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We investigate the main features of the flat Friedmann-Lemaitre-Robertson-Walker cosmological
models in the f(7) modified gravity regime. In particular, a general approach to find out exact
cosmological solutions in f(7) gravity is discussed. Instead of taking into account phenomenological
models, we consider as a selection criterion, the existence of Noether symmetries in the cosmological f(T)
pointlike Lagrangian. We find that only the f(T) = f,T" model admits extra Noether symmetries. The
existence of extra Noether integrals can be used in order to simplify the system of differential equations
(equations of motion) as well as to determine the integrability of the f(T) = f,T" cosmological model.
Within this context, we can solve the problem analytically and thus we provide the evolution of the main
cosmological functions such as the scale factor of the Universe, the Hubble expansion rate, the
deceleration parameter, and the linear matter perturbations. We show that the f(T) = f,T" cosmological
model suffers from two basic problems. The first problem is related to the fact that the deceleration
parameter is constant which means that it never changes sign, and therefore the Universe always
accelerates or always decelerates depending on the value of n. Second, we find that the clustering growth
rate remains always equal to unity implying that the recent growth data disfavor the f(7) = f,T" gravity.
Finally, we prove that the f(T) = f,T" gravity can be cosmologically equivalent with the f(R) = R"
gravity model and the time varying vacuum model A(H) = 3yH? (for n=! = 1 — ) because the above
cosmological scenarios share exactly the same Hubble expansion, despite the fact that the three models
have a different geometrical origin. Finally, some important differences with power-law f(R) gravity are

pointed out.
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I. INTRODUCTION

Nonstandard gravity models provide an alternative
possibility towards understanding the accelerated expan-
sion of the Universe (see [1] and references therein).
The physical mechanism which is responsible for the
present accelerating stage of the Universe can be driven
by a modification of the Einstein-Hilbert action, while
the matter content of the Universe remains the same
(relativistic and cold dark matter). In the literature there
are plenty of modified gravity models proposed by differ-
ent authors, such as the braneworld Dvali, Gabadadze and
Porrati [2] model, f(R) gravity [3], scalar-tensor theories
[4], Gauss-Bonnet gravity [5], Horava-Lifshitz gravity [6],
nonlinear massive gravity [7], etc.

Another gravitational scenario which has recently gained
a lot of attention is the so-called f(T) gravity. The intrinsic
properties of this scenario are based on the rather old
formulation of the teleparallel equivalent of general rela-
tivity (TEGR) [8-10]. Specifically, instead of using the
torsionless Levi-Civita connection of the classical general
relativity (GR), one utilizes the curvatureless Weitzenbock
connection in which the corresponding dynamical fields
are the four linearly independent vierbeins. Therefore,
all the information concerning the gravitational field is
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included in the torsion tensor. Within this framework, con-
sidering invariance under general coordinate transforma-
tions, global Lorentz-parity transformations, and requiring
up to second order terms of the torsion tensor, one can write
down the corresponding Lagrangian density 7 [9] by using
some suitable contractions. A natural generalization of
TEGR gravity is f(T) gravity which is based on the fact
that we allow the Lagrangian to be a function of 7 [11-13],
inspired, of course, by the well-known extension of f(R)
Einstein-Hilbert action. However, f(T) gravity does not
coincide with f(R) extension, but it rather consists of a
different class of modified gravity. It is interesting to men-
tion that the torsion tensor includes only products of first
derivatives of the vierbeins, giving rise to second-order
field differential equations in contrast with the f(R) gravity
that provides fourth-order equations which potentially may
lead to some problems, for example in the well position and
well formulation of the Cauchy problem [14].

Despite the fact that TEGR coincides completely with
GR, both at the background and perturbation levels, it has
been shown that f(T) gravity provides different structural
properties with respect to GR as well as different black-hole
solutions and cosmological features [11-13,15-19]. An
important question here is what classes of f(T) extensions
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are allowed. From the phenomenological viewpoint, the
aforementioned cosmological and spherical analysis lead
to a variety of such expressions. Using cosmological
[16,17,20] and Solar System [18] observations, one can
show that the deviations from TEGR must be small.

In this paper, we use a model-independent selection rule
based on first integrals, due to Noether symmetries of the
equations of motion, in order to identify the viability of
f(T) gravity in the context of flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) cosmologies. Actually, the
idea to use Noether symmetries in cosmology is not new
and indeed there is a lot of work in the literature (see
[21-33]) along this line. In this context, recently we have
shown (see Basilakos er al. [34]; Paliathanasis er al. [35])
that the existence of Noether symmetries can be used as a
selection criterion in order to distinguish the scalar dark
energy models [34] as well as the f(R) gravity models [35].
Inspired by the above works in the current article, we
would like to estimate the Noether symmetries of the
f(T) gravity. The aim here is (a) to identify the f(T)
functional forms which accommodate extra Noether sym-
metries, and (b) for these models, to solve the system of the
resulting field equations and derive analytically the main
cosmological functions (the scale factor, the Hubble ex-
pansion rate, deceleration parameter and growth factor)
and finally to compare with other cosmological patterns
which are outside and inside GR.

The structure of the article is as follows: In Sec. II, we
discuss the issue of torsion in GR and its connection with
unholonomic frames. This discussion is useful in order to
clarify some misunderstandings on the role of torsion that
are present in literature. In particular, we shall discuss its
dependence on the frame where observations are made.

In Sec. III, we give the basic FLRW cosmological
equations in the framework of f(T) gravity. The main
properties and theorems of the Noether symmetry ap-
proach are summarized in Sec. IV. Noether symmetries
for f(T) cosmology are discussed in Sec. V. In Sec VI we
provide analytical solutions for f(7) models that admit
nontrivial Noether symmetries. A comparison with analo-
gous f(R) cosmology is pursued putting in evidence sim-
ilarities and differences. We draw conclusions in Sec. VI.

II. THE ROLE OF TORSION IN
GENERAL RELATIVITY

Before starting our considerations on f(T) gravity and its
cosmological realization, it is useful to discuss in detail the
role of torsion in GR considering, in particular, how it
behaves with respect to holonomic and unholonomic frames.

Let us start with some definitions. In an n-dimensional
manifold M consider a coordinate neighborhood ‘U with a
coordinate system {x*}. At each point P € ‘U, we have the
resulting holonomic frame {d,}. We define in U a new
frame {e,(x*)} which is related to the holonomic frame
{9,} as follows:
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ea(x'“)=hffaM apn=12...,n (D

where the quantities Al (x) are in general functions of
the coordinates (i.e. depend on the point P). Notice that
Latin indices count vectors, while Greek indexes are tensor
indices. We assume that det 45 # 0 which guarantees that
the vectors {e,(x*)} form a set of linearly independent
vectors. We define the “inverse” quantities 4 by means
of the following “‘orthogonality” relations:

hihs = 8%, hihe = &5 )

The commutators of the vectors {e,} are not in general all
zero. If they are zero, then there exists a new coordinate
d

system in U, {y’} so that e, = 357+ i-e. the new frame is

holonomic. If there are commutators [e,, ¢,] # 0 then the
new frame {e,,} is called unholonomic and at least a number
of vectors e;, cannot be written in the form e, = d,. The
quantities which characterize an unholonomic frame are
the objects of unholonomicity or Ricci rotation coefficients
(¢, defined by the relation

[ea’ eb] = chber (3)
Let us compute:

lea ep] = [htia,, h}a,] = [hihy hG — hYRl DS Je,
from which follows that the Ricci rotation coefficients of
the frame {e,} are
Q0¢,. = 2hﬁhf‘]#h‘j. (€]

The condition for {e,} to be a holonomic basis is ¢, = 0
at all points P € ‘U. This is a set of linear partial differ-
ential equations whose solution defines all holonomic
frames and all coordinate systems in U. One obvious
solution is hj = &7. The set of all coordinate systems in
‘U, equipped with the operation of composition of trans-
formations, has the structure of an infinite dimensional Lie
group which is called the Manifold Mapping Group [36].

Let us consider now the special unholonomic frames
which satisfy the Jacobi identity:

[[ea’ eb]: ec] + [[eb’ ec]: ea] + [[ew ea]r eb] =0. (5)

These frames are the generators of a Lie algebra, there-
fore they have an extra role to play. Replacing the commu-
tator in terms of the unholonomicity objects, we find the
following identity:

d d d  _0l 0d_—0l 0Od
Q ab,c +Q ba,a +Q ca,b Q athl Q thal
I 0d —
- Q cale =0. (6)
Using the definition of the covariant derivative we write
Vel_ej = Fi-‘jek, (7)

where Fffj are the connection coefficients in the frame {e}.

If we compute the I’ i‘j assuming
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Le;, ej] = Cﬁ,jek
it follows that
kK — Ok
Cv,-j = ijk.

Let us consider now three vector fields X, Y, Z and the
covariant derivative of the metric vector X. Then we have

Vxg(¥,2) = X(g(Y, Z)) — g(VxY,2) — g(Y,VyZ) (8)
and by interchanging the role of X, Y, Z
Vy8(Z, X) = Y(8(Z, X)) — g(VyZ X) = g(Z,VX), (9)

V28X, Y) = Z(g(X, Y)) — g(VX, Y) — g(X, VxY). (10)

Adding Egs. (8) and (9) and subtracting (10), one
obtains

Vxg(Y,Z) + Vyg(Z, X) = V,8(X. Y)
=X(g(Y,2) + Y(g(Z X)) — Z(g(X, Y))
—[8(VxY, Z2) + g(VyZ X) — g(V;X, Y)]
— [8(Y, Vx2) + g(Z, VyX) — g(X, V,Y)]

then
Vyxg(Y,Z) + Vyg(Z, X) = V22X, Y)
= X(g(Y, 2)) + Y(g(Z X)) — Z(g(X, Y))
— [8(VxY, Z) + g(Z, VyX)]
—[8(VyZ, X) — g(X, VY]
—[8(Y, VxZ) — g(VzX, V)]
that is

Vyg(¥,Z) + Vyg(Z, X) = V22X, Y)
= X(g(¥,2)) + Y(g(Z X)) — Z(g(X, Y))
—[g(Z, VY + VyX) + g(X, VyZ — V,Y)
+g(Y, VxZ = VX)),

where

Replacing in the last relation and solving for 2g(Z, VY),
we find

28(Z, VyxY) = [X(g(Y, 2)) + Y(g(Z, X)) — Z(g(X, Y))]
—[Vxe(¥,2) + Vyg(Z, X) — V2(X, Y)]
—[8(Z, VyX — VyY) + g(X,VyZ — V,Y)
+ g(¥Y,VxZ — V,X)]

or
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28(Z,VxY)=[X(g(Y.2)) + Y(8(Z, X)) — Z(g(X, Y))]
—[Vxg(Y,2) + Vyg(Z,X) = V,8(X, Y)]
—[8(Z.VyX = VxY —[Y.X])
+g(X,VyZ—-V,Y—[Y,Z))
+g(Y,VxZ—-V,X —[X,Z])]
—[g(Z [, X]) +gX,[Y,Z]) + g(Y,[X, Z]) ]
At this point, we can define the quantities
Ty(X,Y)=Vy Y-V, X—[X,Y] Av(X,Y,Z)=Vyg(¥,2).

The tensors Ty and Ay are called the torsion (Ty = T) and
the metricity of the connection V respectively. The last
relation in terms of the fields 7y and Ay is written as
follows:

28(Z,VyY) =[X(g(Y,2)) + Y (3(Z, X)) — Z(g(X. Y))]
—[Av(X,Y,Z) + Ay(Y,Z,X)
—Av(Z, X, V) ]+ ~[g(Z Ty(Y, X))
+8(X, Ty (Y, 2)) +g(Y, Ty(X, 2))]
—[8(Z[Y. X)) +g(X.[Y, Z]) +g(Y,[X, Z])]
(In

Let X = ¢, Y = ¢; and Z = ¢;. Contracting with 1 ¢, we
have

24(2, V¥) — Ty,
[X(g(Y, 2)) + Y(g(Z. X)) — Z(g(X, V))] — { ’k}
J
g(X, Tv(Y, Z)) - Q,ikjv
8(Z, To(Y, X)) + (¥, Ty(X, 2)) = g"(8,,0 + &u Q%)
= _S.[kj’

1 .
g(X) [Y’ Z]) - Ecljk’

iy
8Z[Y, X]) + g(¥,[X, Z]) = 5 8"(2,;Clx + 2uC})
= =S4

and
1 .
Av(X,Y,Z) + Ay(Y, Z, X) — Av(Z, X, Y) — Eg”Ajkz.

Replacing in Eq. (11), we find the connection coefficients

in the frame {e;}, that is

ri, = {145+ - Lo + Q! !
jk jk kj kj 2g ki k5

where {jik} are the standard Levi-Civita connection

coefficients (i.e. the Christofell symbols). This is the
most general expression for the connection coefficients in
terms of the fields {j’k}, Ty, Ay and Cj.k. Concerning the

symmetric and antisymmetric part, we have

Cl (12)
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; i =i . 1.
! = i [ il
F-(jk) o {]k} + 85+ Sl 58 A (13)

1

Ff[jk] = ijk - Ec.ijk’ (14)

and then we can draw the following conclusions:

(1) The connection coefficients in a frame {e;} are
determined from the metric, the torsion, the metric-
ity and the unholonomicity objects (equivalently the
commutators) of the frame.

(2) The symmetric part F_i(jk) of I, depends on all
fields. This means that the geodesics and the
autoparallels in a given frame depend on the
geometric properties of the underlying manifold
(fields g, kaj, gijiv) and the unholonomicity of
the frame (field C_ijk).

(3) The antisymmetric part Ff[l.k] of T}, depends only on
all fields Q, ;and ijk.

(4) The objects of unholonomicity ijk behave in the
same way as the components of torsion. This means
that even in a Riemannian space where Q_ikj =
0, gijix = 0 in an unholonomic basis the antisym-
metric part T, = —3C; # 0.

This result has lead to the misunderstanding that when
one works in an unholonomic frame then the torsion is
introduced. This statement is clearly not correct. This
misunderstanding has important consequences because
the effects one will observe in an unholonomic frame
will be frame dependent and not covariant effects.
Therefore all conclusions made in a specific unholonomic
frame must be restricted to that frame only.

IIL. f(T) GRAVITY AND COSMOLOGY

With the above considerations in mind, let us consider
TEGR and its straightforward extension f(T).
Teleparallelism uses as dynamical objects the vierbiens
as unholonomic frames in spacetime. Following the
definitions in the previous section, they are defined
by the requirement g(e;, e;) = e;.e; = m;;, where 7,; =
diag(—1, +1, +1, +1) is the Lorentz metric in canonical
form. Obviously g,,(x) = ;% (x)h}(x) where e'(x) =
hi,(x)dx" is the dual basis. Differing from GR, which uses
the torsionless Levi-Civita connection, Teleparallelism
utilizes the curvatureless Weitzenbock connection, whose
non-null torsion tensor is defined as

Th, =18, — 16, = hP(a,hi, — a,h,). (15

Notice the Ricci rotation coefficients are Qj.k = le:k and

encompass all the information concerning the gravitational
field. The TEGR Lagrangian for the gravitational field
equations (Einstein equations) is assumed to be

T = STk, (16)
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where
1
SB‘“’ = E(K“”ﬁ + 65T"”0 — 6;T0#0) 17
and K*? B is the contorsion tensor
1
K"”B = _E(Twﬁ - T”“ﬁ - TB’“’), (18)

which equals the difference of the Levi-Civita connection
in the holonomic and the unholonomic frame (see Sec. II for
details).

Here, the gravitational field will be driven by a
Lagrangian density which is a function of the trace T.
Therefore, the corresponding action of f(T) gravity
reads as

— 1 4
ﬂ’[‘ = @ fd xef(T), (19)

where e = det(el, - €}) = ,/~=g. Obviously, TEGR and
thus GR, are restored for f(T) = T.

In order to construct a realistic theory of gravity, we
have to incorporate the matter and radiation fields too.
Therefore, the total action is written as

1
167G

Ag = Ar + fd“xe(Lm +L,), (20)
where the matter and radiation Lagrangians are assumed to
correspond to perfect fluids with energy densities p,,, p,
and pressures p,,, p, respectively. If matter couples to the
metric in the standard form then the variation of the action
with respect to the vierbein leads to the equations [11]

10, (eSE)fI(T) — )T, P! £1(T) + S0, (1) f"(T)
1
+ MAT) = ATGRIT™" 5, 2D

where a prime denotes differentiation with respect to 7,
S+ =hFPSy" and T is the matter energy-momentum
tensor. It is easy to show that, for f(T) = T, Eq. (21)
reduces to the standard Einstein equations [37].

In order to consider the related f(T) cosmology, let us
assume a spatially flat FLRW metric which, in the holo-
nomic (comoving) frame {91, dx, dy, dz}, assumes the form

ds? = —dr* + d®(1)(dx* + dy* + dz?),

where a(t) is the cosmological scale factor. In this space
we define the vierbein (unholonomic frame) {e;} which
becomes

hi (1) = diag(1, a(r), a(1), a(1)). (22)

In order to derive the cosmological equations in a FLRW
metric, we need to deduce a pointlike Lagrangian from the
action (19). As a consequence, the infinite degrees of
freedom of the original field theory will be reduced to a
finite number as in mechanical systems. This fact allows
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one to deal with minisuperspaces of finite dimensions
(see [38] for details).

In this framework, considering {a, T} as the canonical
variables of the configuration space the f(7T) action
becomes formally

A, = f L(a a T, T)dt.
Due to the fact that 7, in GR, reduces to

a\2
T = —6(;) = —6H?, (23)

where H is the Hubble parameter [15], one can rewrite the
f(T) action using a Lagrange multiplier A, as follows:

A ;=27 fdt{f(T)a3 — ALI:T + 6<Z—j)]} (24)

In order to determine A ,, we need to vary the f(T) action
with respect to 7T, that is

df(T)
38T — Ap8T =
a a7 )\£ 0

from which follows
Ar = a*f!(T).
Replacing in the Lagrangian we find
L =&f(T) - Tf (D] - 6a*af'(T),  (25)

which is canonical in the variables {a, T}.
Also, the substitution of the vierbein (22) in Eq. (21) for
i = v = 0 (as well as the energy condition) yields

12H*f!(T) + f(T) = 167Gp. (26)

Besides, for i = v = 1 Eq. (21) gives
ASH*H f'(T) —4(H + 3H>)f'(T) — f(T)=167Gp, (27)

where p = p,, + p,and p = p,, + p, are the total energy
density and pressure respectively which they have been
measured in the unholonomic frame. It is important to
stress that Eqs. (26) and (27) can be derived by the
Euler-Lagrange equations

oL oL
Efr=—a+—=T—-L (28)
da oT
and
oL 9L
4022 (29)
dt da  da
respectively. The Euler-Lagrange equation,
oL 9L
4020 (30)
dt oT  oT

gives the constraint (23). In this sense, the pointlike
Lagrangian (25) completely defines the related dynamical
system in the minisuperspace {a, T}.
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It is interesting to mention that using the conservation
equation p + 3H(p + p) = 0 one can rewrite Eqgs. (26)
and (27) in the Friedmann-Einstein form

877G

H* = — o+ pr), (31)
2H + 3H? = —87G(p + py), (32)
where
pr=1c DT = (O -TL (33)
pr = ——{HRTFT) + F(T) — 1= pr ()

~ 167G

are the unholonomicity contributions to the energy density
and pressure that disappears as soon as f(T) = T. Finally,
f(T) gravity can mimic, under specific circumstances, the
scalar field for dark energy [15]. In order to address this
crucial question, we need to derive an effective equation-
of-state parameter w(a) for the f(T) cosmology. Indeed,
utilizing Egs. (33) and (34), we can easily obtain the
effective unholonomicity equation of state as

pr_ _, , 4HTF(D) + f1(1) 1]
pr 2Tf(T) = f(T) =T
It is easy to see that possible deviations from the ACDM

model can be addressed by the second term in such an
equation.

(35)

wr

IV. NOETHER SYMMETRIES

Generally, Noether symmetries play an important role in
physics because they can be used to simplify a given
system of differential equations as well as to determine
the integrability of the system. In general, the existence of
a Noether symmetry can be related to a conserved quantity
bringing a physical meaning. The so-called Noether
Symmetry Approach results extremely useful in cosmology
in order to find out exact solutions (see [21] for a
comprehensive review of the method). We would like to
remind the reader that a fundamental approach to derive
the Noether symmetries for a given dynamical problem
(in a Riemannian space) has been published recently by
Tsamparlis and Paliathanasis [39] (a similar analysis can
be found in [36,40-44]).

Let us consider the Hamiltonian { which depends on
one independent variable {r} and n dependent variables
K@) i=1...,n}, ie H=H(@xkxk . . . k),
where a dot over a symbol means differentiation with
respect to . We perform the one parameter point trans-
formation

f=E(t " e), 7 = Ot x5 g). (36)

In that case, the generating vector of the one parameter
point transformation is
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X = &(t, x5, €)a, + ni(t, x5, €)a,, (37)
where
Bz, x¥,
£ty = EETE) |
de £—0
. ad(1, x*,
it o) = L2 )
de e—0

The extension of the generator vector in the jet space
By = {1, x5 &%, ik, .. xk) s [36]

xl = x + 77?‘9:4,» e+ 77?/1...,1', d

where
. d . . d
i — = i i 38
n PR dtf, (38)
o d ) o d
()i = & pln—=10i _ (0] = & 3
U] 27 x dlf (39)

XUn) is called the nth prolongation of the generator (37).

We say that the function JH (z, x¥, %%, 3%, ..., x"l) = 0
is invariant under the transformation of Eq. (36) if and only
if there is a function A, such as the following condition
holds:

XW(FH) = A H,

where A, is a function to be determined [45]. Moreover,
the generating vector (37) is a Lie symmetry of the func-
tion JH (1, x*, x*, k%, ..., "), In the following sections we
are interested in systems of second order which implies
that the Hamiltonian becomes H = FH (¢, x*, ¥, i*).

modH =0, (40)

A. Noether theorems

Let L(z,x* %*) be a function which describes the
dynamics of a system. The equations of motion of the
dynamical system follow from the action of the Euler
Lagrange vector E; on the function L, i.e.,

E(L) =0, (41)
where the Euler Lagrange vector is
d 9 ad
= ——— — 42
"odraxt ox! (42)

If the Lagrangian is invariant under the action of the
transformation (36), namely X! £ = 0, then it is easy to
see that the Euler Lagrange equations (41) are also invari-
ant under the transformation (36). In general we have the
following theorem [36].

Theorem 1.—Let

X = é‘:(t, xk)at + ni(t’ xk)ai (43)

be the infinitesimal generator of the transformation (36)
and

L = L(1,xk i) (44)

PHYSICAL REVIEW D 88, 103526 (2013)

be a Lagrangian describing the dynamical system (41).
The action of the transformation (36) on (44) leaves the
Euler Lagrange equations (41) invariant, if and only if
there exists a function g = g(#, x¥) such that the following
condition holds:

¢ _ dg

XUL + L ,
dt dt

(45)
where X!l is the first prolongation of (43).

If the generator of Eq. (43) satisfies Eq. (45) then the
generator (43) is a Noether symmetry of the dynamical
system described by the Lagrangian (44). Noether symme-
tries form a Lie algebra called the Noether algebra. We also
have the following result.

Theorem 2.—For any Noether symmetry (43) of the
Lagrangian (44) there corresponds a function I(z, x*, i)

-dL SdL
I == X! —_— L - I + 46
feip-1)-nsate @
which is a first integral i.e. % = 0. The function (46) is
called a Noether integral (first integral) of the dynamical
system (41).

V. NOETHER SYMMETRIES
FOR f(T) COSMOLOGY

In this section we apply the Noether symmetries ap-
proach to f(T) cosmology in which the corresponding
Lagrangian of the field equations is given by Eq. (25).
Here we consider a one parameter point transformation
in the space {t, a, T} and the generator is written as

X = f(ty a, T)at + T]](t, a, T)aa + 772(1’ a, T)aT

Notice that the Lagrangian (25) is a singular Lagrangian
(the Hessian vanishes), hence the jet space is By =
{t, a, T,_c'z} and thus the first prolongation of X in the jet
space By, is

X = &0, + m10, + moy + o, @)
where 77[11] =7, — a & [45-48]. Now we compute each
term in the symmetry condition (45).

The term XL gives

XL = [3a?n,(fT — f) + a®frrTna] + [12fran, Ja
+[12f7aé @ + 6[frny + frramn,
+2fran,; , — 2fra€ Ja*
+[12fran,rla T +[12fraé 11a°T.

The second term L¢ gives
Lé =[a*(f+T — PEN+ [ (frT — )€ Ja
+[a@*(frT = ))é7IT + [6fral Ja?
+ [6fTa§,a]a3 + [6fTa§,T]a2T~
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Finally the right-hand side of Eq. (45) is
§=8:+8aa+grl

Replacing the results in Eq. (45) and setting the terms
with the powers of ¢ and T equal to zero in order to select
the Lie vector (see [21] for details), we find the following
set of Noether symmetry conditions:

£.=0, &r=0, (48)

N7 =0,

GS(fTT - f)f,T =87 (49)

3a*n,(frT = )+ @freTy+a(frT—f)é,=g, (50)

12fran,, + @*(f7T — f)é4 = 8w (51)

frm + freTan, + 2fran, , — fra§, = 0. (52)

From Egs. (48) and (49) it follows
&= E@),

Then Eq. (51) becomes 12fran,, = g, Because 7y, g are
independent of 7 which follows that

m = T’l(t’ a)) g = g(t, a).

m=m),  g=g.
Dividing Eq. (52) with af; we find
2010t Ty @772 —6:=0 (53)
a fr

from which follows that

fr
ny =-—S(a, 1),
frr
where S is an arbitrary function of its arguments. Taking
this result into consideration the conditions (50’) and (53)
become respectively

2010+ % + 81— &,=0, (54)
320 (frT— )+ @ frTS+a(frT— ) =g, (55)

From Eq. (54) follows that S(a, f) = M(a) + N(t) hence
we have the final symmetry conditions (where f # €T
k = constant):

2+ L+ M+N—¢,=0, (56)
a
Uj frT frT 1
3—+ M+ +éi =58
a  fiT—f" fT—f S BT -1
(57)

It is obvious that Egs. (54) and (55) hold for arbitrary f(T)
as long as € = ¢y and 7y = 1, = 0 (i.e. S = 0). In this
case the corresponding Noether integral is the Hamiltonian
', implying that the dynamical system is autonomous.
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Moreover, the conditions (56) and (57) give the following
system of equations:

frT _n

= 58
frT—f n—1 (58)
and
_ _ ™ _
g:=0, N=c+¢, 2m, +—+ M=,
a
My " M = m, " N—§¢,=m.
a n—1 1—n ’

Solving the first equation of the system (58) we find that
F(T) = foT™, (59)

where f| is the integration constant. In this context we can
obtain the Noether symmetries. Specifically, in the case of

n # 1,3, the Noether symmetry vector is

3C
X, = ( t)&, + (Ca + cza' "),
2n — 1

3C
telr
2 — 1 C:I o

1
+ [— ((c —m)n + 3c3a_%) +
n
as well as the corresponding Noether integral is

3C
I =
! (Zn —

; t)f)"[ — 12fon(Ca® + c3a® =) 14,

where C =
For n = % the Noether symmetry is given by

m(1—n)+nc
-3 -

1 c m
X2 = 5(30 - Zm)tét + [(5 - g)a + C4]aa
Cy 2
+[(m+ llc)——+§(8c—2m)]T8T (60)
a
with corresponding Noether integral
1
I, =—-(c—2mtH — 18]‘0[(E - ﬂ)aQ + c4ai|T%d.
5 2 6
Finally for n = %, the Noether symmetry becomes
1 3¢5 s
X3 = clt()t + (_2C1 + C3d4)aa + (4C1 + Cy + TCZ 4)T8T

and the Noether integral is
Iy = citH — 6fo(=2cia + c3a)) T 2a.

We would like to stress that our results are in agreement
with those of [33] but they are richer because we have
considered the term &9, in the generator which is not
done in [33]. To this end it becomes evident that f(T) =
foT" is the only form that admits extra Noether symmetries
implying the existence of exact analytical solutions (see
the next section).

103526-7



S. BASILAKOS et al.
VI. EXACT COSMOLOGICAL SOLUTIONS

In this section we proceed in an attempt to analytically
solve the basic cosmological equations of the f(T) = f,T"
gravity model. In particular from the Lagrangian (25), we
obtain the main field equation

1/ . 1 ! T —
i+-—a’+ f— - af f
Za f 74 4 f
Also differentiating Eq. (23) we find

T= 12[(%)3 - %]. (62)

Finally, inserting f(T) = foT", Eq. (23) and (62) into
Eq. (61) we derive, after some algebra, that

=0. (61)

12 2n — 3
(2n — 1)[& —“_w] o, (63)
2 n
a solution of which is
] 2
alt) = apP® H@) =2 =" (64)
a 3t
or
H = Hya " = Hy(1 + 2)¥/?", (65)

where n € R% —{I}, a(z) = (1 +2)7! and H, is the
Hubble constant in agreement with [33]. Also using
Eq. (65) the deceleration parameter is given by

dinH 3

dlna I+ 2n’ (66)
From Eq. (64) it is evident that this cosmological model
has no inflection point. Therefore, the main drawback of
the f(T) = fo,I" gravity model is that the deceleration
parameter preserves sign, and therefore the Universe al-
ways accelerates or always decelerates depending on the
value of n. Indeed, if we consider n = 1 (TEGR) then the
above solution boils down to the Einstein—de Sitter model
as it should. On the other hand, the accelerated expansion
of the Universe (¢ < 0) is recovered for n > % The latter
points that even if we would admit n >% as a mere phe-
nomenological possibility, we would be also admitting that
the Universe has been accelerating forever, which is of
course difficult to accept.

Now, we proceed to provide the growth factor of the
f(T) = foT". In general, the basic equation which governs
the evolution of the matter fluctuations in the linear regime
is given by

5, +2HS,

g=-

- 477Geffpm 6m =0, (67)

where p,, is the matter density and G is the effective
Newton’s parameter which is written as [49]
G

Gy = ) (68)
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Note that G denotes Newton’s gravitational constant. On
the other hand, using Egs. (31) and (33) one can easily
write

H? 3H?

o 3H 270~ f(0) -

2 4

47Gp,,
(69)

Therefore, inserting Eqgs. (23), (68), and (69) into Eq. (67)
we have the following general equation:
21(T) = f(T)

4f'(T)

We focus now on the f(T) = f,T" gravity model. First
of all for GR (n = 1) we have G+ = G and thus, without

losing the generality, we can set f, = 1." Therefore,
Eq. (70) becomes

5, +2HS, + 8,=0. (70)

4n 5 2n(2n — 1)
3t " 31

Notice that in order to derive Eq. (71) we have utilized
Egs. (23) and (64). Interestingly, the above differential
equation modifies that of the Einstein—de Sitter model in

which n = 1 (GR). From the mathematical point of view,
Eq. (71) is of Euler type whose general solution is

6m(t) =

5, + 8,y = 0. (71)

C, 1213 + Cpt! =2 (72)
or

5,,1(0) = C]Cl + C a3(1*2ﬂ)/2n (73)

where C, = Cl/a%/zn and C, =C /a3(1 W2 the
case of 0 <n < we have two growth factors whlle for
n > 1 the only growth factor is D, = a « 2"/3_ It is inter-
esting to mention that if we write the growth factor as a
function of the scale factor then mathematically it coin-
cides with that of the Einstein—de Sitter model [50]. This
result means that the growth rate of clustering f, (a) =
dInD, /dIna remains constant and equal to unity for
every scale factor, implying that the present growth data
disfavor the f(T) = f,T" gravity. Indeed, in Fig. 1 we plot
the growth data as collected by Basilakos et al. (see [51]
and references therein) with the estimated growth rate
function, f,(z)og(z) [see f(T) (solid line) and ACDM
(dashed line)]. Notice that the theoretical og(z) is given
by o4(z) = 03D (z), where oy is the rms mass fluctuation
on Ry = 8h~! Mpc scales at redshift z = 0.

A. Cosmological analogue to other models

In this section (assuming flatness) we present the cos-
mological equivalence at the background level between the
current f(T) gravity with f(R) modified gravity and dark

If £(T) = f,T then the Newton’s constant is just rescaled to
be Gy = G/ f which is also constant in time. This result comes
directly from the action (19) (see also [49]).
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0.8 T T T I T T T I T T T I T T T I T T ]

0.6

0.4

£,(z)oy(2)

0.2 -~ —

FIG. 1. Comparison of the observed (solid points) and theo-
retical evolution of the growth rate f, (z)og(z). The solid and
dashed lines correspond to f(T) = foT" and ACDM. As in
Basilakos er al. [51] we use og = 0.8 while for the ACDM
case we set (), = 0.272.

energy, through a specific reconstruction of the f(R) and
vacuum energy density, namely, f(R) = R" and A(H) =
3yH?. In the case of f(R) = R" it has been found by
Paliathanasis (see the Appendix in [52]) that the corre-

sponding scale factor obeys Eq. (64), where
n€RY —{23,] 2 In [53,54], it has been shown that

the particular model f(R) = R¥? has the cosmological
solution a(f) = yast* + a3t + a,t*> + a,t capable of ad-
dressing both dark-energy and dark-matter dominated
phases. However, despite the analogies, we have to point
out that f(R) gravity is a fourth-order theory while f(7)
gravity remains of second order.

On the other hand, considering a spatially flat FLRW
metric in the context of GR, the combination of the
Friedmann equations with the total (matter + vacuum)
energy conservation in the matter dominated era provides
(for more details see [55])

. 3., A
H + 2H R 74)
Solving Eq. (74) for A(H) = 3yH? (see Refs. [56-58]) we
end up with

H = Hya30"V2 = g (1 + 2)30=7/2 (75)

Now, comparing Egs. (65) and (75) and connecting the
above coefficients such as n=! = 1 — y, we find that the
f(T) = f,T" and the flat A(H) = 3yH? models can be
viewed as equivalent cosmologies as far as the Hubble

>The Lagrangian here is Lz = 6naR" 'a® + 6n(n — 1)X
a®?R"24R +(n — 1)a®R", where R is the Ricci scalar. For
n =1 the solution of the Euler-Lagrange equations is the
Einstein de-Sitter model [a(r) « t*/?] as it has to be. Note, that
for n = 2 one can find a de-Sitter solution (a(z) x e’ see [52]).
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expansion is concerned, despite the fact that the current
time varying vacuum model adheres to GR. However, if
the A(H) = 3yH? cosmological model is confronted with
the current observations provides a poor fit [S5]. Since the
current time varying vacuum model shares exactly the
same Hubble parameter with the f(T) = f,T" gravity
model, this fact implies that the latter is also under obser-
vational pressure when we compare against the back-
ground cosmological data (Snla, BAOs and CMB data).
The same observational situation holds also for f(R) = R"
modified gravity.

VII. CONCLUSIONS

In this paper, we present a general study of Noether
symmetries for f(T') gravity and discuss the role of torsion
and unholonomic frames in the context of teleparallel
gravity and its straightforward extension. In particular,
we point out the misunderstanding that, when one works
in an unholonomic frame, the torsion is introduced show-
ing that this statement is not correct. The misunderstanding
consists in the fact that the effects one observes in an
unholonomic frame are frame dependent and not covariant
effects. Therefore all conclusions made in a specific un-
holonomic frame must be restricted to that frame only.

Coming to the specific Noether Symmetry Approach, this
article extends the works by Basilakos et al. [34],
Paliathanasis et al. [35], and Wei et al. [33]. We confirm
the result of [33] that amongst the variety of f(T) modified
gravity theories, f(T) = foT" gravity admits Noether sym-
metries (integrals of motion). However, we provide here a
more general family of Noether integrals with respect to
that of [33]. From the mathematical viewpoint the exis-
tence of extra integrals of motion points out the existence
of further analytical solutions.

Based on the f(T) = f,T" models, we derive analytical
solutions and thus we find the evolution of the main
cosmological functions, namely the scale factor of the
Universe, the Hubble parameter, the deceleration parame-
ter, and for the first time to our knowledge the growth of
matter fluctuations in the linear regime. Furthermore, we
discuss the linear matter fluctuations from these back-
ground solutions. The analysis of the deceleration parame-
ter points out that the f(T) = f,T" gravity models include
an intrinsic problem, namely, the fact that the expansion of
the Universe always accelerates or always decelerates
without spanning the different trends of cosmic evolution.
Another basic problem is related to the fact that the growth
rate of clustering is constant and always equal to unity
which means that the present growth data cannot accom-
modate the f(T)= f,T" gravity. As shown in [59], a
robust cosmographic reconstruction of f(7) cosmology
needs more complicated models to address data.

Finally, we find that flat f(T) = foT" cosmologically
models are perfectly equivalent to the cosmic expansion
history of the flat f(R) = R" modified gravity and the flat
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time varying vacuum model A(H) =3yH?> (where
nli=1- v), despite the fact that the three models live
in a completely different geometrical background. This
fact is a further indication of the high degeneracy problem
affecting cosmological models capable of addressing the
dark energy issue.

(1]

(2]
(3]

(4]

[5]

(6]

(71

PHYSICAL REVIEW D 88, 103526 (2013)
ACKNOWLEDGMENTS

S. B. acknowledges support by the Research Center for
Astronomy of the Academy of Athens in the context of the
program ““Tracing the Cosmic Acceleration.” S.C. and
M.D.L. are supported by INFN (iniziative specifiche
NA12 and OGS51).

M. Tegmark et al., Astrophys. J. 606, 702 (2004); D.N.
Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007);
T.M. Davis et al., Astrophys. J. 666, 716 (2007); M.
Kowalski er al, Astrophys. J. 686, 749 (2008); G.
Hinshaw er al, Astrophys. J. Suppl. Ser. 180, 225
(2009); J.A.S. Lima and J.S. Alcaniz, Mon. Not. R.
Astron. Soc. 317, 893 (2000); J.F. Jesus and J. V.
Cunha, Astrophys. J. Lett. 690, L85 (2009); S. Basilakos
and M. Plionis, Astrophys. J. Lett. 714, L185 (2010).

G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,
208 (2000).

S. Capozzielo, Int. J. Mod. Phys. D 11, 483 (2002); A.D.
Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003); T.
Chiba, Phys. Lett. B 575, 1 (2003); G. Allemandi, A.
Borowiec, M. Francaviglia, and S. D. Odintsov, Phys. Rev.
D 72, 063505 (2005); L. Amendola, R. Gannouji, D.
Polarski, and S. Tsujikawa, Phys. Rev. D 75, 083504
(2007); W. Hu and I. Sawicki, Phys. Rev. D 76, 064004
(2007); A. A. Starobinsky, JETP Lett. 86, 157 (2007); J.
Santos, J.S. Alcaniz, F.C. Carvalho, and N. Pires, Phys.
Lett. B 669, 14 (2008); J. Santos and M.J. Reboucas,
Phys. Rev. D 80, 063009 (2009); S.H. Pereira, C.H. G.
Bessa, and J. A. S. Lima, Phys. Lett. B 690, 103 (2010); R.
Reyes, R. Mandelbaum, U. Seljak, T. Baldauf, J. E. Gunn,
L. Lombriser, and R. E. Smith, Nature (London) 464, 256
(2010); S. Nojiri and S.D. Odintsov, Phys. Rep. 505, 59
(2011); S. Capozziello and M. De Laurentis, Phys. Rep.
509, 167 (2011).

J.P. Uzan, Phys. Rev. D 59, 123510 (1999); L. Amendola,
Phys. Rev. D 60, 043501 (1999); N. Bartolo and M.
Pietroni, Phys. Rev. D 61, 023518 (1999); B. Boisseau,
G. Esposito-Farese, D. Polarski, and A.A. Starobinsky,
Phys. Rev. Lett. 85, 2236 (2000); D. F. Torres, Phys. Rev.
D 66, 043522 (2002); Y. Fujii and K. Maeda, The Scalar-
Tensor Theory of Gravitation (Cambridge University
Press, Cambridge England, 2003).

S. Nojiri, S.D. Odintsov, and M. Sasaki, Phys. Rev. D 72,
023003 (2005); T. Koivisto and D. F. Mota, Phys. Lett. B
644, 104 (2007); F. Bauer, J. Sola, and H. Stefancié, J.
Cosmol. Astropart. Phys. 12 (2010) 029; Phys. Lett. B
688, 269 (2010).

P. Horava, Phys. Rev. D 79, 084008 (2009); Phys. Lett. B
694, 172 (2010); E. N. Saridakis, Eur. Phys. J. C 67, 229
(2010).

C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020
(2010); K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012);
G. D’ Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D.
Pirtskhalava, and A.J. Tolley, Phys. Rev. D 84, 124046

(8]

(91

[10]

[11]

[12]

(13]
[14]

[15]

103526-10

(2011); E.N. Saridakis, Classical Quantum Gravity 30,
075003 (2013).

A. Einstein, Sitz. Preuss. Akad. Wiss. 17, 217 (1928); 17,
224 (1928); A. Unzicker and T. Case, arXiv:physics/
0503046.

K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979);
24, 3312 (1981).

J.W. Maluf, J. Math. Phys. (N.Y.) 35, 335 (1994); H.1
Arcos and J.G. Pereira, Int. J. Mod. Phys. D 13, 2193
(2004).

G. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019
(2009).

R. Ferraro and F. Fiorini, Phys. Rev. D 75, 084031 (2007);
E. V. Linder, Phys. Rev. D 81, 127301 (2010); S. H. Chen,
J.B. Dent, S. Dutta, and E. N. Saridakis, Phys. Rev. D 83,
023508 (2011).

E. V. Linder, Phys. Rev. D 81, 127301 (2010).

S. Capozziello and S. Vignolo, Classical Quantum Gravity
26, 175013 (2009).

K. K. Yerzhanov, S.R. Myrzakul, I.I. Kulnazarov, and R.
Myrzakulov, arXiv:1006.3879; P. Wu and H. W. Yu, Phys.
Lett. B 692, 176 (2010); K. Bamba, C.-Q. Geng, and C.-C.
Lee, arXiv:1008.4036; J.B. Dent, S. Dutta, and E.N.
Saridakis, J. Cosmol. Astropart. Phys. 01 (2011) 009; K.
Bamba, C.-Q. Geng, C.-C. Lee, and L.-W. Luo, J. Cosmol.
Astropart. Phys. 01 (2011) 021; R.-J. Yang, Europhys.
Lett. 93, 60001 (2011); Y. Zhang, H. Li, Y. Gong, and
Z.-H. Zhu, J. Cosmol. Astropart. Phys. 07 (2011) 015; R.
Ferraro and F. Fiorini, Phys. Lett. B 702, 75 (2011); Y.-F.
Cai, S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis,
Classical Quantum Gravity 28, 215011 (2011); M. Sharif
and S. Rani, Mod. Phys. Lett. A 26, 1657 (2011); S.
Capozziello, V.F. Cardone, H. Farajollahi, and A.
Ravanpak, Phys. Rev. D 84, 043527 (2011); K. Bamba
and C.-Q. Geng, J. Cosmol. Astropart. Phys. 11 (2011)
008; C.-Q. Geng, C.-C. Lee, E. N. Saridakis, and Y.-P. Wu,
Phys. Lett. B 704, 384 (2011); H. Wei, Phys. Lett. B 712,
430 (2012); C.-Q. Geng, C.-C. Lee, and E. N. Saridakis, J.
Cosmol. Astropart. Phys. 01 (2012) 002; Y.-P. Wu and C.-
Q. Geng, Phys. Rev. D 86, 104058 (2012); C. G. Bohmer,
T. Harko, and F.S.N. Lobo, Phys. Rev. D 85, 044033
(2012); H. Farajollahi, A. Ravanpak, and P. Wu,
Astrophys. Space Sci. 338, 23 (2012); K. Atazadeh and
F. Darabi, Eur. Phys. J. C 72, 2016 (2012); M. Jamil, D.
Momeni, N. S. Serikbayev, and R. Myrzakulov, Astrophys.
Space Sci. 339, 37 (2012); J. Yang, Y.-L. Li, Y. Zhong, and
Y. Li, Phys. Rev. D 85, 084033 (2012); K. Karami and A.
Abdolmaleki, J. Cosmol. Astropart. Phys. 04 (2012) 007,


http://dx.doi.org/10.1086/382125
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1086/519988
http://dx.doi.org/10.1086/589937
http://dx.doi.org/10.1088/0067-0049/180/2/225
http://dx.doi.org/10.1088/0067-0049/180/2/225
http://dx.doi.org/10.1046/j.1365-8711.2000.03695.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03695.x
http://dx.doi.org/10.1088/0004-637X/690/1/L85
http://dx.doi.org/10.1088/2041-8205/714/2/L185
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://dx.doi.org/10.1142/S0218271802002025
http://dx.doi.org/10.1016/j.physletb.2003.08.039
http://dx.doi.org/10.1016/j.physletb.2003.09.033
http://dx.doi.org/10.1103/PhysRevD.72.063505
http://dx.doi.org/10.1103/PhysRevD.72.063505
http://dx.doi.org/10.1103/PhysRevD.75.083504
http://dx.doi.org/10.1103/PhysRevD.75.083504
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1134/S0021364007150027
http://dx.doi.org/10.1016/j.physletb.2008.09.019
http://dx.doi.org/10.1016/j.physletb.2008.09.019
http://dx.doi.org/10.1103/PhysRevD.80.063009
http://dx.doi.org/10.1016/j.physletb.2010.05.027
http://dx.doi.org/10.1038/nature08857
http://dx.doi.org/10.1038/nature08857
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1103/PhysRevD.59.123510
http://dx.doi.org/10.1103/PhysRevD.60.043501
http://dx.doi.org/10.1103/PhysRevD.61.023518
http://dx.doi.org/10.1103/PhysRevLett.85.2236
http://dx.doi.org/10.1103/PhysRevD.66.043522
http://dx.doi.org/10.1103/PhysRevD.66.043522
http://dx.doi.org/10.1103/PhysRevD.72.023003
http://dx.doi.org/10.1103/PhysRevD.72.023003
http://dx.doi.org/10.1016/j.physletb.2006.11.048
http://dx.doi.org/10.1016/j.physletb.2006.11.048
http://dx.doi.org/10.1088/1475-7516/2010/12/029
http://dx.doi.org/10.1088/1475-7516/2010/12/029
http://dx.doi.org/10.1016/j.physletb.2010.04.029
http://dx.doi.org/10.1016/j.physletb.2010.04.029
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1016/j.physletb.2010.09.055
http://dx.doi.org/10.1016/j.physletb.2010.09.055
http://dx.doi.org/10.1140/epjc/s10052-010-1294-6
http://dx.doi.org/10.1140/epjc/s10052-010-1294-6
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/RevModPhys.84.671
http://dx.doi.org/10.1103/PhysRevD.84.124046
http://dx.doi.org/10.1103/PhysRevD.84.124046
http://dx.doi.org/10.1088/0264-9381/30/7/075003
http://dx.doi.org/10.1088/0264-9381/30/7/075003
http://arXiv.org/abs/physics/0503046
http://arXiv.org/abs/physics/0503046
http://dx.doi.org/10.1103/PhysRevD.19.3524
http://dx.doi.org/10.1103/PhysRevD.24.3312
http://dx.doi.org/10.1063/1.530774
http://dx.doi.org/10.1142/S0218271804006462
http://dx.doi.org/10.1142/S0218271804006462
http://dx.doi.org/10.1103/PhysRevD.79.124019
http://dx.doi.org/10.1103/PhysRevD.79.124019
http://dx.doi.org/10.1103/PhysRevD.75.084031
http://dx.doi.org/10.1103/PhysRevD.81.127301
http://dx.doi.org/10.1103/PhysRevD.83.023508
http://dx.doi.org/10.1103/PhysRevD.83.023508
http://dx.doi.org/10.1103/PhysRevD.81.127301
http://dx.doi.org/10.1088/0264-9381/26/17/175013
http://dx.doi.org/10.1088/0264-9381/26/17/175013
http://arXiv.org/abs/1006.3879
http://dx.doi.org/10.1016/j.physletb.2010.07.038
http://dx.doi.org/10.1016/j.physletb.2010.07.038
http://arXiv.org/abs/1008.4036
http://dx.doi.org/10.1088/1475-7516/2011/01/009
http://dx.doi.org/10.1088/1475-7516/2011/01/021
http://dx.doi.org/10.1088/1475-7516/2011/01/021
http://dx.doi.org/10.1209/0295-5075/93/60001
http://dx.doi.org/10.1209/0295-5075/93/60001
http://dx.doi.org/10.1088/1475-7516/2011/07/015
http://dx.doi.org/10.1016/j.physletb.2011.06.049
http://dx.doi.org/10.1088/0264-9381/28/21/215011
http://dx.doi.org/10.1142/S0217732311036127
http://dx.doi.org/10.1103/PhysRevD.84.043527
http://dx.doi.org/10.1088/1475-7516/2011/11/008
http://dx.doi.org/10.1088/1475-7516/2011/11/008
http://dx.doi.org/10.1016/j.physletb.2011.09.082
http://dx.doi.org/10.1016/j.physletb.2012.05.006
http://dx.doi.org/10.1016/j.physletb.2012.05.006
http://dx.doi.org/10.1088/1475-7516/2012/01/002
http://dx.doi.org/10.1088/1475-7516/2012/01/002
http://dx.doi.org/10.1103/PhysRevD.86.104058
http://dx.doi.org/10.1103/PhysRevD.85.044033
http://dx.doi.org/10.1103/PhysRevD.85.044033
http://dx.doi.org/10.1007/s10509-011-0925-1
http://dx.doi.org/10.1140/epjc/s10052-012-2016-z
http://dx.doi.org/10.1007/s10509-011-0964-7
http://dx.doi.org/10.1007/s10509-011-0964-7
http://dx.doi.org/10.1103/PhysRevD.85.084033
http://dx.doi.org/10.1088/1475-7516/2012/04/007

NOETHER SYMMETRIES AND ANALYTICAL SOLUTIONS ...

C. Xu, E. N. Saridakis, and G. Leon, J. Cosmol. Astropart.
Phys. 07 (2012) 005; K. Bamba, R. Myrzakulov, S. ’i.
Nojiri, and S.D. Odintsov, Phys. Rev. D 85, 104036
(2012); M. R. Setare and M.J.S. Houndjo, Can. J. Phys.
91, 260 (2013); D. Liu, P. Wu, and H. Yu, Int. J. Mod.
Phys. D 21, 1250074 (2012); H. Dong, Y.-b. Wang, and
X.-h. Meng, Eur. Phys. J. C 72, 2002 (2012); N. Tamanini
and C. G. Boehmer, Phys. Rev. D 86, 044009 (2012); K.
Bamba, S. Capozziello, S. ’i. Nojiri, and S.D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012); A. Behboodi, S.
Akhshabi, and K. Nozari, Phys. Lett. B 718, 30 (2012); A.
Banijamali and B. Fazlpour, Astrophys. Space Sci. 342,
229 (2012); D. Liu and M. J. Reboucas, Phys. Rev. D 86,
083515 (2012); M.E. Rodrigues, M.J.S. Houndjo, D.
Saez-Gomez, and F. Rahaman, Phys. Rev. D 86, 104059
(2012); H. Mohseni Sadjadi, Phys. Lett. B 718, 270
(2012); M.R. Setare and N. Mohammadipour, J.
Cosmol. Astropart. Phys. 11 (2012) 030; Y.-P. Wu and
C.-Q. Geng, J. High Energy Phys. 11 (2012) 142; M.
Jamil, D. Momeni, and R. Myrzakulov, Gen. Relativ.
Gravit. 45, 263 (2013); K. Bamba, J. de Haro, and S.D.
Odintsov, J. Cosmol. Astropart. Phys. 02 (2013) 008; K.
Izumi and Y.C. Ong, J. Cosmol. Astropart. Phys. 06
(2013) 0294; M. Jamil, D. Momeni, and R. Myrzakulov,
Eur. Phys. J. C 72, 2122 (2012); M.R. Setare and N.
Mohammadipour, J. Cosmol. Astropart. Phys. 01 (2013)
015; H. M. Sadjadi, Phys. Rev. D 87, 064028 (2013); J.-T.
Li, C.-C. Lee, and C.-Q. Geng, Eur. Phys. J. C 73, 2315
(2013); K. Bamba, S. ’i. Nojiri, and S. D. Odintsov, Phys.
Lett. B 725, 368 (2013); M. Sharif and S. Azeem,
Astrophys. Space Sci. 342, 521 (2012); G. Otalora, J.
Cosmol. Astropart. Phys. 07 (2013) 044; J. Amoros, J.
de Haro, and S.D. Odintsov, Phys. Rev. D 87, 104037
(2013); G. Otalora, Phys. Rev. D 88, 063505 (2013); C.-Q.
Geng, J.-A. Gu, and C.-C. Lee, Phys. Rev. D 88, 024030
(2013).

P. Wu and H. W. Yu, Phys. Lett. B 693, 415 (2010).
G.R. Bengochea, Phys. Lett. B 695, 405 (2011).

L. Iorio and E.N. Saridakis, Mon. Not. R. Astron. Soc.
427, 1555 (2012).

T. Wang, Phys. Rev. D 84, 024042 (2011); R.-X. Miao, M.
Li, and Y.-G. Miao, J. Cosmol. Astropart. Phys. 11 (2011)
033; C. G. Boehmer, A. Mussa, and N. Tamanini, Classical
Quantum Gravity 28, 245020 (2011); M. Hamani Daouda,
M.E. Rodrigues, and M. J. S. Houndjo, Eur. Phys. J. C 71,
1817 (2011); R. Ferraro and F. Fiorini, Phys. Rev. D 84,
083518 (2011); M.H. Daouda, M.E. Rodrigues, and
M.].S. Houndjo, Eur. Phys. J. C 72, 1890 (2012); P. A.
Gonzalez, E. N. Saridakis, and Y. Vasquez, J. High Energy
Phys. 07 (2012) 053; S. Capozziello, P. A. Gonzalez, E. N.
Saridakis, and Y. Vasquez, J. High Energy Phys. 02 (2013)
039; K. Atazadeh and M. Mousavi, Eur. Phys. J. C 72,
2272 (2012).

W.-S. Zhang, C. Cheng, Q.-G. Huang, M. Li, S. Li, X.-D.
Li, and S. Wang, Science China Physics, Mechanics and
Astronomy 55, 2244 (2012).

S. Capozziello, R de Ritis, C. Rubano, and P. Scudellaro,
Riv. Nuovo Cimento 19, 1 (1996).

S. Capozziello, R. de Ritis, and A. A. Marino, Classical
Quantum Gravity 14, 3259 (1997).

[46]
[47]
(48]
[49]
[50]
[51]
[52]

[53]

103526-11

PHYSICAL REVIEW D 88, 103526 (2013)

C. Rubano and P. Scudellaro, Gen. Relativ. Gravit. 34, 307
(2002)

A.K. Sanyal, B. Modak, C. Rubano, and E. Piedipalumbo,
Gen. Relativ. Gravit. 37, 407 (2005).

M. Szydlowski, W. Godtowski, and R. Wojtak, Gen.
Relativ. Gravit. 38, 795 (2006).

S. Capozziello, A. Stabile, and A. Troisi, Classical
Quantum Gravity 24, 2153 (2007).

S. Capozziello, S. Nesseris, and L. Perivolaropoulos,
J. Cosmol. Astropart. Phys. 12 (2007) 009.

A. Bonanno, G. Esposito, C. Rubano, and P. Scudellaro,
Gen. Relativ. Gravit. 39, 189 (2007).

S. Capozziello and De Felice, J. Cosmol. Astropart. Phys.
08 (2008) 016.

S. Capozziello, E. Piedipalumbo, C. Rubano, and P.
Scudellaro, Phys. Rev. D 80, 104030 (2009).

B. Vakili, Phys. Lett. B 664, 16 (2008).

Yi Zhang, Yun-gui Gong, and Zong-Hong Zhu, Phys. Lett.
B 688, 13 (2010).

Hao Wei, Xiao-Jiao Guo, and Long-Fei Wang, Phys. Lett.
B 707, 298 (2012).

S. Basilakos, M. Tsamparlis, and A. Paliathanasis, Phys.
Rev. D 83, 103512 (2011).

A. Paliathanasis, M. Tsamparlis, and S. Basilakos, Phys.
Rev. D 84, 123514 (2011).

H. Stephani, Differential Equations: Their Solutions using
Symmetry (Cambridge University Press, Cambridge,
England, 1989).

M. Li, R. X. Miao, and Y. G. Miao, J. High Energy Phys.
07 (2011) 108.

S. Capozziello, M. De Laurentis, and S. D. Odintsov, Eur.
Phys. J. C 72, 2068 (2012).

M. Tsamparlis and A. Paliathanasis, J. Phys. A 44, 175202
(2011).

T.M. Kalotas and B.G. Wybourne, J. Phys. A 15, 2077
(1982).

P.J. Olver, Applications of Lie Groups to Differential
Equations (Springer-Verlag, New York, 1986).

S. Moyo and P.G.L. Leach, J. Phys. A 35, 5333
(2002).

M. Tsamparlis and A. Paliathanasis, Gen. Relativ. Gravit.
42, 2957 (2010).

M. Tsamparlis and A. Paliathanasis, Gen. Relativ. Gravit.
43, 1861 (2011).

H. [Ibragimov, Transformation Groups Applied to
Mathematical ~ Physics  (Reidel  Publishing  Co.,
Dordrecht, 1985).

M. Havelkova, Commun. Math. Phys. 20, 23 (2012).
Zi-ping Li, Phys. Rev. E 50, 876 (1994).

T. Christodoulakis, N. Dimakis, and P.A. Terzis,
arXiv:1304.4359.

R. Zheng and Q.-G. Huang, J. Cosmol. Astropart. Phys. 03
(2011) 002.

P.J.E. Peebles, Principles of Physical Cosmology
(Princeton University Press, Princeton, New Jersey, 1993).
S. Basilakos, S. Nesseris, and L. Perivolaropoulos, Phys.
Rev. D 87, 123529 (2013).

A. Paliathanasis, J. Phys. Conf. Ser. 453, 012009
(2013).

S. Capozziello, P. Martin-Moruno, and C. Rubano, Phys.
Lett. B 664, 12 (2008).


http://dx.doi.org/10.1088/1475-7516/2012/07/005
http://dx.doi.org/10.1088/1475-7516/2012/07/005
http://dx.doi.org/10.1103/PhysRevD.85.104036
http://dx.doi.org/10.1103/PhysRevD.85.104036
http://dx.doi.org/10.1139/cjp-2012-0533
http://dx.doi.org/10.1139/cjp-2012-0533
http://dx.doi.org/10.1142/S0218271812500745
http://dx.doi.org/10.1142/S0218271812500745
http://dx.doi.org/10.1140/epjc/s10052-012-2002-5
http://dx.doi.org/10.1103/PhysRevD.86.044009
http://dx.doi.org/10.1007/s10509-012-1181-8
http://dx.doi.org/10.1016/j.physletb.2012.10.026
http://dx.doi.org/10.1007/s10509-012-1140-4
http://dx.doi.org/10.1007/s10509-012-1140-4
http://dx.doi.org/10.1103/PhysRevD.86.083515
http://dx.doi.org/10.1103/PhysRevD.86.083515
http://dx.doi.org/10.1103/PhysRevD.86.104059
http://dx.doi.org/10.1103/PhysRevD.86.104059
http://dx.doi.org/10.1016/j.physletb.2012.10.073
http://dx.doi.org/10.1016/j.physletb.2012.10.073
http://dx.doi.org/10.1088/1475-7516/2012/11/030
http://dx.doi.org/10.1088/1475-7516/2012/11/030
http://dx.doi.org/10.1007/JHEP11(2012)142
http://dx.doi.org/10.1007/s10714-012-1472-y
http://dx.doi.org/10.1007/s10714-012-1472-y
http://dx.doi.org/10.1088/1475-7516/2013/02/008
http://dx.doi.org/10.1140/epjc/s10052-012-2122-y
http://dx.doi.org/10.1088/1475-7516/2013/01/015
http://dx.doi.org/10.1088/1475-7516/2013/01/015
http://dx.doi.org/10.1103/PhysRevD.87.064028
http://dx.doi.org/10.1140/epjc/s10052-013-2315-z
http://dx.doi.org/10.1140/epjc/s10052-013-2315-z
http://dx.doi.org/10.1016/j.physletb.2013.07.052
http://dx.doi.org/10.1016/j.physletb.2013.07.052
http://dx.doi.org/10.1007/s10509-012-1172-9
http://dx.doi.org/10.1088/1475-7516/2013/07/044
http://dx.doi.org/10.1088/1475-7516/2013/07/044
http://dx.doi.org/10.1103/PhysRevD.87.104037
http://dx.doi.org/10.1103/PhysRevD.87.104037
http://dx.doi.org/10.1103/PhysRevD.88.063505
http://dx.doi.org/10.1103/PhysRevD.88.024030
http://dx.doi.org/10.1103/PhysRevD.88.024030
http://dx.doi.org/10.1016/j.physletb.2010.08.073
http://dx.doi.org/10.1016/j.physletb.2010.11.064
http://dx.doi.org/10.1111/j.1365-2966.2012.21995.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21995.x
http://dx.doi.org/10.1103/PhysRevD.84.024042
http://dx.doi.org/10.1088/1475-7516/2011/11/033
http://dx.doi.org/10.1088/1475-7516/2011/11/033
http://dx.doi.org/10.1088/0264-9381/28/24/245020
http://dx.doi.org/10.1088/0264-9381/28/24/245020
http://dx.doi.org/10.1140/epjc/s10052-011-1817-9
http://dx.doi.org/10.1140/epjc/s10052-011-1817-9
http://dx.doi.org/10.1103/PhysRevD.84.083518
http://dx.doi.org/10.1103/PhysRevD.84.083518
http://dx.doi.org/10.1140/epjc/s10052-012-1890-8
http://dx.doi.org/10.1007/JHEP07(2012)053
http://dx.doi.org/10.1007/JHEP07(2012)053
http://dx.doi.org/10.1007/JHEP02(2013)039
http://dx.doi.org/10.1007/JHEP02(2013)039
http://dx.doi.org/10.1140/epjc/s10052-012-2016-z
http://dx.doi.org/10.1140/epjc/s10052-012-2016-z
http://dx.doi.org/10.1007/s11433-012-4945-9
http://dx.doi.org/10.1007/s11433-012-4945-9
http://dx.doi.org/10.1088/0264-9381/14/12/011
http://dx.doi.org/10.1088/0264-9381/14/12/011
http://dx.doi.org/10.1023/A:1015395512123
http://dx.doi.org/10.1023/A:1015395512123
http://dx.doi.org/10.1007/s10714-005-0028-9
http://dx.doi.org/10.1007/s10714-006-0265-6
http://dx.doi.org/10.1007/s10714-006-0265-6
http://dx.doi.org/10.1088/0264-9381/24/8/013
http://dx.doi.org/10.1088/0264-9381/24/8/013
http://dx.doi.org/10.1088/1475-7516/2007/12/009
http://dx.doi.org/10.1007/s10714-006-0386-y
http://dx.doi.org/10.1088/1475-7516/2008/08/016
http://dx.doi.org/10.1088/1475-7516/2008/08/016
http://dx.doi.org/10.1103/PhysRevD.80.104030
http://dx.doi.org/10.1016/j.physletb.2008.05.008
http://dx.doi.org/10.1016/j.physletb.2010.03.071
http://dx.doi.org/10.1016/j.physletb.2010.03.071
http://dx.doi.org/10.1016/j.physletb.2011.12.039
http://dx.doi.org/10.1016/j.physletb.2011.12.039
http://dx.doi.org/10.1103/PhysRevD.83.103512
http://dx.doi.org/10.1103/PhysRevD.83.103512
http://dx.doi.org/10.1103/PhysRevD.84.123514
http://dx.doi.org/10.1103/PhysRevD.84.123514
http://dx.doi.org/10.1007/JHEP07(2011)108
http://dx.doi.org/10.1007/JHEP07(2011)108
http://dx.doi.org/10.1140/epjc/s10052-012-2068-0
http://dx.doi.org/10.1140/epjc/s10052-012-2068-0
http://dx.doi.org/10.1088/1751-8113/44/17/175202
http://dx.doi.org/10.1088/1751-8113/44/17/175202
http://dx.doi.org/10.1088/0305-4470/15/7/018
http://dx.doi.org/10.1088/0305-4470/15/7/018
http://dx.doi.org/10.1088/0305-4470/35/25/312
http://dx.doi.org/10.1088/0305-4470/35/25/312
http://dx.doi.org/10.1007/s10714-010-1054-9
http://dx.doi.org/10.1007/s10714-010-1054-9
http://dx.doi.org/10.1007/s10714-011-1166-x
http://dx.doi.org/10.1007/s10714-011-1166-x
http://dx.doi.org/10.1103/PhysRevE.50.876
http://arXiv.org/abs/1304.4359
http://dx.doi.org/10.1088/1475-7516/2011/03/002
http://dx.doi.org/10.1088/1475-7516/2011/03/002
http://dx.doi.org/10.1103/PhysRevD.87.123529
http://dx.doi.org/10.1103/PhysRevD.87.123529
http://dx.doi.org/10.1088/1742-6596/453/1/012009
http://dx.doi.org/10.1088/1742-6596/453/1/012009
http://dx.doi.org/10.1016/j.physletb.2008.04.061
http://dx.doi.org/10.1016/j.physletb.2008.04.061

S. BASILAKOS et al.

[54] S. Capozziello, P. Martin-Moruno, and C. Rubano, Phys.
Lett. B 689, 117 (2010).

[55] S. Basilakos, M. Plionis, and J. Sola, Phys. Rev. D 80,
083511 (2009); 82, 083512 (2010).

[56] K. Freese, F.C. Adams, J. A. Frieman, and E. Mottola,
Nucl. Phys. B287, 797 (1987).

PHYSICAL REVIEW D 88, 103526 (2013)

[57] J.C. Carvalho, J. A.S. Lima, and I. Waga, Phys. Rev. D
46, 2404 (1992).

[58] R.C. Arcuri and I. Waga, Phys. Rev. D 50, 2928
(1994).

[59] A. Aviles, A. Bravetti, S. Capozziello, and O. Luongo,
Phys. Rev. D 87, 064025 (2013).

103526-12


http://dx.doi.org/10.1016/j.physletb.2010.04.058
http://dx.doi.org/10.1016/j.physletb.2010.04.058
http://dx.doi.org/10.1103/PhysRevD.80.083511
http://dx.doi.org/10.1103/PhysRevD.80.083511
http://dx.doi.org/10.1103/PhysRevD.82.083512
http://dx.doi.org/10.1016/0550-3213(87)90129-5
http://dx.doi.org/10.1103/PhysRevD.46.2404
http://dx.doi.org/10.1103/PhysRevD.46.2404
http://dx.doi.org/10.1103/PhysRevD.50.2928
http://dx.doi.org/10.1103/PhysRevD.50.2928
http://dx.doi.org/10.1103/PhysRevD.87.064025

