
Noether symmetries and analytical solutions in fðTÞ cosmology: A complete study

S. Basilakos,1 S. Capozziello,2,3 M. De Laurentis,2,3 A. Paliathanasis,4 and M. Tsamparlis4

1Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efesiou 4, 11527 Athens, Greece
2Dipartimento di Fisica, Universita’ di Napoli Federico II, I-80126 Napoli, Italy

3INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, 9, I-80126 Napoli, Italy
4Faculty of Physics, Department of Astrophysics, Astronomy and Mechanics,

University of Athens, Panepistemiopolis, Athens 157 83, Greece
(Received 14 September 2013; published 22 November 2013)

We investigate the main features of the flat Friedmann-Lemaı̂tre-Robertson-Walker cosmological

models in the fðTÞ modified gravity regime. In particular, a general approach to find out exact

cosmological solutions in fðTÞ gravity is discussed. Instead of taking into account phenomenological

models, we consider as a selection criterion, the existence of Noether symmetries in the cosmological fðTÞ
pointlike Lagrangian. We find that only the fðTÞ ¼ f0T

n model admits extra Noether symmetries. The

existence of extra Noether integrals can be used in order to simplify the system of differential equations

(equations of motion) as well as to determine the integrability of the fðTÞ ¼ f0T
n cosmological model.

Within this context, we can solve the problem analytically and thus we provide the evolution of the main

cosmological functions such as the scale factor of the Universe, the Hubble expansion rate, the

deceleration parameter, and the linear matter perturbations. We show that the fðTÞ ¼ f0T
n cosmological

model suffers from two basic problems. The first problem is related to the fact that the deceleration

parameter is constant which means that it never changes sign, and therefore the Universe always

accelerates or always decelerates depending on the value of n. Second, we find that the clustering growth

rate remains always equal to unity implying that the recent growth data disfavor the fðTÞ ¼ f0T
n gravity.

Finally, we prove that the fðTÞ ¼ f0T
n gravity can be cosmologically equivalent with the fðRÞ ¼ Rn

gravity model and the time varying vacuum model �ðHÞ ¼ 3�H2 (for n�1 ¼ 1� �) because the above

cosmological scenarios share exactly the same Hubble expansion, despite the fact that the three models

have a different geometrical origin. Finally, some important differences with power-law fðRÞ gravity are

pointed out.
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I. INTRODUCTION

Nonstandard gravity models provide an alternative
possibility towards understanding the accelerated expan-
sion of the Universe (see [1] and references therein).
The physical mechanism which is responsible for the
present accelerating stage of the Universe can be driven
by a modification of the Einstein-Hilbert action, while
the matter content of the Universe remains the same
(relativistic and cold dark matter). In the literature there
are plenty of modified gravity models proposed by differ-
ent authors, such as the braneworld Dvali, Gabadadze and
Porrati [2] model, fðRÞ gravity [3], scalar-tensor theories
[4], Gauss-Bonnet gravity [5], Hořava-Lifshitz gravity [6],
nonlinear massive gravity [7], etc.

Another gravitational scenariowhich has recently gained
a lot of attention is the so-called fðTÞ gravity. The intrinsic
properties of this scenario are based on the rather old
formulation of the teleparallel equivalent of general rela-
tivity (TEGR) [8–10]. Specifically, instead of using the
torsionless Levi-Civita connection of the classical general
relativity (GR), one utilizes the curvatureless Weitzenböck
connection in which the corresponding dynamical fields
are the four linearly independent vierbeins. Therefore,
all the information concerning the gravitational field is

included in the torsion tensor. Within this framework, con-
sidering invariance under general coordinate transforma-
tions, global Lorentz-parity transformations, and requiring
up to second order terms of the torsion tensor, one can write
down the corresponding Lagrangian density T [9] by using
some suitable contractions. A natural generalization of
TEGR gravity is fðTÞ gravity which is based on the fact
that we allow the Lagrangian to be a function of T [11–13],
inspired, of course, by the well-known extension of fðRÞ
Einstein-Hilbert action. However, fðTÞ gravity does not
coincide with fðRÞ extension, but it rather consists of a
different class of modified gravity. It is interesting to men-
tion that the torsion tensor includes only products of first
derivatives of the vierbeins, giving rise to second-order
field differential equations in contrast with the fðRÞ gravity
that provides fourth-order equations which potentially may
lead to some problems, for example in thewell position and
well formulation of the Cauchy problem [14].
Despite the fact that TEGR coincides completely with

GR, both at the background and perturbation levels, it has

been shown that fðTÞ gravity provides different structural

properties with respect to GR aswell as different black-hole

solutions and cosmological features [11–13,15–19]. An

important question here is what classes of fðTÞ extensions
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are allowed. From the phenomenological viewpoint, the
aforementioned cosmological and spherical analysis lead
to a variety of such expressions. Using cosmological
[16,17,20] and Solar System [18] observations, one can
show that the deviations from TEGR must be small.

In this paper, we use a model-independent selection rule
based on first integrals, due to Noether symmetries of the
equations of motion, in order to identify the viability of
fðTÞ gravity in the context of flat Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) cosmologies. Actually, the
idea to use Noether symmetries in cosmology is not new
and indeed there is a lot of work in the literature (see
[21–33]) along this line. In this context, recently we have
shown (see Basilakos et al. [34]; Paliathanasis et al. [35])
that the existence of Noether symmetries can be used as a
selection criterion in order to distinguish the scalar dark
energy models [34] as well as the fðRÞ gravity models [35].
Inspired by the above works in the current article, we
would like to estimate the Noether symmetries of the
fðTÞ gravity. The aim here is (a) to identify the fðTÞ
functional forms which accommodate extra Noether sym-
metries, and (b) for these models, to solve the system of the
resulting field equations and derive analytically the main
cosmological functions (the scale factor, the Hubble ex-
pansion rate, deceleration parameter and growth factor)
and finally to compare with other cosmological patterns
which are outside and inside GR.

The structure of the article is as follows: In Sec. II, we
discuss the issue of torsion in GR and its connection with
unholonomic frames. This discussion is useful in order to
clarify some misunderstandings on the role of torsion that
are present in literature. In particular, we shall discuss its
dependence on the frame where observations are made.

In Sec. III, we give the basic FLRW cosmological
equations in the framework of fðTÞ gravity. The main
properties and theorems of the Noether symmetry ap-
proach are summarized in Sec. IV. Noether symmetries
for fðTÞ cosmology are discussed in Sec. V. In Sec VI we
provide analytical solutions for fðTÞ models that admit
nontrivial Noether symmetries. A comparison with analo-
gous fðRÞ cosmology is pursued putting in evidence sim-
ilarities and differences. We draw conclusions in Sec. VI.

II. THE ROLE OF TORSION IN
GENERAL RELATIVITY

Before starting our considerations on fðTÞ gravity and its
cosmological realization, it is useful to discuss in detail the
role of torsion in GR considering, in particular, how it
behaveswith respect to holonomic and unholonomic frames.

Let us start with some definitions. In an n-dimensional
manifoldM consider a coordinate neighborhoodUwith a
coordinate system fx�g. At each point P 2 U, we have the
resulting holonomic frame f@�g. We define in U a new

frame feaðx�Þg which is related to the holonomic frame
f@ag as follows:

eaðx�Þ ¼ h�a @� a;� ¼ 1; 2; . . . ; n; (1)

where the quantities h�a ðxÞ are in general functions of
the coordinates (i.e. depend on the point P). Notice that
Latin indices count vectors, while Greek indexes are tensor
indices. We assume that deth

�
a � 0 which guarantees that

the vectors feaðx�Þg form a set of linearly independent
vectors. We define the ‘‘inverse’’ quantities h

�
a by means

of the following ‘‘orthogonality’’ relations:

h
�
a ha� ¼ �

�
� ; h

�
b h

c
� ¼ �c

b: (2)

The commutators of the vectors feag are not in general all
zero. If they are zero, then there exists a new coordinate
system in U, fybg so that eb ¼ @

@yb
, i.e. the new frame is

holonomic. If there are commutators ½ea; eb� � 0 then the
new frame febg is called unholonomic and at least a number
of vectors eb cannot be written in the form eb ¼ @b. The
quantities which characterize an unholonomic frame are
the objects of unholonomicity or Ricci rotation coefficients
�a

bc defined by the relation

½ea; eb� ¼ �c
abec: (3)

Let us compute:

½ea; eb� ¼ ½h�a @�; h�b@�� ¼ ½h�a h�b;�hc� � h�bh
�
a;�hc��ec

from which follows that the Ricci rotation coefficients of
the frame feag are

�a
bc ¼ 2h

�
½bh

�
c�;�h

a
�: (4)

The condition for feag to be a holonomic basis is�a
bc ¼ 0

at all points P 2 U. This is a set of linear partial differ-
ential equations whose solution defines all holonomic
frames and all coordinate systems in U. One obvious
solution is hcb ¼ �c

b. The set of all coordinate systems in

U, equipped with the operation of composition of trans-
formations, has the structure of an infinite dimensional Lie
group which is called the Manifold Mapping Group [36].
Let us consider now the special unholonomic frames

which satisfy the Jacobi identity:

½½ea; eb�; ec� þ ½½eb; ec�; ea� þ ½½ec; ea�; eb� ¼ 0: (5)

These frames are the generators of a Lie algebra, there-
fore they have an extra role to play. Replacing the commu-
tator in terms of the unholonomicity objects, we find the
following identity:

�d
ab;c þ�d

ba;a þ�d
ca;b ��l

ab�
d
cl ��l

bc�
d
al

��l
ca�

d
bl ¼ 0: (6)

Using the definition of the covariant derivative we write

reiej ¼ �k
ijek; (7)

where �k
ij are the connection coefficients in the frame feig.

If we compute the �k
ij assuming
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½ei; ej� ¼ Ck
:ijek

it follows that

Ck
:ij ¼ �k

:jk:

Let us consider now three vector fields X, Y, Z and the
covariant derivative of the metric vector X. Then we have

rXgðY; ZÞ ¼ XðgðY; ZÞÞ � gðrXY; ZÞ � gðY;rYZÞ (8)

and by interchanging the role of X, Y, Z

rYgðZ; XÞ ¼ YðgðZ; XÞÞ � gðrYZ; XÞ � gðZ;rZXÞ; (9)

rZgðX; YÞ ¼ ZðgðX; YÞÞ � gðrZX; YÞ � gðX;rXYÞ: (10)

Adding Eqs. (8) and (9) and subtracting (10), one
obtains

rXgðY; ZÞ þ rYgðZ; XÞ � rZgðX; YÞ
¼ XðgðY; ZÞÞ þ YðgðZ; XÞÞ � ZðgðX; YÞÞ

� ½gðrXY; ZÞ þ gðrYZ; XÞ � gðrZX; YÞ�
� ½gðY;rXZÞ þ gðZ;rYXÞ � gðX;rZYÞ�

then

rXgðY; ZÞ þ rYgðZ; XÞ � rZgðX; YÞ
¼ XðgðY; ZÞÞ þ YðgðZ; XÞÞ � ZðgðX; YÞÞ

� ½gðrXY; ZÞ þ gðZ;rYXÞ�
� ½gðrYZ; XÞ � gðX;rZYÞ�
� ½gðY;rXZÞ � gðrZX; YÞ�

that is

rXgðY; ZÞ þ rYgðZ; XÞ � rZgðX; YÞ
¼ XðgðY; ZÞÞ þ YðgðZ; XÞÞ � ZðgðX; YÞÞ

� ½gðZ;rXY þrYXÞ þ gðX;rYZ�rZYÞ
þ gðY;rXZ�rZXÞ�;

where

gðZ;rXY þrYXÞ ¼ 2gðZ;rXYÞ þ gðZ;rYX �rXYÞ:
Replacing in the last relation and solving for 2gðZ;rXYÞ,
we find

2gðZ;rXYÞ ¼ ½XðgðY; ZÞÞ þ YðgðZ; XÞÞ � ZðgðX; YÞÞ�
� ½rXgðY; ZÞ þ rYgðZ; XÞ � rZgðX; YÞ�
� ½gðZ;rYX �rXYÞ þ gðX;rYZ�rZYÞ
þ gðY;rXZ�rZXÞ�

or

2gðZ;rXYÞ¼ ½XðgðY;ZÞÞþYðgðZ;XÞÞ�ZðgðX;YÞÞ�
�½rXgðY;ZÞþrYgðZ;XÞ�rZgðX;YÞ�
�½gðZ;rYX�rXY�½Y;X�Þ
þgðX;rYZ�rZY�½Y;Z�Þ
þgðY;rXZ�rZX�½X;Z�Þ�
�½gðZ;½Y;X�ÞþgðX;½Y;Z�ÞþgðY;½X;Z�Þ�:

At this point, we can define the quantities

TrðX;YÞ¼rXY�rYX�½X;Y�; ArðX;Y;ZÞ¼rXgðY;ZÞ:
The tensors Tr and Ar are called the torsion (Tr � T) and
the metricity of the connection r respectively. The last
relation in terms of the fields Tr and Ar is written as
follows:

2gðZ;rXYÞ¼ ½XðgðY;ZÞÞþYðgðZ;XÞÞ�ZðgðX;YÞÞ�
�½ArðX;Y;ZÞþArðY;Z;XÞ
�ArðZ;X;YÞ�þ�½gðZ;TrðY;XÞÞ
þgðX;TrðY;ZÞÞþgðY;TrðX;ZÞÞ�
�½gðZ;½Y;X�ÞþgðX;½Y;Z�ÞþgðY;½X;Z�Þ�:

(11)

Let X ¼ el; Y ¼ ej and Z ¼ ek. Contracting with 1
2 g

il, we

have

2gðZ;rXYÞ ! �i
jk;

½XðgðY; ZÞÞ þ YðgðZ; XÞÞ � ZðgðX; YÞÞ� !
�
i

jk

�
;

gðX; TrðY; ZÞÞ ! Qi
:kj;

gðZ; TrðY; XÞÞ þ gðY; TrðX; ZÞÞ ! gilðgtjQt
kl þ gtkQ

t
jlÞ

¼ � �Si:kj;

gðX; ½Y; Z�Þ ! 1

2
Ci
:jk;

gðZ; ½Y; X�Þ þ gðY; ½X; Z�Þ ¼ 1

2
gilðgtjCt

lk þ gtkC
t
jlÞ

¼ �Si:kj;

and

ArðX; Y; ZÞ þ ArðY; Z; XÞ � ArðZ; X; YÞ ! 1

2
gil�jkl:

Replacing in Eq. (11), we find the connection coefficients
in the frame feig, that is
�i
jk ¼

�
i

jk

�
þ �Si:kj þ Si:kj �

1

2
gil�jkl þQi

jk �
1

2
Ci
:jk; (12)

where f ijkg are the standard Levi-Civita connection

coefficients (i.e. the Christofell symbols). This is the
most general expression for the connection coefficients in
terms of the fields f ijkg, Tr, Ar and Ci

jk. Concerning the

symmetric and antisymmetric part, we have
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�i
:ðjkÞ ¼

�
i

jk

�
þ �Si:jk þ Si:jk �

1

2
gil�jkl; (13)

�i
:½jk� ¼ Qi

:jk �
1

2
Ci
:jk; (14)

and then we can draw the following conclusions:
(1) The connection coefficients in a frame feig are

determined from the metric, the torsion, the metric-
ity and the unholonomicity objects (equivalently the
commutators) of the frame.

(2) The symmetric part �i
:ðjkÞ of �i

jk depends on all

fields. This means that the geodesics and the
autoparallels in a given frame depend on the
geometric properties of the underlying manifold
(fields gij, Q

i
:kj, gijjk) and the unholonomicity of

the frame (field Ci
:jkÞ.

(3) The antisymmetric part �i
:½jk� of �

i
jk depends only on

all fields Qi
:kj and Ci

:jk.

(4) The objects of unholonomicity Ci
:jk behave in the

same way as the components of torsion. This means
that even in a Riemannian space where Qi

:kj ¼
0; gijjk ¼ 0 in an unholonomic basis the antisym-

metric part �i
:½jk� ¼ � 1

2C
i
:jk � 0.

This result has lead to the misunderstanding that when
one works in an unholonomic frame then the torsion is
introduced. This statement is clearly not correct. This
misunderstanding has important consequences because
the effects one will observe in an unholonomic frame
will be frame dependent and not covariant effects.
Therefore all conclusions made in a specific unholonomic
frame must be restricted to that frame only.

III. fðTÞ GRAVITYAND COSMOLOGY

With the above considerations in mind, let us consider
TEGR and its straightforward extension fðTÞ.
Teleparallelism uses as dynamical objects the vierbiens
as unholonomic frames in spacetime. Following the
definitions in the previous section, they are defined
by the requirement gðei; ejÞ ¼ ei:ej ¼ �ij, where �ij ¼
diagð�1;þ1;þ1;þ1Þ is the Lorentz metric in canonical

form. Obviously g��ðxÞ ¼ �ijh
i
�ðxÞhj�ðxÞ where eiðxÞ ¼

hi�ðxÞdxi is the dual basis. Differing from GR, which uses

the torsionless Levi-Civita connection, Teleparallelism
utilizes the curvatureless Weitzenböck connection, whose
non-null torsion tensor is defined as

T�
�� ¼ �̂�

�� � �̂�
�� ¼ h�i ð@�hi� � @�h

i
�Þ: (15)

Notice the Ricci rotation coefficients are �i
jk ¼ Ti

jk and

encompass all the information concerning the gravitational
field. The TEGR Lagrangian for the gravitational field
equations (Einstein equations) is assumed to be

T ¼ S�
��T�

��; (16)

where

S�
�� ¼ 1

2
ðK��

� þ ��
�T

��
� � ��

�T
��

�Þ (17)

and K��
� is the contorsion tensor

K��
� ¼ � 1

2
ðT��

� � T��
� � T�

��Þ; (18)

which equals the difference of the Levi-Civita connection
in the holonomic and the unholonomic frame (see Sec. II for
details).
Here, the gravitational field will be driven by a

Lagrangian density which is a function of the trace T.
Therefore, the corresponding action of fðTÞ gravity
reads as

A T ¼ 1

16�G

Z
d4xefðTÞ; (19)

where e ¼ det ðei� � ei�Þ ¼ ffiffiffiffiffiffiffi�g
p

. Obviously, TEGR and

thus GR, are restored for fðTÞ ¼ T.
In order to construct a realistic theory of gravity, we

have to incorporate the matter and radiation fields too.
Therefore, the total action is written as

Atot ¼ AT þ 1

16�G

Z
d4xeðLm þ LrÞ; (20)

where the matter and radiation Lagrangians are assumed to
correspond to perfect fluids with energy densities 	m, 	r

and pressures pm, pr respectively. If matter couples to the
metric in the standard form then the variation of the action
with respect to the vierbein leads to the equations [11]

e�1@�ðeS��
i Þf0ðTÞ � h
i T

�
�
S

��
� f0ðTÞ þ S

��
i @�ðTÞf00ðTÞ

þ 1

4
h�i fðTÞ ¼ 4�Gh�i T

ðmÞ�
�; (21)

where a prime denotes differentiation with respect to T,

Si
�� ¼ hi

�S
��
� and TðmÞ

�� is the matter energy-momentum

tensor. It is easy to show that, for fðTÞ ¼ T, Eq. (21)
reduces to the standard Einstein equations [37].
In order to consider the related fðTÞ cosmology, let us

assume a spatially flat FLRW metric which, in the holo-
nomic (comoving) frame f@t; @x; @y; @zg, assumes the form

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ;
where aðtÞ is the cosmological scale factor. In this space
we define the vierbein (unholonomic frame) feig which
becomes

hi�ðtÞ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ: (22)

In order to derive the cosmological equations in a FLRW
metric, we need to deduce a pointlike Lagrangian from the
action (19). As a consequence, the infinite degrees of
freedom of the original field theory will be reduced to a
finite number as in mechanical systems. This fact allows
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one to deal with minisuperspaces of finite dimensions
(see [38] for details).

In this framework, considering fa; Tg as the canonical
variables of the configuration space the fðTÞ action
becomes formally

A T ¼
Z

Lða; _a; T; _TÞdt:

Due to the fact that T, in GR, reduces to

T ¼ �6

�
_a

a

�
2 ¼ �6H2; (23)

where H is the Hubble parameter [15], one can rewrite the
fðTÞ action using a Lagrange multiplier 
L as follows:

A T ¼ 2�2
Z

dt

�
fðTÞa3 � 
L

�
T þ 6

�
_a2

a2

���
: (24)

In order to determine 
L, we need to vary the fðTÞ action
with respect to T, that is

a3
dfðTÞ
dT

�T � 
L�T ¼ 0

from which follows


L ¼ a3f0ðTÞ:
Replacing in the Lagrangian we find

L ¼ a3½fðTÞ � Tf0ðTÞ� � 6 _a2af0ðTÞ; (25)

which is canonical in the variables fa; Tg.
Also, the substitution of the vierbein (22) in Eq. (21) for

i ¼ � ¼ 0 (as well as the energy condition) yields

12H2f0ðTÞ þ fðTÞ ¼ 16�G	: (26)

Besides, for i ¼ � ¼ 1 Eq. (21) gives

48H2 _Hf00ðTÞ�4ð _Hþ3H2Þf0ðTÞ�fðTÞ¼16�Gp; (27)

where 	 ¼ 	m þ 	r and p ¼ pm þ pr are the total energy
density and pressure respectively which they have been
measured in the unholonomic frame. It is important to
stress that Eqs. (26) and (27) can be derived by the
Euler-Lagrange equations

EL ¼ @L
@ _a

_aþ @L
@ _T

_T �L (28)

and

d

dt

@L
@ _a

¼ @L
@a

; (29)

respectively. The Euler-Lagrange equation,

d

dt

@L
@ _T

¼ @L
@T

; (30)

gives the constraint (23). In this sense, the pointlike
Lagrangian (25) completely defines the related dynamical
system in the minisuperspace fa; Tg.

It is interesting to mention that using the conservation
equation _	þ 3Hð	þ pÞ ¼ 0 one can rewrite Eqs. (26)
and (27) in the Friedmann-Einstein form

H2 ¼ 8�G

3
ð	þ 	TÞ; (31)

2 _H þ 3H2 ¼ �8�Gðpþ pTÞ; (32)

where

	T ¼ 1

16�G
½2Tf0ðTÞ � fðTÞ � T�; (33)

pT ¼ 1

16�G
f4 _H½2Tf00ðTÞ þ f0ðTÞ � 1�g � 	T (34)

are the unholonomicity contributions to the energy density
and pressure that disappears as soon as fðTÞ ¼ T. Finally,
fðTÞ gravity can mimic, under specific circumstances, the
scalar field for dark energy [15]. In order to address this
crucial question, we need to derive an effective equation-
of-state parameter wðaÞ for the fðTÞ cosmology. Indeed,
utilizing Eqs. (33) and (34), we can easily obtain the
effective unholonomicity equation of state as

!T � pT

	T

¼ �1þ 4 _H½2Tf00ðTÞ þ f0ðTÞ � 1�
2Tf0ðTÞ � fðTÞ � T

: (35)

It is easy to see that possible deviations from the �CDM
model can be addressed by the second term in such an
equation.

IV. NOETHER SYMMETRIES

Generally, Noether symmetries play an important role in
physics because they can be used to simplify a given
system of differential equations as well as to determine
the integrability of the system. In general, the existence of
a Noether symmetry can be related to a conserved quantity
bringing a physical meaning. The so-called Noether
Symmetry Approach results extremely useful in cosmology
in order to find out exact solutions (see [21] for a
comprehensive review of the method). We would like to
remind the reader that a fundamental approach to derive
the Noether symmetries for a given dynamical problem
(in a Riemannian space) has been published recently by
Tsamparlis and Paliathanasis [39] (a similar analysis can
be found in [36,40–44]).
Let us consider the Hamiltonian H which depends on

one independent variable ftg and n dependent variables

fxiðtÞ: i ¼ 1; . . . ; ng, i.e. H ¼ H ðt; xk; _xk; . . . ; x½n�kÞ,
where a dot over a symbol means differentiation with
respect to t. We perform the one parameter point trans-
formation

�t ¼ �ðt; xk; "Þ; �xA ¼ �ðt; xk; "Þ: (36)

In that case, the generating vector of the one parameter
point transformation is
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X ¼ �ðt; xk; "Þ@t þ �iðt; xk; "Þ@i; (37)

where

�ðt; xkÞ ¼ @�iðt; xk; "Þ
@"

��������"!0
;

�iðt; xkÞ ¼ @�ðt; xk; "Þ
@"

��������"!0
:

The extension of the generator vector in the jet space

BM ¼ ft; xk; _xk; €xk; . . . ; x½n�kg is [36]
X½n� ¼ Xþ �A

i @ui þ � � � þ �A
ij;...;in

@uij;...;in ;

where

�½1�i ¼ d

dt
�i � _xi

d

dt
�; (38)

�½n�i ¼ d

dt
�½n�1�i � x½n�i

d

dt
�: (39)

X½n� is called the nth prolongation of the generator (37).

We say that the function H ðt; xk; _xk; €xk; . . . ; x½n�kÞ ¼ 0
is invariant under the transformation of Eq. (36) if and only
if there is a function 
L such as the following condition
holds:

X½n�ðH Þ ¼ 
LH ; modH ¼ 0; (40)

where 
L is a function to be determined [45]. Moreover,
the generating vector (37) is a Lie symmetry of the func-

tionH ðt; xk; _xk; €xk; . . . ; x½n�kÞ. In the following sections we
are interested in systems of second order which implies
that the Hamiltonian becomes H ¼ H ðt; xk; _xk; €xkÞ.

A. Noether theorems

Let Lðt; xk; _xkÞ be a function which describes the
dynamics of a system. The equations of motion of the
dynamical system follow from the action of the Euler
Lagrange vector Ei on the function L, i.e.,

EiðLÞ ¼ 0; (41)

where the Euler Lagrange vector is

Ei ¼ d

dt

@

@ _xi
� @

@xi
: (42)

If the Lagrangian is invariant under the action of the

transformation (36), namely X½1�L ¼ 0, then it is easy to
see that the Euler Lagrange equations (41) are also invari-
ant under the transformation (36). In general we have the
following theorem [36].

Theorem 1.—Let

X ¼ �ðt; xkÞ@t þ �iðt; xkÞ@i (43)

be the infinitesimal generator of the transformation (36)
and

L ¼ Lðt; xk; _xkÞ (44)

be a Lagrangian describing the dynamical system (41).
The action of the transformation (36) on (44) leaves the
Euler Lagrange equations (41) invariant, if and only if
there exists a function g ¼ gðt; xkÞ such that the following
condition holds:

X½1�Lþ L
d�

dt
¼ dg

dt
; (45)

where X½1� is the first prolongation of (43).
If the generator of Eq. (43) satisfies Eq. (45) then the

generator (43) is a Noether symmetry of the dynamical
system described by the Lagrangian (44). Noether symme-
tries form a Lie algebra called the Noether algebra. We also
have the following result.
Theorem 2.—For any Noether symmetry (43) of the

Lagrangian (44) there corresponds a function Iðt; xk; _xkÞ

I ¼ �

�
_xi
@L

@ _xi
� L

�
� �i @L

@xi
þ g (46)

which is a first integral i.e. dI
dt ¼ 0. The function (46) is

called a Noether integral (first integral) of the dynamical
system (41).

V. NOETHER SYMMETRIES
FOR fðTÞ COSMOLOGY

In this section we apply the Noether symmetries ap-
proach to fðTÞ cosmology in which the corresponding
Lagrangian of the field equations is given by Eq. (25).
Here we consider a one parameter point transformation
in the space ft; a; Tg and the generator is written as

X ¼ �ðt; a; TÞ@t þ �1ðt; a; TÞ@a þ �2ðt; a; TÞ@T:
Notice that the Lagrangian (25) is a singular Lagrangian
(the Hessian vanishes), hence the jet space is �BM ¼
ft; a; T; _ag and thus the first prolongation of X in the jet
space �BM is

X½1� ¼ �@t þ �1@a þ �2@T þ �½1�
1 @ _a; (47)

where �½1�
1 ¼ _�1 � _a _� [45–48]. Now we compute each

term in the symmetry condition (45).

The term X½1�L gives

X½1�L ¼ ½3a2�1ðfTT � fÞ þ a3fTTT�2� þ ½12fTa�1;t� _a
þ ½12fTa�;a� _a3 þ 6½fT�1 þ fTTa�2

þ 2fTa�1;a � 2fTa�;t� _a2
þ ½12fTa�1;T� _a _Tþ½12fTa�;T� _a2 _T:

The second term L _� gives

L _� ¼ ½a3ðfTT � fÞ�;t� þ ½a3ðfTT � fÞ�;a� _a
þ ½a3ðfTT � fÞ�;T� _T þ ½6fTa�;t� _a2
þ ½6fTa�;a� _a3 þ ½6fTa�;T� _a2 _T:

S. BASILAKOS et al. PHYSICAL REVIEW D 88, 103526 (2013)

103526-6



Finally the right-hand side of Eq. (45) is

_g ¼ g;t þ g;a _aþ g;T _T:

Replacing the results in Eq. (45) and setting the terms
with the powers of _a and _T equal to zero in order to select
the Lie vector (see [21] for details), we find the following
set of Noether symmetry conditions:

�;a ¼ 0; �;T ¼ 0; �1;T ¼ 0; (48)

a3ðfTT � fÞ�;T ¼ g;T; (49)

3a2�1ðfTT�fÞþa3fTTT�2þa3ðfTT�fÞ�;t¼g;t; (50)

12fTa�1;t þ a3ðfTT � fÞ�;a ¼ g;a; (51)

fT�1 þ fTTTa�2 þ 2fTa�1;a � fTa�;t ¼ 0: (52)

From Eqs. (48) and (49) it follows

� ¼ �ðtÞ; �1 ¼ �1ðt; aÞ; g ¼ gðt; aÞ:
Then Eq. (51) becomes 12fTa�1;t ¼ g;a Because �1, g are

independent of T which follows that

�1 ¼ �1ðaÞ; g ¼ gðtÞ:
Dividing Eq. (52) with afT we find

2�1;a þ �1

a
þ fTT

fT
�2 � �;t ¼ 0 (53)

from which follows that

�2 ¼ fT
fTT

Sða; tÞ;

where S is an arbitrary function of its arguments. Taking
this result into consideration the conditions (50’) and (53)
become respectively

2�1;a þ �1

a
þ Sða; tÞ � �;t ¼ 0; (54)

3a2�1ðfTT�fÞþa3fTTTSþa3ðfTT�fÞ�;t¼g;t: (55)

From Eq. (54) follows that Sða; tÞ ¼ MðaÞ þ NðtÞ hence
we have the final symmetry conditions (where f � ekT

k ¼ constant):

2�1;a þ �1

a
þMþ N � �;t ¼ 0; (56)

3
�1

a
þ fTT

fTT�f
Mþ fTT

fTT�f
Nþ�;t¼ 1

a3ðfTT�TÞg;t:
(57)

It is obvious that Eqs. (54) and (55) hold for arbitrary fðTÞ
as long as � ¼ c0 and �1 ¼ �2 ¼ 0 (i.e. S ¼ 0). In this
case the corresponding Noether integral is the Hamiltonian
H , implying that the dynamical system is autonomous.

Moreover, the conditions (56) and (57) give the following
system of equations:

fTT

fTT � f
¼ n

n� 1
(58)

and

g;t ¼ 0; N ¼ cþ �;t; 2�1;a þ �1

a
þM ¼ c;

3
�1

a
þ n

n� 1
M ¼ m;

n

1� n
N � �;t ¼ m:

Solving the first equation of the system (58) we find that

fðTÞ ¼ f0T
n; (59)

where f0 is the integration constant. In this context we can
obtain the Noether symmetries. Specifically, in the case of
n � 1

2 ,
3
2 , the Noether symmetry vector is

X1 ¼
�

3C

2n� 1
t

�
@t þ ðCaþ c3a

1� 3
2nÞ@a

þ
�
1

n
ððc�mÞnþ 3c3a

� 3
2nÞ þ 3C

2n� 1
þ c

�
T@T

as well as the corresponding Noether integral is

I1 ¼
�

3C

2n� 1
t

�
H � 12f0nðCa2 þ c3a

2� 3
2nÞTn�1 _a;

where C ¼ mð1�nÞþnc
3 .

For n ¼ 3
2 , the Noether symmetry is given by

X2 ¼ 1

5
ð3c� 2mÞt@t þ

��
c

2
�m

6

�
aþ c4

�
@a

þ
�
ðmþ 11cÞ � c4

a
þ 2

5
ð8c� 2mÞ

�
T@T (60)

with corresponding Noether integral

I2 ¼ 1

5
ð3c� 2mÞtH � 18f0

��
c

2
�m

6

�
a2 þ c4a

�
T

1
2 _a:

Finally for n ¼ 1
2 , the Noether symmetry becomes

X3¼c1t@tþð�2c1þc3a
1
4Þ@aþ

�
4c1þc2þ3c3

2
a�3

4

�
T@T

and the Noether integral is

I3 ¼ c1tH � 6f0ð�2c1aþ c3a
3
4ÞT�1

2 _a:

We would like to stress that our results are in agreement
with those of [33] but they are richer because we have
considered the term �@t in the generator which is not
done in [33]. To this end it becomes evident that fðTÞ ¼
f0T

n is the only form that admits extra Noether symmetries
implying the existence of exact analytical solutions (see
the next section).
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VI. EXACT COSMOLOGICAL SOLUTIONS

In this section we proceed in an attempt to analytically
solve the basic cosmological equations of the fðTÞ ¼ f0T

n

gravity model. In particular from the Lagrangian (25), we
obtain the main field equation

€aþ 1

2a
_a2 þ f00

f0
_a _T� 1

4
a
f0T � f

f0
¼ 0: (61)

Also differentiating Eq. (23) we find

_T ¼ 12

��
_a

a

�
3 � _a €a

a2

�
: (62)

Finally, inserting fðTÞ ¼ f0T
n, Eq. (23) and (62) into

Eq. (61) we derive, after some algebra, that

ð2n� 1Þ
�
€a� _a2

2a

ð2n� 3Þ
n

�
¼ 0; (63)

a solution of which is

aðtÞ ¼ a0t
2n=3 HðtÞ ¼ _a

a
¼ 2n

3t
(64)

or

H ¼ H0a
�3=2n ¼ H0ð1þ zÞ3=2n; (65)

where n 2 R?þ � f12g, aðzÞ ¼ ð1þ zÞ�1 and H0 is the

Hubble constant in agreement with [33]. Also using
Eq. (65) the deceleration parameter is given by

q ¼ �1� d lnH

d ln a
¼ �1þ 3

2n
: (66)

From Eq. (64) it is evident that this cosmological model
has no inflection point. Therefore, the main drawback of
the fðTÞ ¼ f0T

n gravity model is that the deceleration
parameter preserves sign, and therefore the Universe al-
ways accelerates or always decelerates depending on the
value of n. Indeed, if we consider n ¼ 1 (TEGR) then the
above solution boils down to the Einstein–de Sitter model
as it should. On the other hand, the accelerated expansion
of the Universe (q < 0) is recovered for n > 3

2 . The latter

points that even if we would admit n > 3
2 as a mere phe-

nomenological possibility, we would be also admitting that
the Universe has been accelerating forever, which is of
course difficult to accept.

Now, we proceed to provide the growth factor of the
fðTÞ ¼ f0T

n. In general, the basic equation which governs
the evolution of the matter fluctuations in the linear regime
is given by

€�m þ 2H _�m � 4�Geff	m�m ¼ 0; (67)

where 	m is the matter density and Geff is the effective
Newton’s parameter which is written as [49]

Geff ¼ G

f0ðTÞ : (68)

Note that G denotes Newton’s gravitational constant. On
the other hand, using Eqs. (31) and (33) one can easily
write

4�G	m¼3H2

2
�4�G	T ¼3H2

2
�2Tf0ðTÞ�fðTÞ�T

4
:

(69)

Therefore, inserting Eqs. (23), (68), and (69) into Eq. (67)
we have the following general equation:

€�m þ 2H _�m þ 2Tf0ðTÞ � fðTÞ
4f0ðTÞ �m ¼ 0: (70)

We focus now on the fðTÞ ¼ f0T
n gravity model. First

of all for GR (n ¼ 1) we have Geff ¼ G and thus, without
losing the generality, we can set f0 ¼ 1.1 Therefore,
Eq. (70) becomes

€�m þ 4n

3t
_�m � 2nð2n� 1Þ

3t2
�m ¼ 0: (71)

Notice that in order to derive Eq. (71) we have utilized
Eqs. (23) and (64). Interestingly, the above differential
equation modifies that of the Einstein–de Sitter model in
which n ¼ 1 (GR). From the mathematical point of view,
Eq. (71) is of Euler type whose general solution is

�mðtÞ ¼ C1t
2n=3 þ C2t

1�2n (72)

or

�mðaÞ ¼ ~C1aþ ~C2a
3ð1�2nÞ=2n; (73)

where ~C1 ¼ C1=a
3=2n
0 and ~C2 ¼ C2=a

3ð1�2nÞ=2n
0 . In the

case of 0< n< 1
2 we have two growth factors while for

n > 1
2 the only growth factor is Dþ ¼ a / t2n=3. It is inter-

esting to mention that if we write the growth factor as a
function of the scale factor then mathematically it coin-
cides with that of the Einstein–de Sitter model [50]. This
result means that the growth rate of clustering fþðaÞ ¼
d lnDþ=d ln a remains constant and equal to unity for
every scale factor, implying that the present growth data
disfavor the fðTÞ ¼ f0T

n gravity. Indeed, in Fig. 1 we plot
the growth data as collected by Basilakos et al. (see [51]
and references therein) with the estimated growth rate
function, fþðzÞ�8ðzÞ [see fðTÞ (solid line) and �CDM
(dashed line)]. Notice that the theoretical �8ðzÞ is given
by �8ðzÞ ¼ �8DþðzÞ, where �8 is the rms mass fluctuation
on R8 ¼ 8h�1 Mpc scales at redshift z ¼ 0.

A. Cosmological analogue to other models

In this section (assuming flatness) we present the cos-
mological equivalence at the background level between the
current fðTÞ gravity with fðRÞ modified gravity and dark

1If fðTÞ ¼ f0T then the Newton’s constant is just rescaled to
be Geff ¼ G=f0 which is also constant in time. This result comes
directly from the action (19) (see also [49]).
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energy, through a specific reconstruction of the fðRÞ and
vacuum energy density, namely, fðRÞ ¼ Rn and �ðHÞ ¼
3�H2. In the case of fðRÞ ¼ Rn it has been found by
Paliathanasis (see the Appendix in [52]) that the corre-
sponding scale factor obeys Eq. (64), where
n 2 R?þ � f2; 32 ; 78g.2 In [53,54], it has been shown that

the particular model fðRÞ / R3=2 has the cosmological

solution aðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4t

4 þ a3t
3 þ a2t

2 þ a1t
p

capable of ad-
dressing both dark-energy and dark-matter dominated
phases. However, despite the analogies, we have to point
out that fðRÞ gravity is a fourth-order theory while fðTÞ
gravity remains of second order.

On the other hand, considering a spatially flat FLRW
metric in the context of GR, the combination of the
Friedmann equations with the total (matterþ vacuum)
energy conservation in the matter dominated era provides
(for more details see [55])

_H þ 3

2
H2 ¼ �

2
: (74)

Solving Eq. (74) for�ðHÞ ¼ 3�H2 (see Refs. [56–58]) we
end up with

H ¼ H0a
�3ð1��Þ=2 ¼ H0ð1þ zÞ3ð1��Þ=2: (75)

Now, comparing Eqs. (65) and (75) and connecting the
above coefficients such as n�1 ¼ 1� �, we find that the
fðTÞ ¼ f0T

n and the flat �ðHÞ ¼ 3�H2 models can be
viewed as equivalent cosmologies as far as the Hubble

expansion is concerned, despite the fact that the current
time varying vacuum model adheres to GR. However, if
the �ðHÞ ¼ 3�H2 cosmological model is confronted with
the current observations provides a poor fit [55]. Since the
current time varying vacuum model shares exactly the
same Hubble parameter with the fðTÞ ¼ f0T

n gravity
model, this fact implies that the latter is also under obser-
vational pressure when we compare against the back-
ground cosmological data (SnIa, BAOs and CMB data).
The same observational situation holds also for fðRÞ ¼ Rn

modified gravity.

VII. CONCLUSIONS

In this paper, we present a general study of Noether
symmetries for fðTÞ gravity and discuss the role of torsion
and unholonomic frames in the context of teleparallel
gravity and its straightforward extension. In particular,
we point out the misunderstanding that, when one works
in an unholonomic frame, the torsion is introduced show-
ing that this statement is not correct. The misunderstanding
consists in the fact that the effects one observes in an
unholonomic frame are frame dependent and not covariant
effects. Therefore all conclusions made in a specific un-
holonomic frame must be restricted to that frame only.
Coming to the specificNoether Symmetry Approach, this

article extends the works by Basilakos et al. [34],
Paliathanasis et al. [35], and Wei et al. [33]. We confirm
the result of [33] that amongst the variety of fðTÞ modified
gravity theories, fðTÞ ¼ f0T

n gravity admits Noether sym-
metries (integrals of motion). However, we provide here a
more general family of Noether integrals with respect to
that of [33]. From the mathematical viewpoint the exis-
tence of extra integrals of motion points out the existence
of further analytical solutions.
Based on the fðTÞ ¼ f0T

n models, we derive analytical
solutions and thus we find the evolution of the main
cosmological functions, namely the scale factor of the
Universe, the Hubble parameter, the deceleration parame-
ter, and for the first time to our knowledge the growth of
matter fluctuations in the linear regime. Furthermore, we
discuss the linear matter fluctuations from these back-
ground solutions. The analysis of the deceleration parame-
ter points out that the fðTÞ ¼ f0T

n gravity models include
an intrinsic problem, namely, the fact that the expansion of
the Universe always accelerates or always decelerates
without spanning the different trends of cosmic evolution.
Another basic problem is related to the fact that the growth
rate of clustering is constant and always equal to unity
which means that the present growth data cannot accom-
modate the fðTÞ ¼ f0T

n gravity. As shown in [59], a
robust cosmographic reconstruction of fðTÞ cosmology
needs more complicated models to address data.
Finally, we find that flat fðTÞ ¼ f0T

n cosmologically
models are perfectly equivalent to the cosmic expansion
history of the flat fðRÞ ¼ Rn modified gravity and the flat

FIG. 1. Comparison of the observed (solid points) and theo-
retical evolution of the growth rate fþðzÞ�8ðzÞ. The solid and
dashed lines correspond to fðTÞ ¼ f0T

n and �CDM. As in
Basilakos et al. [51] we use �8 ¼ 0:8 while for the �CDM
case we set �m0 ¼ 0:272.

2The Lagrangian here is LR ¼ 6naRn�1 _a2 þ 6nðn� 1Þ�
a2Rn�2 _a _Rþðn� 1Þa3Rn, where R is the Ricci scalar. For
n ¼ 1 the solution of the Euler-Lagrange equations is the
Einstein de-Sitter model [aðtÞ / t2=3] as it has to be. Note, that
for n ¼ 2 one can find a de-Sitter solution (aðtÞ / eH0t, see [52]).
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time varying vacuum model �ðHÞ ¼ 3�H2 (where

n�1 ¼ 1� �), despite the fact that the three models live

in a completely different geometrical background. This

fact is a further indication of the high degeneracy problem

affecting cosmological models capable of addressing the

dark energy issue.

ACKNOWLEDGMENTS

S. B. acknowledges support by the Research Center for
Astronomy of the Academy of Athens in the context of the
program ‘‘Tracing the Cosmic Acceleration.’’ S. C. and
M.D. L. are supported by INFN (iniziative specifiche
NA12 and OG51).

[1] M. Tegmark et al., Astrophys. J. 606, 702 (2004); D. N.
Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007);
T.M. Davis et al., Astrophys. J. 666, 716 (2007); M.
Kowalski et al., Astrophys. J. 686, 749 (2008); G.
Hinshaw et al., Astrophys. J. Suppl. Ser. 180, 225
(2009); J. A. S. Lima and J. S. Alcaniz, Mon. Not. R.
Astron. Soc. 317, 893 (2000); J. F. Jesus and J. V.
Cunha, Astrophys. J. Lett. 690, L85 (2009); S. Basilakos
and M. Plionis, Astrophys. J. Lett. 714, L185 (2010).

[2] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,
208 (2000).

[3] S. Capozzielo, Int. J. Mod. Phys. D 11, 483 (2002); A. D.
Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003); T.
Chiba, Phys. Lett. B 575, 1 (2003); G. Allemandi, A.
Borowiec, M. Francaviglia, and S.D. Odintsov, Phys. Rev.
D 72, 063505 (2005); L. Amendola, R. Gannouji, D.
Polarski, and S. Tsujikawa, Phys. Rev. D 75, 083504
(2007); W. Hu and I. Sawicki, Phys. Rev. D 76, 064004
(2007); A.A. Starobinsky, JETP Lett. 86, 157 (2007); J.
Santos, J. S. Alcaniz, F. C. Carvalho, and N. Pires, Phys.
Lett. B 669, 14 (2008); J. Santos and M. J. Reboucas,
Phys. Rev. D 80, 063009 (2009); S. H. Pereira, C. H. G.
Bessa, and J. A. S. Lima, Phys. Lett. B 690, 103 (2010); R.
Reyes, R. Mandelbaum, U. Seljak, T. Baldauf, J. E. Gunn,
L. Lombriser, and R. E. Smith, Nature (London) 464, 256
(2010); S. Nojiri and S.D. Odintsov, Phys. Rep. 505, 59
(2011); S. Capozziello and M. De Laurentis, Phys. Rep.
509, 167 (2011).

[4] J. P. Uzan, Phys. Rev. D 59, 123510 (1999); L. Amendola,
Phys. Rev. D 60, 043501 (1999); N. Bartolo and M.
Pietroni, Phys. Rev. D 61, 023518 (1999); B. Boisseau,
G. Esposito-Farese, D. Polarski, and A.A. Starobinsky,
Phys. Rev. Lett. 85, 2236 (2000); D. F. Torres, Phys. Rev.
D 66, 043522 (2002); Y. Fujii and K. Maeda, The Scalar-
Tensor Theory of Gravitation (Cambridge University
Press, Cambridge England, 2003).

[5] S. Nojiri, S. D. Odintsov, and M. Sasaki, Phys. Rev. D 72,
023003 (2005); T. Koivisto and D. F. Mota, Phys. Lett. B
644, 104 (2007); F. Bauer, J. Solà, and H. Štefančić, J.
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