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We assume cold dark matter to possess a small bulk-viscous pressure which typically attenuates the

growth of inhomogeneities. Explicit calculations, based on Eckart’s theory of dissipative processes, reveal

that for viscous cold dark matter the usual Newtonian approximation for perturbation scales smaller than

the Hubble scale is no longer valid. We advocate the use of a neo-Newtonian approach which consistently

incorporates pressure effects into the fluid dynamics and correctly reproduces the general relativistic

dynamics. This result is of interest for numerical simulations of nonlinear structure formation involving

nonstandard dark-matter fluids. We obtain upper limits on the magnitude of the viscous pressure by

requiring that relevant perturbation amplitudes should grow sufficiently to enter the nonlinear stage.
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I. INTRODUCTION

The standard scenario of cosmic structure formation
relies on the �CDM model. Although this model fits
most of the data surprisingly well, there remain, e.g., the
puzzle of missing satellites [1] and the cusp-core problem
[2]. More recently, the Planck satellite has observed many
fewer clusters than predicted [3]. This would be a ‘‘cluster
version’’ of the missing satellites problem. All these appar-
ent shortcomings of the �CDM model have in common
that pressureless cold dark matter (CDM) leads to an excess
of structure and clustering. Now, although dark matter is
certainly very close to be pressureless, its equation of state
(EoS) parameter wdm is not necessarily zero exactly [4].
Indeed, the EoS parameter of a nonrelativistic gas in ther-
mal equilibrium calculated from kinetic theory is of the
order of 10�6 [5]. There are also investigations about
effects of a nonvanishing EoS parameter using observations
of gravitational lensing [6], gravitational dynamics at
galactic scales [7], at galaxy cluster scales [8] and at
cosmological scales [9].

Structure formation on scales smaller than the Hubble
scale is believed to be describable within a Newtonian
approximation. Newtonian cosmology has been well estab-
lished for many decades [10]. However, its applicability is
related to the circumstance that CDM is assumed to be
pressureless. The results of N-body simulations which are
crucial for modern cosmology are based on pure Newtonian
codes. But as soon as there appears a nonvanishing
dark-matter pressure contribution, even if it is a tiny one,
the applicability of the Newtonian approximation has to be
reconsidered.

In this paper we address the question to what extent
a Newtonian approximation remains reliable if (small)

deviations from wdm ¼ 0 are taken into account. Whether
or not Newtonian simulations are missing any (relativistic)
aspect at the largest scales is a matter of intense debate in
the literature [11]. Our focus here will be on scales smaller
than the Hubble scale. In particular, we aim at clarifying
the potential role of small pressure effects for the evolution
of dark-matter inhomogeneities. We shall demonstrate that
in this situation one can no longer trust the standard
Newtonian approximation. On the other hand, a neo-
Newtonian generalization which is able to incorporate
pressure effects yields results that well approximate those
of an exact general relativistic treatment.
Following a previous analysis [12], we shall consider

viscous CDM (vCDM) in which dissipative effects give
rise to a small bulk viscous pressure. While physically an
effective bulk viscous pressure should be the result of a
self-interaction within the dark matter, our approach will
be entirely phenomenological, using Eckart’s theory [13]
of dissipative processes. We do not assume that this viscous
pressure is responsible for the accelerated expansion of the
Universe as in [14–16]. Instead, it is supposed to describe a
small deviation from the�CDMmodel which is called the
�vCDM model.
The structure of the paper is as follows. In Sec. II we

review the Newtonian and the neo-Newtonian approaches
to cosmology. Section III is devoted to the introduction of
the viscous-matter cosmology. Perturbation schemes for
the Newtonian, neo-Newtonian and general relativistic
levels of description are developed in Sec. IV. The results
for the growth of linear viscous dark-matter perturbations
are presented in Sec. V. A summary of the paper is given in
Sec. VI.

II. NEWTONIAN AND NEO-NEWTONIAN
COSMOLOGIES

The Newtonian cosmology was established in the 1930s
by Milne and McCrea [10]. It is described by the equations
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_�þrr � ð�vÞ ¼ 0; (1)

_vþ ðv � rrÞv ¼ �rr��rrP

�
; (2)

and

r2
r� ¼ 4�G�; (3)

where � is the energy density, v is the fluid velocity, P is
the pressure and � is the gravitational potential. For our
expanding Universe the background velocity field of the
matter particles obeys the Hubble law v ¼ HðtÞrðtÞ.
Here, rðtÞ ¼ r0

aðtÞ
a0

and H ¼ _a
a . A dot on top of a variable

denotes a partial derivative with respect to the cosmic
time t. The subscript r denotes Eulerian coordinates.
Equations (1) and (2) are the continuity and the Euler
equations, respectively. They provide a fluid picture of the
cosmicmediumwhich is gravitationally self-interacting via
the Poisson equation (3). In the Newtonian cosmology the
Friedmann equations read

_a2

a2
þ ð�2EÞ

a2
¼ 8�G

3
� and _HþH2 ¼ � 4�G

3
�; (4)

where E is a constant of integration which plays the role of
the energy of the expanding system. In this Newtonian
treatment the pressure is not dynamically relevant for the
homogeneous and isotropic background. With Newtonian
cosmology it is not possible to model a radiation dominated
phase or even to study a late time dark energy dominated
epoch. This approach is restricted to a description of an
Einstein–de Sitter universe which is a model dominated by
pressureless matter.

A simple way to include the effects of the pressure and,
at the same time, keep the simplicity of the Newtonian
physics is to use the neo-Newtonian (or pseudo-
Newtonian) equations developed during the 1950s by
McCrea [17] and by Harrison in the 1960s [18]. Later,
during the 1990s, an important analysis concerning the
perturbative behavior of Harrison’s neo-Newtonian
equations helped to set the final form for the system of
equations in this approach [19] (see also [20]). This set of
equations reads

_�þrr � ð�vÞ þ Prr � v ¼ 0; (5)

_vþ ðv � rrÞv ¼ �rr�� rrP

�þ P
; (6)

r2
r� ¼ 4�G½�þ 3P�: (7)

Combining Eqs. (5)–(7) one obtains equations for the
expansion of the homogeneous and isotropic background
that are exactly the same as the relativistic Friedmann
equations:

_a2

a2
þ ð�2EÞ

a2
¼ 8�G

3
� and

_H þH2 ¼ � 4�G

3
ð�þ 3PÞ:

(8)

III. BACKGROUND EVOLUTION IN THE CASE
OF VISCOUS COLD DARK MATTER

Standard cosmology is based on the notion of perfect
fluids and the effective pressure of the fluid is interpreted as
its equilibrium (kinetic) pressure. However, since the
Universe is made of real components rather than ideal
ones, one can go a step further including dissipative
mechanisms in the above approach. In a homogeneous
and isotropic background, i.e. if the cosmological principle
holds, directional dissipative processes (shear and heat
conduction) cannot play a decisive role in the cosmic
dynamics. On the other hand, the expansion can induce a
small deviation from equilibrium in the form of a bulk
viscosity.
Our cosmological model is very similar to the standard

�CDM scenario. We assume a flat background expansion
of a universe consisting of baryons, radiation, a cosmo-
logical constant and viscous cold dark matter (vCDM).
Attributing a viscosity to cold dark matter represents the
only modification compared with the �CDM model. As in
the standard case, the components are assumed to obey
separately the energy conservation laws

_�A þ 3Hð�A þ PAÞ ¼ 0 ðA ¼ b; r; v;�Þ; (9)

where the subscripts b, r, v and � denote baryons, radia-
tion, viscous dark matter and cosmological constant,
respectively. The total energy is � ¼ �b þ �r þ �v þ ��

and the total pressure P ¼ Pb þ Pr þ Pv þ P� ¼ 1
3�r þ

Pv � ��. Note that, different from the Newtonian descrip-
tion based on (1)–(3), the neo-Newtonian approach
incorporates the pressure contributions of the different
components already at the background level. It would not
have been possible, e.g., to include a radiation component
with Pr ¼ �r=3 into the traditional Newtonian description.
The background expansion of our model is given by

H2¼H2
0½�b0ð1þzÞ3þ�r0ð1þzÞ4þ�vðzÞþ���; (10)

where

�b0 ¼ 8�G�b0

3H2
0

; �r0 ¼ 8�G�r0

3H2
0

;

�v ¼ 8�G�v

3H2
0

; �� ¼ 8�G��

3H2
0

:

(11)

For H0, �b0 and �r0 we will assume the values reported
by the Planck satellite mission [21].
In order to obtain the function �vðzÞ we have to specify

the pressure Pv of the vCDM and solve its continuity
equation. We emphasize again that in the traditional
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Newtonian cosmology (superscript N) the pressure is not
relevant for the homogeneous and isotropic background
and we have �N

v ðzÞ ¼ �v0ð1þ zÞ3. However, the neo-
Newtonian and the relativistic theories take into account
the dynamical effects of the pressure for the background
and the evolution of the viscous dark-matter density will
obey the conservation equation (9).

To study bulk viscous phenomena we decompose the
pressure Pv according to

Pv ¼ pk þ�; (12)

where pk � pkð�Þ is the kinetic (adiabatic) pressure and�
is the bulk viscous (nonadiabatic) one.

The form of � is determined by Eckart’s theory of
dissipative processes [13]. Our goal in this work is to
understand what is the appropriate Newtonian approxima-
tion for the study of bulk viscous effects until the onset of
nonlinear structure formation.

For simplicity we assume that the viscous dark-matter
fluid has a vanishing kinetic pressure pk ¼ 0. Then its only
pressure contribution is a (small) viscous pressure � � 0.
One reason for this assumption is that the effects of a small
adiabatic pressure give rise to the famous Jeans instability
criterion; i.e. the formation of structure is prevented below
the so-called Jeans scale. In contrast to the adiabatic pres-
sure, the effect of bulk pressure can damp density fluctua-
tions. We recall that we regard the bulk viscous pressure as
an effective description of deviations from the standard
pressureless CDM fluid. Note that in kinetic gas theory
with standard interactions a viscous pressure is a correction
to the adiabatic pressure.

In the present situation, the conservation law (9) in terms
of dimensionless quantities reads

�ð1þ zÞ d�vðzÞ
dz

þ 3�vðzÞ þ
~�

3
¼ 0;

~� ¼ 24�G�

H2
0

: (13)

These relations are valid for any pressure �. In Eckart’s
theory one has

� ¼ ��u�;�; (14)

where � is the coefficient of bulk viscosity and u� is
the fluid 4-velocity (greek indices run over 0, 1, 2, 3).
In a homogeneous and isotropic universe the expansion
scalar becomes u�;� ¼ 3H. The corresponding relation
in a Newtonian context is va

;a ¼ 3H (latin indices run

over 1, 2, 3).
In the absence of a microscopic theory for the cosmo-

logical bulk viscosity, a standard phenomenological choice
for � is the energy density dependence

� ¼ �0

�
�v

�v0

�
�
; (15)

with �0 and � being constants and �v0 being the density of
the viscous fluid today. This means that the current
viscosity of the dark-matter fluid is given by the parameter
�0. This density dependence of � is motivated by the
fact that transport coefficients derived in kinetic theory
depend on powers of the temperature of the fluid. One
can find in the literature approaches where � � �ðH;H2Þ
implying that the viscosity depends indirectly on the den-
sity of the other components. In this case, it is mandatory to
assume a coupling between the components violating the
assumption of separated energy conservation.
Assuming (15), the energy-conservation equation for the

viscous dark matter, in terms of the redshift z, is written as

ð1þ zÞ d�vðzÞ
dz

� 3�vðzÞ þ ~�

�
�vðzÞ
�v0

�
�½�r0ð1þ zÞ4

þ�b0ð1þ zÞ3 þ�vðzÞ þ���1=2 ¼ 0; (16)

where

~� ¼ 24�G�0

H0

: (17)

As initial condition we set �vðz ¼ 0Þ ¼ �v0 ¼ �m ¼
0:12029h�2 [21]. Below, we will show results for the

viscosity of dark matter in terms of the parameter ~� and
for this reason it is important to relate this quantity to the
vCDM equation of state parameter today via

wv0 ¼ �
~�

3�v0

: (18)

Note that CDM is fully recovered if ~� ¼ 0.

IV. PERTURBATIVE DYNAMICS
OF VISCOUS COSMIC FLUIDS

Cosmic structures are formed under gravitational
agglomeration of dark-matter halos and the subsequent
accretion of baryons during the matter dominated epoch.
The galaxy clustering patterns, observed by large-scale
surveys, can be directly compared to theoretical predic-
tions by using either N-body or hydrodynamical simula-
tions. The latter uses fluid dynamics, i.e. continuity and
Euler equations coupled to the Poisson equation.
During the radiation dominated epoch the Hubble drag

stagnates such structures. When the background becomes
matter dominated (for the concordance model this occurs
at z� 3000), the fractional density perturbations �, which
subsequently evolve into the standard CDM halos, start to
grow linearly with the scale factor, �� a. The smallest
scales become nonlinear first, decoupling from the Hubble
flow. The perturbations on the remaining subhorizon scales
which are still in the linear regime continue to grow until
dark energy accelerates the background expansion at late
times causing a suppression of the growth of �. For pres-
sureless CDM this picture is achieved in both Newtonian
and relativistic formulations but for the case of vCDM we
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could expect that the dissipation leads to an extra suppres-
sion mechanism.

In the next subsections we derive the equations needed
in order to study the evolution of subhorizon viscous
dark-matter halos. We calculate the evolution of the
density contrast within the Newtonian, neo-Newtonian
and general relativistic cases.

A. Viscous fluid in Newtonian description

In order to understand the structure formation it is
necessary to apply cosmological perturbation theory.
We briefly describe the procedure. Firstly, we decompose
Eqs. (1)–(3) into homogeneous and isotropic background
quantities and first-order perturbations. We write the
quantities f ¼ f�; v; pk; �;�g as f ¼ fþ �f, where f
denotes the background value and �f means a small
fluctuation. At linear order �f=f � 1. We also Fourier
transform the perturbations to the wave-number (k) space.
It is also necessary to replace the Euler coordinates by the
Lagrangian ones (in Lagrangian coordinates q ¼ r=a).
Note that this treatment is valid for any effective
pressure P.

For the pressure P in (2) we have

P ¼ pk þ� ¼ pk � �� ¼ ��rr � v; (19)

where � represents the system’s volume expansion. It is
clear that under this redefinition Eq. (2) becomes the stan-
dard Navier-Stokes equation (here without shear viscosity)

_vþ ðv � rrÞv ¼ �rr��rrpk

�
þrrð�rr � vÞ

�
; (20)

which is a generalization of the Euler equation.
In the expanding, homogeneous and isotropic back-

ground one has rr � v ¼ 3HðtÞ. Note that � appears inside
the gradient operator in Eq. (20). Since the background
viscosity is only time dependent [� � �ðtÞ] one often
writes �rrðrr � vÞ=� instead of the last term of (20).
However, at linear order, perturbations of � generally
depend on the position, i.e. �� � ��ðr; tÞ.

Perturbing the pressure P given by (19), we find

�P¼
�
@pk

@�

�
��þ��¼c2s��þ�wv���wv

3H
� _�: (21)

We have used the first-order Eq. (1) in order to eliminate
the term rr � ð�vÞ (present in ��).

The contribution of the kinetic pressure to the perturba-
tive dynamics occurs via the definition of the adiabatic
sound speed c2s ¼ �pk=��. We have also defined the
viscous equation of state parameter

wv ¼ �

�
¼ � 3H�

�
: (22)

A standard result for the perturbations in the Newtonian
theory is the equation for the density contrast � ¼ ��=�:

€�þ 2H _�� 4�G�� ¼ � k2

a2
�P

�
; (23)

which is valid for any effective pressure P. Hence,
combining the above relations we find

€�þ
�
2H � wvk

2

3Ha2

�
_�þ

�
c2sk

2

a2
þ �

wvk
2

a2
� 4�G�

�
� ¼ 0:

(24)

Equation (24) differs from Eq. (36) in [22] because we took
into account perturbations of the bulk viscous coefficient
�� ¼ ��� which generates the term proportional to �.
This is the first new aspect of this paper.
In the following we work with the scale factor a as our

dynamical variable rather than the cosmic time t. Hence,
Eq. (24) reads

a2�00 þ
�
aH0

H
þ 3� wvk

2

3H2a2

�
a�0

þ
�
c2sk

2

H2a2
þ �

wvk
2

H2a2
� 3

2

H2
0�

H2

�
� ¼ 0; (25)

where the prime denotes a derivative with respect to the
scale factor. For the vCDM fluid we identify� ¼ �v0 and
c2s ¼ 0 in the above equation.

B. Viscous fluids in neo-Newtonian cosmology

The goal of this section is to develop the Newtonian
perturbative dynamics including the effects of the pressure
properly. Of course, this is unnecessary for the standard
CDM fluid (PCDM ¼ 0), but it is obvious that for our
viscous fluid Pv � 0. We obtain a neo-Newtonian pertur-
bative dynamics for a general fluid with additional viscous
pressure � as in (12). The perturbed equations (5)–(7)
read, respectively,

_�� 3Hw�þ ð1þ wÞ r � �v
a

þ 3H

�
�P ¼ 0; (26)

_�vþH�v ¼ �r��
a

� r�P
a�ð1þ wÞ ; (27)

r2�� ¼ 4�Ga2��þ 12�Ga2�P: (28)

Note that the above set of equations is valid for any
pressure P with equation of state parameter w ¼ P=�.
Combining Eqs. (26)–(28), we find the following evolution
for the density contrast:
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€�þ
�
2H � 3Hw� _w

1þ w

�
_�

þ
�
�4�G�ð1þ wÞ � 6H2w� 3 _Hw� 3H _w

1þ w

�
�

¼ r2
q�P

a2�
� 3H

_�P

�
þ �P

�

�
12�G�ð1þ wÞ � 9H2w

þ 3H _w

1þ w
� 15H2 � 3 _H

�
: (29)

Again, this equation is valid for any pressure P with
perturbation �P ¼ c2s��þ ��. The quantities on the
right-hand side can be written in cosmological units
and the dynamical variable changed to the scale factor,
resulting in

a2�00 þ
�
3þ aH0

H
� 3w� aw0

1þ w

�
a�0

þ
�
� 3H2

0�

2H2
ð1þ wÞ � 6w� 3H0aw

H
� 3aw0

1þ w

�
�

¼ �k2
~�P

9a2H2�
� a

~�P0

3�
þ

~�P

9�

�
9H2

0�

2H2
ð1þ wÞ

� 9w� 3aw0

ð1þ wÞ � 15� 3aH0

H

�
: (30)

Here, we wrote the pressure in terms of the dimensionless

quantity ~�P ¼ 24�G�P=H2
0 . We now need the proper

form of the perturbation ~�P in Eq. (30). For typical matter
components, e.g., baryons and CDM, the kinetic pressure
is set to be zero (pk ¼ 0) and therefore we adopt c2s ¼ 0.
However, our dark-matter fluid still has a nonvanishing
viscous pressure �, i.e. w ¼ wv. Hence, we have
�P ¼ ��.

Perturbing the bulk-viscous pressure part in (19) we
have

��¼���rr � v��rr ��v¼�3H����r��v
a

; (31)

which combined with Eq. (26) results in

�P

�
¼ ��

�
¼

~�P

9�
¼

~��

9�

¼ wv

3

��a�0 þ 3wv�þ 3�ð1þ wvÞ�
1þ 2wv

�
: (32)

With the above relation we can rewrite Eq. (30) in order to
find a second-order differential equation for the density
contrast.

For scales k2 � a2H2, the case of interest here, the
terms with a factor k2=ða2H2Þ are expected to dominate
the perturbation dynamics.

If we restrict ourselves to terms linear in wv, the
scale-dependent term in (30) becomes

k2

a2H2

~�P

9�
� k2

a2H2

wv

3
½�a�0 þ 3���: (33)

In fact, in this approximation the scale-dependent
neo-Newtonian perturbation terms coincide with those of
the Newtonian equation (25).

C. Viscous fluids in the relativistic cosmology

For the sake of comparison we now derive the relativis-
tic version of the Meszaros equation for the bulk viscous
fluid. Assuming the conformal Newtonian gauge in the
absence of anisotropic stresses

ds2 ¼ að�Þ2½�ð1þ 2	Þd�2 þ ð1� 2	Þ�ijdx
idxj�; (34)

we can calculate the perturbed part of the energy-
momentum balances. These equations read

_� ¼ �ð1þ wÞ
�
�

a
� 3 _	

�
þ 3Hw�� 3H

�P

�
; (35)

_� ¼ �Hð1� 3wÞ�� _w

1þ w
�

þ k2

að1þ wÞ
�P

�
þ k2

a
	; (36)

where � ¼ ikjvj is the divergence of the perturbed fluid

velocity.
In order to find a single equation for the density contrast

we still need the Poisson equation

k2

a2
	þ 3Hð _	þH	Þ ¼ �4�G��: (37)

For subhorizon modes we take the large-k limit of the

above equation and neglect _	 in (35) [23]. Hence, the
relativistic evolution of the density contrast for a general
pressure P is

a2�00 þ
�
3þ aH0

H
� 3w

�
a�0

þ
�
�3H2

0�

2H2
ð1þwÞ � 6wþ 9w2 � 3aH0w

H
� 3w0a

�
�

¼� k2

H2a2
� ~P

9�
� a

� ~P0

3�
þ � ~P

9�

�
�15� 3aH0

H

�
: (38)

The above equation is valid for any pressure P. Identifying
now P ¼ � we have, up to first order,

��

�
¼ �wv�� wv�

3Ha
þ wv	: (39)

With the help of Eq. (35) this expression for ��=�
coincides with (32). It follows that the fractional pressure
perturbations of the neo-Newtonian theory are the same as
those of the relativistic theory. Limiting ourselves to terms
linear in wv, we recover (33) [recall that � � �vðz ¼ 0Þ].
Consequently, in lowest order in wv, the scale-dependent
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contributions of the pressure perturbation coincide for all
three approaches which provides us with very similar
results for the growth of perturbations. However, as (32)
shows [cf. the last term in the brackets on the right-hand
side of the last equation in (32)], both in the neo-
Newtonian and in the relativistic theories there appears a
scale-dependent term of the order �w2

v which is absent in
the Newtonian framework. Since k2=a2H2 � 1, this term
is suggested to contribute even for wv � 1. Therefore one
expects similar results for the neo-Newtonian and relativ-
istic theories which do not necessarily coincide with
Newtonian cosmology, except for � ¼ 0. This behavior is
indeed confirmed by the numerical calculations in the
following section. These calculations also imply that cor-
rections of the order of w2

v in the ‘‘friction’’ term are
quantitatively less important. While the scale-dependent
terms of the neo-Newtonian and relativistic theories coin-
cide, the second-order equations (30) and (38) are different
from each other and different results are expected for
values of the order of wv � 1.

V. RESULTS

With the equations derived in the last section we are now
able to understand the growth of viscous-matter inhomo-
geneities for the Newtonian (N), neo-Newtonian (nN) and
relativistic (R) cases. This analysis represents an extension
of the findings in Ref. [12], where only the full theory has
been taken into account. The growth of viscous dark-
matter halos is sensitive to values of the bulk viscosity as

small as ~� & 10�11. Note that for this range the back-
ground dynamics of the �vCDM is indistinguishable

from the standard �CDM case. Thus, in practice, both
models share the same expansion. Hence, when solving
the equation for the density contrast �, we employ the
same initial conditions; i.e. we use the CAMB code [24]
to set the initial conditions (the amplitude of the power
spectrum) at the matter-radiation equality.
Let us investigate the quantitative dependence of the

numerical solutions of Eqs. (25), (30), and (38) on the

parameters ~� and �, which determine the equation of state
parameter wv.
In Fig. 1 we plot � as a function of the scale factor for

the Newtonian, neo-Newtonian and relativistic evolution
equations. The scales studied here correspond to dwarf
galaxies (k ¼ 1000h Mpc�1), seen in the left panel, and
galaxy clusters (k ¼ 0:2h Mpc�1), seen in the right panel
of this same figure. The horizontal solid line, � ¼ 1,
denotes the limit of validity of the linear theory applied
here. This is the onset of the nonlinear regime. The solid
curve corresponds to the growth of cold dark-matter halos
(P ¼ 0) for a standard �CDM background. The dashed
lines show the evolution of viscous dark-matter halos for

different values of the viscosity parameter ~�. The parame-
ters used in each plot are shown in the labels. In Fig. 1 we
fix � ¼ 0 and we find an excellent agreement between the
Newtonian, neo-Newtonian and relativistic solutions. We
also see that the existence of nonlinear viscous structures at
dwarf galaxy scale demands values of the viscosity of order
~� < 5	 10�11.
Although the same results for the three theories have

been obtained for � ¼ 0, Eqs. (25), (30), and (38), even in
this limit they do not coincide exactly. However, note

that we have used values of ~� & 10�6 and consequently,
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FIG. 1 (color online). Growth of subhorizon density perturbations for the dwarf galaxy scale k ¼ 1000h Mpc�1 (left panel) and the
galaxy cluster scale k ¼ 0:2h Mpc�1 (right panel) assuming � ¼ 0. The solid line corresponds to the standard �CDM model. The
horizontal line indicates the onset of the nonlinear regime (� ¼ 1). The Newtonian, neo-Newtonian and relativistic approaches agree
with each other.
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according to (18), wv0 & 10�6. Since we are probing
values of wv � 1 the differences, which are of order
Oðw;w2Þ, turn out to be negligible.

We perform a similar analysis in Figs. 2 and 3 where we
now fix the values � ¼ �1=2 and 1=4, respectively.

For the upper (bottom) panels of Fig. 2 we show the
results for the dwarf galaxy (galaxy cluster) scale. Note the
agreement between the neo-Newtonian and the relativistic
cases, while the Newtonian description does not show the
same suppression of growth. For both scales, left panels
use the maximum viscosity that still forms nonlinear struc-
tures for the neo-Newtonian and relativistic cases. The
right plots show the maximum viscosity allowed in the

Newtonian framework. However, for the given value of ~�,

nonlinear structures would never form in the relativistic
theory.
In Fig. 3 we do the same analysis for the choice

� ¼ 1=4. It is worth noting that now the Newtonian results
are suppressed in comparison with the neo-Newtonian and
the relativistic cases.
We also study in Fig. 4 the limiting case � ¼ 1=2. Larger

values for � cause an inversion of the evolution of the
density. In this case, the viscous fluid would evolve from a
‘‘dark energy’’ phase in the past to a matter scaling today.
Of course, such early time behavior is prohibited for a fluid
that has to play the role of dark matter in the universe.
These results confirm our previous expectations [cf. the

comments following Eq. (39)]: all three approaches give
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FIG. 2 (color online). As in Fig. 1 but for � ¼ �1=2 and different values for ~�. The neo-Newtonian and relativistic approaches agree
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similar results for � ¼ 0, but for � � 0 only the neo-
Newtonian approach is a good approximation to the full
relativistic theory. This is true for small values of wv, the
only case of interest here. For values of the order ofwv � 1
the neo-Newtonian theory does no longer approximate the
full theory. In the formal limit k ! 0 (which, of course, is
beyond the applicability of the Newtonian theory) and for
wv � 1 we find a similar behavior of cosmological per-
turbations for all three cases again. This confirms the
dominating role of the k2=ðaHÞ2 terms for the dynamics
of fluctuations at the smallest scales.

VI. CONCLUSIONS

Newtonian cosmology is a very useful tool to study both
the linear and the nonlinear evolution of density inhomo-
geneities in the Universe. Cosmological N-body and fluid
simulations are based on Newtonian equations since (i) the
scales studied are well inside the Hubble horizon and
(ii) pressure effects are negligible. Both requirements are
satisfied for the study of the growth of cold dark-matter
halos at the galaxy cluster scale and below. In this work we
address how the evolution of the dark-matter density inho-
mogeneities is affected in the presence of viscous pressure.

Following [12],we assigned a nonequilibriumpressure to
dark matter in the context of the�CDMmodel.We call this
fluid the viscous cold dark matter (vCDM). Here, dark
matter has a nonvanishing negative bulk viscous pressure,
but it is not responsible for driving the accelerated expan-
sion of the Universe. We thus have a�vCDMmodel. Since
Newtonian theory does not incorporate the effects of the
pressure into the dynamics, the neo-Newtonian treatment
seems to be an appropriate approach to study the nonlinear
Newtonian evolution of structure in this model. In order to
validate this claim we compared the evolution of subhor-
izon linear perturbations in the presence of bulk pressure for
the neo-Newtonian approximation and general relativity.

We derived the equations of motion for linear scalar
perturbations for the vCDM fluid on subhorizon scales
for the Newtonian, neo-Newtonian and relativistic
descriptions. We then focused on the formation of dark-
matter halos for the dwarf galaxy and galaxy cluster
scales.
The standard CDM growth is proportional to the scale

factor � / a during the matter dominated epoch. At late
times and small scales, dark energy causes only a small
attenuation of the growth of structure. For the vCDM
scenario, we observe a strong growth suppression even

for tiny values of the viscosity parameter ~�, consistent
with the findings in [12].
The key result of this work is that the dissipative,

small-scale relativistic dynamics is fully described by the
neo-Newtonian theory for all values of the parameters �
and �0. Only in the exceptional case of a constant coeffi-
cient of bulk viscosity (� ¼ 0) do all three approaches
agree and the usual Newtonian method applies. However,
the range of validity of our results is limited only to very
small values of the dark-matter equation of state parame-
ter. Indeed, this is the most interesting case because it is the
situation where structures form. Thus, apart from this
case, Newtonian perturbation theory cannot be used to
provide the correct growth of viscous CDM structures.
Consequently, a neo-Newtonian approach must be used
when issues like the cuspy-core problem or the missing
satellite problem are addressed in numerical fluid simula-
tions with modified CDM properties.
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