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We consider the Einstein-Gauss-Bonnet gravity with a negative cosmological constant together with a

source given by a scalar field nonminimally coupled in arbitrary dimensionD. For a certain election of the

cosmological and Gauss-Bonnet coupling constants, we derive two classes of AdS black hole solutions

whose horizon is planar. The first family of black holes obtained for a particular value of the nonminimal

coupling parameter only depends on a constant M, and the scalar field vanishes as M ¼ 0. The second

class of solutions corresponds to a two-parametric (with constants M and A) black hole stealth

configuration, which is a nontrivial scalar field with a black hole metric such that both sides (gravity

and matter parts) of the Einstein equations vanish. In this case, in the vanishingM, the solution reduces to

a stealth scalar field on the pure AdS metric. We note that the existence of these two classes of solutions is

indicative of the particular choice of the coupling constants, and they cannot be promoted to spherical or

hyperboloid black hole solutions in a standard fashion. In the last part, we add to the original action some

exact (D� 1) forms coupled to the scalar field. The direct benefit of introducing such extra fields is to

obtain black hole solutions with a planar horizon for an arbitrary value of the nonminimal coupling

parameter.
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I. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence is a power tool that permits us to analyze
strongly coupled systems by mapping them into some
higher-dimensional gravity theories and establishing a
sort of dictionary between both theories [1]. Recently,
these ideas have been extended to nonrelativistic physics
in order to describe certain condensed matter systems (e.g.
see [2,3] for recent reviews) or in order to gain a better
understanding of some unconventional superconductors
[4–6]. In this last case, the minimal ingredients in the
gravity side are given by the Einstein-Hilbert action with
a negative cosmological constant, together with a charged
self-interacting (complex) scalar field with the Maxwell
term. Moreover, in order to reproduce the superconductor
phase diagram, the system must admit black holes with
scalar hair at low temperatures, and this hair must disap-
pear at high temperatures. However, this problem of find-
ing black hole solutions with a scalar field is rendered
difficult by the various no-hair theorems existing in the
current literature; see e.g. [7]. Nevertheless, such no-go
theorems can be avoided by considering scalar fields non-
minimally coupled to gravity [8,9]. By nonminimally
coupled scalar fields, we mean a scalar field � with its
usual kinetic term, together with a term coupled to the
Ricci scalar R as �R�2 where � is the nonminimal cou-
pling parameter. We precisely consider this kind of matter
source in order to escape the traditional no-hair theorems.

For the gravity Lagrangian, we are concerned with the
Einstein-Gauss-Bonnet action with a negative cosmological
constant. This choice is motivated by the recent interest
in holographic superconductors in Einstein-Gauss-Bonnet
gravity. Indeed, holographic superconductors in such gravity
theory have been studied intensively with the purpose of
analyzing the effects of the Gauss-Bonnet coupling constant
on the critical temperature and on the condensate; see e.g.
[10–12].
More specifically, we consider a matter action given by a

particular Einstein-Gauss-Bonnet gravity action, together
with a self-interacting scalar field nonminimally coupled to
gravity, and we look for black holes; for good reviews on
Einstein-Gauss-Bonnet black holes, see e.g. [13,14]. For this
model, we derive two classes of black hole solutions with a
planar base manifold and only for particular values of the
nonminimal coupling parameter. Note that the first examples
of topological black holes in general relativity (GR) were
discussed in [15]. In our case, for � ¼ ðD� 2Þ=ð4DÞ and
�¼ðD�1Þ=ð4Dþ4Þ, we obtain AdS black holes whose
metrics resemble the Schwarzschild-AdS-Tangherlini space-
time. In both cases, and in contrast with the Bocharova-
Bronnikov-Melnikov-Bekenstein solution [8,9], the scalar
field does not diverge at the horizon. This is due to the
presence of the negative cosmological constant as it occurs
for the known black hole solutions with scalar fields in four
dimensions [16–18]. For the first family of solutions, the
scalar field depends on the mass constant M and vanishes
identically as M ¼ 0, yielding to the purely AdS solution
without a source. The second class of solutions is, to our
knowledge, the first example of a higher-dimensional black
hole stealth configuration. This means a nontrivial scalar
field together with a black hole metric such that both sides
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of the Einstein equations (gravity and matter parts) vanish.
Up to now, the only known black hole stealth configuration
was derived in three dimensions for a conformal scalar field
[19] on the Banados-Teitelboim-Zanelli black hole [20].
Finally, in the last part, we add to our original action
(D� 2) dynamical fields which are exact (D� 1) forms
coupled with the scalar field in order to relax the restriction
on the nonminimal coupling parameter. In this case,
we establish the existence of black hole solutions
for arbitrary � reducing to the pure scalar field solutions as
� ¼ ðD� 2Þ=ð4DÞ or � ¼ ðD� 1Þ=ð4Dþ 4Þ. There also
exists a value of the nonminimal parameter � ¼ 1=8 giving
rise to a pure axionic solution, which is a solution where
the contribution of the scalar fields disappears.

The paper is organized as follows. In the next section,
we present the model and the associated field equations and
derive two classes of solutions. In Sec. III, we add to our
starting action some axionic fields coupled to the scalar
field and obtain black hole solutions, generalizing in some
sense those obtained in the previous section. Finally, the
last section is devoted to the conclusions and future works.

II. TOPOLOGICAL BLACKHOLES FOREINSTEIN-
GAUSS-BONNET GRAVITY WITH A SCALAR

FIELD NONMINIMALLY COUPLED

We consider the following action in arbitrary D dimen-
sions with D � 5,

S ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
1

2
ðR� 2�þ �LGBÞ

�

�
Z

dDx
ffiffiffiffiffiffiffi�g

p �
1

2
@��@��þ �

2
R�2 þUð�Þ

�
; (1)

where LGB corresponds to the Gauss-Bonnet Lagrangian

LGB ¼ R2 � 4R��R
�� þ R����R

����:

Here, we have normalized the Newton coupling constantG
as 8�G ¼ 1 and set the AdS radius l to unity, l ¼ 1. The
gravity part of (1) corresponds to the Einstein-Gauss-
Bonnet action with a cosmological constant �, while the
matter source is given by a self-interacting scalar field �
nonminimally coupled to the scalar curvature R through
the nonminimal coupling parameter �. The potential Uð�Þ
is given by a mass term

Uð�Þ ¼ 8�DðD� 1Þ
ð1� 4�Þ2 ð�� �DÞð�� �Dþ1Þ�2; (2)

where �D denotes the conformal coupling in D dimensions,

�D ¼ D� 2

4ðD� 1Þ : (3)

The choice of such a potential will be justified in the dis-
cussion. We also note that for the conformal couplings in D
and Dþ 1 dimensions, the potential vanishes identically.

The field equations obtained by varying the action with
respect to the metric and the scalar field read

G�� þ�g�� þ �K�� ¼ T��; (4a)

h� ¼ �R�þ dU

d�
; (4b)

where the expression of the Gauss-Bonnet tensor K�� is

K�� ¼ 2ðRR��� 2R��R
�
�� 2R��R����þR�

��	R���	Þ
� 1

2
g��LGB; (5)

and the stress tensor associated with the variation of the
scalar field is given by

T�� ¼ @��@��� g��

�
1

2
@��@��þUð�Þ

�
þ �ðg��h�r�r� þG��Þ�2: (6)

In what follows, we fix the value of the cosmological
constant and the Gauss-Bonnet coupling constant � in
terms of the dimension D as

�¼�ðD�1ÞðD�2Þ
4

; �¼ 1

2ðD�3ÞðD�4Þ : (7)

As a consequence of this choice, the gravity part of the
action (1) becomes proportional to

Z
dDx

ffiffiffiffiffiffiffi�g
p �

Rþ ðD� 1ÞðD� 2Þ
2

þ LGB

2ðD� 3ÞðD� 4Þ
�
:

(8)

In five dimensions, this action corresponds to a Chern-
Simons action, which is a particular case of the Lovelock
action. This latter action can be viewed as a generalization
of the Einstein gravity in arbitrary dimensions, yielding at
most second-order field equations for the metric. We will
come to this point in the discussion when commenting that
the solutions derived here in the Einstein-Gauss-Bonnet
case can be extended to a particular class of higher-order
Lovelock gravity [21].

A. Topological black hole solutions

As shown now for the particular choice of the coupling
constants (7), or equivalently for a gravity action given
by (8), we derive two classes of topological black hole
solutions of Eqs. (4). In both cases, the metric solutions
which have a planar base manifold resemble the topologi-
cal Schwarzschild-AdS-Tangherlini spacetime.
For a value of the nonminimal coupling parameter

given by

� ¼ �b:h
D

:¼ D� 2

4D
; (9)

which implies that the potential (2) becomes
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Uð�Þ ¼ ðD� 2Þ2
32

�2; (10)

a solution of the field equations (4) in this case is given by

ds2 ¼ �
�
r2 � M

r
D�6
2

�
dt2 þ dr2

ðr2 � M

r
D�6
2
Þ þ r2d~x2D�2;

�ðrÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DM

D� 2

s
r
2�D
4 ;

(11)

where ~x denotes a (D� 2)-dimensional vector. Various
comments can be made concerning this solution. First,
the scalar field is real, provided that the constant M is
positive, and it is well defined at the horizon while diverg-
ing at the singularity r ¼ 0. The solution resembles the
topological Schwarzschild-AdS solution with a planar
horizon. We also stress that, at the vanishing mass limit
M ¼ 0, the scalar field vanishes and the metric is nothing
but the AdS metric written in Poincaré coordinates satisfy-
ing the pure gravity equations G�� þ�g�� þ �K�� ¼ 0

at the point (7). It is also interesting to point out that the
spherical or hyperboloid versions of the metric do not
accommodate such a source unless the constant M ¼ 0.
However, in this case, the scalar field vanishes identically
and the spacetime geometry is nothing but the AdS metric
trivially solving the gravity equation G�� þ�g�� þ
�K�� ¼ 0 with a cosmological constant and Gauss-

Bonnet coupling given by (7).

B. Topological black hole stealth solutions

Interestingly enough, there exists another value of the non-
minimal parameter that yields an interesting solution, namely,
a stealth configuration. By stealth configuration, we mean a
nontrivial solution (that is a solution with a nonconstant and
nonvanishing scalar field) of the stealth equations

G�� þ�g�� þ �K�� ¼ 0 ¼ T��; (12)

where both sides (the gravity and the matter parts) vanish
identically. Indeed, for

� ¼ �stealth
D

:¼ D� 1

4ðDþ 1Þ ; (13)

and hence for a potential (2),

Uð�Þ ¼ ðD� 1Þ2ðD� 3Þ
32ðDþ 1Þ �2; (14)

a solution of the stealth equations (12) is given by

ds2 ¼ �
�
r2 � M

r
D�5
2

�
dt2 þ dr2

ðr2 � M

r
D�5
2

Þ þ r2d~x2D�2;

�ðrÞ ¼ Ar
1�D
4 ;

(15)

where A is an arbitrary constant. First of all, and contrary to
the previous solution, in the zeromass limitM ¼ 0, the scalar

field does not vanish, and the solution reduces to a stealth
configuration on pure AdS spacetime [22]. We also note that
the metric solution (15) corresponds to the planar version
(	 ¼ 0) of the solution obtained in Refs. [23,24] for the
gravity action given by (8) [25]. In other words, we have
derived a black hole stealth configuration for a self-interacting
scalar fieldwith the potential (14) nonminimally coupledwith
the parameter� given by (13) on a spacetime geometrywhich
is the planar solution of the particular Einstein-Gauss-Bonnet
gravity action [23,24]. The occurrence of such a solution can
be explained easily. In fact, it is not difficult to establish that a
self-interacting scalar field with potential (2) given by

�ðrÞ ¼ Ar
2�

4��1 (16)

has a vanishing energy-momentum tensor T�� ¼ 0 on the

following �-dependent geometry,

ds2 ¼ �FðrÞdt2 þ dr2

FðrÞ þ r2d~x2D�2;

FðrÞ ¼
�
r2 � M

r
4ðD�2Þ��ðD�3Þ

4��1

�
:

(17)

On the other hand, as shown in [23,24], the metric function
FðrÞ ¼ r2 � M

r
D�5
2

satisfies the gravity equation G�� þ
�g�� þ �K�� ¼ 0 for a planar base manifold at the point

(7). Hence, requiring that both sides of the stealth equations
(12) must vanish, this will fix the value of the parameter � to
be (13). As a final remark concerning the black hole stealth, it
is interesting to note that the stealth metric (17) will corre-
spond to the Schwarzschild-AdS-Tangherlini metric with a
planar base manifold only for � ¼ 0, but this case is of little
interest since for a vanishing coupling parameter, the scalar
field becomes constant (16).
Hence, we have obtained two classes of solutions for the

Einstein-Gauss-Bonnet equations at the point (7) with a
matter source composed of a self-interacting nonminimally
coupled scalar field. These solutions have been derived for
particular values of the nonminimal coupling parameter � ¼
�b:h
D or � ¼ �stealth

D , and in both cases � < 1=4. It is also
intriguing to note that these couplings, as well as the metric
function solutions, are related through the dimensions as

�b:h
Dþ1 ¼ �stealth

D ; Fb:h
Dþ1ðrÞ ¼ Fstealth

D ðrÞ:
As a final comment, defining c ðrÞ ¼ � FðrÞ

r2
where F is the

structural function appearing in the Ansatz metric

ds2 ¼ �FðrÞdt2 þ dr2

FðrÞ þ r2d~x2D�2;

the integration of the field equations may have a nice form.
First, the combination Et

t � Er
r ¼ 0 where E�� ¼ G�� þ

�g�� þ �K�� � T�� fixes the form of the scalar field as

�ðrÞ ¼ ðarþ bÞ 2�
4��1, where for simplicity we only con-

sider the case b ¼ 0. For the topological black hole solu-
tion, the equation Et

t ¼ 0 yields the following first integral,
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d

dr

�
rD�1ðc þ 1Þ2 �D� 2

4D
a

2�D
2 ðc þ 1ÞrD2

�
¼ 0: (18)

This means that the expression in brackets must be a
constant m; however, the remaining independent field
equation Ei

i ¼ 0 imposes that m ¼ 0, and the solution
reduces to the one found previously. Concerning the black
hole stealth equation, something amusing occurs where
both sides (gravity and matter parts) are identical and the
stealth equation reduces to

� 1

4
ð2rc 0 þ c ðD� 1ÞÞðc þ 1ÞðD� 2Þ ¼ 0:

III. TURNING ON THE NONMINIMAL
PARAMETER WITH EXACT p FORMS

For both classes of solutions derived previously, the
value of the nonminimal coupling parameter is unique
and fixed in terms of the dimension D; see (9) and (13).
This feature is not a novelty, and it also occurs in Einstein
gravity (eventually with a cosmological constant) with a
scalar field nonminimally coupled to gravity. Indeed, in
this case, the only known black hole solutions are those
obtained in four dimensions for the conformal coupling
parameter � ¼ 1=6 and whose horizon topology is either
spherical or hyperbolic; see [8,9,16–18]. Recently, it has
been shown that the inclusion of multiple exact p forms
homogeneously distributed permits the construction of

black holes with a planar horizon [28,29] without any
restrictions on the dimension or on the value of the non-
minimal parameter [30]. Indeed, on one side, an appropri-
ate coupling between the scalar field and the exact p forms
permits us to relax the condition on the nonminimal pa-
rameter as well as the dimension. On the other side, the p
forms being homogeneously distributed causes the horizon
topology to be planar. Since our working hypothesis is
concerned with black hole solutions with a planar base
manifold, we propose to appropriately introduce some
exact p forms to obtain topological black hole solutions
with an arbitrary nonminimal coupling parameter. In order
to achieve this task, we consider the following action in
arbitrary D dimensions,

S�
Z

dDx
ffiffiffiffiffiffiffi�g

p �

ð�Þ

2ðD� 1Þ!
XD�2

i¼1

H ðiÞ
�1...�D�1

H ðiÞ�1...�D�1

�
:

Here S denotes our original action (1) with the coupling
constants chosen as in (7), to which we have added (D� 2)

fields which are exact (D� 1) forms H ðiÞ. The coupling
function between the scalar field and the (D� 1) forms
denoted by 
ð�Þ depends on the scalar field � as


ð�Þ ¼ ��
1�8�
� (19)

where � is a coupling constant. The field equations ob-
tained by varying the action with the different dynamical

fields g��, � and H ðiÞ read

G�� þ�g�� þ �K�� ¼ T�� þ Textra
�� ; r�ð
H ðiÞ��1...�D�2Þ ¼ 0; (20a)

h� ¼ �R�þ dU

d�
þ 1

2

d


d�

�XD�2

i¼1

1

ðD� 1Þ!H
ðiÞ
�1...�D�1

H ðiÞ�1...�D�1

�
¼ 0; (20b)

where the extra piece in the energy-momentum tensor
reads

Textra
�� ¼ 


XD�2

i¼1

�
1

ðD� 2Þ!H
ðiÞ
��2...�D�1

H ðiÞ�2...�D�1
�

� g��

2ðD� 1Þ!H
ðiÞ
�1...�D�1

H ðiÞ�1...�D�1

�
: (21)

Searching for a purely electrically homogeneous Ansatz
for the (D� 1) forms, we get

H ðiÞ
trx1...xi�1xiþ1...xD�2

ðrÞdtdr . . . dxi�1dxiþ1 . . .dxD�2;

where the wedge product is understood. A solution of
the field equations (20) with a purely electric Ansatz is
given by

ds2 ¼ �
�
r2 � M

r
2ð6��1Þ
1�4�

�
dt2 þ dr2�

r2 � M

r
2ð6��1Þ
1�4�

�þ r2d~x2D�2;

�ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mð8�� 1ÞðD� 2Þ
2�½2�ð3D� 4Þ � ðD� 2Þ�

s
r

2�
4��1;

H ðiÞ
trx1...xi�1xiþ1...xD�2

¼ p


ð�Þ r
D�4;

(22)

where the constant p is given by

p ¼ 4M
1�4�
4�

ð4�� 1Þ
�

2�

ð8�� 1ÞðD� 2Þ
�8��1

4�

� ½2�ð3D� 4Þ � ðD� 2Þ�6��1
4�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��DðDþ 1Þ�ð�� �b:h

D Þð�� �stealth
D Þ

q
;

and where the constants � ¼ �b:h
D and � ¼ �stealth

D are the
particular values given by (9)–(13).
As expected, for � ¼ �b:h

D or � ¼ �stealth
D , the constant

p ¼ 0, and the resulting solutions are those derived
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previously, with a source only given by a scalar field.
Another interesting value is � ¼ 1=8 since in this case
the scalar field vanishes and the coupling function 
 be-
comes constant (19). As a consequence, for � ¼ 1=8, we
end with a pure axionic solution (which is a solution
without a scalar field),

G�� þ�g�� þ �K�� ¼ Textra
�� ;

given by

ds2 ¼ �ðr2 �MrÞdt2 þ dr2

ðr2 �MrÞ þ r2d~x2D�2;

H ðiÞ
trx1...xi�1xiþ1...xD�2

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 3

2�

s
MrD�4:

Note that this last solution is obtained from the generic
solution (22), taking the well-defined limit � ! 1=8.

Finally, it is interesting to mention that solutions of the
field equations (20) can be obtained without imposing the
values of the cosmological and Gauss-Bonnet coupling
constants as given by (7) but rather by considering the
following relation between them:

� ¼ 2�þ ðD� 1ÞðD� 2Þ
ðD� 1ÞðD� 2ÞðD� 3ÞðD� 4Þ : (23)

Of course, the restrictions (7) are a particular case of this
last constraint. In fact, the relation (23) is obtained by
requiring that the pure AdS metric solves the gravity
equations without a source. For a value of the parameter
� given by the conformal one in (Dþ 1) dimensions, � ¼
�Dþ1, which in turn implies that the potential vanishes (2),
a solution of the field equations (20) can be obtained for a
coupling 
 given by


ð�Þ ¼ �

�
4ðD�2Þ
D�1

:

In this case, the metric function is the Schwarzschild-AdS-
Tangherlini spacetime

ds2 ¼ �
�
r2 � M

rD�3

�
dt2 þ dr2

ðr2 � M
rD�3Þ þ r2d~x2D�2;

�ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8MDðD� 2Þð2�þ ðD� 1ÞðD� 2ÞÞ

ðD2 � 3Dþ 4ÞðD� 1Þ2
s

r
1�D
2 ;

H ðiÞ
trx1...xi�1xiþ1...xD�2

¼ p


ð�Þ r
D�4; (24)

where the constant p is given by

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2M�

p
4ðD� 2Þ ðD� 1Þ 5D�9

2ðD�1Þ

�
� ðD2 � 3Dþ 4Þ
8MDðD� 2Þð2�þ ðD� 1ÞðD� 2ÞÞ

� D�3
2ðD�1Þ

:

Wewould like to stress that this solution is valid even in the
vanishing cosmological constant, but on the other hand, the

GR limit� ¼ �ðD� 1ÞðD� 2Þ=2 (23) is not well defined
because the constant p will blow up. This clearly empha-
sizes the importance of the higher-order curvature terms
present in the Einstein-Hilbert-Gauss-Bonnet Lagrangian.

As before, defining c ðrÞ ¼ � FðrÞ
r2

where F is the structural

function, we get the same expression for the scalar field

�ðrÞ ¼ ðarÞ 2�
4��1, where � is the conformal coupling in

(Dþ 1) dimensions as well as the solution for the axionic

field asH ðiÞ ¼ p
�1rD�4. The equation Et
t ¼ 0 yields the

following first integral,

d

dr

�
�

~�

2
rD�1ð1þ c Þ2 þ ��rD�1ð1þ c Þ

� �ð1þ c Þ � �r1�D

�
¼ 0; (25)

where we have defined ~� ¼ 2�þ ðD� 1ÞðD� 2Þ, �� ¼
½2~�� ðD� 1ÞðD� 2Þ�=2, � is a constant that depends
only on the integration constant a, while � depends on a
and p. The expression in brackets must be a constantm, and
in contrast to the pure scalar field case, this constantm can be

nonzero in order to cancel the contribution proportional to ��.
Note that this latter part vanishes at the point (7) but not at the
point that we are considering now (23). The last remaining
independent equation Ei

i ¼ 0 fixes the relation between the
constants and yields the solution obtained in (24).

IV. CONCLUSIONS AND FURTHER WORKS

Here, the gravity action we have considered is a particular
combination of the Einstein-Hilbert action with a negative
cosmological constant, together with the Gauss-Bonnet
density. In five dimensions, this action corresponds to a
Chern-Simons action which is a particular case of the
so-called Lovelock action. This latter action can be viewed
as a generalization of Einstein gravity in arbitrary dimen-
sions, yielding at most second-order field equations for the
metric. The resulting theory is described by a D form
constructed with the vielbein ea, the spin connection !ab,
and their exterior derivatives without using the Hodge dual.
The Lovelock action is a polynomial of degree [D=2]
(where [x] denotes the integer part of x) in the curvature
two-form, Rab ¼ d!ab þ!a

c ^!cb as

Z X½D=2�

p¼0

�pL
ðpÞ;

LðpÞ ¼ 
a1...adR
a1a2 . . .Ra2p�1a2pea2pþ1 . . . ead ;

(26)

where the�p are arbitrary dimensionful coupling constants

and where wedge products between forms are understood.

Here Lð0Þ and Lð1Þ are, respectively, the well-known cos-
mological term and the Einstein-Hilbert Lagrangian. As
shown in Ref. [23], requiring the Lovelock action to have a
unique cosmological constant fixes the �p, yielding a

series of actions indexed by an integer k given by
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Ik ¼�
Z Xk

p¼0

Ck
p

ðD�2pÞL
ðpÞ; 1� k�

�
D�1

2

�
; (27)

where Ck
p corresponds to the combinatorial factors. The

gravity action we have considered here (8) is nothing but
the action I2 given by the expression (27). We believe that
the class of solutions derived here for I2 can be generalized
for an arbitrary gravity action Ik with k � 2 [21]. For
example, the stealth black hole solution obtained for I2
can easily be extended for an arbitrary action Ik by adjust-
ing the value of the nonminimal coupling parameter ap-
pearing in the stealth metric solution (17) in order for the
resulting metric to match with the pure gravity solution of
Ik [23,24]. Moreover, to our knowledge, there do not exist
black hole solutions with a planar base manifold for stan-
dard general relativity (with or without a cosmological
constant) with a source given by a nonminimally coupled
scalar field [31]. This reinforces our conviction that the
existence of the solutions derived for a gravity action given
by I2 is strongly indicative of the presence of the higher-
order curvature terms [21].

We now turn to the choice of the mass term potential (2)
in our starting action. First of all, we may note that this
kind of potential has been considered in the dual descrip-
tion of unconventional superconductor [2,4–6]. Moreover,
in our case, because of the presence of the nonminimal
coupling term �R�2 in the action, in the case of constant
scalar curvature solutions R ¼ �DðD� 1Þ, one may de-
fine an effective square mass

m2
eff ¼��DðD�1Þ

�
1� 16

ð1�4�Þ2 ð���DÞð���Dþ1Þ
�
:

In the solutions obtained here, the only ones of constant
scalar curvature (apart from the trivial situation of taking
M ¼ 0) are those with the p-form fields (22) for � ¼
D=ð4Dþ 4Þ and � ¼ ðD� 1Þ=ð4DÞ. It is interesting to
note that the square effective mass m2

eff precisely saturates

the Breitenlohner-Freedman bound for � ¼ ðD� 1Þ=ð4DÞ.
To close the chapter concerning the potential, we stress that
is a particular case of potentials allowing the existence of a
self-interacting scalar field� nonminimally coupled to the
vanishing stress tensor

T�� :¼ @��@��� g��

�
1

2
@��@��þUð�Þ

�
þ �ðg��h�r�r� þG��Þ�2 ¼ 0

on the AdS background

ds2 ¼ �r2dt2 þ dr2

r2
þ r2d~x2D�2:

Indeed, as shown in [22], the stealth solution is given by the
following configuration,

Uð�Þ ¼ �

ð1� 4�Þ2 ½2�b
2�

1�2�
� � 8ðD� 1Þð�� �DÞ

� ð2�b�1
2� �Dð�� �Dþ1Þ�2Þ�; (28a)

�ðrÞ ¼ ðArþ bÞ 2�
4��1: (28b)

Note that this kind of potential also appears when looking
for AdS wave solutions for a nonminimally coupled
scalar field [32]. The scalar field solutions obtained in
this paper, as well as the potential considered, correspond
to the b ¼ 0 limit of this stealth configuration (28). It has
been shown recently that, in the context of standard
general relativity, self-interacting scalar fields nonmini-
mally coupled with the potential given by (28a) and extra
axionic fields admit black hole solutions [30]. The deri-
vation of these solutions was precisely operated from
the stealth configuration (28) through a Kerr-Schild
transformation [30]. We believe that there may exist
more general black hole solutions than those derived
here for this more general class of potentials (28a). To
conclude with the stealth origin, we would like to stress
that the horizon topology of our solutions is planar, and
their extension to spherical or hyperboloid black hole
solutions in a standard fashion is not possible. This may
be related to the fact that a static stealth scalar field on the
AdS background requires the base space to be flat [22]
for dimensions D � 4.
An interesting task to realize will be the study of the

thermodynamics properties of the solutions derived here
for I2 as well as those for general Ik, and to compare them
with the pure gravity solutions [24].
In Ref. [33], the authors constructed a conformal cou-

pling to arbitrary higher-order Euler densities. It will be
interesting to see whether such a matter source can accom-
modate the kind of solutions derived here.
As a final remark, we note that the coupling with the

Maxwell electromagnetic field is an open problem even in
the black hole stealth case. Indeed, even if the pure gravity
solution with the Maxwell source

G�� þ�g�� þ �K�� ¼ TMaxwell
��

is known [23,24], it seems that this solution cannot be
promoted to a black hole stealth configuration with a
nonminimal scalar field as was possible in the neutral
case.
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