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Models of inflation in a gravitational background with an anisotropic space-time scaling are studied.

The background is a higher-dimensional Lifshitz throat with the anisotropy scaling z � 1. After the

dimensional reduction, the four-dimensional general covariance is explicitly broken to a three-

dimensional spatial diffeomorphism. As a result the cosmological perturbation theory in this setup

with less symmetries have to be formulated. We present the consistent cosmological perturbation

theory for this setup. We find that the effective four-dimensional gravitational wave perturbations

propagate with a different speed than the higher dimensional gravitational excitations. Depending on

the model parameters, for an observer inside the throat, the four-dimensional gravitational wave

propagation can be superluminal. We also find that the Bardeen potential and the Newtonian potential

are different. This can have interesting observational consequences for lensing and cosmic microwave

background fluctuations. Furthermore, we show that at the linearized level the inflaton field excitations

vanish.
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I. INTRODUCTION

Inflation has emerged as the leading theory for early
universe and structure formation [1] which is strongly
supported by recent Planck observations [2,3]. Simple
models of inflation predict almost scale-invariant, almost
Gaussian, and almost adiabatic perturbations inn cosmic
microwave background which are very consistent with
cosmological observations. However, despite these obser-
vational successes, the inflationary paradigm is at the
phenomenological level and there is no deep theoretical
understanding of the mechanism behind inflation and the
nature of the inflaton field.

There have been many works to embed inflation in the
context of high energy physics such as string theory; for a
review see [4–9]. In particular, brane inflation is an inter-
esting model of inflation in string theory [10–13]. In these
scenarios a mobile brane is moving inside the string
compactification in the presence of background branes,
antibranes, and fluxes. In some of these scenarios, the
interaction between the mobile branes and the background
antibranes is the driving source for inflation [10–19].
Inflation in this picture ends when the brane and antibrane
annihilate each other resulting in copious productions of
cosmic (super)strings which can be detected observatio-
nally [20–24]. Dirac-Born-Infeld (DBI) inflation [25,26] is
another realization of inflation from string theory in which

themobile branemoves ultrarelativistically inside awarped
throat [27–33]. A nontrivial predictions of DBI inflation is
generating large equilateral type non-Gaussianities [34–36]
which can be detected observationally [37].
In [38] an extension of DBI inflation in a Lifshitz throat

is studied. The background is a five-dimensional theory in
which the time coordinate and the space coordinates
scale differently under extra dimension throat coordinate r.
In [38] the inflation at the homogenous and isotropic
Friedmann-Robertson-Walker (FRW)background is studied.
Furthermore, it is shown that the four-dimensional general
covariance is explicitly broken to a three-dimensional spatial
diffeomorphism. Therefore, the cosmological perturbation
theory in this setup with less symmetries has to be revisited,
which is the aim of this work.
The rest of the paper is organized as follows. In Sec. II

we present our setup and in Sec. III the Einstein equations
are presented for this background. In Sec. IV the tensor
excitations are studied followed by the scalar excitations in
Sec. V. In Sec. VI we obtain the curvature perturbation and
the gravitational anisotropy power spectrum followed by
discussion in Sec. VII. Some technical issues are relegated
to appendices.

II. THE SETUP

Here we present our setup and briefly review the results
in [38].
Our background consists of a Lifshitz throat in a string

theory compactification. The Lifshitz geometry has attracted
considerable attention recently in the context of nonrelativ-
istic AdS/CFT correspondence where it may provide a
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gravity description for a Lifshitz fixed point. We note that
Lifshitz fixed points appear when we are dealing with a
physical system at critical point with anisotropic scale in-
variance in which the space and time scale differently [39]

t ! �zt; xi ! �xi; (1)

in which t and xi, respectively, are the time and space
coordinates. The corresponding critical points are known
as Lifshitz fixed points.

It is natural to look for gravity duals of Lifshitz fixed
points in the light of AdS/CFT correspondence [40]. The
gravity descriptions of Lifshitz fixed points have been
studied in [41] in which the metric invariant under the
scaling (1) is obtained to be

ds2 ¼ �
�
r

L

�
2z
dt2 þ

�
r

L

�
2
dx2 þ

�
L

r

�
2
dr2; (2)

where L is the curvature radius of the ‘‘Lifshitz throat’’ and
r is the extra dimension radial coordinate. One can easily
check that the metric (2) is invariant under the scaling (1)
and subject to r ! ��1r.

It should be stressed that the ansatz (2) may not be a
trivial solution of the five-dimensional Einstein equation.
In principle there are other fields, such as a massive gauge
field, which should be added into the action in order to
support the Lifshitz geometry (2). The corresponding ge-
ometry may also be obtained from a pure gravitational
theory by adding higher derivative terms to the Einstein-
Hilbert action [42]. Also, unlike the case of the AdS throat
which may be easily constructed in a string theory setup
using brane construction, it is not clear how to construct a
Lifshitz throat in string theory. We note, however, that a
string theory realization of Lifshitz background has been
constructed in [43] in the context of strange metallic
holography. For more studies see also [44–47]. As a result
one cannot consider our inflationary setup as a top-down
approach. Here we shall follow the phenomenological
approach and assume that in principle our setup with a
Lifshitz throat can be constructed in string theory.

In our picture, the Lifshitz throat is extended in a local-
ized region of string compactification and it is smoothly
glued to the bulk of Calabi-Yau (CY) compactification
which is Lorentz invariant as usual. The picture is similar
to warped compactifications considered in many phenome-
nological models such as in [14]. The difference is that the
throat, now instead of being AdS, is a Lifshitz background
with the anisotropic scaling z > 1. In this view, the inflaton
field is a mobile brane which moves ultrarelativistically
inside the Lifshitz throat. As usual, one may imagine that
inflation ends when the mobile brane is annihilated with a
background antibrane. The Lifshitz throat is extended in
the region r0 < r < R in which r0 indicates the IR cutoff of
the throat while R is the UV cutoff of the throat. It is
assumed that at r ¼ R, the Lifshitz throat is smoothly

glued to the bulk of CY compactification, which is
Lorentz invariant as in conventional models.
Having presented our setup, we promote the Lifshitz

metric (2) into a cosmological background. The back-
ground FRW metric is given by

ds2 ¼ �
�
r

L

�
2z
dt2 þ aðtÞ2

�
r

L

�
2
dxidxj þ

�
L

r

�
2
dr2: (3)

After compactification over the internal volume V , one
obtains the standard 4D FRW metric [38]

ds2 ¼ �dt2 þ aðtÞ2dx2: (4)

In our analysis below, we start from the 5D metric ansatz
such as in Eq. (3) with its perturbations included later on
and obtain the corresponding Einstein equations.
As in standard DBI inflation, the D3-brane action is

given by DBI and Chern-Simons terms [38]1

S ¼ �T3

Z
d4x

�
rb
L

�
3þz

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
L

rb

�
2þ2z

_r2b

s
� 1

1
A; (5)

in which T3 is the D3-brane tension and rbðtÞ is the position
of brane inside the Lifshitz throat. The canonically nor-
malized field is given by

_� � ffiffiffiffiffi
T3

p
_rb

�
rb
L

�1�z
2
: (6)

After adding the potential term Vð�Þ the matter action is
given by [38]

S ¼ �
Z

d4xaðtÞ3
�
f�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f _�2

q
� 1

�
þ Vð�Þ

�
; (7)

where

fð�Þ ¼

8>>><
>>>:
T�1
3

�
�z

�

�
�

if z � 3

T�1
3 e

�6�
�3 if z ¼ 3

(8)

with � � 2ð3þzÞ
3�z . Moreover the parameters �z and �3 are

defined via

�3 �
ffiffiffiffiffi
T3

p
L; �z � 2�3

3� z
¼ 2

ffiffiffiffiffi
T3

p
3� z

L ðz � 3Þ: (9)

The background expansion equations are obtained to be

3M2
PH

2 ¼ �; _�þ 3Hð�þ pÞ ¼ 0; (10)

in which H ¼ _a
a is the Hubble expansion rate, � and p,

respectively, are the energy density and the pressure

� ¼ f�1ð�� 1Þ þ V; p ¼ f�1ð1� ��1Þ � V; (11)

1We note that in the absence of the brane construction of the
Lifshitz geometry, the Chern-Simons contribution to the follow-
ing action should be considered as a phenomenological insight.
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and � is the Lorentz factor defined by

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f _�2

q : (12)

The effective four-dimensional Planck mass, MP, is given
by [38]

M2
P � ��2

5

Z
V
dr

�
r

L

�
2�z

; (13)

in which �5 is the 5D gravitational coupling and V is the
volume of the compactification. One can obtain sufficient
e-foldings of inflation with appropriate form of Vð�Þ
subject to slow-roll conditions [38].

Also from the brane action (7) one can obtain the
Klein-Gordon (KG) equation for the inflaton field

€�þ 3H��2 _�þ ��3

�
V 0 þ f0

2f2
ð1� �Þ2ð�þ 2Þ

�
¼ 0;

(14)

where the prime denotes the derivative with respect to
scalar field �. One can also check that the KG equation
is not independent of Einstein equations (10).

Following [28], one can cast the background equa-
tions (14) and (10) into Hamilton-Jacobi forms which are
more suitable for analytical purposes. Since � is mono-
tonically decreasing as time goes by, we can use � as the
clock and express the physical parameters in terms of �.
This yields

3M2
PHð�Þ2 ¼ Vð�Þ þ f�1ð�ð�Þ � 1Þ;

�ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M4

Pfð�ÞH0ð�Þ2
q

;

_�ð�Þ ¼ �2M2
PH

0

�ð�Þ ;

(15)

whereH0 ¼ @H=@�. The system of Eq. (15) can be solved
in the speed limit in which � � 1, for the details see [38].

In our analysis so far, we have not specified the form of
the potential V driving inflation. As argued in [38], phe-
nomenologically we may assume VðrÞ � rn with an arbi-
trary value of parameter n. This form of potential may
originate from the backreactions of the mobile branes with
the background fluxes and the volume modulus. Note that
the case z ¼ 1, n ¼ 2 corresponds to the conventional
model of DBI inflation with the potential m2�2=2 which
is vastly studied in the literature. In Sec. VI we consider the
cosmological predictions of our model for different values
of z and n.

III. 4D EINSTEIN EQUATIONS

Having specified our background inflationary setup, we
are ready to consider cosmological perturbation in this
setup. However, to study the perturbation equations we
need the general form of the Einstein and Klein-Gordon

equations in this background. Since our background is not
4D Lorentz-invariant, we have to obtain these equations
independently of the known results in standard cosmology
literature.
Here we obtain the general effective 4D Einstein

equations. The full five-dimensional action includes both
the gravity and matter sectors

S ¼ SG þ SM: (16)

The gravitational part is a trivial Einstein-Hilbert action
in 5D.

SG ¼ 1

2�2
5

Z
d5x

ffiffiffiffiffiffiffiffi�G
p ð5ÞR; (17)

where ��1
5 is the 5D gravitational mass scale and ð5ÞR is the

5D Einstein-Hilbert term. As for the matter sector, we will
not be specific here. As an example, the Lifshitz geometry
can be obtained from massive gauge fields [48]. All that is
required is that the matter sector supports the Lifshitz
geometry in 5D as given in Eq. (2).
Motivated by the Fefferman-Graham-like coordinates

for the Lifshitz geometry [48], our ansatz for the metric
perturbations, consistent with the Lifshitz symmetry,
is [38]

ds2 ¼ g00

�
r

L

�
2z
dt2 þ gij

�
r

L

�
2
dxidxj

þ 2g0i

�
r

L

�
zþ1

dtdxi þ
�
L

r

�
2
dr2; (18)

where g�� are functions of x�. Note that in this notation

GMN is the 5D metric, while g�� is the 4D metric. The

capital lettersM;N; . . . represent the 5D coordinate indices
while the greek symbols �; 	; . . . indicate the 4D coordi-
nate indices. For a general metric ansatz with an arbitrary
scaling for dtdxi part of the metric see Appendix B.
One way to obtain the 4D fields equations is to perform

the dimensional reduction and calculate the effective
action for gravity. This program was performed in [38] in
the gauge where g0i ¼ 0. However, as we shall see later on,
g0i are independent dynamical variables and cannot be
gauged away. This is because the Lifshitz solution (2) is
not invariant under boost, and it is invariant only under
the three-dimensional rotation. That is, the symmetry
transformation of our background (18) is

t ! ~tðtÞ; x ! ~xðxÞ: (19)

As a result the action obtained in [38], although correct for
terms containing g00 and gij, should be supplemented with

the additional terms containing g0i terms. However, as we
shall see in the next sections, the condition g0i ¼ 0 is the
only consistent solution in our setup and therefore the
results in [38] for dimensionally reduced gravitational
action are valid in the end.
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For nonzero g0i it is a difficult task to calculate the
gravitational action to second order in terms of g��.

Instead we use the variational method which is more
straightforward. In the variational method, we vary the
5D gravitational action in terms of 4D metric g�� as given

in Eq. (18)


GMN ¼ 
GMN


g��

g��: (20)

For this purpose, the following formulas are helpful

ffiffiffiffiffiffiffiffi�G
p ¼

�
r

L

�
zþ2 ffiffiffiffiffiffiffi�g

p
(21)

and

G00 ¼
�
r

L

��2z
g00;

G0i ¼
�
r

L

��ð1þzÞ
g0i;

Gij ¼
�
r

L

��2
gij:

(22)

Equipped with these formulas and varying the action in
terms of g��, one can check that the 4D Einstein equations
are

��2
5

Z
V
dr

�
r

L

�ðzþ2Þ
G0

0 ¼ T0
0 ;

��2
5

Z
V
dr

�
r

L

�
zþ2

Gi
j ¼ Ti

j;

��2
5

Z
V
dr

�
r

L

�ð2zþ1Þ
G0

i ¼ T0
i :

(23)

Here G�
	 is the 5D Einstein tensor and the integration is

over the compactification volume V . Furthermore, T�	 is

the symmetric energy-momentum tensor defined via the
4D metric g��


SM ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p


g��T��: (24)

Note the different scalings with z in Eq. (23) which multi-
ply the components of G�

	 and will have crucial implica-
tions in our analysis below. The set of equations in Eq. (23)
is our starting point to calculate the perturbation analysis.
For this purpose we should specify the matter action to
obtain T�	. We also note that there is the rr component of

Einstein equation in 5D but since we do not vary the rr
component of metric, we do not obtain additional con-
straint from the rr component of Einstein equation. A
procedure similar to this logic, yielding Eq. (23), was
also employed in [49] in the context of Randall-Sundrum
cosmology.

As mentioned above, the brane action is not the complete
part of matter sector action. There are other background
fields to support the Lifshitz solution. In our treatment

below, we do not perturb these background 5D fields. We
assume that these background fields contribute to an effec-
tive four-dimensional cosmological constant term which
vanishes at the background level. As we shall see, this
treatment of 5D matter fields reproduces the standard results
in the limit where z ¼ 1 and is expected to be the case
when z > 1.
The action for the mobile brane moving in geometry

(18) is [38]

SðbÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
LðbÞ; (25)

in which

LðbÞ ¼ �f�1½ð1þ fg00 _�2 þ hgij@i�@j�

þ 2lg0i _�@i�Þ1=2 � 1� � V (26)

with f defined as in Eq. (8), ‘ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð�Þhð�Þp

and

hð�Þ ¼
8><
>:
T�1
3

�
�z

�

�
�0

if z � 3

T�1
3 e

�2�
�3 if z ¼ 3

(27)

with

�0 � 2ð5� zÞ
3� z

: (28)

Varying the brane action in Eq. (26) one can read the
energy momentum tensor

T�� ¼ g��Lþ �½ _�2
0
�


0
� þ 
i

�

j
�Fð�Þ2@i�@j�

þ ð
0
�


i
� þ 
0

�

i
�ÞFð�Þ _�@i�� (29)

in which

Fð�Þ �
ffiffiffiffiffiffiffiffiffiffiffi
fð�Þ
hð�Þ

s
¼

�
rb
L

�
z�1

(30)

and

�� ð1þfg00 _�2þhgij@i�@j�þ 2lg0i _�@i�Þ�1=2: (31)

Note that in the isotropic limit with z ¼ 1, we have F ¼ 1.
As we shall see below, the fact that F � 1 plays an im-
portant role in our analysis. Also the function � is defined
such that it reduces to the Lorentz factor � in Eq. (12) at the
background FRW. One can easily check that the Einstein
equations (23) with the energy momentum tensor given in
Eq. (29) reproduce the expected background FRW equa-
tions (10) with MP given in Eq. (13).
Having obtained the general Einstein equation in

Eqs. (23) with T�� given in Eq. (29), we study the scalar

and tensor perturbations in this inflationary background.
As we shall see, the scalar perturbations analysis is non-
trivial. So we start with the tensor perturbation analysis
which proved to be simpler.
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IV. TENSOR PERTURBATIONS

Here we consider the tensor perturbations where the
metric excitations are given by

ds2 ¼ �
�
r

L

�
2z
dt2 þ

�
r

L

�
2ð
ij þ hijÞdxidxj þ

�
L

r

�
2
dr2;

(32)

where we impose the transverse and traceless gauges on hij

hii ¼ @ih
i
j ¼ 0: (33)

Here the spatial indices are raised and lowered by 
ij.

One can specifically check that 
T
�
	 ¼ 
G0

0 ¼ 
G0
i ¼ 0

and


Gi
j ¼

1

2

�
r

L

��2zð €hij þ 3H _hijÞ � 1

2
a�2

�
r

L

��2r2hij; (34)

in which r2 ¼ @i@i. Plugging this into (23) yields

€hij þ 3H _hij � ð1þ �0Þa�2r2hij ¼ 0; (35)

where the dimensionless parameter �0 is defined via (note

that in [38], �0 is denoted by ��)

�0 � �1þ
R
V drðrLÞzR

V drðrLÞ2�z
: (36)

Note that in the limit where z ¼ 1, we see that �0 ¼ 0, so
�0 may be thought to be a measure of 4D Lorentz
violation. As we shall see in the following analysis, �0 is
a key parameter of our model.

Defining ĥij � ahij and going to the Fourier space we

find

ĥ00ij þ
�
c2gk

2 � 2

�2

�
ĥij ¼ 0; (37)

where the prime denotes derivative with respect to the
conformal time d� ¼ dt=aðtÞ and the gravitational wave
(GW) speed cg is given by

c2g � 1þ �0: (38)

Equation (38) is very interesting. It indicates that the GW
propagates with a nontrivial speed cg. In the limit where

z ¼ 1, we have the usual result that cg ¼ 1. However, with

arbitrary value z, cg can be very different than unity. Note

that in our convention, we have set the gravitational wave
speed equal to unity in 5D. Therefore, Eq. (38) indicates
that in 4D the gravitational waves propagate with a differ-
ent speed than in 5D. Depending on the value of z and the
size of the Lifshitz throat, cg can be even bigger than unity.

The value of �0 is calculated in [38] which results in

c2g ’

8>>>>>>>><
>>>>>>>>:

3�z
zþ1

�
R
L

�
2ðz�1Þ

; z < 3

z�3
zþ1

�
R
L

�
2ðz�1Þ�

r0
R

�
z�3

; z > 3

ðRLÞ4
4ðln R

r0
Þ ; z ¼ 3:

(39)

Here R is the UV cutoff of the Lifshitz throat where it is
smoothly glued to the bulk of CY compactification and r0
is the IR cut off of the throat which plays the role of the IR
TeV brane in the Randall-Sundrum picture [50]. We also
expect that R * L while R=r0 to be exponentially large in
the light of string flux compactification [51].
As mentioned above, we have set the speed of light and

GW propagation in five dimensions to unity. So if cg is

bigger than unity, it indicates the superluminal GW propa-
gation compared to a 5D observer. Now, we have to see
what the 4D speed of light is. For this purpose, consider a
4D observer located at an arbitrary fixed position r ¼ rO in
the Lifshitz throat. Finding the speed of light for this
observer from the condition ds2 ¼ 0 yields

c2� ¼
�
rO
L

�
2ðz�1Þ ¼ Fð�OÞ2 (40)

in whichFð�Þ is defined in Eq. (30). Comparing the 4DGW
speed cg given in Eq. (39) and the 4D photon speed c� in

Eq. (40) we see that if rO is sufficiently near the IR end of
the throat then cg > c� and an observer located at r ¼ rO
experiences a superluminal GW propagation in the four-
dimensional sense. Similar ideas were proposed in the con-
text of Randall-Sundrum brane world cosmology [52].

V. SCALAR PERTURBATIONS

In this section we consider the scalar metric perturba-
tions following the conventions of [53]. In terms of g��
given in Eq. (18) the scalar perturbations are denoted by

g00 ¼ �ð1þ 2AÞ;
g0i ¼ aðtÞ@iB;
gij ¼ aðtÞ2½ð1� 2c Þ
ij þ 2@i@jE�:

(41)

In total we have four scalar metric degrees of freedom, A,
B, c , and E. However, the theory enjoys only the three-
dimensional spacial diffeomorphism as given in Eq. (19).
One can easily check that all four variables A, B, c , and _E
are gauge invariant under the three-dimensional spatial
diffeomorphism in Eq. (19). On top of this, the inflaton
field excitation 
� is also gauge invariant under Eq. (19).
As a result, we should expect to have five independent
equations for the five physical perturbations A, B, c , E,
and 
�. This is in contrast to the usual situation in standard
cosmological perturbation theory in which, due to gauge
freedom, one ends up with two scalar metric degrees of
freedom plus 
�.
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The components of perturbed 5D Einstein tensor, 
GM
N ,

are given in Appendix A. The ðijÞi � j, ð0iÞ, ðiiÞ, and (00)
components of perturbed Einstein equations in Eq. (23) are

ð1þ �0Þðc � AÞ þH�þ _�þ að _Bþ 2HBÞð�1 � 1Þ ¼ 0

(42)

ð1� �1Þð _c þHAÞ þ �2aB� Fð�Þ
2M2

P

� _�
� ¼ 0 (43)

€c þHð3 _c þ _AÞþð3H2þ2 _HÞA� 1

2M2
P

�
� _�
 _��� _�2A

þ
�

f0

2�f2
ð1��Þ2�V;�

�

�

�
¼ 0 (44)

3Hð _c þHAÞ �
~r2

a2
½ð1þ�0Þc þHa2 _E� aHð1��1ÞB�

� 1

2M2
P

�
�3 _�ð _�A�
 _�Þ þ

�
� f0

2f2
ð1��Þ2

� ð�þ 2Þ �V;�

�

�

�
¼ 0 (45)

in which we have defined

� � a2
�
_E� B

a

�
: (46)

Also we have defined the dimensionless parameters �1

and �2 which come from various integrations over the
compactification volume V in Eq. (23) via

�1 � 1�
R
V drðrLÞR

V drðrLÞ2�z
; �2 � 1� z

L2

R
V drðrLÞzþ2R
V drðrLÞ2�z

:

(47)

Note that in the AdS limit where z ¼ 1, both �1 and �2

vanish. One can also check that the set of equations (42)–(45)
reduces to the standard equations in conventional perturba-
tion theory [53].

Finally, the Klein Gordon equation is


 €�þ 3Hð1þ sÞ
 _�þ C1
�� Fð�Þ2
a2�2

~r2

�

¼ C2Aþ _� _Aþ3��2 _� _c � _�
~r2

�2

�
_E� Fð�Þ

a
B

�
; (48)

in which

C1 �
�
f0

2f2

�0
��3ð1� �Þ2ð2þ �Þ þ 3Hf0

2f
_�ðsþ 1� ��2Þ

þ ��3V;��;

C2 � 3f0

2
�2 _�4 þ 3H _�ð1þ ��2Þ þ €�ð3�2 � 1Þ; (49)

and we have defined a new slow roll parameter as

s � _�

H�
: (50)

Again we note that for the AdS background where z ¼ 1
and Fð�Þ ¼ 1 we obtain the standard perturbed Klein-
Gordon equation.
In conclusion, we have five independent equations (42)–

(45) and (48) for five variables A, c , B, E, and 
�. In the
AdS limit of z ¼ 1, we restore the standard 4D diffeo-
morphism invariance so we have only three independent
variables, two metric scalar perturbations plus 
�.
However, when the 4D diffeomorphism is broken to a
subset of 3D rotational invariance, all A, B, c , E, and

� become physical degrees of freedom so we have five
physical variables in total.

A. Solving the system of equations

Here we provide the solutions for the set of five equa-
tions (42)–(45) and (48) for five variables A, c , B, E, and

�. It looks formidable to find analytical solutions for this
system of coupled equations. However, things become
considerably simple as we shall see below.
Using Eqs. (43) and (44) one obtains the following

relation

�2ða4BÞ: ¼ 1

2M2
P

ððFþ �1 � 1Þa3� _�
�Þ: (51)

which can be solved easily to yield

aB ¼ 1

2M2
P

Fþ �1 � 1

�2

� _�
�: (52)

To obtain this equation use was made of the background

KG equation as well as the equation _H ¼ � � _�2

2M2
P

. Also a

term like c=a3 with c a constant can be added to either side
of Eq. (52). However, treating B and 
� as perturbations
which can be turned off at arbitrarily initial time, we
conclude that c ¼ 0. Equation (52) plays a crucial rule in
our analysis below. Note that in the isotropic limit in which
z ¼ 1, �1 ¼ �2 ¼ 0, and F ¼ 1, Eq. (51) is trivially sat-
isfied. This is a manifestation of Bianchi identity. However,
in our case with z � 1, the Bianchi identity does not hold,
since the left-hand side of Eq. (23) is an integration of the
Einstein tensor along the extra dimension.
Using (52) to eliminate B in (43) results in

_c þHA ¼ 1

2M2
P

� _�
�: (53)

Surprisingly this is the same as in standard DBI inflation.
To simplify further the system, let us define the new

variables � and 
�c as follows

� � ð1þ �0Þc þH�� aHð1� �1ÞB; (54)
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�c � 
�þ
_�

H
c : (55)

As we shall see in the next subsection, 
�c is related to the

curvature perturbations on comoving surfaceRwhereas�
is similar to the Bardeen potential �.

Now manipulating the independent Einstein equa-
tions (42), (45), and (53) one obtains the following set of
coupled equations for � and 
�c

_�þHð1þ Þ� ¼ ð1þ �0Þ �
_�

2M2
P


�c ; (56)

r2

a2
� ¼ �3

2M2
P

ð _�
 _�c � ð €�þ  _�HÞ
�c Þ: (57)

Manipulating further Eqs. (56) and (57) one obtains the
following decoupled system of equations for � and 
�c


 €�c þ 3Hð1þ sÞ
 _�c þ J
�c

� 1þ �0

�2

r2

a2

�c ¼ 0; (58)

€�� 2H2ð2� �Þ�þHð1þ 2�� 2Þ _�

� 1þ �0

�2

r2

a2
� ¼ 0; (59)

in which we used

 � � _H

H2
; � � � €H

2H _H
; _ ¼ 2Hð2� �Þ

(60)

and defined

J � � H

�3a3 _�

d

dt

�
�3a3

H
ð €�þ H _�Þ

�

¼ C1 � 4
H €�
_�
�H2ð3þ 4sþ 3��2 þ 2Þ: (61)

Equations (58) and (59) are our key equations to find the
curvature perturbation power spectrum in next sections.

Looking into 
�c and � equations in (58) and (59) we

find that the scalar perturbation sound speed, cs, is

c2s ¼ 1þ �0

�2
¼ c2g

�2
: (62)

This is an interesting formula. Similar to standard DBI
inflation, the scalar perturbations sound speed is sup-
pressed by the factor 1=� compared to GW speed.
However, note that in conventional theories with 4D
Lorentz invariance where cg ¼ 1, Eq. (62) is translated

into the well-known formula cs ¼ 1=�.
In obtaining the system of Eqs. (58) and (59) we have

used all four independent Einstein equations (42)–(45).

However, so far we have not used the KG equation (48).
We have to check whether it carries extra information.
Starting with KG-equation (48) and using (58) and after
a long but straightforward calculations one obtains the
following equation

r2½ðF2 � 1� �0Þ
�þ _�ðFþ �1 � 1ÞaB� ¼ 0; (63)

or by using (52)

�
F2 � 1� �0 þ H2

�2

ðFþ �1 � 1Þ2
�
r2
� ¼ 0: (64)

This is a constraint equation for 
�. In the isotropic limit
in which z ¼ 1, �1 ¼ �2 ¼ 0, and F ¼ 1, Eq. (64) is
trivially satisfied. This is a manifestation of the fact that
in standard theories with explicit 4D general covariance the
Bianchi identity holds. As a result once the Einstein equa-
tions are satisfied, the KG equation is trivially satisfied.
However, in our case at hand, the 4D general covariance is
explicitly broken to a subset of three-dimensional rota-
tional invariance. As a result we have five independent
equations, four from Einstein equations and one from the
KG equation, for five physical perturbations A, B, c , E,
and 
�.
The prefactor of 
� in Eq. (64) is a dynamical quantity

and does not necessarily vanish at the background. As a
result, Eq. (64) is translated into r2
� ¼ 0. In a spatially
isotropic background with the appropriate boundary con-
ditions at infinity, the only consistent solution for this
Laplace equation is 
� ¼ 0. Alternatively, in an isotropic
background one can expand 
� in Fourier space 
� ¼P


�kðtÞe�i:k:x so r2
��P
k2
�kðtÞe�i:k:x. As a re-

sult the only valid solution of r2
� ¼ 0 for each mode k
consistent with appropriate boundary conditions at infinity
is 
�k.
This indicates that at the linear perturbation theory, the

scalar field excitations decouple from the system.2Note
also that from Eq. (52) and 
� ¼ 0 one concludes that
B ¼ 0. This also means that at the linear perturbation
theory the off-diagonal metric perturbations g0i ¼
aðtÞ@iB are not excited. As we promised, this validates
the analysis in [38] in which to obtain the effective 4D
gravitational action, the gauge g0i ¼ 0 has been used.
In Appendix C we have provided further insight on the
decoupling of 
� at the level of quadratic action.
It is also interesting to examine the numerical factor

inside the bracket in Eq. (64) and see how close to zero it

2This is a surprising result which requires deeper understand-
ing. We note, however, that it might be due to the fact that upon
reduction from five to four dimensions the scalar field � gets a
mass dimension which depends on z. Indeed the z-dependence of
the mass dimension for z � 2 makes the field an irrelevant
perturbation as the mobile brane moves toward the Lifshitz
throat. Therefore one might suspect that the dynamics of the
scalar field may not be important, at least as far as the linear
perturbation theory is concerned.
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can be. From the definition of �2 in Eq. (47) we have
H2=�2 � ðHLÞ2. In our effective 4D theory the size of
extra dimension is much smaller than the 4D length scale
so L � 1=H orHL � 1 and therefore the term containing
 in Eq. (64) is negligible. As a result we are left with the
condition ðFð�Þ2 � 1� �0Þr2
�� 0. On the other hand,
1þ �0 ¼ c2g, where we have defined cg as the gravita-

tional wave speed. Furthermore, the photon speed for the
observer localized on the moving brane from Eq. (40) is
c2�ð�Þ ¼ Fð�Þ2. Therefore, the condition (64) is approxi-

mately written as ðc2g � c2�ð�ÞÞr2
�� 0. Therefore, in

our system where cg � c�ð�Þ, we conclude that 
� ¼ 0.

Now the last equation to be solved is an equation for A
which can be obtained from either equation (53) or (42).
For example, using Eq. (53) with 
� ¼ 0 we obtain

A ¼ � 1

H

�
H
_�

�c

�
:
: (65)

In conclusion, our systems of equations are B ¼ 
� ¼ 0
along with Eqs. (58), (59), and (65). Once we solve 
�c

and �, from Eqs. (54) and (55) we can find c and � and
from Eq. (65) we find the value ofA. However, from now on,
we trade c and � in terms of 
�c and � which are more

physical.

B. Gravitational anisotropy

As in standard cosmological perturbation theory, it is
useful to work with the comoving curvature perturbation
R which in the convention of [53] is related to 
�c via

R � H
_�

�c ¼ c ; (66)

where the last equation holds because in our model 
� ¼ 0.
On the other hand, our � is similar to the Bardeen potential
� in the standard situation� � c þH�� aHB. One can
check that

� ¼ �þ �0c þ �1aHB ¼ �þ �0R; (67)

where the last equation is obtained in our model knowing
that B ¼ 0. Note that in the limit where �0 ¼ �1 ¼ 0, we
have � ¼ �.

Now we prove the important result that for superhorizon
modesR is conserved. With the definition ofR in Eq. (66)
and using Eq. (58) one can check that in the Fourier space

1

�2a3
d

dt
ð _Rk�

2a3Þ þ c2sk
2

a2
Rk ¼ 0: (68)

This means that on superhorizon scales in which
csk=aH ! 0, the curvature perturbation Rk is constant
outside the sound horizon crossing, where now the sound
speed is given in Eq. (62).

One novel aspect of our system with Lorentz violation is
the appearance of primordial gravitational anisotropy con-
trolled by the difference��� inwhich the gauge-invariant

Newtonian potential � is defined by � � �@tð�� aBÞ ¼
A� _�. In standard theories with explicit 4D general covari-
ance and in the absence of spatial anisotropies the relation
� ¼ � holds. As a result, it is a good choice in our model to
define the anisotropy field

� � ���: (69)

Using Eq. (42) and noting that B ¼ 0 in our system, one
obtains

� ¼ �0ðc � AÞ ¼ �0

�
Rþ

_R
H

�
: (70)

Interestingly enough, we see that the anisotropy field � is
controlled by the parameter �0. As we have seen above, on
the superhorizon scales R is conserved and � ’ �0R
which, also from Eq. (67), leads to � ’ ���. As ex-
pected, in a standard situation where �0 ¼ 0 we obtain
� ¼ 0.
Observationally, gravitational lensing and the integrated

Sachs-Wolfe effect are sensitive to �, while galaxy
peculiar velocity measurements are determined by the
Newtonian potential � [54,55]. It would be interesting to
look for observational implications of our model with
anisotropy field � � 0.

VI. POWER SPECTRA

In this section we calculate the power spectrum of the
curvature perturbation PR and the anisotropy field P�.
To solve (58) let us define the Sasaki-Mukhanov variable

v ¼
�
a

a0

�ð1þ3s=2Þ

�c ; (71)

where a0 is the scale factor at some initial time. Going to
conformal time Eq. (58) reduces to

v00
k þ

�
c2sk

2 � 	2 � 1=4

�2

�
vk ¼ 0; (72)

in which to first order in slow-roll parameters

	 ’ 3

2
þ 3� �þ s (73)

and we have used aH�ð1� Þ ’ �1 and J ’ �3H2ð2�
�� s

2Þ.
With the Bunch-Davies initial condition the solution, as

usual, can be written in terms of Hankel function

vk ’
ffiffiffiffiffiffiffiffiffiffiffi���

p
2

ei�ð1þ2	Þ=4Hð1Þ
	 ð�csk�Þ: (74)

The curvature power spectrum PR is

hRkRk0 i � ð2�Þ3PRðkÞ
3ðkþ k0Þ;

PR � k3

2�2
PRðkÞ:

(75)
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Solving the above standard equation and using (66) to
relate 
�c toR one finds the power spectrum of curvature

perturbation as follows

PR ’ ð1þ �0Þ�3=2

�
H2

2� _�

�
2
: (76)

Also the spectral index defined via ns � 1 �
d lnPR=d ln k, is obtained to be

ns � 1 ’ �6þ 2�þ s: (77)

We note that the form of the spectral index is the same as
the standard case where z ¼ 1. The difference is due to the
z-dependence of slow-roll parameters as well as the defi-
nition of sound horizon crossing given in Eq. (62).

On the other hand, the power spectrum of the tensor
perturbations is given by

P T ¼ 2H2

M2
P�

2
ð1þ �0Þ�3=2: (78)

As a result, one can obtain the tensor to scalar ratio r by

r ¼ 16

�
; (79)

which is also the same as in the standard case.
In the speed limit where � � 1, one can find useful

expressions for physical parameters. In particular, in the
speed limit we have

ns � 1 ’ 2

n
ð3þ z� 2nÞ ð� � 1Þ; (80)

in which, as mentioned in Sec. II, n is the power of infla-
tionary potential in r coordinate, i.e., V � rn. In particular,
from Eq. (80) we find that for n ¼ 2, i.e., quadratic poten-
tial, the spectral index is always blue-tilted. The behaviors
of ns for n ¼ 2 and n ¼ 4 are shown in Figs. 1 and 2.
The non-Gaussianity parameter fNL in standard DBI

inflation is calculated to be [26,34] fNL � 0:3��2. We
expect that the order of magnitude of fNL in our model
to be similar to standard DBI case and fNL � ��2. To
satisfy the Planck constraints on fNL with cs � 0:07 [37]
one concludes that [26,34] � < 14. In Figure 3 the plot of �
as a function of z is presented.

1.00 1.02 1.04 1.06 1.08
z

0.000

0.002

0.004

0.006

ns 1

1.02 1.04 1.06 1.08
z

0.0638

0.0639

0.0640

0.0641

r

FIG. 1 (color online). Here we plot ns � 1 and r, the ratio of the tensor to scalar power spectrum, with n ¼ 2 for the mode which
leaves the sound horizon at N ¼ 5 e-folds. While z is varying all other parameters, the initial conditions are held fixed. The spectral
index increases towards blue as z increases while r shows more nontrivial behavior.

4.90 4.95 5.00 5.05 5.10
z

0.004
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0.004
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4.90 4.95 5.00 5.05 5.10
z

0.039

0.040

0.041

0.042
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0.044

r

FIG. 2 (color online). The plots of ns � 1 and r for the case n ¼ 4 as a function of z for modes which leave the sound horizon at
N ¼ 5 e-folds. As z increases r decreases while, as expected from Eq. (80), the spectral index is red-tilted, scale invariant, and
blue-tilted, respectively for z < 5, z ¼ 5, and z > 5.
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As explained before, one novel aspect of our model is
the gravitational anisotropy in which � � 0. Now we
calculate the anisotropy power spectrum, P�, on super-

horizon scales. Using Eq. (70) and noting that _R ¼ 0 on
superhorizon scales yields

P� ¼ �2
0PR ¼ �2

0

ð1þ �0Þ3=2
�
H2

2� _�

�
2
: (81)

Knowing that c2g ¼ ð1þ �0Þ, we obtain the following

consistency relation between PR and P�

P�

PR
¼ ðc2g � 1Þ2 ¼ �2

0: (82)

For example, in a standard DBI scenario in which cg ¼ cs
one obtains P� ¼ 0 as expected. The amplitude of P� is
controlled by �0 or equivalently cg. In Fig. 4 we plot �0 as

a function of z.

VII. DISCUSSION

In this work we studied cosmological perturbation in a
higher dimensional Lifshitz background with anisotropic

scalings in time and space coordinates. The model describes
the dynamics of brane inflation in the Lifshitz throat with
the anisotropy scaling z > 1. As we argued, the 4D general
covariance is explicitly broken to a subset of three-
dimensional rotational invariance. As a result we have four
physical metric scalar degrees of freedom in addition to the
inflaton perturbations 
�. After considering the perturbed
Einstein and Klein-Gordon equations, we found the unex-
pected results that at the linear perturbation level
�, as well
as g0i, excitations are decoupled from the system.
One interesting prediction of our model is the generation

of the gravitational anisotropy inwhich theBardeenpotential
and theNewton potential are not equal.Having calculated the
power spectrum of the anisotropy field � ¼ ���, we
found that it is directly related to the parameter �0 which
controls the level of 4D general covariance breaking.
We have also calculated ns and r as a function of z.

Depending on the form of the inflationary potential, ns can
either be red- or blue-tilted while r is typically small which
is a manifestation of small field range in string theory
inflationary model buildings. It is also interesting to cal-
culate non-Gaussianities in this scenario rigorously.
However, we expect that fNL � ��2. As a result, generat-
ing large non-Gaussianities and gravitational anisotropies
may be considered two generic features of this scenario.
Another interesting result of our model is that the gravi-

tational wave perturbations and the scalar perturbations
speeds are related via cs ¼ cg=�. Furthermore, depending

on the SM observer position inside the Lifshitz throat, the
tensor propagations can be superluminal compared to the
photon propagations on the SM brane. However, the theory
is diffeomorphism invariant in 5D so there is no violation
of ‘‘causality’’ in the five-dimensional sense.
As we argued in the Introduction, we do not have a

concrete theoretical realization of this setup in string the-
ory, so this work may be considered a phenomenological
exercise for a rigorous string theory background. Having
said this, it is interesting that a higher dimension space-
time with anisotropy scalings of time and space under the
extra dimension coordinate shows such novel features in
effective 4D cosmology.
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APPENDIX A: COMPONENTS
OF EINSTEIN TENSOR

Here we present the component of 5D Einstein tensor
which will be used in Eq. (23). One can check that

1.00 1.02 1.04 1.06 1.08
z

24

25

26

27

28

FIG. 3 (color online). � as a function of z for modes that leave
the sound horizon at N ¼ 5 e-folds for the case n ¼ 2. The
behavior of � for the case of n ¼ 4 is similar to this plot.
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z
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2
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0
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r0 R 0.001

FIG. 4 (color online). �0 as a function of z for different values
of the warp factor r0=R.
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G0
0 ¼ 2

�
r

L

��2z
�
3H _c �Hr2 _Eþ 3H2A

þH

a

�
r

L

�
z�1r2B� 1

a2

�
r

L

�
2ðz�1Þr2c

�
; (A1)


G0
i ¼ �2

�
r

L

��2z
�
_c þHAþ ð1� zÞa

L2

�
r

L

�
zþ1

B

�
;i
;

(A2)


G1
1 ¼ �ð@2y þ @2zÞ�þ 2

�
r

L

��2z
��

H2 þ 2 €a

a

�
Aþ €c

þ 3H _c þH _A

�

G1

2 ¼ �;xy; (A3)

where � is defined via

� �
�
r

L

��2z½ €Eþ 3H _E� � 1

a

�
r

L

��z�1½ _Bþ 2HB�

þ 1

a2

�
r

L

��2ðc � AÞ: (A4)

APPENDIX B: A MORE GENERIC METRIC
PERTURBATIONS ANSATZ

In obtaining the constraint equation (64) one may worry
whether this conclusion is due to our ansatz in Eq. (18) in
which the Lifshitz scaling symmetry is imposed at the
perturbation level. Here we investigate the general pertur-
bation ansatz which is not restricted to the Lifshitz sym-
metry at the perturbation level. We find that the constraint
equation similar to Eq. (64) still holds. In order to simplify
the analysis, we restrict ourselves to the slow-roll case
where � ¼ 1. The generalization to the general DBI case
will be similar.

A generalization of metric perturbations Eq. (18) without
the Lifshitz scaling symmetry is

ds2 ¼ g00

�
r

L

�
2z
dt2 þ gij

�
r

L

�
2
dxidxj

þ 2g0i

�
r

L

�
�
dtdxi þ

�
L

r

�
2
dr2; (B1)

where � is a free parameter. In our analysis in the main text
we set � ¼ zþ 1 so the scaling symmetry is preserved at
the perturbation level. However, here we consider the
arbitrary value of �.

With some effort one can check that the Einstein equa-
tions are

��2
5

Z
V
dr

�
r

L

�ðzþ2Þ
G0

0

�
1þ fðrÞ

2
ðrBÞ2

�
¼ �T0

0 ;

��2
5

Z
V
dr

�
r

L

�
zþ2

Gi
j

�
1þ fðrÞ

2
ðrBÞ2

�
¼ �Ti

j;

(B2)

��2
5

Z
V
dr

�
r

L

�ðzþ�Þ
G0

i ¼ �T0
i þ

Z
V
dr

�
r

L

�ðzþ2Þ
fðrÞG0

0g0i;

(B3)

in which

fðrÞ � 1� r2ð��1�zÞ: (B4)

In the limit where � ¼ zþ 1, then fðrÞ ¼ 0 and we recover
Einstein equations as in Eq. (23).
Now we present the components of the 5D Einstein

tensor for an arbitrary value of �. One can check that there
are just some minor modifications and


G0
0 ¼ 2

�
r

L

��2z
�
3H _c �Hr2 _Eþ 3H2A

þH

a

�
r

L

�
��2r2B� 1

a2

�
r

L

�
2ðz�1Þr2c

�
; (B5)


G0
i ¼ �2

�
r

L

��2z
�
_c þHAþ ð2� �Þð3þ �� zÞa

4L2

�
�
r

L

�
�
B

�
;i
; (B6)


G1
1 ¼ �ð@2y þ @2zÞ ~�þ 2

�
r

L

��2z
��

H2 þ 2 €a

a

�
Aþ €c

þ 3H _c þH _A

�
; (B7)


G1
2 ¼ ~�;xy; (B8)

in which ~� is defined via

~� �
�
r

L

��2z½ €Eþ 3H _E� � 1

a

�
r

L

�
��2z�2½ _Bþ 2HB�

þ 1

a2

�
r

L

��2ðc � AÞ: (B9)

To calculate T�
� we need to calculate the brane action

with the arbitrary value of �. We have to calculate j �gabj
where �gab is the induced metric on the mobile brane. With
some effort one can show that

j �gj ¼ r2zþ6jgj
�
1� fðrÞaðtÞ2X

i

ðg0iÞ2 þ g00r�2z�2 _r2

þ r�4gij@ir@jrþ 2r��2z�4g0i@ir@jr

�
: (B10)

In the slow-roll limit, the Lagrangian is

L ¼ �T3

2
rzþ3

�
g00r�2z�2 _r2 þ r�4gij@ir@jr

þ 2r��2z�4g0i@ir@jr� fðrÞaðtÞ2X
i

ðg0iÞ2
�
: (B11)

As a result, we have the following action for a slowly
rolling brane
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SðbÞ ¼ �T3

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

rb
L

�
zþ3

�
g00

�
rb
L

��2ðzþ1Þ
_r2b

þ
�
rb
L

��4
gij@irb@jrb þ 2

�
rb
L

�ð��4�2zÞ
g0i _rb@irb

� fðrÞg0ig0i
�
: (B12)

Translating to the canonically normalized scalar field� the
action becomes

SðbÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
g00 _�2 � Fð�Þ2

2
gij@i�@j�

� g0iQð�Þ _�@i�� T3

2
Rð�ÞX

i

g0ig
0i � Vð�Þ

�
;

(B13)

where the relation between � and rb is the same as in
Eq. (6) and

Qð�Þ ¼
�
rb
L

�
��2

; Rð�Þ ¼
�
rb
L

�
zþ3

fðrbÞ: (B14)

Varying the action up to first order in perturbations we
obtain

T�� ¼ g��LðbÞ þ _�2
0
�


0
� þ 
i

�

j
�Fð�Þ2@i�@j�

þ ð
0
�


i
� þ 
0

�

i
�ÞðQð�Þ _�@i�� T3Rð�Þg0iÞ:

(B15)

From this we obtain

T0
0 ’ 1

2
g00 _�2 � V; (B16)

Ti
j ’ 
i

j

�
� 1

2
g00 _�2 � V

�
; (B17)

T0
i ’ � _�Q@i�þ T3Rð�Þg0i: (B18)

Finally, gathering all the above information one can
obtain the perturbed Einstein equations. The ðijÞ compo-
nent of the Einstein equation for i � j in Eq. (B2) results in

ð1þ �0Þðc � AÞ þH�þ _�þ að _Bþ 2HBÞð ~�1 � 1Þ ¼ 0;

(B19)

where � � a2 _E. Note that �0 is the same as in Eq. (36)

while ~�1 is defined as

~�1 � 1�
R
V drðrLÞ��zR
V drðrLÞ2�z

: (B20)

From the integrated ðiiÞ component, we find

€c þHð3 _c þ _AÞ þ ð3H2 þ 2 _HÞA
¼ 1

2M2
P

½ _�
 _�� _�2A� V;�
��: (B21)

The ð0iÞ and (00) components of the Einstein equations
yield

ð1� ~�1Þð _c þHAÞ þ
�
~�2 � 3

2
H2�� þ T3R

2M2
P

�
aB

¼ Qð�Þ
2M2

P

_�
�; (B22)

where ~�2 and �� are defined via

~�2 � ð2� �Þð3þ �� zÞ
4L2

R
V drðrLÞzþ2R
V drðrLÞ2�z

;

�� � 1�
R
V drðrLÞ2��3zR
V drðrLÞ2�z

:

(B23)

Note that in the limit � ¼ zþ 1 the new parameter ��

vanishes while ~�2 reduces to �2 as given in Eq. (47).
Finally for the (0,0) component one has

3Hð _c þHAÞ�
~r2

a2
½ð1þ�0Þc þHa2 _E�aHð1� ~�1ÞB�

¼ 1

2M2
P

ð _�2A� _�
 _��V;�
�Þ: (B24)

Manipulating Eqs. (B22) and (B21) one can show that

�
a4B

�
~�2 � 3

2
H2�� þ T3R

2M2
P

��
:

¼ 1

2M2
P

ððQþ ~�1 � 1Þa3 _�
�Þ:; (B25)

which yields

aB

�
~�2 � 3

2
H2�� þ T3R

2M2
P

�
¼ 1

2M2
P

ðQþ ~�1 � 1Þ _�
�:

(B26)

This is similar to Eq. (52) for the case � ¼ zþ 1. Now,
plugging this into Eq. (B22) one obtains

_c þHA ¼ 1

2M2
P

_�
�: (B27)

This is formally the same as Eq. (53) in the slow-roll limit
where � ¼ 1.
The Klein-Gordon equation has the following form


 €�þ 3H
 _�þ V;��
�� Fð�Þ2
a2

~r2

�

¼ �2V;�Aþ _� _Aþ3 _� _c � _� ~r2
�
_E�Qð�Þ

a
B

�
:

(B28)

Now that all the equations become similar to the case
when � ¼ zþ 1, one can check that using the Einstein
equations into the KG equation (B28) yields
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r2½ðF2 � 1� �0Þ
�þ _�ðQþ ~�1 � 1ÞaB� ¼ 0: (B29)

Now using (B26) to express B in terms of 
� one obtains

r2

��
F2 � 1� �0 � H2ðQþ ~�1 � 1Þ2

~�2 � 3H2��=2þ T3R=2M
2
P

�

�

�
:

(B30)

As a result, similar to the conclusion from Eq. (64), 
�
decouples regardless of the value of �.

APPENDIX C: DECOUPLING OF ��AT THE
LEVEL OF ACTION

Here we study the decoupling of 
� in the quadratic
action. To simplify the analysis, we consider the slow-roll
limit corresponding to � ¼ 1. The extension to the DBI
case will be similar.

The matter action, in the slow-roll limit is the following

SM ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
g00 _�2 � Fð�Þ2

2
gij@i�@j�

� g0iFð�Þ _�@i�� Vð�Þ
�
; (C1)

while, for the gravity sector we have

SG ¼ 1

2�2
5

Z
d5x

ffiffiffiffiffiffiffiffi�G
p ð5ÞR: (C2)

However, as mentioned in the draft, we should subtract a
nondynamical cosmological constant term from the above
Lagrangian, as an effective result of the extra fields. So we
effectively have

SeffG ¼ 1

2�2

Z
d5x

ffiffiffiffiffiffiffiffi�G
p ½ð5ÞR��� (C3)

where, from background evolution one can obtain [38]

� ¼ �ð12þ 6zþ 2z2Þ=L2: (C4)

Now we can expand the effective gravitational action as
well as the matter sector up to second order. After lots of
integration by parts and simplifications, and also integrat-
ing out the r-coordinate, we end up with

S2 ¼
Z

d4xa3
�
M2

P

�
�3 _c 2þð�0þ 1Þðrc =aÞ2þ 2Að�0þ 1Þr

2

a2
c � 6HA _c �ð3H2þ _HÞA2

þ 2ð _c þAHÞr2ð _E�ð1��1ÞB=aÞþ �̂2ðrBÞ2
�

þ 1

2

 _�2� F2

2a2
ðr
�Þ2� 1

2
V00
�2þ 3 _�
� _c �V 0A
�� _� _
�A� _�
�r2ð _E�FB=aÞ

�
; (C5)

where we have defined

�̂2 � ð1� zÞ2
4L2

R
V drðrLÞzþ2R
V drðrLÞ2�z

; (C6)

which is slightly different from�2 defined in the main text,
Eq. (47). Interestingly, apart from the form of �2 which is
different, the above action gives the consistent equations of
motion, Eqs. (42)–(45). It is also consistent with [56] in the
case z ¼ 1.

Note that the fields B and A are not dynamical and we
can solve the corresponding constraint and plug the solu-
tion back into the action. Furthermore, E appears linearly
so using the equation of motion obtained by varying the
action with respect to E we find an action for two dynami-
cal fields c and 
�. After this procedure, let us introduce a
new variable

� � 
�þH
_�
c ; (C7)

which is actually 
�c in the draft. Using the new field �

to eliminate c from the action, and after many simplifica-
tions, we find the following action for two fields� and 
�.

S ¼
Z

d4xa3
�
1

2
_�2 � ð�0 þ 1Þ

2a2
ðr�Þ2

� 1

2
�2

�
V00 � 1

M2
Pla

3

d

dt

�
a3

_�2

H

��
1

2

�r
a

�

�
2

�
�
�F2 þ �0 þ 1� H2

�2

ðF� 1þ �1Þ2
��

: (C8)

As a result, the kinetic term for 
� vanishes in the action,
yielding the decoupling of inflaton field perturbations. This
is also consistent with the result in the text that 
� ¼ B ¼
0. Note that the difference in the form of �2 in Eqs. (47)
and (C6) does not lead to any inconsistency, since �2 only
appears with the field B in the form of �2B which vanishes
and does not affect the rest of the equations.
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