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It is well known that the Jordan and Einstein frames are equivalent to each other in classical

Brans-Dicke theory, provided that one and the same metric is employed for the physical space-time.

Nevertheless, it is shown in this paper that by cosmological models the loop quantization in the two

different frames leads to inequivalent effective theories. Analytical solutions are found in both frames for

the effective loop quantum Brans-Dicke cosmology without potential in (i) the vacuum case and (ii) the

additional massless scalar field case. In the Einstein frame, the analytical solution for the Brans-Dicke

potential / ’2 is found. In all of those solutions, the bouncing evolution of the scale factor is obtained

around the Planck regime. The differences between the loop quantization of the two frames are reflected

by (i) the evolution of the scale factor around the bounce and (ii) the scale of the bounce in the physical

Jordan frame.

DOI: 10.1103/PhysRevD.88.104010 PACS numbers: 04.50.Kd, 04.60.Kz, 04.60.Pp

I. INTRODUCTION

The Brans-Dicke theory of gravity [1] is one of the
most popular modified gravity theories, whose various
aspects have been investigated for over 50-years, espe-
cially in the recent decade. The scalar-tensor structure
of this theory has been considered as a source of in-
flation and primordial inhomogeneities of space-time
[2], dark energy [3–5], and in the context of the stability
of stars [6]. The newest results on the cosmic micro-
wave background [7] show that the R2 inflation, which
may be also expressed in terms of the Brans-Dicke
field,1 fits the data of the spectrum of perturbations.
On the other hand, as the background-independent
quantization of general relativity (GR), loop quantum
gravity (LQG) [8,9] has been rather active in the recent
two decades. The expectation that the singularity pre-
dicted by classical GR would be resolved by quantum
gravity has been confirmed by the recent study of the
loop quantum cosmology (LQC) [10,11], which is a
simplified, symmetric model of LQG [12,13]. The big-
bang singularity in the cosmological model of GR is
replaced by the quantum bounce of LQC. Recently, the
nonperturbative quantization scheme of LQG has been
successfully extended to fðRÞ theories [14,15] and
Brans-Dicke theory [16–20]. The corresponding cosmo-
logical model for Brans-Dicke theory has been set up
[20]. The purpose of this paper is to compare the Jordan
frame with the Einstein frame of Brans-Dicke gravity by

their loop quantum cosmology models. Note that the
original formulation of Brans-Dicke theory was in the
Jordan frame. If one and the same metric is employed to
represent the physical space-time, then the Jordan and
Einstein frames are equivalent to each other in classical
Brans-Dicke theory. However, there is no guarantee for
the equivalence of the quantization in two frames. As
shown in Ref. [17], the quantization procedure of the
Brans-Dicke theory distinguishes between two cases:
! ¼ � 3

2 and ! � � 3
2 . In this paper, we shall assume

that ! � � 3
2 . This assumption comes from the obser-

vational limitations of the Brans-Dicke theory, which
prefers ! � 1 [21,22].
To transform the Brans-Dicke theory into the Einstein

frame, one has to redefine the metric tensor, which would
cause the canonical form of the GR action. The LQC in the
Einstein frame has been studied in Refs. [23–25]. In this
paper, we take the original idea of Brans and Dicke that the
Jordan frame is the physical one,2 though in general this
remains open. For instance, the quantization in different
frames may give different results of the evolution of pri-
mordial gravitational waves, which in the future could help
us to discriminate one frame and favor the other. Following
the interpretation of the Jordan frame as the physical one,
we compare the two methods of LQC quantization: in the
Jordan and the Einstein frame. In the latter case, we shall
transform the results into the Jordan frame for precise
comparison.
In this paper, according to Refs. [20,27] and for

simplicity, we only focus on the effective LQC of the
two frames, where holonomy corrections are included,
while neglecting inverse triad corrections. Therefore, by
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the LQC correction, we mean LQC holonomy correc-
tions to the flat Friedmann-Robertson-Walker (FRW)
space-time in different frames. This treatment is usually
considered to be realistic and consistent with effective
equations of LQC of GR. All calculations in this paper
are performed in Planck units, i.e., for 8�G ¼ M�2

pl ¼ 1,

ℏ ¼ 1.
The structure of this paper is as follows: In Sec. II we

introduce the classical Hamiltonian of Brans-Dicke theory
in the Jordan frame in a flat FRW model. In Sec. III we
calculate effective equations of motion in a semiclassical
approach to LQC Brans-Dicke theory in the Jordan frame.
In Sec. IV we present exact solutions of semiclassical
equations of motion for the LQC Jordan frame quantiza-
tion for the vacuum case and for the additional massless
scalar field case. In Sec. V we introduce the Hamiltonian
formalism of the same cosmological model of Brans-Dicke
theory in the Einstein frame and its semiclassical equations
of motion for the LQC Einstein frame quantization. In
Sec. VI we solve the semiclassical equations for the
Einstein frame analytically and compare the results of
the LQC quantization in both frames. Finally, we conclude
in Sec. VII.

II. CLASSICAL BRANS-DICKE THEORY

We start with the classical Brans-Dicke theory coupled
with a scalar matter field. The Jordan frame action reads

Sðg;’; �Þ ¼ 1

2

Z
�
d4x

ffiffiffiffiffiffiffi�g
p �

’R�!

’
ð@�’Þ@�’

� 2Vð’Þ � ð@��Þ@��� 2Wð�Þ
�
; (2.1)

where’ is the Brans-Dicke scalar field, � is a scalar matter
field, and Vð’Þ and Wð�Þ are potentials. Now we consider
an isotropic and homogenous k ¼ 0 universe. We choose a
fiducial Euclidean metric oqab on the spatial slice of the

isotropic observers and introduce a pair of fiducial ortho-
normal triad and cotriad as ðoeai ; o!i

aÞ, respectively, such
that oqab ¼ o!i

a
o!i

b. Then the physical spatial metric is

related to the fiducial by qab ¼ a2oqab, and its line element

can be described by the FRW form

ds2 ¼ �dt2 þ a2ðtÞðdr2 þ r2ðd�2 þ sin 2�d�2ÞÞ;
where a is the scale factor. Then the classical action (2.1)
reduces to

L ¼ �3 _a2a’� 3 _aa2 _’þ a3
!

2

_’2

’
� a3Vð’Þ

þ a3
1

2
_�2 � a3Wð�Þ: (2.2)

By the Legendre transformation, the canonical momenta
read, respectively, as

�’¼@L
@ _’

¼a2
�
�3 _aþ!a _’

’

�
; ��¼@L

@ _�
¼a3 _�;

�a¼@L
@ _a

¼�3að2’ _aþa _’Þ:
(2.3)

Therefore, from H ¼ �’ _’þ �� _�þ �a _a�L, one

obtains the classical Hamiltonian as a function of ’, �,
a, and their canonical momenta as

H classða;�aÞ ¼ � 1

6�a3

�
�3�ð�2

� þ 2a6ðVð’Þ þWð�ÞÞÞ

� 6’�2
’ þ 6a�’�a þ!

’
a2�2

a

�
; (2.4)

where � :¼ 2!þ 3. While the spatial slice of our cosmo-
logical model is infinite, we may introduce an ‘‘elemental
cell’’ V and restrict all integrals to V . For simplicity, we
let the elemental cell V be a cubic measured by our
fiducial metric and denote its volume as Vo. Via fixing
the degrees of freedom of local gauge and diffeomorphism
transformations, we finally obtain the connection and
densitized triad by symmetrical reduction as [28]

Ai
a ¼ cV

�1
3

0
o!i

a; Eb
j ¼ pV

�2
3

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð0qÞ

q
oebj ; (2.5)

where c, p are only functions of t. Note that the new
variables are related to the old ones by

jpj ¼ a2V
2
3

0; c ¼ ��sgnðpÞ�a

6a
V

1
3

0; (2.6)

where � is the so-called Barbero-Immirzi parameter. Now
the gravitational part of the phase space of the cosmologi-
cal model consists of conjugate pairs ðc; pÞ and ð’;�’Þ.
The basic Poisson brackets between them can be simply
read as

fc; pg ¼ 1

3
�; f’;�’g ¼ 1: (2.7)

Thus, the classical Hamiltonian in terms of new variables is
of the form

H ðc; pÞ ¼
�6!

’ c
2p2 þ 6�cp�’ þ �2

�
�
2 �

2
� þ �jpj3ðVð’Þ þWð�ÞÞ þ ’�2

’

�
�2�jpj3=2 : (2.8)

From the Hamiltonian equations, one obtains the following classical equations of motion:

_� ¼ f�;H g ¼ �

3

�
@�

@c

@H
@p

� @�

@p

@H
@c

�
þ @�

@’

@H
@�’

� @�

@�’

@H
@’

; (2.9)
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where � ¼ �ðc; p; ’; �’Þ is some function on the classical
phase space.

Let us generalize the above equations to the Brans-Dicke
theory coupled with any perfect fluid. Then, combining the
Hamiltonian equations and the scalar constraint H ¼ 0,
one obtains [29]

€’þ3H _’þ 2

�
ð’V’�2Vð’ÞÞ¼ 1

�
ð	M�3PMÞ; (2.10)

3

�
H þ _’

2’

�
2 ¼ �

4

�
_’

’

�
2 þ Vð’Þ

’
þ 	M

’
¼ 1

’2
	e; (2.11)

where V’ � dV
d’ , H :¼ _a

a is the Hubble parameter, and

	e :¼ �
4 _’2 þ ’ðVð’Þ þ 	MÞ is the effective energy den-

sity. For V ¼ 	M ¼ PM ¼ 0, Eqs. (2.10) and (2.11) have
analytical solutions of the form

H¼ _’

2’

0
@�

ffiffiffiffi
�

3

s
�1

1
A; _’¼1

2

ffiffiffiffiffiffiffiffiffi
�	i

p �
’

’i

��1
2ð3�

ffiffiffiffiffi
3�

p
Þ
; (2.12)

where’i is some initial value of’. For� ¼ 3 (i.e.,! ¼ 0)
one obtains

H¼0; ’¼ const _ H¼ 1

2t
; ’¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
1


2� t

s
: (2.13)

III. LQC CORRECTIONS TO BRANS-DICKE
THEORY IN THE JORDAN FRAME

Let us consider the LQC corrections to the Brans-Dicke
theory we mentioned above. In this paper, we follow the
hybrid approach: The connection and triad are quantized
by the polymerlike quantization, while all other canonical
variables are quantized by the Schrödinger quantization.
The kinematic Hilbert space for the geometry part can be
defined asH gr

kin
:¼ L2ðRBohr; d�HÞ, where RBohr and d�H

are, respectively, the Bohr compactification of the real line
(the configuration space) and the Haar measure on it [28],
while the kinematic Hilbert spaces for the scalar fields are

defined as in usual quantum mechanics. The whole Hilbert
space is their direct product. Let j�i be the eigenstates of p̂
in the kinematic Hilbert space H gr

kin, such that

p̂j�i ¼ �

6
�j�i: (3.1)

It turns out that those states satisfy the following orthonor-
mal condition:

h�ij�ji ¼ ��i;�j
; (3.2)

where ��i;�j
is the Kronecker delta function rather than the

Dirac distribution. Note that in the LQC framework, while
there is no operator corresponding to the connection c, its
holonomy exp ði�c=2Þ along a line with oriented length �
is a well-defined operator. In the improved dynamics

setting [11], one employs the length �� ¼
ffiffiffiffiffi
�
jpj

q
, with

� ¼ 4
ffiffiffi
3

p
��‘2p being a minimum nonzero eigenvalue of

the area operator [30,31] to construct the Hamiltonian
constraint operator. In the semiclassical regime, as a basic
variable, the holonomy will certainly lead to corrections to
the classical equations. Here we only focus on the LQC
holonomy correction, while neglecting inverse triad cor-
rections. A heuristic and simple way to get the holonomy
corrections is to replace the connection variable by its

holonomy, i.e., c ! sin ð ��cÞ
�� , though its validity should be

checked by detailed calculations.

A. Friedmann equation

By the following substitution,

’ ! ’; �’ ! �’; � ! �;

�� ! ��; p ! p; c !
ffiffiffiffiffiffiffi
jpj
�

s
sin

0
@c

ffiffiffiffiffiffiffi
�

jpj

s 1
A; (3.3)

an effective Hamiltonian constraint with holonomy correc-
tions of loop quantum Brans-Dicke cosmology can be
obtained from Eq. (2.8) as

H LQC ¼ 1

jpj3=2���

2
4�’

0
@6pjpj1=2 ffiffiffiffi

�
p

sin

0
@c

ffiffiffiffiffiffiffi
�

jpj

s 1
Aþ ��’�’

1
Aþ �

2
���2

�

þ jpj3
0
@�6

!

�’
sin 2

0
@c

ffiffiffiffiffiffiffi
�

jpj

s 1
Aþ ���ðVð’Þ þWð�ÞÞ

1
A
3
5: (3.4)

Note that this effective Hamiltonian constraint can also be derived by a systematic approach as in Ref. [20].
All semiclassical equations of motion can be obtained from Eq. (2.9) with H LQC as a Hamiltonian. For instance, from
_’ ¼ f’;H LQCg, one obtains

_’ ¼
6p sin

�
c

ffiffiffiffiffi
�
jpj

q �
�

ffiffiffiffi
�

p
�jpj þ 2’�’

�jpj3=2 ) �’ ¼ jpj3=2
�6sgnðpÞ sin

�
c

ffiffiffiffiffi
�
jpj

q �
þ �

ffiffiffiffi
�

p
� _’

2�
ffiffiffiffi
�

p
’

: (3.5)

From the equation _p ¼ 2pH ¼ 2p _a
a ¼ fp;H LQCg, one finds
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H ¼
cos

�
c

ffiffiffiffiffi
�
jpj

q ��
2!pjpj1=2 sin

�
c

ffiffiffiffiffi
�
jpj

q �
� �

ffiffiffiffi
�

p
’�’

�
��

ffiffiffiffi
�

p jpj3=2’ ;

(3.6)

where H is a Hubble parameter. Substituting Eq. (3.5) into
the scalar constraint H LQC ¼ 0, one obtains

sin2

0
@c

ffiffiffiffiffiffiffi
�

jpj

s 1
A¼�2�

3

�
�

4
_’2þ’

1

2
_�2þ’Vð’Þþ’Wð�Þ

�
:

(3.7)

From Eqs. (3.5), (3.6), and (3.7) and H LQC ¼ 0, one
finds the semiclassical LQC version of the first
Friedmann equation,

�
Hþ _’

2’

�
2 ¼

0
@1

’

ffiffiffiffiffiffi
	e

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	e

	cr

s
þ _’

2’

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	e

	cr

s 1
A
1
A2

;

(3.8)

where 	e ¼ �
4 _’2 þ ’ð12 _�2 þ Vð’Þ þWð�ÞÞ is the

effective energy density and 	cr ¼ 3
�2�

’ 0:41G�2 ’
260M4

pl is the critical (maximal) energy density. Equation
(3.8) coincides with the effective Friedmann equation in
Ref. [20], where the potentials of scalar fields are not
included.

B. Equation of motion of ’

From Eq. (3.5), we define

~p’ ¼ jpj3=2 _’ ¼
6pjpj1=2 sin

�
c

ffiffiffiffiffi
�
jpj

q �
�

ffiffiffiffi
�

p
�

þ 2

�
’�’: (3.9)

Then we have

_~p’ ¼ d

dt
ða3 _’Þ ¼ a3ð €’þ 3H _’Þ ¼ f~p’;H LQCg: (3.10)

From Eqs. (3.5), (3.7), and (3.10), one obtains

€’þ 3H _’þ 2

�
’V’ þ 2

�
ðVð’Þ þWð�ÞÞ

�
0
B@1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
4 _’2 þ ’ðVð’Þ þWð�Þ þ 1

2
_�2Þ

	cr

vuut
1
CA

¼ � _�2

�
: (3.11)

This equation may be expressed in a more general way by
expressing the scalar field �with its energy density 	M and
pressure PM as

€’þ 3H _’þ 2

�
’V’ þ 2

�
ðVð’Þ þ 	M � PMÞ

�
0
B@1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
4 _’2 þ ’ðVð’Þ þ 	MÞ

	cr

vuut
1
CA

¼ � 1

�
ð	M þ PMÞ: (3.12)

Then, the � field could be replaced by any other perfect
fluid, e.g., by dust, radiation, cosmological constant, etc.
From _�� ¼ f��;H g, one obtains the equation of motion

of � as

€�þ 3H _�þW� ¼ 0; (3.13)

where W� � dW
d� . The LQC corrections enter this equation

due to the existence of potential terms of ’ and �. Even for
Vð’Þ ¼ 0 this correction may appear due to the existence
of a nonzero Wð�Þ. Therefore, the continuity equation is
not modified by LQC quantization in the Jordan frame as
long as Vð’Þ ¼ Wð�Þ ¼ 0, which is the case considered in
Ref. [16]. For 	e � 	cr, from Eq. (3.12) one obtains

€’þ 3H _’þ 2

�
ð’V’ � 2Vð’ÞÞ

’ 1

�
ð4Wð�Þ � _�2Þ ’ 1

�
ð	� � 3P�Þ; (3.14)

which recovers the classical equation (2.10).

IV. EXACT SOLUTIONS OF EFFECTIVE
LOOP QUANTUM BRANS-DICKE

COSMOLOGY IN THE JORDAN FRAME

A. Vacuum solution

Let us consider a vacuum solution of the effective
loop quantum Brans-Dicke cosmology in the Jordan frame
with Vð’Þ ¼ 0. Under the assumption 	M ¼ PM ¼ 0, one
obtains

€’þ 3H _’ ¼ 0 )
�

_’

2’
� €’

3 _’

�
2

¼
�

_’

2’

�
2

0
B@
0
@ ffiffiffiffi

�

3

s
� 1

1
A ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �

4	cr

_’2

s
þ 1

1
CA

2

:

(4.1)

Since _’ / a�3 > 0, one can use’ as a time variable. Thus,
let us consider _’ as a function of ’, i.e., _’ ¼ fð’Þ. This
implies €’ ¼ f’f, where f’ ¼ df

d’ . We already obtained

the analytic solution of f and H in Ref. [20], where there
exists a quantum bounce. In this paper, in order to see the
singularity resolution more explicitly and also for a com-
parison with the Einstein frame quantization, we will plot
the evolution of the volume of the elemental cell with
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respect to the scalar time. From Eq. (4.1) one obtains the
analytical formula for the scale factor as a function of ’,

1

a

da

dt
¼ a’

a
f ¼ f

d

d’
ðlog aÞ ¼ � 1

3
f’ ) að’Þ / f�1=3:

(4.2)

The evolution of the volume of the elemental cell
V ¼ að’Þ3Vo in this case, as well as its comparison with
the classical evolution, is shown in Fig. 1.

The main motivation to consider the vacuum case with-
out potential (as well as the additional massless scalar field
scenario, which will be mentioned later) is due to the
characteristic feature of theories with a quantum bounce:
Around the bounce, kinetic terms of fields shall dominate
over potentials. This means that the solutions obtained here
shall also be a good approximation of the evolution around
the bounce in more realistic theories with inflationary
potentials.

B. Brans-Dicke cosmology with massless scalar field

Now we would like to extend the above results to incor-
porate a massless scalar field as an outside matter field. Let

us consider Eq. (3.8) for 	e ¼ �
4 _’2 þ ’

2
_�2, where � is a

massless scalar field. Since the LQC correction does not
modify the conservation law for V ¼ W ¼ 0, one obtains

€’þ 3H _’ ¼ � 1

�
_�2; €�þ 3H _� ¼ 0 ) H ¼ � 1

3

€�

_�
:

(4.3)

From Eq. (4.3), one finds the analytical relation between ’
and �,

’ ¼ � 1

2�
�2 þ B�þ C;

� 2
�
B�� ffiffiffiffi

�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Cþ B2�
q

; B�þ ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cþ B2�

q �
;

(4.4)
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FIG. 1 (color online). All panels present the analytical results for the evolution of the volume of the elemental cell of the Universe as
a function of ’ (vacuum case, left panels) and � (massless scalar field case, right panels, �cr ¼ 1) for various ��Oð10Þ. Solid red
lines represent the solution for effective LQC, while dotted blue lines represent classical solutions with singularity. Unlike the case of
LQC GR, the LQC Brans-Dicke provides asymmetric evolution of V.
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where B and C are constants satisfying B :¼ _’cr

_�cr
þ �cr

� and

C :¼ ’cr � �2
cr

2� � _’cr

_�cr
�cr, respectively. Here the subscript cr

denotes the value of the field at the moment of the bounce.
Since _’ may change its sign during the time evolution, one
cannot use the Brans-Dicke field as a time variable.
However, massless scalar field � remains monotonic with
respect to the cosmological time. Hence, in the following
analysis, we shall use it to parametrize time flow. Note

that the limit � ! B�� ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cþ B2�

p
corresponds to

t ! �1. The relation (4.4) can be also obtained for the
Einstein frame quantization as well as in the classical
Brans-Dicke theory.

The GR limit of the Brans-Dicke theory is obtained for
’ ! 1. In the considered scenario, � is always growing
with time because _� is always positive. Since for late time
(big �) ’ ! 0, one does not recover the GR limit.
However, this shall not be a problem in this analysis, since
the physical evolution of ’ at late time depends on the
other matter fields which would fill the Universe. We have
assumed that around the bounce, the Universe is dominated
by �. But this assumption is not realistic from the point of
view of the observable Universe. With V ¼ W ¼ 0, one
does not obtain inflation, reheating, baryogenesis, etc.
Therefore, for energy much smaller than 	cr, one needs
to consider the existence of additional fields or at least
potential terms of ’ or �. This due to Eq. (3.12) shall

modify the evolution of ’, which could obtain the desired
limit ’ ! 1.
To obtain the analytical solution for the Hubble parame-

ter, let us note that Eq. (3.8) may be rewritten as a second-
order differential equation of the � field by taking account
of Eqs. (3.8), (4.3), and (4.4) as

€�þ
_�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2CþB2�Þ _�2

4	cr

q �
3ð�� B�Þ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Cþ B2�Þp �

2C�þ 2B��� �2

¼ 0: (4.5)

The effective energy density is now equal to

	e ¼ 1

4
ð2Cþ B2�Þ _�2: (4.6)

This comes from Eq. (4.4) and the fact that 	� / 	e / a�3.

Since Eq. (4.5) does not contain any explicit dependence of
t, one can substitute _� by gð�Þ ¼ _�. Then one obtains

g� þ g

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Cþ B2�Þp � 3Bþ 3 �

�

�
ð2Cþ 2B�� �2

� Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2Cþ B2�Þg2

4	cr

s

¼ 0; (4.7)

where g� ¼ dg
d� . The exact solution of this equation is

gð�Þ ¼ 4
ffiffiffiffiffiffiffi
	cr

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cþ B2�

p
�

B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
��

B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
��cr

�1
2ð

ffiffiffiffiffi
3�

p
þ3Þ� �B�þ

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ�

�B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ�cr

�1
2ð

ffiffiffiffiffi
3�

p
�3Þ

�
B�þ

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
��

B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
��cr

� ffiffiffiffiffi
3�

p
þ3 þ

�
�B�þ

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ�

�B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ�cr

� ffiffiffiffiffi
3�

p
�3

: (4.8)

The Hubble parameter is equal to H ¼ � 1
3

€�
_� ¼ � 1

3g�.
Analogously to the vacuum scenario, one obtains að�Þ /
g�1=3. The evolution of the elementary cell in this case, as
well as its comparison with the classical evolution, is also
shown in Fig. 1.

V. LQC CORRECTIONS IN THE EINSTEIN FRAME

The nonminimal coupling between a scalar field and the
Ricci scalar may be replaced by the minimally coupled
system with a redefined metric tensor, which leads to the
GR form of the action. This approach (the so-called
Einstein frame) is equivalent to the Jordan frame analysis
at the classical level. It is often more convenient to perform
calculations in the Einstein frame and (under the assump-
tion that the Jordan frame is the physical one) to express
results in terms of physical variables. Let us define ~g�� of

the form of

~g�� ¼ ’g��: (5.1)

In the FRW model, we let

d~t ¼ ffiffiffiffi
’

p
dt; ~a ¼ ffiffiffiffi

’
p

a; (5.2)

where t and a are the cosmological time and scale factor in
the Jordan frame. Then the action (2.1) in the cosmological
model may be expressed as

~S ¼
Z

d~t

�
�3~a02~aþ ~a3

�

4

�
’0

’

�
2 � ~a3

V

’2

�
þ SMð~g��; ’Þ;

(5.3)

where 0 denotes the derivative with respect to ~t. The action
of the matter fields depends on ’ due to the transformation
to the Einstein frame. The action (5.3) may be simplified
with a new scalar field defined by

� ¼
ffiffiffiffi
�

2

s
ln ð’Þ ) ’ ¼ exp

0
@ ffiffiffiffi

2

�

s
�

1
A: (5.4)

Then the the action (5.3) takes the form of a scalar field �
minimally coupled to the gravity, as in the case of matter
coupling in general relativity. Thus, the Lagrangian looks
as follows:
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L ¼ �3~a02~aþ ~a3
1

2
�02 � ~a3 ~Vð�Þ þLM; (5.5)

where ~Vð�Þ ¼ V
’2 (with ’ taken as a function of �), and

LM is the Lagrangian of matter fields in the Einstein frame.
Similar to Eq. (2.5), the coefficient ~c of the connection
and the coefficient ~p of the densitized triad in the FRW
model can be also isolated by the symmetric reduction.
Since the connection and densitized triad come from the
Einstein frame, one gets their relation to those of the Jordan
frame as

j~pj ¼ ~a2V2=3
o ¼ ’jpj;

~c ¼ �~a0 ¼ �

�
_aþ a

_’

2’

�
¼ cþ �a

_’

2’
;

(5.6)

with the Poisson bracket f~c; ~pg ¼ �
3 . The Lagrangian den-

sity (5.5) also implies �� ¼ ~a3�0. Under the assumption

that the only matter field is a scalar field � with potential
Wð�Þ, one obtains the following classical Hamiltonian in
terms of new variables as

~H ¼ �2
� þ e

ffiffi
2
�

p
��2

�

2~p3=2
� 3~c2

ffiffiffiffi
~p

p
�2

þ ~p3=2ð ~V þ e�2
ffiffi
2
�

p
�WÞ;

(5.7)

where �� � ~a3e�
ffiffi
2
�

p
��0 is the canonical momentum of �.

All classical equations of motion may be obtained from
the Hamiltonian equations. This means that for a given
function � on the classical phase space, one obtains

�0 ¼ f�; ~H g.
The main motivation to implement LQC corrections in

the Einstein frame is that the issue of the physical inter-
pretation of both frames is still open. We need to know how
to distinguish on the experimental level between the Jordan
and Einstein frames’ LQC quantization. This is a strong
suggestion to analyze and compare both of them. In this
paper, we follow the assumption that the Jordan frame is
the physical one. So, to compare the quantization in both
frames, we shall express the results of the Einstein frame
quantization as a function of the Jordan frame variables
and fields. One can still treat the Jordan frame as an under-
lying frame for quantization of all degrees of freedom,
from which the evolution in the physical (Jordan) frame
emerges. The other reason to consider the Einstein frame
quantization is that the Einstein frame Hamiltonian obtains
its canonical form, which is easy to use methods of LQC
quantization discussed in detail in the literature (e.g., in
Ref. [12]). The procedure of the LQC quantization of the
Brans-Dicke theory in the Einstein frame is similar to that
in the Jordan frame, but now the kinematical Hilbert space
is defined over the Bohr compactification of the configu-
ration space of ~c. The momentum operator ~p acts on its
orthonormal eigenstate j ~�i in the same way as Eq. (3.1). In
the construction of the Hamiltonian operator, one employs

the holonomy exp ði~�� ~c =2Þ with ~�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=j~pjp

. Again, we

limit ourselves to the LQC holonomy correction. Thus, in
the semiclassical regime of LQC quantization, one shall

transform ~c into
ffiffiffiffiffiffiffiffiffiffiffiffiffij~pj=�p

sin ð~c ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=j~pjp Þ, while ~p remains

unchanged [23–25]. This gives the effective Friedmann
equation and equation of motion of the form

3 ~H2 ¼ ~	

�
1� ~	

	cr

�
;

d2�

d~t2
þ 3 ~H

d�

d~t
þ dV

d�
¼ e�2

ffiffi
2
�

p
�

ffiffiffiffiffiffiffi
1

2�

s �
4W � e

ffiffi
2
�

p
��02

�
;

(5.8)

where ~H ¼ ~a0
~a and ~	 ¼ 	e

’3 . The effective Friedmann equa-

tion may be rewritten in terms of the Jordan frame metric as

3

�
H þ _’

2’

�
2 ¼ 	e

’2

�
1� 	e

’3	cr

�
: (5.9)

Thus, Eqs. (3.8) and (5.9) give sufficiently different forms
of the Friedmann equation. However, they both obtain the
same classical limit for 	e � 	cr, which is described by
Eq. (2.11). Note that the Einstein frame quantization does
not change the effective equations of motion of matter fields
as well as those of the Brans-Dicke field. It seems natural
because the LQC quantization is performed for the scalar
field � minimally coupled to the metric ~g��. The situation

changes when the frame changes, since for Jordan frame,
any potential term would imply the LQC correction to the
equation of motion of ’. For the Einstein frame quantiza-
tion, the bounce in the Einstein frame defined by ~H ¼ 0
appears for ~	 ¼ 	cr, while the bounce in the Jordan frame
(H ¼ 0) requires

4	2
e

’3
crð4	e � 3 _’2

crÞ
¼ 	cr; (5.10)

where the index cr denotes the value of the field at
the moment of the bounce in the Jordan frame. In general,
scales of bounces which originate from quantization in the
Jordan frame (3.8) and Einstein frame (5.10), respectively,
may be sufficiently different, since’3

crð1� 3 _’2
cr=4	eÞ does

not need to be equal to 1. Thus, not only the exact evolution,
but even the scales of the bounces (understood as the value
of the effective energy density at the moment, in which
H ¼ 0) are different in the different frame quantizations.
An interesting scenario of the Einstein frame quantiza-

tion is the vacuum case with � ¼ 3 and nonzero potential.
Then at the moment of the Jordan frame bounce, one

obtains 	e ¼ ’2
cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	crVð’crÞ

p
. If the ’cr is close to the

minimum of the potential V (which in the most realistic
scenario would be in ’ ¼ 1), one obtains a very low scale
of a Jordan frame bounce. In particular, the scale of the
bounce may be close to the inflationary scale, and the LQC
effects may be visible for the biggest scales of the power
spectrum of primordial curvature perturbations.
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VI. EXACT SOLUTIONS OF EFFECTIVE LOOP
QUANTUM BRANS-DICKE COSMOLOGY IN

THE EINSTEIN FRAME

A. Vacuum solution

The LQC quantization in the Einstein frame provides
several analytical solutions in the semiclassical regime. For
instance, the case 	M ¼ PM ¼ V ¼ 0 corresponds to the
domination of a massless scalar field in the Universe with
the scale factor ~a. Then Eq. (5.8) has the exact solution of
the form3

’0

’
¼ �0 / ~a�3 ) ~a ¼ ~acrð1þ 3	cr~t

2Þ1=6; (6.1)

where ~acr is a value of ~a at the moment of the bounce in the
Einstein frame. For this scenario, the evolution of the
Hubble parameters for the Brans-Dicke theory with
LQC corrections in the Jordan and Einstein frames are
presented, respectively, in Fig. 2.

Let us note that the analytical solution in the vacuum
case with Vð’Þ ¼ 0 may be also obtained as a function of
the Brans-Dicke field. From Eqs. (2.10) and (5.9), one finds

€’þ 3 _’2

2’

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

3

�
1� � _’2

4’3	cr

�s
� 1

1
A ¼ 0

) j0 þ 3j

2’

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

3

�
1� �j2

4’3	cr

�s
� 1

1
A ¼ 0; (6.2)

where j ¼ jð’Þ ¼ _’ and j0 ¼ dj
d’ . The solution of this

equation is the following:

j ¼ 4

ffiffiffiffiffiffiffi
	cr

�

s
’3=2ð’=~’crÞ

ffiffiffiffi
3�

p
2

1þ ð’=~’crÞ
ffiffiffiffiffi
3�

p ;

H ¼ � 1

3
j0; að’Þ / a�1=3;

(6.3)

where ~’cr � ’cr is the value of ’ at the moment of a
bounce in the Einstein frame. The bounce in the Jordan

frame happens for ’ ¼ ’cr ¼ ~’crð
ffiffiffi
�

p
þ ffiffi

3
pffiffiffi

�
p

� ffiffi
3

p Þ1=
ffiffiffiffiffi
3�

p
and for

energy density ~	ð’crÞ ¼ ð1� 3=�Þ	cr. In the limit of
� � 1; one obtains ~’cr ’ ’cr and ~	ð’crÞ ’ 	cr.

B. The Vð’Þ ¼ �’2 case

The other analytical solution comes from the case
Vð’Þ ¼ �’2 and 	M ¼ 0. Then, in the Einstein frame
one obtains ~V ¼ �, so if the ’ field has a square potential
in the Jordan frame, it gives the Universe filled with mass-
less scalar field � and cosmological constant � in the
Einstein frame. Let us assume that at the moment of a
bounce in the Einstein frame, when ~H ¼ 0, one obtains

� ¼ ð1� 
Þ	cr and
1
2
_�2
cr ¼ 
	cr. This comes from the

fact that �þ 1
2
_�2
cr ¼ 	cr. The 
 parameter has an inter-

pretation of percentage contribution of 	m to the critical
energy density. Usually, one expects a cosmological con-
stant to be subdominant around the big bounce. Thus, it is
natural to consider j1� 
j � 1. One shall note that 
< 1
and 
> 1 correspond to �> 0 and �< 0, respectively.
The exact solution of Eq. (5.8) looks as follows:

~a ¼ ~acr

�
cosh ð6 ffiffiffi

�
p

~tÞ � 2
þ 1

2ð1� 
Þ
�1
6

for �> 0; (6.4)

~a ¼ ~acr

�� cos ð6 ffiffiffi
�

p
~tÞ þ 2
� 1

2ð
� 1Þ
�1

6
for �< 0; (6.5)

1.0 0.5 0.0 0.5 1.0

6

4

2

0

2

t

H

1 0 1 2 3

4

2

0

2

4

H

FIG. 2 (color online). Both panels’ lines represent the analytical solutions for the physical Hubble parameter H as a function of
cosmological time t (left panel, vacuum solution, � = 5, ’cr = 1) or � (right panel, massless scalar field solution, � ¼ 15, �cr ¼ 1,
B ¼ 0, C ¼ 1) for the LQC quantization in the Jordan (red line) and Einstein (dashed green line) frames. The t ¼ 0 or � ¼ 1
correspond to the moment of the bounce in the Jordan frame. For t > tpl, both methods of quantization approach the same evolution

trajectory. The comparison takes place in the Jordan frame due to our assumption that this frame is the physical one.

3A more general solution of Eq. (5.8) is given in Ref. [32].
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where � ¼ j1� 
j
	cr=3. It is easy to show that for 
 �
1=2, one obtains d

d~t
~H > 0 at any time. In such a case, ~H

grows to its finite maximal value ~Hmax ¼ ffiffiffi
�

p
. For 
>

1=2, ~H grows initially to reach its global maximum
~Hmax ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	cr=12
p

at 	 ¼ 	cr=2. Later on, ~H decreases

together with ~	. For
ffiffiffi
�

p
t � 1, one finds cosh ð6 ffiffiffi

�
p

~tÞ ’
1þ 6
	crð1� 
Þ~t2 and cosð6 ffiffiffi

�
p

~tÞ’1�6
	crð1�
Þ~t2.
Thus, for both positive and negative cosmological con-
stants, around a bounce, one recovers the solution (6.1).
Let us note that in the case of V ¼ �’2, it is possible to
solve analytically only for the quantization in the Einstein
frame. An interesting feature of this model is that, although
’ has a potential term, one may still use it as a time
variable because _’> 0 is always valid. However, this
is the case only in the classical limit or for the LQC
quantization in the Einstein frame. For ’ � 1, the consid-
ered potential is a good approximation of the potential
of the Starobinsky inflation [33], for which V /
ð’� 1Þ2. However, V ¼ �’2 does not provide the grace-
ful exit, and it generates a too flat power spectrum of initial
curvature perturbations.

C. With massless scalar field

For the Einstein frame quantization, one may also
obtain the analytical solutions of the effective theory in
the case of V ¼ W ¼ 0. Since classical equations of mo-
tion of matter fields are still valid for the effective theory of
the Einstein frame quantization, one may use the relation
(4.4) and the semiclassical Friedmann equation (5.8) to
obtain an equation of motion of only one degree of free-
dom, which is �. Again, we define hð�Þ ¼ _�, which gives
following equation of motion:

dh

d�
� 3ðB�� �Þh

2C�þ ð2B�� �Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2�
ð2C�þ ð2B�� �Þ�Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~	

�
1� ~	

	cr

�s
; (6.6)

where

~	 ¼ 2�3ð2Cþ B2�Þh2
ð2C�þ 2B��� �2Þ3 : (6.7)

This equation has the following exact solution:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2	cr

�3ð2Cþ B2�Þ

s �
B�þ

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
��

B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
�~�cr

�1
2

ffiffiffiffiffi
3�

p �
�B�þ

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ�

�B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ~�cr

�1
2

ffiffiffiffiffi
3�

p

�
B�þ

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
��

B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
�~�cr

� ffiffiffiffiffi
3�

p
þ

�
�B�þ

ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ�

�B�þ
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþB2�

p
þ~�cr

� ffiffiffiffiffi
3�

p ð2C�þ ð2B�� �Þ�Þ3=2; (6.8)

where ~�cr � �cr represents the moment in which ~H ¼ 0.
Similar to the Jordan frame quantization, the Hubble
parameter in the Jordan frame is of the form Hð�Þ ¼
� 1

3
dh
d� . This result is also compared with the Jordan frame

quantization in Fig. 2.

VII. CONCLUSIONS

In this paper, we consider the issue of the semiclassical
evolution of the Universe in both the Jordan and Einstein
frames of the LQC Brans-Dicke theory with scalar poten-
tial Vð’Þ coupled with an additional scalar field � with a
potential Wð�Þ. The Hamiltonian formalism of the corre-
sponding cosmological models is presented in terms of
geometrical variables as well as connection variables.

To compare the Jordan frame with the Einstein frame of
Brans-Dicke theory, the same cosmological model is quan-
tized by the LQCmethod in both frames separately. We then
consider the effective equations with the LQC holonomy
corrections that result from the different frames’ quantiza-
tion. In particular, the effective Friedmann equations and
equations of motion for the scalar fields are obtained in both
frames. In the Jordan frame quantization, it is shown that not
only the potential term of the Brans-Dicke field ’ but also
Wð�Þ can lead to corrections to the effective equation of
motion of ’. In the 	e � 	cr limit, the classical Brans-
Dicke theory can be recovered from the effective theory. In

theW ¼ 0 case, equations of motion for scalar fields and the
semiclassical Friedmann equation are of the the same form
as the Brans-Dicke theory with and without a potential.
Analytical solutions are found for the effective equations

that result from both frames’ quantization without potential
in the vacuum case and in the additional massless scalar
field case separately. In the vacuum case, the Brans-Dicke
scalar field can be employed as an internal time. In the
matter coupled case, the matter scalar field � is used as a
time variable, and the analytical relation (valid in the
effective theory of both frames and in the classical theory)
between the two scalar fields is obtained. In all those
solutions, the bouncing evolution of the scale factor is
obtained around the Planck regime. However, the quanti-
zation of different frames leads to different scales of the
bounces of the scale factor aðtÞ. The Jordan frame quanti-
zation and the Einstein frame quantization require 	e ¼
	cr and

4	2
e

’3
crð4	e�3 _’2

crÞ ¼ 	cr, respectively, for the occurrence

of the bounce. Hence, different frame quantization gives
different physics. Moreover, as shown in Fig. 1, the evolu-
tional trajectories of the Jordan frame volume of the ele-
mentary cell of the Universe are different for the different
frames’ quantization.
However, as shown in Fig. 2, in the vacuum case, the

difference of the evolutional trajectories of the Jordan
frame Hubble parameter disappears for time t > tpl after
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the bounces. Therefore, it may be difficult to distinguish
between the frames’ quantization by observations of the
primordial inhomogeneities. The situation may change by
the fine-tuning of the initial conditions of the Einstein
frame quantization, which (comparing to the Jordan frame
quantization) may sufficiently decrease the scale of the
Jordan frame bounce. In particular, this could lead to the
Jordan frame bounce around the grand unification theory
scale with the period of superinflation visible in the power
spectrum of primordial inhomogeneities. This issue ana-
lyzed in the context of Starobinsky inflation shall be the
goal of our future work.

Another interesting feature of the bounce in loop quan-
tum Brans-Dicke cosmology explored in Fig. 1 is that,

unlike the case of LQC of GR, the evolutional trajectories
of the two sides of the bounce point are obviously asym-
metric. As a by-product, we also find an analytical solution
with Jordan frame potential V ¼ �’2 in the theory of
Einstein frame quantization.
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