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The cosmological Friedmann equation sourced by the trace anomaly of a conformal field theory that is

dual to the five-dimensional Schwarzschild-AdS geometry can be derived from the first law of thermo-

dynamics if the apparent horizon of the boundary spacetime acquires a logarithmically corrected

Bekenstein-Hawking entropy. It is shown that such a correction to the entropy can arise when the

generalized uncertainty principle (GUP) is invoked. The necessary condition for such a thermodynamic

derivation directly relates the GUP parameter to the conformal anomaly. It is consistent with the existence

of a gravitational cutoff at a scale luv *
ffiffiffi
n

p
l4 for a theory containing n light species. The absolute

minimum in position uncertainty can be identified with the scale at which gravity becomes effectively

five dimensional.
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A large number of matter fields are predicted to exist
in unified field theories such as string theory. In the high
energy environment of the early universe, such fields
should behave as a conformal field theory (CFT). One-
loop quantum corrections break the conformal invariance
of the fields and generate a Weyl (trace) anomaly in the
energy-momentum tensor of the CFT. In general, this is
given by

g��hT��i ¼ cIð4Þ � bEð4Þ; (1)

where Ið4Þ ¼ C����C
���� is the square of the Weyl tensor

and Eð4Þ ¼ R2 � 4R��R
�� þ R����R���� is the Gauss-

Bonnet invariant. (For a review, see, e.g., Ref. [1].) The
field content of the CFT determines the numerical values of
the coefficients:

b ¼ 1

360ð4�Þ2 ðn0 þ 11n1=2 þ 62n1Þ

c ¼ 1

120ð4�Þ2 ðn0 þ 6n1=2 þ 12n1Þ;
(2)

where n0, n1=2, and n1 are the number of scalar, Dirac

fermion, and vector fields, respectively.
Conformal field theories have a holographic spacetime

dual in the large n limit if b ¼ c [2]. For example, the AdS/
CFT correspondence implies that N ¼ 4 SUðNÞ super-
Yang-Mills theory is dual to type IIB string theory on
AdS5 � S5 [3–6]. More generally, the properties of the
CFTare determined by the geometry of the dual spacetime.
In particular, the energy-momentum tensor of the CFT
is determined by means of a holographic renormalization
scheme [2,7,8]. For a given solution G to the five-
dimensional Einstein field equations sourced by a negative
cosmological constant,�5, the metric is written in the form
ds25 ¼ ‘2z�2½dz2 þ g��dx

�dx��, where

g�� ¼ gð0Þ�� þ gð2Þ��
z2

‘2
þ gð4Þ��

z4

‘4
þ � � � ; (3)

and gðiÞ�� ¼ gðiÞ��ðxÞ solve the gravitational field equations.
The z coordinate is chosen so that the boundary of G
is represented by z ¼ 0. It can then be shown that the
holographic conformal anomaly is given by [2,7,8]

hgð0Þ��TðholoÞ
�� i ¼ ‘3

128�l35
ðIð4Þ � Eð4ÞÞ; (4)

where ‘ is the curvature radius of AdS5 and l5 is the
five-dimensional Planck length. Equation (4) corresponds
to the standard, four-dimensional, field-theoretic result (1)
with b ¼ c ¼ ‘3=ð128�l35Þ.
The cosmological consequences of such a gauge theory/

gravity duality can be investigated by parametrizing the

line-element (3) so that the boundary metric gð0Þ�� takes the
spatially flat Friedmann-Robertson-Walker (FRW) form.
This metric is made dynamical when appropriate mixed
boundary conditions are imposed and a boundary Einstein
action is introduced in the holographic renormalization [9].
The effective four-dimensional field equations are then

given by R�� � 1
2Rg

ð0Þ
�� ¼ 8�l24hTðholoÞ

�� i, where l4 denotes

the four-dimensional Planck length. Recently, it was shown
that when the gravity dual is the Schwarzschild-AdS5
geometry, the (00) component of the Einstein equations
takes the form [10]

H2 � 16�bl24H
4 ¼ 8�l24

3
�; (5)

where � ¼ C=a4 may be interpreted as the energy density
of a conformally invariant classical fluid, the constant C is
determined by the mass of the bulk black hole, H � _a=a,
and aðtÞ denotes the scale factor.
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Equation (5) can also be derived directly from the trace
anomaly (1) for a generic CFT (with b � c) by integrating
the contracted Bianchi identity [11]. In this case, the
parameter C arises as the arbitrary integration constant.

The purpose of the present paper is to show that the
holographic/conformal-anomaly Friedmann equation (5)
admits an alternative derivation in terms of spacetime
thermodynamics and the generalized uncertainty principle
of quantum gravity. It has long been appreciated that a deep
connection exists between gravitation, quantum theory,
and statistical physics [12–17]. One of the central themes
underlying this connection is that a spacetime horizon
should be associated with an entropy that is directly pro-
portional to the horizon area [12,17]. When such a propor-
tionality exists for a local Rindler causal horizon, the
Einstein field equations can be derived from the funda-
mental Clausius relation [18]. More specifically, the stan-
dard Friedmann equations for a spatially isotropic universe
follow directly from the first law of thermodynamics if
the entropy and area of the apparent horizon satisfy the
Bekenstein-Hawking formula, S ¼ A=ð4l24Þ [19].

Here we consider the effect of the generalized uncer-
tainty principle (GUP) on the apparent horizon entropy.
The GUP is formulated as the condition

�x�p * 1þ �2l24ð�pÞ2; (6)

where � is a (model-dependent) dimensionless constant.
Such a modification to the standard Heisenberg relation
has been derived in a number of different approaches to
quantum gravity, including noncommutative quantum
mechanics [20] and string theory [21]. It also arises
from Gedanken experiments that are independent of the
underlying theory [22]. (For a review, see, e.g., Ref. [23].)
We find that the GUP induces a logarithmic correction to
the entropy that has precisely the form required for a
thermodynamic derivation of the Friedmann equation (5).

To proceed, we adapt a line of reasoning developed
within the context of black hole spacetimes [24]. The
spatially flat FRW line element can be written in the
form ds2 ¼ habdx

adxb þ ~r2d�2
2, where the two-metric

hab ¼ diagð�1; a2Þ and ~r � raðtÞ. The apparent horizon
of an observer at r ¼ 0 is the constant-time hypersurface
where orthogonal ingoing, future-directed light rays
have zero expansion. It corresponds to a sphere of radius
~rA ¼ 1=H and area A ¼ 4�~r2A, where ~rA is defined by the
condition hab~r;a~r;b ¼ 0.

In the following, we focus on the regime of cosmic
dynamics where the universe undergoes a phase of quasi-
exponential expansion, such that _~rA ¼ � _H=H2 � 1. This
implies that over the incremental time intervals considered,
the apparent horizon radius can be regarded as having a
fixed value. (Such inflationary expansion can be realized
by introducing an effective four-dimensional cosmological
constant that is generated by a slowly rolling, self-
interacting scalar field. We do not exhibit such a term in
the Friedmann equations for notational simplicity.)

Suppose the apparent horizon absorbs (or emits) a mass-
less quantum particle of energy, �E. This is determined by
the corresponding uncertainty in the particle’s momentum,
�E ’ �p [25]. The effective mass energy within the hori-
zon will then change by an amount dM ’ �p. The total
mass energy within the apparent horizon is given by
M ¼ 4�~r3A�=3 and this can be expressed in the form

M ¼ ~rA=ð2l24Þ after substitution of the Friedmann equa-
tion, H2 ¼ 8�l24�=3. (More generally, the horizon mass is
the Misner-Sharp mass M � ~r½1� hab~r;a~r;b�=ð2l24Þ eval-
uated at the radius ~r ¼ ~rA [26].) The corresponding change
in the horizon area as a result of the absorption is therefore

�A ’ 16�l24~rA�p: (7)

The particle will have a Compton wavelength and
associated uncertainty in position, �x. A natural length
scale for this uncertainty is the inverse of the surface
gravity at the apparent horizon. This is given by j�j�1 ¼
~rA½1� _~rA=2��1 ’ ~rA. Hence, the position uncertainty can
be estimated as

�x ’ ~rA: (8)

In this case, it follows that the change in horizon area is
�A ’ ð16�l24Þ�x�p. The standard form of the Heisenberg
uncertainty principle, �x�p * 1, would then impose a
lower bound of �A * 16�l24. However, it is straightfor-
ward to show that the GUP results in a lower bound on the
momentum uncertainty (for a given value of �x):

�p *
�x

2�2l24

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2l24

ð�xÞ2
s 3

5: (9)

We then deduce that

�A *
2A

�2

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16��2l24

A

s 3
5 (10)

after noting that the area of the apparent horizon is
A ’ 4�ð�xÞ2.
If we further assume that the energy scales of interest

are sufficiently small, l24=A ’ H2l24 � 1, to allow for a con-
sistent Taylor expansion of the square root, the bound (10)
approximates at leading order to

�A * 16�l24

�
1þ 4��2l24

A
þ � � �

�
: (11)

This enables us to express the minimum change in the area of
the apparent horizon as

ð�AÞmin ’ �l24

�
1þ 4��2l24

A
þ � � �

�
; (12)

where � ’ Oð16�Þ quantifies any further uncertainties that
may arise [24].
The absorption (or emission) of the particle by the

horizon results in an increase in the entropy, �S.
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Information theory implies that the minimal increase
should be one ‘‘bit of information,’’ ð�SÞmin ’ b, where
b 2 <þ and is independent of the area. (For a review, see,
e.g., Ref. [27].) It follows, therefore, that

ð�SÞmin

ð�AÞmin

’ dS

dA
’ b

�l24

�
1� 4��2l24

A
þ � � �

�
(13)

and integration of Eq. (13) then yields

S ¼ A

4l24
� ��2 ln

�
A

4l24

�
þ � � � ; (14)

where we have normalized b=� ¼ 1=4 to reproduce the
Bekenstein-Hawking formula in the limit �2 ! 0 [24]. In
the context of the present discussion, this is equivalent to
requiring that the standard, classical Friedmann equation is
recovered in the low-energy limit.

To summarize thus far, the effect of the generalized
uncertainty principle on the entropy of the apparent
horizon is to induce a leading-order logarithmic correction
to the Bekenstein-Hawking formula.

We now apply the first law of thermodynamics, dE ¼
�TdS, to the apparent horizon. For a universe sourced by a
perfect fluid with energy density, �, and pressure, P, the
amount of energy, dE, crossing the apparent horizon in an
infinitesimal time interval, dt, is evaluated by integrating
the energy-momentum flux through the horizon and con-
tracting with the horizon generator, ka ¼ ð1;�HrÞ. It can
then be shown that

dE ¼ �ATabk
akbdt ¼ 4�

3H3
d�; (15)

where it has been assumed implicitly that the fluid satisfies
the conservation equation, _� ¼ �3Hð�þ PÞ.

If the apparent horizon has an entropy, S, and associated
Hawking temperature, T ¼ H=ð2�Þ [28], it follows that the
first law of thermodynamics can be expressed in the form

dS ¼ � 8�2

3

d�

H4
: (16)

After substitution of the logarithmically corrected
Bekenstein-Hawking entropy (14), where A ¼ 4�=H2,
Eq. (16) may be integrated to yield [29,30]

H2 � �2l24
2

H4 ¼ 8�l24
3

�: (17)

The effect of the logarithmic correction to the entropy
is to modify the Friedmann equation from its standard,
relativistic form. A direct correspondence between the
holographic/trace-anomaly Friedmann equation (5) and
the thermodynamic Friedmann equation (17) is established
if the GUP parameter, �, and the anomaly coefficient, b,
are related such that

�2 ¼ 32�b ¼ 1

4

‘3

l35
: (18)

The first equality in the correspondence (18) holds
for a generic CFT, irrespective of any holographic consid-
erations, whereas the second arises when there exists a
spacetime dual to the CFT (i.e., when b ¼ c). In a sense,
Eq. (18) may be regarded as a triality between a thermo-
dynamic quantity, �, a field-theoretic parameter, b, and the
higher-dimensional gravitational coupling, l5.
A question that naturally arises is whether such a corre-

spondence is more than an intriguingmathematical analogy.
It is known that logarithmic corrections to the entropy-area
law generically arise for black hole spacetimes when quan-
tum effects are taken into account. Indeed, one-loop effects
near the event horizon of a Schwarzschild black hole lead
to a similar proportionality between the logarithmic coeffi-
cient and the conformal anomaly [31]. This suggests that
in both the black hole and cosmological environments, the
conformal anomaly—which is geometric in nature and
quantummechanical in origin—maybe interpreted in terms
of a thermodynamic quantity.
We may gain further insight by noting that an immediate

consequence of the GUP is that the second term in (6)
results in an absolute minimum in the uncertainty in
position for any level of momentum uncertainty:

ð�xÞmin * 2j�jl4: (19)

Moreover, a generic feature of a theory containing n
massless fields coupled to gravity is the existence of a
fundamental length scale, luv, below which low-energy
perturbation theory is expected to break down. Since the
GUP originates from quantum gravity considerations, it is
natural to associate the minimum length scale with this
ultraviolet (UV) cutoff. A conservative estimate is that the
cutoff occurs at, or on a scale slightly above, ð�xÞmin, i.e.,
luv * ð�xÞmin * 2j�jl4. In this case, Eq. (18) implies that

b &
1

128�

l2uv
l24

: (20)

On the other hand, the number of light species in a typical
grand unified theory is roughly the number of gauge bosons.
It then follows from Eq. (2) that b * n=ð100�2Þ and sub-
stituting this relation into Eq. (20) leads to the condition

luv *
ffiffiffi
n

p
l4: (21)

This bound for the cutoff is in agreement with independent
perturbative [32] and nonperturbative [33,34] analyses.
Equation (18) also provides a way of quantifying the

model-dependent GUP parameter (and consequently the
four-dimensional UV cutoff) directly in terms of five-
dimensional length scales. This is interesting from the
holographic perspective, since the strong coupling scale
in four dimensions is determined by the characteristic scale
of the higher-dimensional gravity [34,35]. For AdS5, one
would therefore expect that Eq. (18) should be consistent
with the condition luv ’ ‘. To verify this, we substitute
luv ’ 2j�jl4 into Eq. (18) to deduce that
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l2uv
2

¼ ‘3

l35
: (22)

The condition luv ’ ‘ then simplifies this expression to a
relation between the four- and five-dimensional Planck
scales, ‘ ’ l35=l

2
4. This is precisely the dependence that

arises from a direct Kaluza-Klein reduction from five to
four dimensions for a horospherical brane embedded in
AdS5 [7,36].

The scale ‘ also represents the scale below which the
curvature becomes negligible and gravity becomes effec-
tively five dimensional. In this context, the correspondence
(18) implies that the minimum measurable length can
be identified with the scale at which four-dimensional
physics breaks down. A similar conclusion was arrived at
in a different context by a direct investigation of quantum
systems with one extra dimension compactified on a
circle [37].

Before concluding, we should discuss the validity of
the assumptions we have made. First, the GUP we have
invoked in Eq. (6) is heuristic, in the sense that it has not
been derived from first principles. Thus, although it ulti-
mately leads to the trace-anomaly Friedmann equation, it is
probable that the thermodynamic approach we have devel-
oped does not incorporate all the corrections that are
expected to arise to the gravitational action. In particular,
one would expect graviton loops to generate higher-order
corrections that also lead to further H4-correction terms in
the Friedmann equation. Thus, our derivation is necessarily
incomplete.

Another key assumption we made was that the apparent
horizon should vary sufficiently slowly with respect to
cosmic time, such that its area remains effectively constant
during the time interval it takes for a quantum particle to be
emitted. This is equivalent to assuming a quasi-de Sitter

(inflationary) expansion and can be realized by a slowly
rolling, self-interacting scalar field (as we implicitly as-
sumed). Such a field can be interpreted as the perfect fluid
responsible for the energy-momentum flux through the
horizon, Eq. (15). (A self-interacting scalar field minimally
coupled to Einstein gravity is dynamically equivalent to a
perfect fluid in a spatially isotropic universe.) On the other
hand, a posteriori such an assumption is not necessary,
since the thermodynamic Friedmann equation (17) admits
solutions of the form

H2 ¼ 1

�2l24

2
41þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�l44�

2

3
�

s 3
5; (23)

where � ¼ �1. The � ¼ þ1 root is essentially the
Starobinsky [38] model of inflation driven by an R2 cor-
rection to the Einstein-Hilbert action, where R is the Ricci
curvature scalar [39]. In this case, one may regard the fluid
crossing the apparent horizon as the conformal (massless)
matter fields.
In conclusion, we have considered the effect of the

generalized uncertainty principle on the entropy of the
apparent horizon and found that the trace-anomaly
Friedmann equation can be derived from the first law of
thermodynamics when Eq. (18) is satisfied. For a generic
CFT, such a correspondence implies that perturbative the-
ory should break down at a scale luv *

ffiffiffi
n

p
l4 in a theory

containing OðnÞ light species. For a CFT with a holo-
graphic dual, it identifies the minimum measurable length
in four dimensions as the scale where physics becomes
effectively five dimensional. It is also worth remarking that
trace-anomaly inflation provides an excellent fit to the
Planck satellite observations of the cosmic microwave
background anisotropies [40].
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