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The late stages of large-scale structure evolution are treated semianalytically within the framework of

the modified halo model. We suggest a simple yet accurate approximation for relating the nonlinear

amplitude to the linear one for spherical density perturbation. For halo concentration parameter c, a

new computation technique is proposed, which eliminates the need for interim evaluation of the zcol.

The validity of the technique is proved for �CDM and �WDM cosmologies. Also, the parameters for the

Sheth-Tormen mass function are estimated. The modified and extended halo model is applied for

determination of the nonlinear power spectrum of dark matter, as well as for a galaxy power spectrum

estimation. The semianalytical techniques for the dark matter power spectrum are verified by comparison

with data from numerical simulations. Also, the predictions for the galaxy power spectra are confronted

with ’’observed’’ data from the Infrared Astronomical Satellite Point Source Catalog Redshift Survey

(PSCz) and Sloan Digital Sky Survey (SDSS) galaxy catalogs, good accordance is found.
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I. INTRODUCTION

A commonly accepted inflationary paradigm states that
the large-scale structure of the Universe is formed through
evolution of density perturbations driven by gravitational
instability. At some moment, the growth of small-scale
perturbations switches to the nonlinear regime. The treat-
ment of the linear regime is quite simple; the linear power
spectrum (transfer function) for k < 0:1 h=Mpc can be read-
ily computed with percent accuracy for any feasible cosmol-
ogy. However, it is not so for the smaller scales, due to the
nonlinear terms in equations and the complexity of physics
of the baryonic component (hydrodynamics, radiation trans-
fer, and thermal and chemical evolution). This paper is aimed
for the development of a technique capable to build a bridge
between the initial (linear) matter power spectrum and the
observable (inherently nonlinear) galaxy power spectrum.
The treatment is based on the halo model complemented by
analytical approximations, and the results are tested and
verified against the data of N-body simulations.

Within the scenario commonly referred as ‘‘standard’’ (see
[1]), the gravitational potential of collisionless dark matter
inhomogeneities governs the baryonic matter until the bar-
yonic matter power spectrum reaches the dark matter one in
amplitude. At some moment, a nonlinear perturbation with
amplitude exceeding some critical one detaches from back-
ground expansion, reaches a turnaround point, and starts to
collapse due to self-gravity. Subsequently, a violent relaxation
takes place, which brings the system into virial equilibrium, so
the halo of darkmatter is formed. Then, the baryonic gas starts
to cool down, followed by clumping into clouds and ignition
of the luminous tracers within halos (see [2,3] for details).

Thus, the spatial distribution of luminous matter should
strongly correlate with one of the halos. The correlation is
confirmed by large simulations, which take into account
the baryon physics and particle dynamics of dark matter
[4,5], and by semianalytic models of galaxy formation
[6–8] as well. The numerical techniques require consider-
able computing power, whereas the purely analytical are
found to be unreliable and inaccurate. Thus, the ‘‘hybrid’’
approach seems to be optimal, combining the analytical
model of galaxy formation [9,10] with dark matter ‘‘merger
trees’’ extracted from simulations. Another way is to ex-
tract the halo and subhalo statistics from simulations for
comparison with galaxy populations in a large galaxy
survey. Such techniques are based on the conditional lumi-
nosity function (CLF) [11–13], conditional mass function
(CMF) [14], and stellar mass to halo mass relation [14,15].
The halo model is a cornerstone of the modern theory

of structure formation. It has been proven to be well
motivated and comprehensive and provides a plausible ex-
planation for observational data and results of cosmological
simulations. It is valid for a wide range of cosmologies, as
long as the statistics of primordial density perturbations is
Gaussian. It encompasses the nonlinear stage of the evolu-
tion of density perturbations as well as the dynamical
relaxation processes assuming that the whole mass is
associated with a gravitationally bound virialized halo.
It has shown in Refs. [16–18] that the dark matter

nonlinear power spectrum can be evaluated given halo
statistics, their internal structure, and spatial distribution.
Also, vice versa, the initial power spectrum can be recon-
structed by applying the halo model to the data of N-body
simulations. As another example, the halo occupation
function pðNjMÞ, the probability of finding N galaxies
within a halo of mass M, was used in Refs. [19,20] along
with the halo model to calculate the nonlinear galaxy
power spectrum. However, regardless of the overall
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success of the halo model1 in a description of dark matter
and galaxy clustering, it is still not to be considered as
complete. For instance, only the latest enhancements
proposed in [22,23] take into account the internal structure
of the halo as well as the halo shapes [24,25].

To apply the halo model, the a priori knowledge of the
evolution of inhomogeneities from the initial state through
collapse to the formation of a virialized halo is required.
In Sec. II, we analyze such an evolution by using the
spherical perturbation model in order to analytically relate
the amplitude of the nonlinear spherical density perturbation
to that of the linear. Also, a new technique is proposed
therein for computation of concentration parameter c for a
halo with a Navarro-Frenk-White (NFW) density profile. In
Sec. III, the halo mass function is applied to dark matter
clustering. In Sec. IV, the galaxy power spectra are estimated
and compared to observable ones, as derived in Refs. [26,27]
from the Infrared Astronomical Satellite Point Source
Catalog Redshift Survey (PSCz) and Sloan Digital Sky
Survey (SDSS) catalogs. The conclusions are presented in
Sec. V. The computations were performed for the �CDM
(cold dark matter with the� term) and�WDM (warm dark
matter with the � term) cosmological models, and some
bulk mathematical derivations are separated in Appendixes.

II. FORMATION OF INDIVIDUAL
SPHERICAL HALO

A. Spherical overdensity with arbitrary profile

In the framework of Tolman’s approach [28], the spheri-
cally symmetrical inhomogeneity is treated in the synchro-
nous gauge (i.e. with regard to the frame comoving to the
dustlike matter component), with space-time interval

ds2 ¼ dt2 � y2ðt; RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� KR2

p dR2

� x2ðt; RÞR2ðd�2 þ sin 2�d’2Þ; (1)

where t is the proper time of an observer located at R andK
is space curvature of the Universe as the whole. For a
homogeneous Friedmann universe, xðtÞ ¼ yðtÞ ¼ aðtÞ.

The mean matter density, i.e. average value over a sphere
of radius R, is denoted by �Mð�; RÞ � �0

mx
�3ð�; RÞ, and the

matter density at some specific distance R from the center
of perturbation is �ð�; RÞ � �0

mx
�2ð�; RÞy�1ð�; RÞ; see

[29,30] for details. Let us define the amplitude of density
perturbation as follows:

��ðt; RÞ ¼ �ðt; RÞ � ��ðtÞ
��ðtÞ ¼ a3ðtÞ

x2ðt; RÞyðt; RÞ � 1; (2)

and the amplitude of the mass perturbation is

�Mðt; RÞ ¼ �Mðt; RÞ � ��ðtÞ
��ðtÞ ¼ a3ðtÞ

x3ðt; RÞ � 1: (3)

These amplitudes (see [29]) are related by

�Mðt; RÞ ¼ 3

r3ðt; RÞ
Z R

0
��ðt; RÞr2ðt; RÞr0ðt; RÞdR (4)

with rðt; RÞ ¼ xðt; RÞR, ð0Þ � d=dR.
For small perturbations, the following approximations

are valid for (2) and (3):

��ðt; RÞ ’ �ðt; RÞ � AðRÞDðaðtÞÞ � 1; (5)

�Mðt; RÞ ’ ��ðt; RÞ � 3

5

�K ��fðRÞ
�m

DðaðtÞÞ � 1; (6)

where Dðað�ÞÞ is the growth factor of linear matter density
perturbations [31,32], defined by

DðaÞ ¼ 5

2
�ma

�1X1=2ðaÞ
Z a

0
X�3=2ð~aÞd~a; (7)

where XðaÞ � ��a
2 þ�ma

�1 þ�K. The parameter of
local curvature, �fðRÞ, can be related due to Eq. (4) with

the density profile AðRÞ from (6) as

�fðRÞ ¼ �5�mR
�3

Z R

0
Að ~RÞ ~R2d ~Rþ�K: (8)

Thus, either AðRÞ or �fðRÞ should be specified to define

the initial profile of perturbation.
Einstein’s equations for spherical overdensity of dustlike

matter in the model with a cosmological constant, G1
1 ¼

G2
2 ¼ �, yield the equations for xð�; RÞ and yð�; RÞ:

€x ¼ 3

2
��x� 1

2

_x2

x
þ 1

x

�f

2
; (9)

€y ¼ 3

2
��y�

�
_x _y

x
� 1

2

_x2y

x2

�
þ

�
�f þ R

�0
f

2

�
1

x
� y

x2
�f

2
:

(10)

The overdot denotes a derivative with respect to � ¼ H0t.
The first integration of (9) yields

_x2 ��m

x
���x

2 ¼ �f: (11)

Thus, the amplitude of mass perturbation, (3), can be calcu-
lated by integrating over time just this single equation.
The development of spherical inhomogeneity can be

divided into two stages: (i) the expansion stage ( _x > 0,
_�M < 0), linear and weakly nonlinear regime; (ii) the col-
lapse stage ( _x < 0, _�M > 0), entirely nonlinear regime.
They are separated by the moment of turnaround, when
_x ¼ 0 ( _�M ¼ 0).
The evolution of perturbation at the nonlinear stage is

convenient to be treated by confrontation with the evolu-
tion of some fictitious linear perturbation extrapolated
beyond the linear stage. Therefore, the time dependence
is represented in terms of the ratio of ��, the initial mean
overdensity of linear perturbation at some R, to the �col,

1The details of the halo model can be found in [21].

KULINICH, NOVOSYADLYJ, AND APUNEVYCH PHYSICAL REVIEW D 88, 103505 (2013)

103505-2



critical overdensity [29,31,33], the amplitude of perturba-
tion which is to collapse at the moment tcol.

In Fig. 1, the dependence of the nonlinear amplitude on
the ratio ��=�col is plotted, as computed by integration of
Eqs. (10) and (11). The fit for the dependence is simple:

lg ½1þ�M� ’��col � lg ½1� ��=�col�þA � lg 2½1� ��=�col�
þB � lg 3½1� ��=�col�; (12)

and the coefficients are A ¼ 0:0903 and B ¼ 0:0074.
This fit is similar to that proposed by Ref. [34], wherein
the values A ¼ 0 and B ¼ 0 were assumed; see also [35].
The fitting errors do not exceed 1% until the moment of
complete collapse, when �M ! 1 (bottom panel of Fig. 1).

Given �M, the density amplitude �� is to be evaluated at

any radius R with

�� ¼ 1þ �M

1þ ð ��� �Þ @
@ ��

ln ð1þ �MÞ
� 1: (13)

B. Virialization and final parameters
of individual spherical halo

Note that the true singularity at the collapse stage in the
center of the overdensity as a rule is not reached, since the
falling of particles usually is not strictly radial and small-
scale inhomogeneities within the cloud induce the addi-
tional nonradial velocities of particles. The process of
virialization is far from trivial, however; when the relaxa-
tion is finished and dynamical equilibrium is established,
the kinetic energy and the gravitational potential satisfy the
virial theorem. For instance, for a spherical relaxed halo
the kinetic energy per unit mass is determined by

Tvir=m ¼ 1

2
hv2ivir ¼ 1

2
r
@Uvir

@r
:

For the�CDMmodelUvir ¼ �H2
0��x

2
vir �H2

0�m=xvir
[31], and the total energy of the isolated dark matter cloud
is conserved. By equating the total energy at the turnaround
point (kinetic energy is zero and Etot ¼ Uta) to the one at
the virialization epoch (Etot ¼ Uvir þ Tvir), we obtain

2��x
2
vir þ

1

2

�m

xvir
¼ ��x

2
ta þ�m

xta
: (14)

With Eq. (11) for the turnaround point, _xð�taÞ ¼ 0, we
get the cubic equation for xvir:

4��x
3
vir þ 2�fxvir þ�m ¼ 0; (15)

with a real root for overdensity (�f < 0) in the cosmology

with �� > 0:

xvir ¼
�
� 2�f

3��

�1
2
cos

�
1

3
arccos

�
� �m

8��

�
�6��

�f

�3
2

�
� 2�

3

�
:

(16)

For �� ¼ 0, Eq. (14) implies the strict equality xvir ¼
xta=2. For �� > 0, xvir < xta=2, albeit the difference is not
large. In the fiducial model with �� ¼ 0:7 and �m ¼ 0:3
for a perturbation collapsing at the current epoch, the rela-
tive difference ð12 xta � xvirÞ=xvir is indeed �0:1 and dimin-

ishes with either �� decrease or increase of the collapse

(a)

(b)

FIG. 1. Top panel: The dependence of the nonlinear amplitude
of spherical perturbation on the linear one. Bottom panel: The
accuracy of the approximation (12) for some cosmological
models, where �

appr
M denotes the right-hand side of (12) and

�M is the exact value.

(a)

(b)

FIG. 2. The dependence of the virialized spherical cloud
density on �m in units of the critical density at the moment of
collapse, �vc, for models with fixed �� (a) and �K (b).
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redshift. Therefore, the approximation xvir � xta=2 can be
applied in most cases.

Note that the value of xvir depends on the local curvature
�f and consequently on the collapse time tcol. Also, the

virial mass density �vir ¼ �0
mx

�3
vir depends on tcol. It is

convenient to represent the virial density in units of the
critical one, taken at the moment of collapse:

�vc ¼ �virð�colÞ
�crð�colÞ ¼

�mH
2
0

x3virð�colÞH2ð�colÞ
: (17)

For the Einstein–de Sitter model (�m ¼ 1, �� ¼ 0), this
ratio does not depend on the collapse moment and equals
�vc ¼ 18�2 ’ 178. For other cosmologies, e.g. �� � 0
and/or �K � 0, the value �vc depends on �col and for
newly formed halos it is shown in Fig. 2.

III. DENSITY PROFILES AND
CONCENTRATION PARAMETER

The basic assumption of the halo model is that dark
matter is associated with virialized halos, which have
some universal density profile. The halo density profile is
described by the generic expression �ðrÞ ¼ �sðr=rsÞ�� �
ð1þ r=rsÞ���, with coefficients restricted by Ref. [36] to
2:5 	 � 	 3 and 1 	 � 	 1:5. The characteristic radius rs
specifies the distance at which the slope of the density
profile changes. We use the universal NFW density profile
[33] henceforth; this is a special case of the generic profile
with the values of the slopes fixed as � ¼ 1 and � ¼ 3:

�ðrÞ ¼ �s

ðr=rsÞð1þ r=rsÞ2
: (18)

For this density profile, the total halo mass diverges
logarithmically with r, whence the size of each halo has
to be limited to some finite value.

The characterization of the halo is a matter of conven-
tion. Here, the mass of the halo is defined as the mass of the
whole matter contained within the volume of radius rvir.
The quantity rvir is defined as a radius of the sphere,
the mean internal density of which exceeds the value
of the critical density by some fixed factor. In the case of
the factor 200, the halo mass is denoted by M200; for �vc

used as a factor, M� is a denotation of halo mass.
Sometimes the factor is assumed to be 180, so that M180

is used accordingly. The index is omitted when the choice
of definition is clear from the context.

The ratio of radius rvir, used for defining the halo, to the
quantity rs is called the concentration parameter (or just
concentration) and denoted as c. Depending on the defini-
tion of rvir, the corresponding index is used as c200, c�, or
c180. By defining the mass of the halo and concentration
parameter, one defines the parameters of the halo profile:
�s and rs.

For halos of fixed mass, the concentration is a stochastic
variable, with a log-normal probability distribution function:

pðcjm; zÞdc ¼ 1ffiffiffiffiffiffiffi
2�

p
�ln c

exp

�
� ln 2½c= �cðm; zÞ�

2�2
ln c

�
d ln c:

(19)

In such a case, the variance of concentration virtually does
not depend on the halo mass (�ln c ¼ 0:2–0:35; see [37]),
whereas the mean value of concentration depends on the
mass and redshift. This dependence (the term ‘‘mass
dependence of concentration’’ is used hereafter) can be
either determined by data of simulations or derived analyti-
cally; see [33,38,39]. Since the mass dependence follows
from the initial power spectrum of matter, the analytical
methods seem to be preferable. The changes in mass
dependence caused by modifications of shape or normal-
ization of the initial power spectrum can be easily taken
into account.
Analytical techniques aimed to study the mass depen-

dences of profile parameters are usually based on the treat-
ment of Ref. [33]. The data of simulations provide some
indications of the growth of profile specific density �s with
decrease of the halo mass. As was suggested in Ref. [33],
this is due to the tendency of less massive but higher
inhomogeneities to collapse earlier. It was assumed also
that the specific density of the halo, �s, is proportional to
the matter density of the Universe, taken for the moment of
collapse, i.e.

�s ¼ C�m�crð1þ zcolÞ3; (20)

with the proportionality constant C to be determined from
simulation.
The collapse time is defined in an ad hoc manner.

The collapse is assumed to start at some moment of time,
‘‘at which half the mass of the halo was first contained in
progenitors more massive than some fraction f of the final
mass’’ [40].
With the Press-Schechter formalism, this condition

implies

erfc

8<
:

�colðzcoljzÞ � �colðzjzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�2ðfMjzÞ � �2ðMjzÞÞp

9=
; ¼ 1

2
; (21)

leading to the equation

�colðzcoljzÞ ¼ �colðzjzÞ þ C0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðfMjzÞ � �2ðMjzÞ

q

’ �colðzjzÞ þ C0�ðfMjzÞ; (22)

where �2ðMjzÞ ¼ �2ðMÞðDðzÞ=Dð0ÞÞ2 and �2ðMÞ �
�2ðMjz ¼ 0Þ. Here, z is the moment of halo observation,
C0 � 0:7, and the term �2ðMjzÞ was neglected in com-
parison with �2ðfMjzÞ. The values of C and f ought to be
driven from simulation data. In Ref. [33], f was found to
be virtually independent of cosmological parameters at
� 0:01; meanwhile, the coefficient C� 103 and is
strongly determined by the background cosmological
model and/or the initial power spectrum.
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As far as C and f have been determined, the specific
density of the halo, �s, can be estimated by Eqs. (20) and
(22) for given halo mass M as well as the other halo
parameter, rs. Since there is no explicit analytical expres-
sion for dependence �colðzcoljzÞ in such a treatment, it
ought to be recomputed for each cosmology. Therefore,
the following simplification of Eq. (22) had been proposed
in Ref. [38]:

�ðfM�jzcolÞ ¼ 1:686; with f ¼ 0:01: (23)

Also, a simple approximation was proposed therein
for the concentration: c� ¼ Kð1þ zcolÞ=ð1þ zÞ, with K
estimated from numerical modeling as K ¼ 4.

As was shown in Ref. [39], the above-mentioned
estimation of the concentration parameter from power
spectra is applicable to CDM cosmology. However, it is
not the case for WDM, since wrong dependences follow
from it for smaller scales. According to the computer
simulations [39,41], for WDM the concentration tends
to grow with the mass increase, whereas for CDM the
contrary dependence is expected.

Since the power spectrum and mass dependence of
concentration share the same behavior of slopes, it was
proposed in [39] to replace Eqs. (22) and (23) by the
following:

�effðMsjzcolÞ ¼ C�1
� ;

�effðMjzÞ ¼ �ðMjzÞ
�
�d ln�ðMÞ

d lnM

�
;

(24)

where C� � 28 and the massMs is the one confined within
the radius rmax ¼ 2:17rs, where the rotational velocity of a
particle has a maximum (for the NFW profile). The follow-
ing estimation has been proposed in Ref. [39] for the
concentration:

c� ¼
�
�vcðzcolÞ ��mðzÞ
�vcðzÞ ��mðzcolÞ

�
1=3 1þ zcol

1þ z
: (25)

This approximation has an obvious drawback, as the
moment of collapse, zcol, should be somehow known in
advance, namely, by numerical evaluation using the itera-
tion method for (24). Here, we propose to eliminate these
computations by altering a few basic assumptions. The
specific density of the halo is assumed to be determined
primarily by the collapse of a roughly homogeneous cen-
tral region of the protocloud. The rest of the halo is formed
afterwards around this core by the infall of outer shells.
The boundary of the core could be defined as the point
where the slope of the density profile changes. Since the
accurate determination of such a boundary is cumbersome,
the mass of the core, Mc, can be estimated as the mass of
the halo contained within radius rc ¼ 	rs, where 	will be
estimated below. In other words, the value of the mean
internal density of matter within radius rc corresponds to

the density at the moment when dynamical equilibrium is
established.
According to these assumptions,

Mc ¼ 4

3
��virðzcolÞr3c ¼ 4

3
��vcðzcolÞ�crðzcolÞ	3r3s ; (26)

where �crðzcolÞ denotes the critical density at the moment
of zcol. On the other hand, integration of the density profile
(18) within rc yields

Mc ¼ 4��sr
3
s

�
ln ð1þ 	Þ � 	

1þ 	

�
: (27)

The total mass of the halo is

M ¼ 4��sr
3
s

�
ln ð1þ cÞ � c

1þ c

�

¼ Mc

ln ð1þ cÞ � c=ð1þ cÞ
ln ð1þ 	Þ � 	=ð1þ 	Þ ; (28)

where c is halo concentration.
In order to evaluate the specific density of the halo, �s,

the condition of collapse (21) should be redefined for the
core of protohalo of mass Mc and radius rc at the obser-
vation moment. So, the new condition takes the form

�colðzcoljzÞ � �colðzjzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�2ðfMcjzÞ � �2ðMcjzÞÞ

p ¼ const; (29)

where f < 1. The term �2ðMÞ in Eq. (22) should not be
neglected for accurate estimation of the concentration
dependence on the slope and amplitude of the power
spectrum (as in [39]). Moreover, it is crucial for the case
of WDM, because �2ðMÞ changes slowly at small values
of mass. So, we can rewrite Eq. (22) as a power series in
(1� f):

�colðzcoljzÞ � �colðzjzÞ þ C0
�
�d�2ðMcÞ

d lnMc

ð1� fÞ

� 1

2

d2�2ðMcÞ
d lnM2

c

ð1� fÞ2 � � � �
�
1=2 DðzÞ

Dð0Þ :

(30)

In the first order, one can obtain

�colðzcoljzÞ ’ �colðzjzÞ þ g

�
� d�2ðMcÞ

d lnMc

�
1=2 DðzÞ

Dð0Þ ; (31)

where g is a constant, the value of which can be drawn
from simulations.
To confront Eq. (31) with that of Ref. [39], the

approximation �colðzcoljzÞ ¼ �colðzcoljzcolÞDðzÞ=DðzcolÞ ’
1:686DðzÞ=DðzcolÞ is used, and the term �colðzjzÞ is
neglected, since for most of the halos zcol 
 z and thus
�colðzcoljzÞ 
 �colðzjzÞ. With these assumptions, Eq. (31)
is rendered to
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DðzcolÞ
Dð0Þ �effðMcÞ ¼ ð ffiffiffi

2
p

g=1:686Þ�1;

�effðMcÞ ¼ �ðMcÞ
�
� d ln�

d lnMc

�
1=2

:

(32)

The difference between Eqs. (24) and (32) is apparent,
namely, the powers of derivatives: 1=2 in (32) versus 1 in

(24). Moreover, the values of constants
ffiffiffi
2

p
g=1:686 and C�

are not necessarily equal, as the masses Mc and Ms are
defined by different radii: rc ¼ 0:5rs and rmax ¼ 2:17rs,
respectively. Hereafter, we advocate the use of Eq. (31) as
more accurate and rigorously following from the condition
of Ref. [33].

At the next step, to estimate the parameters of the
density profile of the halo, the critical amplitude
�colðzcoljzÞ should be linked with the relative density of
the virialized perturbation, �vcðzcolÞ. For this, xvir must be
evaluated from Eq. (15) by using the next expression for
local curvature:

�fðzcolÞ ¼ �K � 5

3
�m

�colðzcoljzÞ
DðzÞ (33)

obtained from Eq. (6). Furthermore, the parameter of the
halo density profile rs as a function of Mc can be found
by evaluating the critical amplitude �colðzcoljzÞ for given
mass Mc with (31) along with Eqs. (15) and (33), above-
mentioned definitions, and Eq. (26):

rs ¼ xvir
	

�ðMc=10
12h�1M�Þ

1:163�m

�
1=3

; (34)

where rs has dimension Mpc=h and we have taken
into account that 4��crð0Þ=3 ’ 1:163� 1012M�h�1=
ðMpc=hÞ3. The specific density of the halo, �s, is evaluated
from Eq. (27).

As long as the ratio of the mean density of the halo to the
specific density is a function of concentration c:

�halo

�s

¼ 3M

4�r3vir�s

¼ 3

c3

�
ln ð1þ cÞ � c

1þ c

�
; (35)

and the concentration is a function of that ratio, the
approximation expression for which is given in Ref. [16]:

c ’
�
2

3

�halo

�s

þ
�
1:1

2:0

�halo

�s

�
0:387

��1
: (36)

It is convenient to express the specific and mean
densities of the halo in units of critical density, i.e. �sc �
�s=�cr and �hc � �halo=�cr, or in units of the mean
density of matter, as �sm � �s= ��m and �hm � �halo= ��m

correspondingly. Thus, �halo=�s ¼ �hc=�sc ¼ �hm=�sm.
According to the condition used to define the halo radius
rvir, one of the values, either �hc or �hm, should be
constant for all halos; meanwhile, either �sc or �sm is
evaluated by formulas:

�sc ¼ �m

x3vir

H2
0

H2ðzÞ
	3=3

ln ð1þ 	Þ � 	=ð1þ 	Þ ; (37)

�sm ¼ 1

x3vir

1

ð1þ zÞ3
	3=3

ln ð1þ 	Þ � 	=ð1þ 	Þ : (38)

Then the total halo mass can be simply evaluated by using
Eq. (28).
The approximations for dependences of concentration

on mass are presented in Fig. 3 for CDM andWDM (for the
set of DM particle masses) along with the data of simula-
tions carried out by Ref. [41]. Also, we used the data of the
simulations to find the best-fit values for the parameters,
	 ¼ 0:7 and g ¼ 5:4, and plotted them along with the
approximation of the same authors for comparison; see
the bottom panel. All calculations were performed for a

FIG. 3. The dependences of concentration parameter c on halo
massM200 for different cosmologies. The data of simulations for
CDM (stars) and WDM with different masses of dark matter
particles (m ¼ 1 keV, diamonds; m ¼ 0:5 keV, triangles; m ¼
0:25 keV, squares) are taken from Ref. [41]. Top panel: Our
approximation for different parameters, 	 ¼ 0:5 and g ¼ 6:7,
dotted lines; 	 ¼ 0:7 and g ¼ 5:4, solid lines; and 	 ¼ 0:9 and
g ¼ 4:6, dashed lines. Bottom panel: The comparison of our
approximations (	 ¼ 0:7 and g ¼ 5:4, solid lines) with approx-
imations in Ref. [41] (dashed lines).
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number of �CDM and �WDM cosmologies with parame-
ters�m ¼ 0:2726,�� ¼ 0:7274, h ¼ 0:704, �8 ¼ 0:809,
and ns ¼ 0:963.

The values of halo concentrations correlate with halo
ages, so that the oldest halos are expected to have larger
concentrations (see [42] for details). According to hier-
archical CDM scenario of clustering, the halos of lower
masses should be formed in the first turn, and therefore
they should be of larger concentrations. Meanwhile, for the
WDM the perturbations at small scales are suppressed by
free-streaming. As a result, in the case of WDM the
low-mass halos are mainly formed after cooling of warm
dark matter caused by expansion of the Universe; hence,
they appear to have smaller values of concentration.

Another comparison of our predictions with simulations
is presented in Fig. 4, this time with respect to redshift
evolution. The evaluated dependence of halo concentra-
tion, c200, on massM200, is presented therein along with the
modeling data from Ref. [43], and the parameters of the
cosmological model are taken from the 5-year data release
of WMAP [44]:�� ¼ 0:721,�m ¼ 0:279,�b ¼ 0:0441,
h ¼ 0:719, �8 ¼ 0:796, and ns ¼ 0:963. Three plots rep-
resent dependences for the set of redshifts, z ¼ 0, 1, 2.
Quite good agreement is seen between our calculations and
the data of simulations at all redshifts.

IV. MASS FUNCTIONS OF HALOS AND
MATTER POWER SPECTRUM

The pioneering paper of Press and Schechter [45] intro-
duced an analytical approach to the statistical description
for galaxy cluster distribution. The model of spherical
collapse underpins this formalism; the halos are associated
with the peaks of an initial Gaussian field of density
perturbations. This Press-Schechter formalism utilizes the

halo mass function to describe the distribution of halos
over masses. The approach was refined and extended after-
wards in Refs. [46–48] to allow for the merger histories of
dark matter halos. The process of halo merging is assumed
to be hierarchical at the large scales and described with
a characteristic collapsing mass scale, mðtcolÞ, comple-
mented with the rms of density perturbations, �ðmÞ ¼
�colðtcolÞ. This mass grows with time through merging of
halos and should asymptotically approach in the distant
future the limitm1 at which �ðm1Þ ¼ �min , where �min is
the minimal amplitude of linear density perturbations
which can reach the turnaround point followed by collapse
and formation of virialized objects for a cosmologically
justified time (see for details [29]). For cosmology with
�min ¼ 0, the clustering of dark matter never ends in the
sense that all halos of the Universe will merge in the
far future.

A. Halo mass function

According to Ref. [46], the Press-Schechter mass func-
tion nðm; zÞ, i.e. the number density of gravitationally
bound objects with masses m at redshift z, is supposed to
satisfy the condition


Fð
Þ � m2nðm; zÞ
��m

d lnm

d ln

¼

ffiffiffiffiffiffiffi



2�

r
exp f�
=2g; (39)

where 
 � ð�colðtcolÞ=�ðmÞÞ2 and ��m is the background
matter density.
The Press-Schechter mass function is proven to be

qualitatively correct; however, in some details discrepan-
cies with the data of N-body simulations are found.
Therefore, a number of improvements to this approach
are proposed. For instance, the treatment of the collapsing
perturbations as ellipsoidal rather than spherical dimin-
ishes the discrepancies (see [49]). Indeed, by assuming
the average ellipticity of perturbation with mass m and

amplitude � to be emp ¼ ð�ðmÞ=�Þ= ffiffiffi
5

p
, a simple relation

was obtained in Ref. [50] to connect ellipsoidal and spheri-
cal collapse thresholds:

�ecðm; tcolÞ ¼ �colðtcolÞ
�
1þ 0:47

�
�ðmÞ

�colðtcolÞ
�
1:23

�
: (40)

Also, the excursion set model was used in Ref. [46]
to estimate the mass function associated with ellipsoidal
collapse:


Fð
Þ ¼ AðpÞð1þ 
�pÞ
ffiffiffiffiffiffiffi



2�

r
exp f�
=2g; (41)

where parameter p ’ 0:3 and function AðpÞ � ½1þ
2�p�ð1=2� pÞ= ffiffiffiffi

�
p ��1 ’ 0:3222 are determined by the

requirement that the whole mass is gathered within halos,
i.e. the integration of Fð
Þ over 
 yields unity. In order to
match the data of GIF numerical simulations, the mass
function (41) has been parameterized in Ref. [49] as

FIG. 4. The dependence of concentration, c200, on the mass
M200. The triangles represent the modeling by Ref. [43]. The
solid lines represent our results. The plots are given for the
redshifts z ¼ 0, 1, 2 in downward order.
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Fð
Þ ¼ AðpÞð1þ ðq
Þ�pÞ
ffiffiffiffiffiffiffi
q


2�

r
exp f�q
=2g: (42)

The additional parameter q was found to be q ¼ 0:707,
and later it was redetermined in Ref. [51] to be q ¼ 0:75.
The ellipsoidal threshold for such a mass function, esti-
mated in the framework of the excursion set approach [50],
is as follows:

�eqðm; tcolÞ ¼ q
1
2�colðtcolÞ

�
1þ 0:5

�
�ðmÞ

q
1
2�colðtcolÞ

�
1:2
�
: (43)

Two different algorithms are commonly used to identify
the dark matter halos within the data of numerical N-body
simulations: the friend-of-friend (FOF) algorithm [52] and
the spherical overdensity (SO) finder [53]. The FOF pro-
cedure depends on just one free parameter, b, which de-

fines the linking length as b �n�1=3, where �n is the average
density of particles. Thus, in the limit of a very large
number of particles per halo, FOF approximately selects
the halo as matter enclosed by an isodensity surface at
which � ¼ ��=b3. The SO algorithm finds the values of the
average halo density in spherical volumes of various sizes.
The criterion for halo identification is equality of the
average density over the sphere to certain value � ��m,
where ��m is the mean density of matter in the sample
and � is a parameter of the algorithm. For the NFW density
profile, these algorithms are not to be identical, as they lead
to different mass dependences of the halo concentration
parameter c. Nevertheless, the similarity of halo mass
functions was found in Ref. [54] by using SO (� ¼ 180)
and FOF (b ¼ 0:2) halo finders.

Hereafter, we refer to the halo as a gravitationally bound
system which has reached the state of dynamical equilib-
rium; meanwhile, both SO and FOF finders select the
groups of close particles regardless of their dynamical
properties. To divide such halos into virialized (relaxed)
and nonvirialized parts, it was suggested in Ref. [55] to
assess the dynamical state of each halo processed by the
FOF algorithm by means of three objective criteria: (i) the
substructure mass function fsub, (ii) the center of mass
displacement s ¼ jrc � rcmj=rvir, and (iii) the virial ratio
2T=U. In Ref. [56], the rms of the NFW fit to the density
profile has been used, too.

As far as virial density �vir ¼ �cr�vc ¼ ��m�vm, it
seems appropriate to use the SO halo finder with � ¼
�vm ¼ �vc=�m. The equality � ’ 180 is valid for any
redshift in flat �m ¼ 1 cosmology (this is close to the b ’
0:2 for the FOF algorithm); meanwhile, for the �CDM
cosmology with�m ¼ 0:3,�� ¼ 0:7, the quantities � and
b depend on redshift: � ’ 97=0:3 ’ 324 (b ’ 0:164) at z ¼
0 and slowly decrease (increase) to the limit � ’ 180 (b ’
0:2) at high z. However, as is shown in Ref. [54], the shape
of mass function is invariant if we simply identify clusters
with a constant linking length b ¼ 0:2 for all redshifts and
cosmologies.

The halo mass function derived fromN-body simulations
of the GIF/Virgo Collaboration is plotted in Fig. 5. The
catalogs of halos were built from simulations and made
available2. For each halo detected by the FOF algorithm
(b ¼ 0:2) the catalogs include the mass M200, confined
within the central part of the halo with overdensity �vm ¼
200 (see [57] for details). The mass rescaling slightly affects
the observed mass function. We have redetermined the
parameters of the Sheth-Tormen approximation to be p ¼
0:32 and q ¼ 0:76. As follows from Fig. 5, the refined
parameters provide a better fit for the data than the ones
from Ref. [49], namely, p ¼ 0:3 and q ¼ 0:707. The mass
function is defined here as a number density of halos with
masses exceeding the specified mass m:

Nð>mÞ ¼
Z 1

m
nðm0; zÞdm0 ¼

Z 1

m

��m

m0 
Fð
Þ
d ln


dm0 dm0:

(44)

Note that variations in FOF or SO halo finder parameters
also alter the total number of detected halos; meanwhile, the
mass rescaling influences the shape of the mass function,
not the total number of halos.
The Press-Schechter formalism [45] implies that halos are

shaped out of regions with initial overdensities � � �col, i.e.
the collapsed ones. However, this does not prevent the
initially lower overdensities � < �col to reach the value
�vm. For the nonlinear overdensity �M ¼ 180, the corre-
sponding initial amplitude of the density perturbation (in the

FIG. 5. The halo mass function for different redshifts (z ¼ 0,
1.05, 1.94, 2.97, 4.04 from top to bottom). The dashed lines are
the Sheth-Tormen approximation with parameters p ¼ 0:3 and
q ¼ 0:707 [49], the dotted lines show the same approximation
with modified parameters p ¼ 0:32 and q ¼ 0:76, and diamonds
show results from N-body numerical simulations performed by
the GIF/Virgo Collaboration [57].

2http://www.mpa-garching.mpg.de/GIF
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units of the critical one) is q
1
2 � ��=�col ’ 0:95, as follows

from (12). Thus, the SO algorithm (� ¼ �vm ¼ �M þ 1)
can by chance mark as halos the nonvirialized regions, the

initial amplitude of which exceeds q
1
2�col but is less than �col

(for spherical overdensities).
It seems reasonable to assume that the elliptical ‘‘q

threshold’’ �eq is directly connected to the spherical q

threshold q
1
2�col through (43) just in the same manner as

the elliptical collapse threshold �ec is related to the spheri-
cal collapse threshold �col with (40). However, the estimate
obtained above, q ’ 0:952 ’ 0:90 for �vm ¼ 180, substan-
tially deviates from q ’ 0:75, estimated by numerical
simulations using the FOF (b ¼ 0:2) and SO (� ¼ 180)
algorithms. The large halos are supposed to be close to
spherical, so their mass distribution should comply with
the Press-Schechter one. More interestingly, when �col in
(39) is replaced by the spherical q threshold 0:95�col (0:9

for 
), a good match to numerical simulations is attained
for large 
 and therefore large masses. However, the Press-
Schechter mass function tends to overestimate the number
of halos with smaller masses, because low-mass protohalos
are more elliptical and therefore according to (40) need a
larger initial amplitude to became a halo.

B. The dark matter power spectrum

A luminous object is determined by clumping of baryon
matter, which in turn is tightly governed by the gravita-
tional potential of dark matter. Hence, the observable
spatial distribution of galaxies should follow the distribu-
tion of dark matter, since the latter dominates by density.
So, in order to reconstruct the observable distribution of
galaxies, the characteristics of the distribution of dark
matter are needed.

1. Two-point correlation function and power spectrum
of discrete and continuous distributions

In statistics, the inhomogeneity of spatial distribution is
usually described either by the two-point correlation func-
tion or by its Fourier transform, the power spectrum. The
latter can be directly drawn by the Fourier transformation
of relative density fluctuations. In the case of continuous
distribution, it is

�ð~rÞ ¼ ð2�Þ32V1
2

Z
�~ke

�i ~k ~rd3 ~k ¼ ð2�Þ32
V

1
2

X
~k

� ~ke
�i ~k ~r; (45)

where V denotes ‘‘volume of periodicity’’ to be properly
chosen. The coefficients of (45) are

�~k ¼
1

ð2�Þ3=2V1=2

Z
�ð~rÞei ~k ~rd3 ~r¼ V

1
2

ð2�Þ32
X
~r

�ð~rÞei ~k ~r: (46)

The Fourier amplitude, squared and averaged over the

different directions of vector ~k, yields the power spectrum
P ðkÞ ¼ hj�~kj2i. The two-point correlation function is read-
ily derived from the given power spectrum:

�ðrÞ ¼ h�ð~r0Þ�ð ~r0 þ ~rÞi ¼ ð2�Þ3
V

X
~k

hj�~kj2iei ~k ~r

¼
Z

d3 ~khj�~kj2iei ~k ~r ¼ 4�
Z 1

0
k2dkP ðkÞ sin ðkrÞ

kr
;

(47)

as well as variance of the amplitude within the sphere of
radius R:

�2ðRÞ ¼ h�2
Ri ¼ 4�

Z
k2P ðkÞW2ðkRÞdk

¼
Z

�2ðkÞW2ðkRÞd ln k; (48)

where WðxÞ ¼ 3ðsin ðxÞ � x cos ðxÞÞ=x3 is a window func-
tion for the sphere and the quantity �2ðkÞ ¼ 4�k3P ðkÞ is a
‘‘dimensionless’’ power spectrum.
The power spectrum is evaluated from the correlation

function as

P ðkÞ ¼ 1

ð2�Þ3
Z

d3 ~re�i ~k ~r�ðrÞ: (49)

The galaxy catalogs (and the data of numerical simula-
tions) involve discrete distributions of objects (‘‘particles’’).
Thus, Eqs. (45) and (46) should be rewritten with �ð ~rÞ ¼P

imi�Dð~r� ~riÞ, wheremi is the mass of the ith particle and
�Dð ~r� ~riÞ is the three-dimensional Dirac function,

�~k ¼
1

ð2�Þ3=2hmi �nV1=2

X
i

mie
�i ~k~ri ; (50)

�n is the spatially averaged number density of particles, and
hmi ¼ P

mi=ð �nVÞ is the mean mass.
The relation of the power spectrum to the correlation

function is provided in Ref. [58], where

P ðkÞ ¼ hm2i
ð2�Þ3 �nhmi2 þ

1

ð2�Þ3
Z

d3 ~re�i ~k ~r�ðrÞ; (51)

with hm2i ¼ P
m2

i =ð �nVÞ. The first term in the right-hand
side is a shot noise, denoted henceforth by P shot. It is
inherent for discrete distribution and caused by finiteness
of the number density of particles �n. At �n ! 1, i.e. for
continuous distribution, Eqs. (49) and (51) converge. The
second term in the right-hand side of (51) is denoted
henceforth as P �ðkÞ to emphasize the nonrandom (corre-

lated) nature of distribution. Thus, Eq. (51) can be written
in a more compact form as P ðkÞ ¼ P shot þ P �ðkÞ.

2. Nonlinear power spectrum in the halo model

Within the halo model, the distribution of matter is
treated in a mixed, discrete-continuous manner. The distri-
bution of spatially separated halos of different mass is
considered, and the distribution of matter within each
halo is described by continuous density profile (18).
Therefore, the power spectrum is split into two terms:
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one to describe the distribution of halos and the second to
describe the distribution of matter within an individual
halo. The splitting can be derived rigorously by taking
into account that Fourier amplitudes of the density pertur-
bations are (see for details Appendix A)

�~k ¼
1

��

Z 1

0
m � nðmÞ�~kðmÞ �yðm; kÞdm: (52)

The �� ¼ ��0
m=a

3 is an average matter density at the
moment of time determined by scale factor a ¼
ð1þ zÞ�1, and nðmÞ is the number density of halos with
mass m in comoving coordinates, estimated with (42).

The function �yðm; kÞ is a Fourier transform of density
profile (18) expressed explicitly by analytical form

�yðm; kÞ ¼ 4�

m

Z rvir=a

0

sin ðkRÞ
kR

�ðRaÞR2dR

¼ 4��sr
3
s

ma3

��
Si

�
krs
a

ð1þ cÞ
�
� Si

�
krs
a

��
sin

�
krs
a

�

þ
�
Ci

�
krs
a

ð1þ cÞ
�
� Ci

�
krs
a

��
cos

�
krs
a

�

� a

ð1þ cÞkrs sin
�
c
krs
a

��
; (53)

where c is the halo concentration, �s and rs are parameters
of the density profile, and SiðxÞ and CiðxÞ are integral sine
and cosine, respectively. The halo profile depends on the
physical coordinates, while the power spectrum is associ-
ated with comoving coordinates as R ¼ r=a. The term
4��sr

3
s=m can be expressed via halo concentration

parameter c by using Eq. (28).
The power spectrum P ðkjm;m0Þ of the spatial distribu-

tion of halos with given masses m and m0 is the following:

P ðkjm;m0Þ ¼ 1

2
h�

~k
ðmÞ�~kðm0Þ þ �~kðmÞ�

~k
ðm0Þi

¼ �m;m0

ð2�Þ3nðmÞ þ P �ðkjm;m0Þ;

where �m;m0 is the Kronecker symbol, P �ðkjm;m0Þ is the
Fourier image of the two-point cross-correlation function
of the halos, and the angle brackets in the right-hand side

denote the averaging over the directions of ~k.
After a series of mathematical transformations, we

obtain

P ðkÞ ¼ 1

ð2�Þ3 ��2

Z 1

0
m2 � nðmÞj �yðm; kÞj2dm

þ 1

��2

Z 1

0
m � nðmÞ �yðm; kÞdm

�
Z 1

0
m0 � nðm0Þ �yðm0; kÞdm0P �ðkjm;m0Þ: (54)

The quantity nðmÞ is a number density of halos of
masses m.

Under the assumption of linearity, the cross-correlation
power spectrum can be represented as P �ðkjm;m0Þ �
bðmÞbðm0ÞP linðkÞ, where P linðkÞ is the linear power spec-
trum of spatial distribution of matter and bðmÞ is the
biasing parameter which characterizes the skew between
distributions of halos and matter.
The requirement of homogeneity at largest scales im-

poses that expression (54) has to asymptotically approach
zero for small wave numbers k. Nevertheless, the first
term in the right-hand side of (54) never diminishes,
because the binning of matter into separate halos (a
kind of discretization) introduces noise into the proce-
dure. The expression for noise is derived from the first
term in (54) by letting the distribution of halo matter be
homogeneous and substituting of the Fourier image of
profile �yðk; mÞ by the window function WðkRÞ, where

R ¼ ð3m=ð4� ��mÞÞ1=3. After noise elimination the final
expression for the power spectrum of spatial distribution
of dark matter is the following:

P ðkÞ ¼ 1

ð2�Þ3
Z 1

0

�
m

��

�
2
nðmÞ½j �yðm; kÞj2 �W2ðkRÞ�dm

þ
�Z 1

0

m

��
b1ðmÞnðmÞ �yðm; kÞdm

�
2
P linðkÞ: (55)

In accordance with Ref. [59], the factor ½j �yðm; kÞj2 �
W2ðkRÞ� is used instead of ½ �yðm; kÞ �WðkRÞ�2, as
mentioned in the review [21] on the halo model. It should
be stressed that at the quasilinear stage it yields rather
small deviations from the numerical simulation3 because
½j �yðm; kÞj2 �W2ðkRÞ� � ½ �yðm; kÞ �WðkRÞ�2 at k� 1=R.
With Eq. (55), the power spectrum of dark matter is

computed for the broad range of scales to confront our
estimations with the results of Large Box and GIF2N-body
simulations available from Max Planck Institute for
Astrophysics in Garching. The results of the simulation
are released as files with coordinates, velocities, and iden-
tification numbers of particles. The parameters of simula-
tions, namely, the total number of particles, the size of box,
the mass of particles (assumed equal for all particles), and
the scale of smoothing are presented in Table I. The latter is
introduced in order to eliminate numerical singularities
due to particle proximity, when floating-point errors are
difficult to control.
To reproduce the structure at small scales, a simulation

should engage the high number density of particles. On the
other hand, large volume is required to reproduce properly
the structure at large scales. A pursuit to simultaneously
meet both requirements leads to the huge numbers of
particles and consequently to the enormous amount of

3At the quasilinear stage, the shape of the power spectrum is
still mainly determined by the shape of the initial power spec-
trum, yet already differs from it (see [60] for details). The halo
model tends to underestimate the power at the quasilinear stage
[21], in comparison with numerical simulations.
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computational efforts. So, the commonly used trick is to
run separate simulations for the largest and smallest scales.
The Large Box simulations cover large volumes, whereas
the GIF2 simulations provide us with data for small scales
with a larger number density of particles.

The power spectrum was evaluated by computation of

the sums, Srð ~kÞ ¼ P
i cos ð ~k~riÞ and Sið ~kÞ ¼ P

i sin ð ~k~riÞ,
followed by overall summation, P ð ~kÞ ¼ ðSr2ð ~kÞ þ
Si2ð ~kÞÞ=ðð2�Þ3 �n2VÞ. The final power spectrum was esti-

mated by averaging over directions of ~k. To eliminate the
noise, the power spectrum of homogeneous distribution
was computed in advance and substracted later from the
total power spectrum.

In Fig. 6, the results are presented for different techniques.
The dark matter power spectrum predicted by our halo
model, Eq. (55), apparently matches the LB/GIF2 nonlinear
power spectrum through all scales up to k� 100 h=Mpc.
Also, the PD96 [61] and HALOFIT [60] approximations are
plotted therein, based on the halo model of Hamilton et al.
[62], as well as scaling relations and fits to numerical

simulations. All these approximations appear to properly
fit the LB/GIF2 nonlinear power spectrum at thewhole range
of scales. The linear power spectrum was evaluated by
analytical approximation from Ref. [63] (lower solid line in
Fig. 6) and normalized to �8 ¼ 0:9.
Since the nonlinear corrections are not essential at

k 	 0:2 h=Mpc, the power spectrum appears to be linear
there (Fig. 6). The nonlinear clustering enhances the power
spectrum at smaller scales, k > 0:2 h=Mpc. Both approx-
imations, our (55) and HALOFIT, reproduce such behavior
appropriately. The consistency of our estimation with nu-
merical simulation data and the HALOFIT approximation
proves the plausibility of our approach.
The halomass function inWDMcosmology is expected to

decline at low masses as nhðmÞ¼ð1þmhm=mÞ�0:6nSTðmÞ
[41], where nSTðmÞ denotes the Sheth-Tormenmass function
described in Sec. IVA. TheWDMtends to clump less, so that
contributes largely to a smooth component of the density
field, �s, with �� ¼ ��h þ ��s [41,64]. To treat the WDM
within the framework of the halo model, the separate parti-
cles of dark matter are considered as point halos with mass
mDM, immersed into a smooth component. Thus, the total
number density of halos is

nðmÞ ¼ nhðmÞ þ ��s

mDM

�Dðm�mDMÞ: (56)

With substitution to (55), similarly to Ref. [64], the power
spectrum

P ðkÞ ¼ 1

ð2�Þ3
Z 1

0

�
m

��

�
2
nhðmÞ½j �yðm;kÞj2 �W2ðkRÞ�dm

þ
�Z 1

0

m

��
b1ðmÞnhðmÞ �yðm;kÞdmþ bs

��s

��

�
2
P linðkÞ;

where the biasing factor of the smooth component can be
obtained from

bs
��s

��
¼ 1�

Z 1

0

m

��
b1ðmÞnhðmÞdm:

The applicability of these formulas was verified by
comparison with the results of numerical simulations
from Ref. [65]. The initial distribution of warm dark matter
particles for simulation was generated by the following
linear power spectrum:

P ðwdmÞ
lin ðkÞ ¼ P ðcdmÞ

lin ðkÞ½ð1þ ð�kÞ2
Þ�5=
�2; (57)

with 
 ¼ 1:12. The parameter � (in units of Mpc=h)
depends on the mass of WDM particlesmwdm, their density
�wdm, and Hubble parameter as

�ðmwdmÞ ¼ 0:049

�
1 keV

mwdm

�
1:11

�
�wdm

0:25

�
0:11

�
h

0:7

�
1:22

(see also [66,67]).
The nonlinear power spectrum of matter density

perturbations at z ¼ 0:5 was evaluated by (55) for the

FIG. 6. Dark matter power spectrum from LB (asterisks) and
GIF2 (diamonds) simulations. Solid lines represent the primor-
dial linear power spectrum from Ref. [63] (lower line) and our
predictions for a nonlinear one (upper line). Dash-dotted lines
show the ‘‘halo-halo’’ and the ‘‘shot noise’’ components. Dotted
and dashed lines represent PD96 [61] and HALOFIT [60]
approximations, respectively. The parameters of the �CDM
model here are as follows: ð�m;��; h; �8; nsÞ ¼ ð0:3; 0:7; 0:7;
0:9; 1Þ.

TABLE I. The parameters of Large Box (LB) and GIF2 simu-
lations, available from Max Planck Institute for Astrophysics in
Garching (http://www.mpa-garching.mpg.de).

Simulation

Number of

particles L (Mpc=h) mp (Msun=h) lsoft (Kpc=h)

GIF2 4003 110.0 1:73� 109 6.6

LB 5123 479.0 6:86� 1010 30
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�CDM and �WDM cosmologies with parameter set
ð�m;��;�b; h; ns; �8Þ ¼ ð0:2711; 0:7289; 0:0451; 0:703;
0:966; 0:809Þ and two masses of warm dark matter
particles, mwdm, 1 and 0.5 keV, the same as in Ref. [65].
Figure 7 represents the relative discrepancies (percent-
age) between nonlinear power spectra of cold and
warm dark matter (solid lines); also, the corresponding
spectra from simulations are plotted along (Fig. 7 in
[65]). Our results reveal qualitative consistency with
simulations; however, quantitative differences are still
noticeable.

It is worth mentioning the discrepancy of halo model
and numerical simulations in the case of warm dark matter
[68]; see the bottom panels of Fig. 7 in Ref. [65] (green
line). That estimation appears to be suppressed in compari-
son with numerical simulation and seems to be closer to
our results. The plausible explanation is that the low-mass
halos are more clustered in WDM models than in CDM
ones. As was noted in Ref. [69], ‘‘formation of low mass
halos almost solely within caustic pancakes or ribbons
connecting larger halos in a ‘cosmic web’’’ and ‘‘voids in
this web are almost empty of small halos, in contrast to the
situation in CDM theory.’’ This leads to larger values of
biasing at m<mhm in WDM models with respect to CDM
[41]. We assume that the reason why small halos with mass
below mhm are so strongly clustered is that they belong (at
least partially) to some larger halos (i.e. they are satellites).
Dashed lines in Fig. 7 represent the computations for the
case when masses of all halos are increased by 4%, to be
above mhm.

Note some aspects of the problem to be addressed in
further studies:

(i) The halos with mass <mhm can appear as a result of
(i) tidal stripping of dark matter from initially more
massive halos, (ii) evaporation of subhalos from
large mass halos, and (iii) clustering in the cold

component of dark matter.4 Clarification of the
contribution of each such mechanism is needed to
update properly the halo model.

(ii) When the power spectra were calculated, the
variance of the parameter of halo concentration
�ln c ¼ 0:25 was assumed to be the same for cold
and warm dark matter and independent of the halo
mass. It follows from Fig. 7 that the deviations can
be caused by the halo concentration variations.

(iii) The halo model by itself has a number of problems
and is not to be considered as ultimately accurate.
It is based on some strong assumptions and
contains a series of approximations and uncertain
statistical procedures and, thus, is prone to system-
atic errors.

C. The galaxy power spectrum

As the baryon gas falls into potential wells of virialized
dark matter halos and subhalos, it is heated up to a
virial temperature of T ¼ 1

2mpv
2
vir=kB � 2 � 1040:6

ðM=108M�Þ2=3½ð1 þ zÞ=10� K, where  ¼ 0:60:6 is the
mean molecular mass of postshock gas and M is the
mass of halo or subhalo progenitors. The temperature of
baryon matter gradually decreases afterwards due to the
cooling processes (see [3]). It results in fragmentation to
smaller clumps with Bonnor-Ebert mass, MBE ’ 700M�
ðT=200 KÞ3=2ðnb=104 cm�3Þ�1=2, where nb is the total
number density of baryon particles. At the final stage of
this fragmentation, the stars and galaxies are formed (see
[2,3] for details). Since formation of galaxies is driven by
the gravity of dark matter, the spatial distribution of
galaxies should track the spatial distribution of dark matter.
In other words, the fluctuations of dark matter density
�DMð~rÞ ¼ �DMð ~rÞ= ��DM � 1 correlate with fluctuations of
galaxy number density �gð~rÞ ¼ ngð~rÞ= �ng � 1.

In the halo model, the galaxy number density fluctua-
tions have the following Fourier amplitude:

�gj ~k ¼
1

�ng

Z 1

mmin

hNgjminðmÞ�~kðmÞ �ygðk;mÞdm (58)

(see Appendix B for details). Here hNgjmi is a mean

number of galaxies in the halo with mass m, �ygðk;mÞ is a
Fourier transform of the galaxy number density profile, and
mmin denotes the lowest limit for the halo mass, below
which no galaxies are formed. Such a limit naturally stems
from degrading efficiency of star formation in halos of
low mass [15] and conditions imposed on the sample of
galaxies (see [26,27]).
The considerations of the previous subsection are

summarized in the following galaxy power spectrum:FIG. 7. The difference (percent) between nonlinear power
spectra of the �CDM and �WDM models with ð�m;��;�b;
h;ns;�8Þ¼ð0:2711;0:7289;0:0451;0:703;0:966;0:809Þ and two
values of WDM particle mass: mwdm ¼ 1 keV and mwdm ¼
0:5 keV.

4The dark matter particles are collisionless, whence part of
them, having small velocities, can be considered as cold dark
matter.
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P gðkÞ ¼ 1

ð2�Þ3
Z 1

mmin

�hNgjmi
�ng

�
2
nðmÞ½j �ygðm;kÞj2

�W2ðkRgÞ�dm

þ
�Z 1

mmin

hNgjmi
�ng

b1ðmÞnðmÞ �ygðm;kÞdm
�
2
P linðkÞ;

(59)

where Rg ¼ ð3hNgjmi=ð4� �ngÞÞ1=3. The resulting equation

is similar to the corresponding expression for the galaxy
power spectrum from Ref. [21]. The difference is caused
by elimination of the noise as described above. Also, the
term hNgjmi2 has been obtained instead of hNgðNg � 1Þjmi
in Ref. [21]. For large-mass halos the term hNgjmi is

large, and it seems appropriate to assume the probability
distribution pðNgjmÞ to be one of Poisson. In this case

hNgjmi2 � hNgðNg � 1Þjmi. However, such an approxima-

tion is not valid for low-mass halos.
As it has been outlined in Ref. [14], galaxies within a

halo usually are disposed around the center (central gal-
axy) and within each of its subhalos (satellite galaxies).
This gives a clue how to find out the distribution of galaxies
over the halo and how it is connected to the substructure.
Massive halos usually undergo a violent relaxation, so the
resulting velocity dispersion does not depend on masses
of particles or subhalos. Therefore, for the number density
of the satellites within the halo the following equation is
appropriate:

nsgðrÞ ¼
X

m�m0
min

nshðm; rÞ

¼ X
m�m0

min

n0ðmÞ exp
�
�m�ðrÞ

kT

�

¼ n0g exp

�
� 3�ðrÞ

�2
v

�
¼ n0g

�s

�ðrÞ; (60)

where nshðm; rÞ denotes the dependence of the number
density of halo particles (subhalos) of massm on the radial
distance.

As above, we assume that galaxies are formed within
subhalos with masses m � m0

min , where m0
min is less than

mmin because subhalos usually lose mass due to tidal
deprivation of their outskirts. Baryon matter (stars) is con-
centrated to the center and more tightly bound; meanwhile,
dark matter is stripped off. Thus, a subhalo at the time of
observation is apparently a poor tracer of the potential
well, which still determines galaxy properties such as
stellar mass or luminosity. A better tracer is the subhalo
mass at the time when it falls into the host halo or its
maximal mass over its history [14,70]. For massive halos
with numerous satellites, the presence of the central galaxy
can be neglected. In such a case, as follows from (60), the
assumption �ygðm; kÞ ’ �yðm; kÞ is correct. This result agrees
with Ref. [71], where the spatial distribution of satellites is

studied by using SDSS spectroscopic and photometric
galaxy catalogs. They found that satellite profiles
generally have a universal form well fitted by the NFW
approximation.
However, as long as low-mass halos possess a small

number of galaxies, slow relaxation can be important as
well. As a result, the profile of satellite galaxy number
density generally deviates from the profile of dark matter
density. However, such a discrepancy is difficult to detect
because of large statistical uncertainties in the determina-
tion of the profile of the galaxy number density in such
halos. Let us note that in this case the presence of a central
galaxy could not be discarded.
The spatial number density of the galaxies is a sum of

the halo and subhalo number densities: ngð ~rÞ ¼ nhð ~rÞ þ
nshð ~rÞ. The spatial fluctuation of galaxy number density
can be thereby split into fluctuations of halo and subhalo
number densities:

�gð~rÞ ¼ nhð ~rÞ þ nshð ~rÞ
�nh þ �nsh

� 1

¼ 1

�nh þ �nsh
½ �nh�hð~rÞ þ �nsh�shð ~rÞ�; (61)

where as before the overlines denote averaging in space.
The corresponding Fourier amplitude takes the form

�gj ~k ¼
1

�nh þ �nsh
½ �nh�hj ~k þ �nsh�shj ~k�

¼ 1

�nh þ �nsh

Z 1

mmin

½1þ hNshjmi �yshðk;mÞ�nðmÞ�~kðmÞdm;

(62)

where hNshjmi is the average number of subhalos confined
within the halo of mass m, virtually the number of satel-
lites. Since the average number of galaxies accounts for a
central galaxy and satellites, hNgjmi ¼ 1þ hNshjmi. By
comparing Eqs. (58) and (62), one obtains

�ng ¼ �nh þ �nsh ¼
Z 1

mmin

½1þ hNshjmi�nðmÞdm

and

�y gðk;mÞ ¼ hNshjmi �yshðk; mÞ þ �ycðk;mÞ
hNshjmi þ 1

;

where �yshðk;mÞ is a Fourier image of the subhalo number
density profile; meanwhile, �ycðk;mÞ is a Fourier image of
the probability of finding the central galaxy within the
halo.
In cases of a strictly central location of ‘‘core’’ galaxies

in all halos with masses m, �ycðk; mÞ ¼ 1. For a massive
halo, hNshjmi 
 1, so �ygðk;mÞ ’ �yshðk;mÞ, whereas for a
low-mass halo, hNshjmi � 1, �ygðk;mÞ ’ �ycðk;mÞ. As fol-
lows from Eq. (60) for massive halos, we can assume
�yshðk;mÞ ’ �yðk;mÞ. For simplicity, let us extend this
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approximation to the case of a low-mass halo. It should
not bring significant errors to �ygðk;mÞ, because in the

case of hNshjmi � 1 the core galaxy is dominating, so
�ygðk;mÞ ’ �ycðk;mÞ.
To specify the dependence hNshjmi and to provide a

direct link to the galaxy sample, the CLF [11–13] or
CMF [14] can be used. The CLF, �ðLjmÞdL, yields the
average number of galaxies with luminosity L� dL=2
which reside within a halo of mass m. The CMF,
�ðmjmÞdm, yields the average number of galaxies with
stellar masses in the range m � dm=2 which reside
within a halo of mass m. The CMF (as well as CLF) can
be split into central (core) and satellite parts so that
�ðmjmÞ ¼ �sðmjmÞ þ�cðmjmÞ. This allows us to
calculate the average number of satellites with a stellar
masses exceedingm within the halo with massm (see [14]
for details):

hNshjm;mi ¼
Z 1

m
�sðm0jmÞdm0;

and the probability of finding the appropriate central
galaxy is

hNcjm;mi ¼
Z 1

m
�cðm0jmÞdm0;

where the upper limit is assigned to infinity, although it
actually does not exceed the halo mass m. To calculate the

power spectrum of galaxies, we assume that hNgjmi ¼
hNshjm;mi þ hNcjm;mi and

�y gðk;mÞ ¼ hNshjm;mi �yshðk;mÞ þ hNcjm;mi �ycðk;mÞ
hNshjm;mi þ hNcjm;mi :

(63)

The average number of galaxies with a stellar mass larger
than m is given by

�ng ¼
Z 1

0
½hNshjm;mi þ hNcjm;mi�nðmÞdm: (64)

Similar calculations are valid for CLF. Hence, the halo
model describes the connection between galaxy power
spectrum and stellar masses or luminosities of the sample
of galaxies.
Note that our approach differs from the one proposed in

Ref. [21], since it allows one to consider the displacements
of position of a central galaxy in halos. This is important
for small-mass halos which tend to have large ellipticity
and shallow potential wells. So, we predict that halos
which contain a single galaxy give a contribution to the
1st term of galaxy power spectrum (59), also called a
one-halo term.
To prove our approach, we calculate the galaxy power

spectrum along with error bars by using the CMF from
Ref. [14] for the �CDM cosmology with parameters

FIG. 8. The power spectra of galaxies (solid line) and dark matter (dotted line) calculated in the halo model for the �CDM
cosmology with ð�m;��; h; �8; nsÞ ¼ ð0:26; 0:74; 0:72; 0:77; 0:95Þ. The squares and triangles represent the observed galaxy power
spectrum from the PSCz [26] and SDSS [27] galaxy catalogs, respectively.
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ð�m;��; h; �8; nsÞ ¼ ð0:26; 0:74; 0:72; 0:77; 0:95Þ. The
initial dark matter power spectrum P linðkÞ was computed
with the CAMB code [72,73] for �b ¼ 0:05. The galaxy
power spectrum was evaluated by Eq. (63) and (59) with
WðkRgÞ replaced by

lim
P ðkÞ!0

�ygðk;mÞ¼hNshjm;miWðkRsÞþhNcjm;miWðkRcÞ
hNshjm;miþhNcjm;mi ;

where Rs¼ð3hNshjm;mi=ð4� �ngÞÞ1=3 and Rc¼ð3hNcjm;

mi=ð4� �ngÞÞ1=3. Also, it is assumed that

�yshðk;mÞ ¼
Z
allc

�yðk; rs; c0Þpðc0jm; zÞdc0; (65)

where �yðk; rs; cÞ denotes the dependence (53) and pðcjm; zÞ
is the probability distribution function for concentration
(19) with variance �ln c ¼ 0:25.

The obtained galaxy and dark matter power spectra are
presented in Fig. 8 along with observed galaxy power
spectra from the PSCz [26] and SDSS [27] galaxy catalogs.

The upper solid line represents the assumption that the
core galaxies in all halos with massesm are located strictly
in their centers, so �ycðk;mÞ ¼ 1. The lower solid line
represents the result for the assumption that central gal-
axies are homogeneously distributed over the spherical
volume of radius 1:1rs, so �ycðk;mÞ ¼ Wð1:1rskÞ. We de-
fine the lower limit on the stellar masses of the galaxies to
be m ¼ 5� 106M�.

Thus, at large scales, k 	 1 h=Mpc, the dark matter and
galaxy power spectra coincide, and at galaxy cluster scales,
1 	 k 	 20 h=Mpc, they are close and start to diverge at
smaller scales, k > 20 h=Mpc, where luminous matter is
substantially more clustered than dark matter.

V. CONCLUSIONS

The presented semianalytical treatment is our imple-
mentation of the halo model, and it is proven to be
correct in describing and interpretation of the clustering
of the matter at the nonlinear stage of evolution, in
both simulation and the observed Universe. Some of
the basic elements of the theory are reviewed and
improved to calculate the dark matter and galaxy power
spectra.

A new technique is proposed for calculating halo
concentration parameter c, with phenomenology of halo
merging, density profiles, and statistical properties taken
into account. The simple expression for estimation (36)
depends on the relation of the halo overdensity, �hc or
�hm, and corresponding characteristic halo overdensity,
�sc or �sm, respectively. This relation is evaluated without
computing redshift of halo collapse, zcol, by a set of
equations: (16), (31), (33), (36), and (37) or (38) as well.

Such a technique has been applied to calculate the concen-
tration parameter for the �CDM and �WDM cosmologi-
cal models, and the concordance with data of simulations
[39,43] for a vast range of halo masses (Figs. 3 and 4) has
been revealed.
The parameters of the Sheth-Tormen approximation for

the halo mass function were reevaluated as p ¼ 0:32 and
q ¼ 0:76 (see Fig. 5) to provide the best fit to the data of
GIF/Virgo N-body simulations [57] (see Fig. 5).
This modified and extended halo model enables one to

predict the dark matter and galaxy power spectra at small
scales up to k� 100 h=Mpc by means of semianalytical
methods: Eqs. (54), (55), and (59). The estimated spectra
agree with nonlinear power spectra determined from Large
Box and GIF2 N-body simulations (Fig. 6) as well as with
estimations by galaxy catalogs PSCz [26] and SDSS [27]
(Fig. 8). Moreover, with the assumption on the presence of
the central galaxies in all halos with masses m [ �ycðk;mÞ ¼
1], the technique predicts a galaxy power spectrum match-
ing well the observational one up to k� 20 h=Mpc.
Meanwhile, when the noncentral position of most massive
galaxies in halos is assumed [ �ycðk;mÞ ¼ Wð1:1rskÞ],
the predictions agree with the observational data up to
k� 80 h=Mpc.
The calculated nonlinear galaxy power spectrum for

the �CDM cosmology with ð�m;��; h; �8; nsÞ ¼
ð0:26; 0:74; 0:72; 0:77; 0:95Þ corresponds to the observatio-
nal one for lower limitation on the stellar masses of the
galaxies m ¼ 5� 106M�. To attain the same level of
agreement of the predicted galaxy power spectrum with
extracted from galaxy surveys at smaller scales (k >
80 h=Mpc), a new, much more complicated approach
for the formation of groups of galaxies should be
elaborated.
Despite the ambiguities in the definition of halo, deter-

mining of their mass, concentration, and substructure, the
halo model provides a good reproduction of such charac-
teristics of large-scale structure of the Universe as the
power spectrum and correlation function of the spatial
distribution of dark matter and galaxies. In this paper, we
have shown how the relation between statistics of the dark
matter clustering obtained from numerical simulations and
galaxy statistics obtained from large galaxy surveys allows
one to calculate the power spectrum of the spatial distri-
bution of the galaxies.
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APPENDIX A: FOURIER MODES OF DARK MATTER DENSITY INHOMOGENEITIES

The power spectrum can be derived in a more rigorous manner by the series of following mathematical transformations:

�~k ¼
1

ð2�Þ32V1
2

Z
V
�ð~rÞei ~k ~rd3 ~r ¼ 1

ð2�Þ32V1
2

X
i

ei
~k~ri
Z
Vi

�ð~r� ~riÞ
��
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~kð ~r�~riÞd3ð~r� ~riÞ
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ð2�Þ32 ��V1
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�
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�
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�
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2nðmjÞ

XNj

l¼1

ei
~k~rlylðk;mjÞ

�
¼ 1

��

Z 1

0
m � nðmÞ�~kðmÞ �yðm; kÞdm:

Here, the integration over the whole volume V has been
split into integrations over volumes Vi, each occupied by
spatially separated halos; the Fourier transform of the ith
density profile we denote as yiðkÞ—it is normalized by its
masses mi. The halos are binned into subsets with equal
massesmj, and the number of halos is denoted byNj. Also,

it was assumed that the halos of equal masses have
identical density profiles and, correspondingly, their
Fourier transforms, �yðm; kÞ, are identical, too. �~kðmÞ is a
denotation of the Fourier amplitude of the spatial distribu-
tion of halos with masses m. The summation has been
changed to the integration.

APPENDIX B: FOURIER MODES OF GALAXY NUMBER DENSITY INHOMOGENEITIES

The Fourier amplitude for relative fluctuations of galaxy concentration takes the following form:

�gj ~k ¼
1

ð2�Þ32V1
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hNjminðmÞ�~kðmÞ �ygðk;mÞdm:

Here, as in Appendix A, the integration over the whole
volume V was replaced by integration over the number of
volumes Vi, filled by spatially separated halos. The Fourier
images of profiles of the concentration of galaxies in
the halo are normalized by their number Ngji; the
Fourier image of the ith profile of galaxy concentration
is denoted by ygjiðkÞ. The halo was partitioned into
subsets of equal masses m and normalized by means of
index jm.

It was assumed that halos of equal masses have identical
profiles of galaxy concentration, so their Fourier images
�ygðm; kÞ are identical; the sets of halos with equal massesm

were partitioned into subsets containing the same number

N of galaxies and denoted as nðm;NÞ. The halo concen-
tration nðm;NÞ is represented as a product of concentration
of all halos with mass m and the conditional probability
of an event that these halos contain N galaxies each,
nðm;NÞ ¼ nðmÞpðNjmÞ. The designation was introduced
for the Fourier amplitude of the spatial distribution of
halos with masses m and containing N galaxies as
�~kðm;NÞ. It was assumed that the spatial distribution of

halos of mass m and number of galaxies N matches the
spatial distribution of all halos with masses m, �~kðmÞ ¼
�~kðm;NÞ. The average number of galaxies in a halo of

mass m is denoted as hNjmi ¼ P1
N¼0 NpðNjmÞ, and also

the sum was replaced by integration.
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