steps in Sec. III: write the geodesic equation
for trajectories with orbital parameters ðE; LÞ, which is
now

�
_r2 þ fðrÞð1þ L2=r2Þ ¼ E2

�fðrÞ _v2 þ 2 _v _rþL2=r2 ¼ �1;
(46)

and from (45) compute

€v�
_v�

¼
€�� 2� _v _����ð €vþ � _v2Þ

_�� �� _v
: (47)

Clearly, in the asymptotic limit r ! 1, these equations
lead to the same results as in the Schwarzschild case. This
confirms that asymptotic Hawking radiation is a global
phenomenon which does not depend on the actual curva-
ture distribution around the black hole.

Consider however the case of UDW detectors in
the near-horizon region, where fðrÞ ’ r=rs � 1 ¼ �. In

this regime, (46) gives the same values for _�, _v and €� as

in the Schwarzschild case, and in particular €� ¼ 2� _v _� ,
but now €v ¼ �� _v2. Thus, all terms on the numerator of
(47) cancel, and therefore

Tnear-hor� ðE; LÞ ¼ 0: (48)

The superscript indicates that this identity holds not just on
the horizon, but in the whole near-horizon region where the
black hole is flat. In this regime, the outgoing modes do not
couple to UDW detectors. This shows that, for these to
become thermal, there must be a region where the Riemann
curvature is nonzero between the horizon and the observer
(even if its actual distribution in space is irrelevant).

As for the incoming modes, the relationship €v ¼ �� _v2

gives

Thorþ ðE; LÞ ¼ TH

2E

ðL2 þ r2sÞ
r2s

: (49)

The incoming modes, which unlike the outgoing modes
must have encountered some curvature on their way to the
horizon, do couple to UDW detectors, even more so that L
is large and E small.

We have seen at the end of the previous section that there
exists an ‘‘irreducible nonadiabaticity’’ of horizon-
crossing radial geodesics in the Schwarzschild spacetime.
This irreducible nonadiabaticity is also present in the flat
case, as can be confirmed by the computation of 	horþ :
sticking for simplicity to L ¼ 0, we get

	horþ ðEÞ ¼ 2�: (50)

This irreducible nonadiabaticity is thus independent of the
local geometry of the horizon; it is an intrinsic feature of
Hawking radiation as perceived by freely-falling near-
horizon observers.

C. Flux at the horizon

We close this section by repeating the computation of the
flux measured by infalling observers F ðEÞ ¼ �hTabiuanb.
In the flat case, the relation (45) gives Cðvþ; v�Þ ¼ e�v,
hence from the Davies-Fulling-Unruh formula (38)

hTvþvþi ¼ ��T2
H

12
; hTv�v�i ¼ hTv�vþi ¼ 0: (51)

and therefore

F horðEÞ ¼ �T2
H

48E2
: (52)

Again, we find that flattening the horizon cancels the effect of
outgoingmodes at the horizon, but not that of ingoingmodes.
The result is an outgoing flux which diverges as E ! 0.

VI. DISCUSSION AND CONCLUSION

In this paper, we have considered Hawking radiation
from the perspective of UDW detectors evolving on non-
asymptotic trajectories. When the trajectory is not station-
ary, or just after the collapse, their response is not exactly
thermal; by using a ‘‘quasitemperature’’ formalism based
on a suitable adiabatic expansion, we have shown how to
get a basic understanding of their response, especially in
the large frequency limit. This quasitemperature formalism
is very convenient from a computational perspective: for-
mula II E is explicit and can be straightforwardly applied to
any trajectory of interest.
Following this approach, we have obtained several

interesting results which go beyond the lore that Hawking
radiation simply reduces to Unruh radiation at the horizon,
or that ‘‘the equivalence principle is restored’’ [4] there
(that is, assuming that the Hawking effect violates it in
some sense4). They are:

(i) In spite of the fact that these trajectories are not
accelerated, the temperature perceived on circular
orbits is always higher than that on static trajectories
at the same distance from the hole, and diverges on
the photon sphere.

(ii) In the near-horizon region, a freely-falling detector
couples to both the outgoing and the incoming
modes of the field, to which it associates two differ-
ent quasitemperatures,5 depending on its energy and
angular momentum. Both can be arbitrarily high
(though in different regimes: for fast and slow mov-
ing detectors, respectively). This singular behavior
of Hawking radiation in the E ! 0 limit,6 is con-
firmed by a flux computation.

4We probably would not have described the Hawking effect in
those terms anyhow.

5At least in the s-wave approximation discussed in this paper.
6This can be thought of as a divergent Doppler effect: the

Doppler factor between two geodesic observers with energies E
and E0 diverges like ln ðE0=EÞwhen E ! 0. We thank Luis Garay
and Jorma Louko for this observation.
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While the thermality of outgoing modes relative to
near-horizon geodesic observers can be traced back
to the spacetime curvature, this is not the case for
incoming modes: these appear thermal (both in
terms of UDW response functions and of fluxes)
to infalling observers also in spacetimes with flat
horizons. In both cases, there exists an irreducible
nonadiabaticity at the horizon, in the sense that
j _T�j � T2� at the horizon.

In a nutshell: far from a no-particle vacuum, a detector
dropped with zero velocity from near the horizon will in
fact record intense Hawking radiation in the ingoing sector.
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APPENDIX A: DERIVATION OF (13)

From Eq. (12) and the fact that vþð�Þ is linear in � in the
Hawking region, the Wightman function in (7) can be
expressed as

Gð�;�� sÞ / lnðsÞþ lnðe��
2ð2��sÞÞþ ln

�
sinh

�
�

2
s

��
: (A1)

When substituted in (6), the first and the second term on
integration by parts contribute �ð��Þ or Dirac delta in�
and its derivatives which have support on� ¼ 0. Since we
are looking at cases for finite energy level separation
between two levels, that is, �> 0, these contributions
(in fact any polynomial in s) are irrelevant. As for the third
term, we observe that it is periodic in s with an imaginary
period 2i�=�; its contribution to (6) can be computed
explicitly by residue calculus, by using

sinh ðxÞ ¼ x
Y1
m¼1

ðm�� ixÞðm�þ ixÞ
m2�2

(A2)

and summing over the poles. This results in (13).

APPENDIX B: ADIABATIC EXPANSION
OF UDW-LIKE RESPONSE FUNCTIONS

The validity of the adiabatic approximation mentioned
in Sec. II E has been studied in some detail [17,29,30] in
the context of nonuniformly accelerated UDW detectors in
flat spacetime (approximate Unruh effect). In this setup,
Barbado and Visser [30] have devised an ‘‘adiabatic
expansion’’ for the UDW transition rates in terms of the

quantities aðnÞð�Þ=að�Þnþ1, where að�Þ is the instantaneous
acceleration of the detector.
In this appendix, we describe the adiabatic expansion of

any functional of a slowly varying function kð�Þ of the
form

Rð�;�; k� �
Z 1

�1
dsKð�sÞgð��;s½k�Þ; (B1)

where K, g are any functions such that the above integral is
well defined, and ��;s½k� is the functional

��;s½k� � vð�Þ � vð�� sÞ
_vð�Þs ; (B2)

with vð�Þ any solution of the differential equation

€vð�Þ ¼ �kð�Þ _vð�Þ: (B3)

The UDW response functions of the kind discussed in this
paper obviously fit this scheme, with KðzÞ ¼ exp ð�izÞ,
gðzÞ ¼ ln ðzÞ, and k (divided by 2�) the quasitemperature
function.
The functional Rð�;�; k� defined by (B1) may be seen

as a function of �, �, and the infinitely many derivatives

kðnÞð�Þ of k at a given instant �, or—better—as ��1 times
the dimensionless function

Rð
0; 
1; . . .Þ �
Z 1

�1
duKðuÞgð��;u=�½k�Þ (B4)

of the dimensionless ratios 
n � kðnÞð�Þ=�nþ1. If we
denote R0ð
0Þ the value of Rð
0; 
1; . . .Þ in the particular
case where kð�Þ ¼ k is constant, the question we wish to
answer is: in the general case where kð�Þ is not constant,
can Rð
0; 
1; . . .Þ be systematically expanded about
R�ð
0Þ, with each corrective term depending on only
finitely many 
n’s?
The key idea to get started with this question, which we

found in [30], consists in introducing a scaling parameter�

and kð�Þð�� sÞ � kð�� �sÞ. Denoting 
ð�Þ
n � �n
n the

corresponding scaled dimensionless ratios, we have

Rð
0; 
1; . . .Þ ¼
X1
m¼0

1

m!

dm

d�m Rð
ð�Þ
0 ; 
ð�Þ

1 ; . . .Þj�¼0: (B5)

Using Faà di Bruno’s formula (chain rule for higher
derivatives), we may write themth term in this expansion as

1

m!

Xm
j¼0

Z 1

�1
duKðuÞgðjÞð�0ÞBm;jð�1; . . . ;�m�jþ1Þ; (B6)

where Bn;j are the Bell polynomials,7 and

�j � @j���;u=�½kð�Þ�j�¼0: (B7)

7The Bell polynomials are defined by Bm;kðz1; . . . ; zm�kþ1Þ ¼
m!

PQ
m�kþ1
i¼1

1
ji!
ðzii!Þji , where the sum runs over all sequences of

nonnegative integers ðji; . . . ; jm�kþ1Þ such that j1 þ � � � þ
jm�kþ1 ¼ k and j1 þ 2j2 þ � � � þ ðm� kþ 1Þjm�kþ1 ¼ m.
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In the next paragraph, we will show that �j is given by

�j ¼

j


jþ1
0

�jð
0uÞ (B8)

for some function �j. This result calls for several

comments:
(i) The mth term in the Taylor expansion (B5), given

by (B6), is is a function Rmð
0; . . . ; 
mÞ of the first
mþ 1 parameters 
n only, viz.

Rð
0; 
1; . . .Þ ¼
X1
m¼0

Rmð
0; . . . ; 
mÞ: (B9)

(ii) The relevant parameters controlling the conver-
gence of the adiabatic expansion (B9) are indeed


j=

jþ1
0 ¼ kðjÞð�Þ=kð�Þjþ1, as observed in [30] in

the context of the Unruh effect; in particular, we
have for each m � 1

Rmð
0; . . . ; 
mÞ ¼ O
�
sup

1�j�m


j


jþ1
0

�
: (B10)

When kð�Þ is a polynomial function of � (so that
only finitely many 
n’s are nonvanishing), we are
assured that

Rð
0; 
1; . . .Þ ¼ R0ð
0Þ þO
�
sup
j�1


j


jþ1
0

�
: (B11)

In other words, the adiabatic approximation is

good when all the expansion parameters 
j=

jþ1
0

are small.
(iii) The adiabatic expansion is not a high-frequency

expansion; indeed, the functions �jð
0uÞ ¼
�jðkð�Þu=�Þ can well be nonpolynomial in 1=�.

To prove (B8), we begin by expressing the argument of g
in (B4) explicitly in terms of the dimensionless ratios 
n’s.
From (B3), we have

��;u=�½k� ¼ �

u

Z 0

�u=�
d� exp

Z 0

�
d
kð�þ 
Þ: (B12)

Expanding kð�þ 
Þ in powers of 
 and making the change
of variable � ¼ �� in the �-integral, this gives

��;u=�½k� ¼ 1

u

Z u

0
d� exp

X1
n¼0

�nþ1
n

ðnþ 1Þ! : (B13)

Next, we consider the effect of scaling by � on (B17),

��;u=�½kð�Þ� ¼ 1

u

Z u

0
d� exp

X1
n¼0

�nþ1�n
n

ðnþ 1Þ! (B14)

and compute its jth derivative with respect to �, as in
(B17). The 0th derivative is easily found to be

�0 ¼ e
0u � 1


0u
(B15)

and for, j � 1,

�j ¼

j

jþ 1
@jþ1

0

�0: (B16)

Computing explicitly the derivatives of (B15), we arrive at
(B8) with

�jðzÞ ¼ ð�1Þjþ1j!

z

�
ez

Xjþ1

r¼0

ð�1Þr
r!

zr � 1

�
: (B17)

We close this appendix by evaluating explicitly the first
corrective term R1 in the particular case whereKðzÞ ¼ e�iz

and gðzÞ ¼ ln z, namely

Rð�;�; k� ¼ ��1Rð
0; . . .Þ �
Z 1

�1
ds e�i�s ln ð��;s½k�Þ:

(B18)

The real part of this integral is the UDW response function
along a trajectory with quasitemperature T ¼ k=2�,
studied in the main body of this paper. As is well known,
the 0th order R0ð
0Þ is the standard two-dimensional ther-
mal spectrum

R0ð
0Þ ¼ 2�

e2�=
0 � 1
: (B19)

From (B6), (B7), and (B17), we have

R1ð
0;
1Þ¼
1


2
0



Z 1

�1
due�iue


0uð1�
0uþð
0uÞ2=2Þ�1

e
0u�1
:

(B20)

The integrand has simple poles at un ¼ 2i�n=
0 for each
integer n � 0. Closing the contour in the lower half-plane
and summing over n � �1, we obtain

R1ð
0; 
1Þ ¼ 
1


2
0

�
�2ð1þ i� coth ð�=
0ÞÞ


0sinh
2ð�=
0Þ

�
: (B21)

Reinstating the dimensionful variables kð�Þ, _kð�Þ and �
and writing T ¼ k=2�, this gives

RefRð�;�; k ¼ 2�T�g
¼ 2�

�ðe�=T � 1Þ



0
@1þ _Tð�Þ

Tð�Þ2
�

8�Tð�Þ
e�=2Tð�Þ

sinh 2ð�=2Tð�ÞÞ þ � � �
1
A:
(B22)

Remarkably, the second term in the brackets is exponen-
tially vanishing in the ultraviolet limit, showing that the
adiabatic approximation is excellent in this regime,
whatever the value of the parameter _Tð�Þ=Tð�Þ2.
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