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The Newman-Janis algorithm has been widely used to construct rotating black hole solutions from

nonrotating counterparts. While this algorithm was developed within general relativity (GR), it has more

recently been applied to nonrotating solutions in modified gravity theories. We find that the application of

the Newman-Janis algorithm to an arbitrary non-GR spherically symmetric solution introduces pathol-

ogies in the resulting axially symmetric metric. This then establishes that, in general, the Newman-Janis

algorithm should not be used to construct rotating black hole solutions outside of General Relativity.
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I. INTRODUCTION

While black holes (BHs) are theorized to be at the center
of most galaxies, their direct detection remains illusive.
The evidence for their existence is indicated, for example,
through the observations of S stars around Sgr A* in the
center of the Milky Way [1–3] or through accretion disk
observations [4–8]. Direct BH detection would require
observations of the BH’s event horizon, perhaps through
the shadows that this casts on BH accretion disks [9–11].
Another method to directly detect BHs is through the
gravitational waves they emit when they spiral into each
other and merge. After merger, the remnant rings down
carrying information that would allow tests of the no-hair
theorem and thus a verification of the BH nature of the
spacetime [12,13]. Even as a small BH spirals into a
massive one, the waves emitted carry important informa-
tion that can be used to map the gravitational field in the
exterior of the massive BH.

Such observations, however, require precise knowledge
of the gravitational field produced by a BH outside its event
horizon. This knowledge can be obtained from solutions
to the field equations, which, although easy to find analyti-
cally in general relativity (GR), become daunting tasks in
modified gravity theories. While Schwarzschild’s station-
ary and spherically symmetric solution was derived soon
after GR was first presented [14], it took about half of a
century for Kerr to find an analytical axially symmetric
counterpart [15]. Similarly, stationary and spherically sym-
metric solutions are easy to find in modified gravity theo-
ries [16,17], but their added complexities makes axially
symmetric solutions nearly impossible to derive [18–20].

The Newman-Janis algorithm (NJA) provides a set of
steps with which one can transform the Schwarzschild
metric into the Kerr metric. The algorithm generally pro-
ceeds as follows [21,22]: (i) construct a ‘‘seed,’’ stationary
and spherically symmetric solution in the tetrad formalism
[23–25], (ii) complexify the tetrad, (iii) apply a complex
coordinate transformation, and (iv) apply a reality condi-
tion. The original work by Newman and Janis mapped the

Schwarzschild metric to the Kerr one [21], but the algo-
rithm has also been shown to work between the Reissner-
Nordström metric and the Kerr-Newman metric. Since
then, the NJA has found a home as a simple way to
‘‘derive’’ the Kerr metric from the Schwarzschild metric.
In introductory texts, the NJA is used as a means of
‘‘rotating’’ the spherically symmetric Schwarzschild met-
ric into the complex plane to obtain the Kerr line element.
Two ambiguities are intrinsic in the NJA. The first con-

cerns the complexification of the tetrad, i.e. the rewriting
of the real tetrad into a complex one through coordinate
complexification. The second concerns the complex coor-
dinate transformation applied to the complex tetrad. Drake
and Szekeres [22] generalized this algorithm by consider-
ing a general static, spherically symmetric seed metric,
but continued to use the same complexification and coor-
dinate transformation as in the original work of Newman
and Janis [21]. We will here discuss these ambiguities in
more detail and show that the complexification procedure
is unique when considering solutions to linear order in the
slow-rotation approximation.
In recent years, the NJA has been used for two main

applications: to find interior solutions that match the exte-
rior Kerr solution [22,26] and to ‘‘rotate’’ spherically sym-
metric solutions in modified theories of gravity [27–33]. In
this paper, we will be concerned with the latter. One rotates
stationary, spherically symmetric solutions of modified
theories to obtain a rotating counterpart when (a) the modi-
fied theory leads to field equations that are so difficult to
solve that rotating BH solutions have not been found or
(b) one is considering parametrized deformations from
Schwarzschild and lacks a well-defined action to prescribe
these deformations.
Until recently, case (a) was deemed unimportant because

the Kerr metric was thought to be a solution of essentially
all quadratic-curvature, modified gravity theories [34].
This was so because the non-Einstein terms in the modified
field equations in these theories are all proportional to the
Ricci tensor or scalar, which vanishes for the Kerr metric.
However, this is not the case in the more interesting
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dynamical Chern-Simons gravity [35,36] and dilatonic
Einstein-Gauss-Bonnet theory [16]. In these theories, the
field equations contain terms that are not proportional to the
Ricci tensor, and thus they are not satisfied for the Kerr
metric. Finding analytic vacuum solutions that are station-
ary and axially symmetric in these theories is incredibly
difficult, as is the case also in pure Lovelock theories in
higher dimensions [29]. This is why recent studies have
considered applying the NJA to nonspinning BH solutions
in pure Lovelock gravity to construct spinning ones [29].

Case (b) is concerned with constructing generic space-
times that are parametric deformations from known GR
solutions, such as the Schwarzschild metric. The aim here
is to carry out electromagnetic or gravitational observa-
tions in order to then place constraints on the magnitude
of such deformations. Since the most general, stationary
and spherically symmetric line element has only two func-
tional degrees of freedom, it is easier to parametrically
deform this [33,37] than the most general, stationary and
axially symmetric line element, which contains four de-
grees of freedom [31]. However, since astrophysical
BHs are expected to be spinning, recent studies have
considered applying the NJA to the parametrically de-
formed Schwarzschild metrics [33,38,39].

In this paper, we will show that the use of the NJA for
case (a) and case (b) above has no basis and, what is worse,
can lead to severe pathologies in the spacetime. Hints of
these pathologies can be seen in [38], where an NJA
rotation ‘‘smeared’’ out the point singularity of a bumpy
Schwarzschild metric. Although [40] has already argued
that the NJA is ineffective at producing Kerr-like solutions
in Brans-Dicke theory, this warning has fallen on deaf ears
recently [27,29,33]. We will show explicitly that applying
the NJA to nonspinning BH solutions in quadratic modified
gravity, which includes dilatonic Einstein-Gauss-Bonnet
theory [16], does not lead to a spinning BH solution in
this theory. We will then show that the NJA-transformed
metric in fact possesses naked singularities, which renders
it useless for observational studies. Although we concen-
trate on modified quadratic gravity, the results obtained
here also apply to generic, parametric deformations of
Schwarzschild line elements [41].

The remainder of this paper is organized as follows.
Section II summarizes the NJA as defined in GR.
Section III defines the modified theory we use to test the
NJA and performs the algorithm on a stationary and spheri-
cally symmetric solution in that theory. Section IV tests our
transformed metric against an analytically derived solution
and the modified field equations for the theory used, and
finds naked singularities in the spacetime. Section V con-
cludes with a discussion of possible topics for future study.

Henceforth, we use the conventions of [42]: spacetime
tensors are written with greek indices, and we use the
metric signature (�þþþ) and geometric units with
G ¼ c ¼ 1. For convenience, the conversion factor

between geometric units and mks units is 1M� ¼
1:476 km ¼ 4:926� 10�6 s.

II. THE ABC OF THE NJA

The NJA is a useful and simple tool to produce the
rotating Kerr or Kerr-Newman metrics from the easily
derivable Schwarzschild or Reissner-Nordström line ele-
ments, respectively [21]. The algorithm involves making a
complex transformation on the null tetrad vectors for the
nonrotating metric to arrive at the analogous rotating so-
lution. In this brief overview, we will largely follow [22]
and apply the algorithm to map the Reissner-Nordström to
the Kerr-Newman metric. The original Schwarzschild to
Kerr ‘‘version’’ of the algorithm is obtained trivially by
taking the limit as the BH charge vanishes.
We begin with the Reissner-Nordström metric in ad-

vanced Eddington-Finkelstein coordinates ðv; r; �; �Þ [22],
ds2RN ¼ �fdv2 þ 2dvdrþ r2ðd�2 þ sin 2�d�2Þ; (1)

where

f � ð1� 2M=r�Q2=r2Þ; (2)

with M and Q the BH’s mass and charge, respectively.
Let us rewrite the metric in the Newman-Penrose tetrad
formalism [23] as

g��
RN ¼ 2lð�RNn

�Þ
RN þ 2mð�

RN �m�Þ
RN; (3)

where the overhead bar implies complex conjugate and we
have defined the tetrad vectors

l�RN ¼ ½0; 1; 0; 0�; (4)

n
�
RN ¼

�
1;� 1

2
f; 0; 0

�
; (5)

m�
RN ¼

�
0; 0;

1ffiffiffi
2

p
r
;

iffiffiffi
2

p
r sin �

�
: (6)

Let us now complexify the coordinates ðv; r; �; �Þ !
ð~v; ~r; ~�; ~�Þ, where the overhead tilde quantities are com-
plex. There are many ways in which this complexification
can be carried out. The standard Newman-Janis choice is to
replace Eqs. (4)–(6) by

~l
�
RN ¼ ½0; 1; 0; 0�; (7)

~n�RN ¼
�
1;� 1

2
~f; 0; 0

�
; (8)

~m
�
RN ¼

�
0; 0;

1ffiffiffi
2

p
~r
;

iffiffiffi
2

p
~r sin ~�

�
; (9)

where we have defined the complex Schwarzschild factor
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~f �
�
1�M

�
1

~r
þ 1

�~r

�
�Q2

~r �~r

�
: (10)

Here, the overhead bar stands for complex conjugation
and the greek letters in the index lists now label complex

coordinates ð~v; ~r; ~�; ~�Þ. Notice that the term proportional
to Q2 is complexified differently from the term propor-

tional to M in ~f.
We now apply the complex coordinate (tilde)

transformation

x� ! ~x� ¼ x� þ ia cos ~�ð��
~v � ��

~r Þ (11)

to the complex tetrad vectors, where a will later be iden-
tified with the dimensional Kerr spin parameter. As before,
there is an infinite number of complex coordinate trans-
formations that one could perform. However, only the one
presented above will map the Reissner-Nordström metric
to the Kerr line element. After transforming the complex
tetrad vectors, we apply a reality condition that ensures that
~x� ¼ �~x�, simplify and obtain

~l�RN ¼ ½0; 1; 0; 0�; (12)

~n
�
RN ¼

�
�1;� 1

2

�
1� 2Mr�Q

�

�
; 0; 0

�
; (13)

~m
�
RN ¼ 1ffiffiffi

2
p ðrþ ia cos ð�ÞÞ

�
ia sin ð�Þ; ia sin ð�Þ; 1; i

sin ð�Þ
�
;

(14)

where

� � r2 þ a2cos 2�: (15)

The metric resulting from the transformed null tetrad
vectors will be the Kerr-Newman one in advanced
Eddington-Finkelstein coordinates,

gK;EFvv ¼ �f; gK;EFvr ¼ 1; (16)

gK;EFv� ¼ asin 2�
2Mr�Q2

�
; (17)

gK;EFr� ¼ asin 2�; gK;EF�� ¼ �; (18)

gK;EF�� ¼ sin 2��Kerr; (19)

where

�Kerr �
�
r2 þ a2 � a2sin 2�

2Mr�Q2

�

�
: (20)

To convert this metric to Boyer-Lindquist coordinates
ðt; r; �;�Þ, we perform the transformation

dv ¼ dtþ r2 þ a2

r2 � 2Mrþ a2
; (21)

d� ¼ d�þ a

r2 � 2Mrþ a2
dr; (22)

resulting in the Kerr-Newman metric,

gK;BLtt ¼ �f; gK;BLt� ¼ asin 2ð�Þðf� 1Þ; (23)

gK;BLrr ¼ �

r2 þ a2 � 2Mr
gK;BL�� ¼ �; (24)

gK;BL�� ¼ sin 2��Kerr: (25)

Although the NJA has led to the Kerr metric, the com-
plexification and the complex coordinate transformation
are somewhat unsettling. For example, the complexifica-

tion ~f is carried out differently for even and odd powers of
radius. Similarly, the complex transformation is the iden-
tity operator plus a linear-in-spin deformation that mixes
temporal-radial components and nothing else. The reason
behind these choices is unclear beyond that they happen to
produce the desired results. We will see that these ambi-
guities are at the core of the NJA failing in modified
theories of gravity.

III. THE NJA IN MODIFIED GRAVITY

The NJA is an alluring means of ‘‘rotating’’ spherically
symmetric solutions into axisymmetric ones because it is
simple, but does it work in modified gravity theories?
While the NJA has proven to bypass much tedium when
‘‘deriving’’ the Kerr solution in traditional GR, its useful-
ness in modified theories of gravity is often taken for
granted. This section walks through the NJA in a generic
modified theory. We show that great care must be taken
when using the NJA, since generically the ‘‘rotated’’ metric
will contain pathologies absent in the seed metric and thus
introduced merely by the NJA.

A. BHs in quadratic modified gravity

With gravitational wave detection imminent on the
horizon, possible strong-field deviations from GR is a topic
that has received much attention recently [13]. Many mod-
ifications, including dynamical Chern-Simons gravity [43],
have become popular to study such deviations. While the
familiar BH solutions of GR, i.e. the Schwarzschild and
Kerr metrics, are also solutions in certain theories [34], it
has been shown in [44] that these metrics are not solutions
in a wide class of quadratic gravity theories.
Let us consider this class of theories [44]. The action

adds to the Einstein-Hilbert action SEH all possible qua-
dratic combinations of curvature scalars multiplied by a
scalar field # and coupling constants �i,
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S � SEH þ
Z
V
d4x

ffiffiffiffiffiffiffi�g
p �

�1R
2# þ �2R��R

��#

þ �3R����R
����# þ �4R����

�R����#

� 	

2
½r�#r�# þ 2Vð#Þ� þLmat

�
: (26)

Here, 
 ¼ ð16�GÞ�1, R, R�� and R���� are the Ricci

scalar, Ricci tensor and the Riemann tensor, respectively,
g�� is the metric tensor and g is its determinant. We can

vary this action with respect to the metric and the scalar
field; doing so the field equations for this theory are as
follows:

G�� þ �1



H ð#Þ

�� þ �2



I ð#Þ
�� þ �3



J ð#Þ

�� þ �4



Kð#Þ

��

¼ 1

2

ðTmat

�� þ Tð#Þ
�� Þ; (27)

	h# ¼ ��1R
2 � �2R��R

�� � �3R����R
����

� �4R����
�R����; (28)

where Tð#Þ
�� is the stress energy tensor for the scalar field

and �R���� is the dual Riemann tensor. The definitions for

tensors H ð#Þ
��-K

ð#Þ
�� can be found in [44].

This class of theories must be interpreted as a low-
energy or curvature expansion of a more general class of
theories. As such, it possesses an energy cutoff that cannot
be exceeded without including higher-order operators in
the action. We will here neglect such operators since the
experiments and observations we have in mind are well
below this cutoff. For a more detailed discussion of this
class of theories as a low-energy effective model, we refer
the reader to [19].

Let us now consider stationary and spherically symmet-
ric line elements that are a small deformation from the
Schwarzschild metric. For such metrics, the �1, �2 and �4

terms that source the scalar field evolution in Eq. (28) and
the metric deformation in Eq. (27) vanish to leading order
in the deformation. The only terms that do not vanish are
proportional to �3: that which sources the scalar field
evolution is nothing but the Kretchmann scalar, while

J ð#Þ
�� reduces to

J ð#Þ
�� ¼ 4R����r�r�#: (29)

With these simplifications, one can solve themodified field
equations to find stationary, spherically symmetric solutions
that are small deformations of the Schwarzschild metric [44].
Solving the scalar field equation of motion, one finds

#QG ¼ �3

	

2

Mr

�
1þM

r
þ 4

3

M2

r2

�
þOð�Þ; (30)

while solving the modified field equations for the metric
tensor, one finds

ds2QG ¼�fð1þ hÞdt2 þ f�1ð1þ kÞdr2 þ r2d�2 þOð�2Þ;
(31)

where1

h ¼ �

3f

�
M

r

�
3
p; (32)

k ¼ �
�
�

f

��
M

r

�
2
q; (33)

p ¼ 1þ 26M

r
þ 66M2

5r2
þ 96M3

5r3
� 80M4

r4
; (34)

q ¼ 1þM

r
þ 52M2

3r2
þ 2M3

r3
þ 16M4

5r4
� 368M5

3r5
; (35)

and we have defined the dimensionless coupling constant
� � �2

3=ðM4	
Þ. Recall here that f ¼ 1� 2M=r is the

Schwarzschild factor andM is theADMmass of themodified
gravity BH, as discussed in [44].

B. NJA on quadratic gravity

We begin by transforming the metric in Eq. (31) to
advanced Eddington-Finkelstein coordinates ðv; r; �; �Þ
via the transformation

dt ! dvþ
�
1þ 2M

r� 2M

�
dr; (36)

resulting in the new line element

ds2QG ¼ �fð1þ hÞdv2 þ 2ð1þ hÞdvdr

� ðh� kÞ
f

dr2 þ r2d�2: (37)

From here, we rewrite themetric via null tetrad vectors as
in Eq. (3). Defining Z

�
a ¼ ðl�; n�;m�; �m�Þ and expanding

to leading order in �2, we find that Z�
a ¼Z�

a;Schwþ�Z�
a ,

where Z
�
a;Schw ¼ Z

�
a;RN with Q ¼ 0 and

�l� ¼ � �

2

M2

r2
1

f2
�1�

�
v þ 3

4
�
M2

r2
1

f
�2�

�
r ; (38)

�n� ¼ �

8

M2

r2
�1�

�
r ; (39)

with

1In these equations, p and q are the same as ~h and ~k in [44].
We have renamed these quantities here because, for the purposes
of this paper, overhead tildes are used to indicate tilde
transformations.
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�1 � 1þ 4

3

M

r
þ 26

M2

r2
þ 32

5

M3

r3
þ 48

5

M4

r4
� 448

3

M5

r5
;

�2 � 1þ 8

9

M

r
þ 130

9

M2

r2
þ 8

15

M3

r3
þ 16

15

M4

r4
� 1024

9

M5

r5
;

(40)

and �m� ¼ 0.
The next step in the NJA demands the complexification

of the coordinates, which introduces some arbitrariness.
The tilde transformation Z�

a ðx�Þ ! ~Z�
a ð~x�; �~x�Þ used in the

original NJA follows no clear repeatable form beyond that
~g�� must be real, and Z

�
a ðx�Þ ¼ ~Z

�
a ð~x�; �~x�Þ when ~x� ¼ �~x�.

Possible options that satisfy the aforementioned conditions
include the following:

(i) Letting the �-independent terms transform precisely
as the NJA and the �-dependent terms such that
r2 ! �;

(ii) Decomposing all powers of 1=r into multiplicative
combinations of 1=r and 1=r2 and following trends
set by even and odd powers of 1=r in the vectors
l
�
Schw and n

�
Schw;

(iii) Writing all powers of r in terms of f and then
transforming f as done in the NJA.

All of these variations differ only by powers of a2=M2 and
higher. If one works in the slow-rotation approximation
a=M � 1 and to leading order in a=M, these variations are
irrelevant. All powers of Oða=MÞ come from the tilde
transformation of m� and �m�, both of which remain un-
modified in our metric. Therefore, regardless of our choice
of complexification, one obtains the same rotated metric
to Oða=MÞ.

While any one of these methods results in a metric that
in principle should be valid for all values of a=M, we will
here expand in a=M � 1 and show only the linear-in-a
pieces for the sake of space. After transforming back to
Boyer-Lindquist–type coordinates, we find that the rotated,
quadratic gravity solution can be written as

gRQG�� ¼ gK;BL�� þ �gRQG�� ; (41)

where the only nonvanishing perturbations are

�gRQGtt ¼ � �

3

M3

r3
p; (42)

�gRQGt� ¼ � 4

3
�asin 2ð�ÞM

4

r4
1

f
p; (43)

�gRQGrr ¼ ��
M2

r2
1

f2
q; (44)

�gRQGr� ¼ �2�asin 2ð�ÞM
2

r2
1

f2
q; (45)

where we recall that gK;BL�� is the Kerr metric in Boyer-

Lindquist coordinates [Eqs. (23)–(25)], expanded in
a=M � 1.

IV. ANALYSIS OF THE ROTATED METRIC

Now that we have constructed a rotated metric, we can
begin to look more closely at its properties and determine
whether or not it is a feasible metric for rotating BHs in
quadratic gravity. In order to accomplish this, the following
section will be broken up into three parts. First, we will
compare this metric to the actual solution to the modified
field equations to Oða=MÞ in the slow-rotation limit [20].
We will then go on to evaluate the field equations for the
rotated metric in the previous section to see if it is actually
a solution. Finally, we will look at some geometric and
physical properties of the rotated solution.

A. Comparison with a known solution

Let us begin by comparing the NJA rotated metric to an
analytically derived metric for a rotating BH in modified
quadratic gravity. Pani et al. [20] solved the modified field
equations [Eq. (27)] in the slow-rotation approximation to
Oða=MÞ to find2

gSR�� ¼ gKerr�� þ �gSR��; (46)

where

�gSRtt ¼ � �

3

M3

r3
p; (47)

�gSRt� ¼ 10

3
�asin 2ð�ÞM

3

r3
�SR; (48)

�gSRrr ¼ ��
M2

r2
1

f2
q; (49)

and

�SR ¼
�
1þ 140M

9r
þ 10M2

r2
þ 16M3

r3
� 160M4

9r4

�
: (50)

We can now compare the rotated metric of Eq. (42) with
the slowly rotating solution of Eq. (46) to linear order in a.
To Oða0=M0Þ, both metrics reduce to that of Eq. (31) and
obviously agree. To Oða=MÞ, however, the ðt; �Þ compo-
nents agree if and only if

10

3
�asin 2ð�ÞM

3

r3
�SR ¼ � 4

3
�asin 2ð�ÞM

4

r4
1

f
p: (51)

This, of course, is clearly not the case unless �3 ¼ 0 or
a ¼ 0. Moreover, the rotated metric has a nonzero ðr;�Þ

2The conventions for the coupling constants in [20] differ
slightly from those chosen in this paper. By comparing the
action used here to that in [20], we find that �2

3SR ¼ 4�2
3=ð	
Þ.
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component, while the slowly rotating metric in Eq. (46)
does not. Of course, this comparison assumes that both
metrics are in the same coordinate system, which need not
be the case. In the next section, we will show that this is not
the reason for the disagreement, but rather the metrics
disagree at a much more fundamental level.

B. Satisfaction of the modified field equations

Even though gRQG�� � gSR�� as shown in the previous

subsection, these metrics still might be related by a coor-

dinate transformation and thus gRQG�� may still be a solution
to modified quadratic gravity. Let us evaluate Eq. (27) with
the metric of Eq. (42). First, we define

E�� � G�� þ �3



½4R����r�ðr�#Þ� � 1

2


�
Tmat
��

þ 	

2

�
r�#r�# � 1

2
g��ðr�#r�# � 2Vð#ÞÞ

��
:

(52)

The modified field equations are then satisfied if and only if
E�� ¼ 0 for all components of this tensor.

Let us investigate whether this is the case order by order
in a=M. To Oða0=M0Þ, the rotated metric reduces to
the initial modified Schwarzschild metric of Eq. (31),
which obviously satisfies the modified field equations.
To Oða=MÞ, the ðt; �Þ component of E�� is not zero, but

rather

Et� ¼ 6�asin 2ð�ÞM
3

r5
1

f2

�
1þ 24

M

r
� 476

9

M2

r2

þ 296

9

M3

r3
� 1912

5

M4

r4
þ 51008

45

M5

r5
� 7936

9

M6

r6

�
:

(53)

This equation vanishes if and only if a ¼ 0 or �3 ¼ 0.
In deriving the above equation, we used the nonrotated

scalar field of Eq. (30), which obviously also matches that
of [20] in the slow-rotation limit. Terms of Oða=MÞ in the
scalar field cannot make Et� ¼ 0, as this quantity is al-

ready of Oða=MÞ, and the difference between the solution
found in [20] and the NJA rotated of Eq. (42) is also of this
order. One can verify this by using an NJA-rotated version
of Eq. (30). The three methods to apply the complexifica-
tion of the NJA described at the end of Sec. III lead to the
exact same scalar fields to linear order in a=M. With this
field, one still finds that Et� � 0.

The NJA-rotated metric in Eq. (42) differs from the
slowly rotating solution of Eq. (27) not because these
metrics use different coordinates, but because of a funda-
mental issue: the NJA-rotated metric is not a solution to the
vacuum modified field equations, while Eq. (27) is. One
could of course interpret the NJA-rotated metric as a non-
vacuum solution to the modified field equations. But as we

shall show next, this ‘‘matter’’ leads to severe pathologies
in the spacetime.

C. Properties of the NJA-rotated metric

The defining characteristic of a BH is its event horizon.
The curvature singularities present in such dense objects
produce a 3-surface that bends null paths in on themselves,
making observation of anything inside it impossible. On
such a surface, light cones are tilted at a 45� angle, such
that an observer outside the horizon can send signals to the
interior but can never observe them arrive in finite proper
time (and vice versa).
The event horizon can be defined as a null surface gener-

ated bynull geodesic generators. Thesegenerators are trapped
within that surface such that the normal to the surface is itself
null, n�n

� ¼ 0. Let us model this surface with a scalar

function Fðx�Þ, such that its normal n� � @�F. For this
surface to have a null normal, we must then have

g��ð@�FÞð@�FÞ ¼ 0: (54)

We will refer to this equation as the horizon equation and the
radius at which F ¼ 0 as the location of the event horizon.
For the Kerr metric, we can take F ¼ r� rKerr, so that the

horizon is located at r ¼ rKerr � Mþ ðM2 þ a2Þ1=2.
The horizon equation can be simplified by using the

symmetry properties of the spacetime. First, we note that
we consider stationary and axisymmetric spacetimes, and
thus F cannot depend on time or the azimuthal coordinate.
With these simplifications, we can assume ring symmetry
for a given latitude [45], and Eq. (54) reduces to

grrð@rFÞ2 þ g��ð@�FÞ2 ¼ 0; (55)

where we have used the fact that gr� ¼ 0 for the metrics
considered in this paper.
The horizon equation is thus a partial differential equa-

tion for the level surface F, but due to axisymmetry and
reflection symmetry, @�F must vanish at the poles and at
the equator. In this paper, it will suffice to consider the
location of the horizon at the equator, � ¼ �=2, for which
the horizon equation reduces to the familiar

grr ¼ 0: (56)

One cannot solve Eq. (56) for the NJA-rotated metric,
unless one expands in a=M. In what follows, we will not
use such an expansion, but rather use the full inverted
metric tensor and solve Eq. (56) numerically for different
values of a=M.
Figure 1 shows the location of the event horizon on

the equator as a function of the Kerr spin parameter for
different values of � . While the precise values were taken
from version (i) of the NJA, the values are nearly identical
with the other versions. Observe that larger values of �
effectively ‘‘dampen’’ the decrease in horizon radius as a
increases. The shift is ofOð�Þ, however; we cannot choose
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values of � that are large, since the seed metric is a
solution to the modified field equations only perturbatively
in � � 1.

Let us now investigate the location of curvature singu-
larities. A curvature singularity in the metric is a point at
which the space is infinitely curved. Such a phenomenon
would clash with our understanding of the observable
universe if exposed, i.e. if not hidden by an event horizon.
Such exposed curvature singularities are referred to as
‘‘naked.’’ In fact, spacetimes with naked singularities are
already ruled out by astrophysical observations, unless
their ‘‘infinite’’ luminosity is shielded by some other pro-
cess. Even from a theoretical standpoint, naked singular-
ities are a severe pathology of any physically reasonable
spacetime.

Curvature singularities can be located by finding the
3-surfaces at which curvature scalars diverge. In this paper,
we will only consider divergences of the Kretchmann
scalar,

K ¼ R����R
����; (57)

which suffices to locate curvature singularities. As before,
since we are considering stationary and axisymmetric
spacetimes, curvature singularities are 1-surfaces (rings),
rotated along the azimuthal angle over its range and for all
times. Since we wish to determine whether this curvature
singularity is inside or outside of the event horizon, we
further restrict attention to the equator (� ¼ �=2).

Finding the radius at which K diverges for arbitrary
a=M is extremely difficult with the metric in Eq. (42).
This is because of how difficult it is to analytically
calculate the Kretchmann scalar for this metric even
when using symbolic manipulation software, such as
MAPLE with the GRTENSORII package [46]. We will thus

restrict attention to expansions in a=M � 1 (see the

Appendix). In particular, we will calculate the full
Kretchmann scalar to Oða4=M4Þ and Oða6=M6Þ and find
solutions to 1=K ¼ 0 also to these orders, using the latter
as an estimate of the error in the former.
We find that the NJA-rotated metric possesses two cur-

vature singularities when � � 0 and a � 0 at the equator:
one of them is always at r=M ¼ 0. The second occurs
only when a � 0 and � � 0, and is located at r=M ¼ 2.
Figure 2 shows the Kretchmann as a function of radius for
different choices of a=M and � . Clearly, when both a and �
are simultaneously nonzero, an additional singularity in the
Kretchmann scalar appears at r=M ¼ 2. We have verified
that the Kretchamnn indeed diverges at these radii through
an analytical calculation that we present in the Appendix.
While the r=M ¼ 0 singularity is not a problem, given

that it is inside the event horizon, the r=M ¼ 2 curvature
singularity is. If one looks at the � ¼ 0:1 curve in Fig. 1,
one finds that r=M ¼ 2 is clearly above the event horizon
curve for all values of 0< a=M � 1. In the limit a ! 0,
this singularity disappears. We show this explicitly in the
Appendix. This result is consistent with that of [16], who
already showed that the � � 1 expanded, spherically
symmetric modified metric does not possess curvature
singularities outside the event horizon. We see then that
naked singularities are a generic property of the NJA
rotated metric in the slow-rotation limit.
One may wonder whether these curvature singularities

are also present in the slowly rotating metric of [17] or
whether they are actually introduced by the Newman-Janis
algorithm. To figure this out, one can compute the
Kretchmann scalar for the metric of [17] and find the radii
at which its inverse vanishes. We have done this calculation
and found that this Kretchmann scalar is identically equal
to the one computed with the spherically symmetric metric
of [16], when expanded to Oða=MÞ. Such an expansion is
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FIG. 2 (color online). Kretchmann scalar as a function of
radius on the equator for different values of � and a=M.
Observe that while all curves are singular at r=M ¼ 0, when a
and � are simultaneously nonzero, the Kretchmann also diverges
at r=M ¼ 2. Observe also that when � � 0, but a=M ¼ 0, the
Kretchmann still only diverges at r=M ¼ 0.

0 0.2 0.4 0.6 0.8 1
a/M

1.6

1.7

1.8

1.9

2
r/

M

Horizon Radius ζ=0
Horizon Radius ζ = 0.01
Horizon Radius ζ = 0.1
Curv. Sing. |ζ|, |a| > 0

FIG. 1 (color online). Properties of the NJA-rotated metric on
the equator. This figure shows the location of the event horizon at
a range of � values (the solid line represents the GR case).
Observe that the location of the curvature singularity is outside
of the event horizon for all values of a and � � 0.
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crucial since the metric of [17] is only valid to linear order
in a=M. Therefore, the metric of [17] contains curvature
singularities at exactly the same locations as the spheri-
cally symmetric metric of [16]. It then follows that the
curvature singularities shown in Fig. 1 have nothing to do
with slowly rotating BHs in modified quadratic gravity, but
rather are artificially introduced by the Newman-Janis
algorithm.

V. IMPLICATIONS AND DISCUSSION

We have shown that, in general, the NJA is not appro-
priate to generate rotating BH solutions in modified gravity
theories. We have considered a class of such theories,
quadratic gravity, in which both an exact stationary and
spherically symmetric BH solution is known, as well as a
stationary and axisymmetric BH solution in the slow-
rotation approximation. We then applied the NJA to the
former and found that it differs from the latter. In fact, the
rotated NJA metric was shown to not be a vacuum solution
of this theory at all. Finally, the ‘‘matter’’ introduced by the
NJA rotation was shown to introduce severe pathologies in
the spacetime, i.e. naked singularities.

We hope this paper acts as a word of caution when
using the NJA to generate rotating BH metrics. In recent
years, the NJA has been used to find rotating BHs in pure
Lovelock theories [29], as well as to create parametrically
deformed, rotating BHs [33]. As in the Brans-Dicke case
[40], we have shown here that the NJA does not neces-
sarily preserve the field equations. What is worse, the
NJA tends to introduce pathologies in the spacetime, as
found also recently in [41] when considering parametric
Schwarzschild deformations.

In particular, we find that the NJA generically introduces
naked singularities, which immediately implies that NJA-
rotated parametrically deformed spacetimes are not suitable
for observational studies (be it electromagnetic or gravita-
tional). When such metrics are used for accretion disk
studies, the trajectory of gas across the naked singularity
will lead to infinite luminosities and a potential breakage of
causality. Similar problems would be faced if such metrics

were used to evolve extreme mass-ratio inspirals, when
considering gravitational wave observations.
Our study, however, does not rule out the existence of a

modified NJA that when applied to the spherically sym-
metric solution of a given set of modified field equations
would yield its axisymmetric counterpart. The most likely
piece of the algorithm to modify is the complex coordinate
transformation of the tetrad. This modification, however,
would probably have to be derived on a per theory basis
and thus would not be generic. Such a derivation would
require a priori knowledge of the rotating BH solution in
the particular modified theory under consideration. But if
such a solution is known, the usefulness of the modified
NJA would be minimal.
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APPENDIX: SLOW-ROTATION EXPANSION

In this appendix, we provide analytic expressions for
the Kretchmann scalar, the radius at which this quantity
diverges and the horizon equation [Eq. (56)] is satisfied.
Because of the analytical complexity of these quantities,
we expand them in a=M � 1 and work to fourth order in
this small quantity. Moreover, we also provide expressions
only along the equatorial plane, i.e. � ¼ �=2.
The Kretchmann scalar to Oða4=M4Þ at � ¼ �=2 is

given by

K ¼ 48
1

�r6
þ �

5�r12
ð�160�r5 � 80�r4 � 11520�r3 � 1120�r2 � 2048�rþ 114400Þ � 2

15

� �a2

�r13ð �r� 2Þ3 ð870�r
7 þ 515�r6

þ 56890�r5 � 127585�r4 þ 71908�r3 � 761136�r2 þ 214876�r� 1563520Þ � 2

15

� �a4

�r14ð�r� 2Þ4 ð1260�r
7 þ 1365�r6

þ 73970�r5 � 157422�r4 þ 93676�r3 � 1173136�r2 þ 3326688�r� 2468480Þ þOð�2; �a6Þ; (A1)

where we have defined �r � r=M and �a � a=M. One clearly sees that Eq. (A1) diverges at �r ¼ 2 only when � � 0 and
�a � 0. Moreover, one also sees that when � ¼ 0 and �a ¼ 0, then the only divergence occurs at �r ¼ 0. In general, solving
the equation 1=K ¼ 0 in an expansion about a=M � 1, we find the two solutions,

�rsing ¼ Oð�2; �a6Þ; for all �a; �rsing ¼ 2þOð�2; �a6Þ; provided �a � 0 and � � 0: (A2)

DEVIN HANSEN AND NICOLÁS YUNES PHYSICAL REVIEW D 88, 104020 (2013)

104020-8



Keeping the expansion ofK to higher order in �a does not change the above results. We have checked this by computing the
Kretchmann scalar to Oð �a6Þ. This is because the �a6 term left out of Eq. (A1) can never cure the divergence of the terms
proportional to �a2 at �r ¼ 2, unless �a is not much smaller than unity.

The horizon equation is simply

1� 2

�r
þ �a2

�r2
þ 12

5

�

�r7

��
� 140

9
þ �rþ 2

3
�r2 þ 5

36
�r4 þ 65

24
�r3 þ 5

48
�r5
�

þ 4

3

�
� 320

3
þ �rþ 1

2
�r2 þ 5

6
�r4 þ 325

24
�r3 þ 15

16
�r5
��

¼ Oð�2Þ: (A3)

This equation is valid to all orders in �a. We have solved this equation numerically for �r, given different values of �a and � ,
which we plotted in Fig. 1.
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