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We perform a semiclassical analysis of the emergent universe scenario for inflation. Fixing the

background, and taking the inflaton to be homogenous, we cast the inflaton’s evolution as a one-

dimensional quantum mechanics problem. The potential is taken to be flat or linear, as an approximation

to the monotonic and slowly varying asymptotic behavior of the emergent universe potential. We find that

the tuning required over a long time scale for this inflationary scenario is unstable quantum mechanically.

Considering the inflaton field value as a wave packet, the spreading of the wave packet destroys any

chance of both starting and ending with a well-formed state. Thus, one cannot have an Einstein static

universe to begin with that evolves into a well-defined beginning to inflation a long time later.
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I. INTRODUCTION

The ancient question of whether the Universe had a
beginning, or has existed eternally, has in recent decades
been brought into focus using the tools and knowledge of
general relativity (GR) and modern cosmology. The
question’s resolution, however, is still far from clear.
The standard Friedmann–Lemaı́tre–Robertson–Walker
(FLRW) big bang cosmology includes an initial singular-
ity, and there is a number of theorems purporting that such
singularities are generic [1], suggesting that classical
spacetime, at least, has a ‘‘beginning’’ in the sense of a
global spacelike surface at which classical GR breaks
down. However, these theorems all brook various excep-
tions and loopholes, and several scenarios have been de-
veloped that circumvent these theorems and form the basis
for classical or semiclassical ‘‘past eternal’’ cosmologies
(see Ref. [2] for review of some of these involving
inflation).

One scenario that has garnered significant attention is
the ‘‘emergent universe’’ of Ellis and Maartens [3]. This
cosmology has several attractive features: there is no initial
singularity or ‘‘beginning of time,’’ no horizon problem,
and (it is claimed) no quantum gravity era because the
curvature scale always greatly exceeds the Planck scale. In
this scenario at some early time, the Universe is a closed
FLRW cosmology that as time t ! �1 asymptotes to an
Einstein static universe, with a negative-pressure energy
component that stabilizes the universe against gravitational
collapse. Thus, the closed universe exists ‘‘eternally’’ but
then at some point begins inflation. That is, the first
e-folding of inflation takes an unbounded amount of

time, but the second and subsequent e-foldings proceed
essentially as usual, ending in reheating and ordinary
cosmological evolution.
A key question about this scenario is whether the initial

state can self-consistently exist for eternity. Classically, the
Einstein static universe is unstable to homogeneous per-
turbations but stable to inhomogeneous perturbations if the
fluid sound speed is sufficiently high [4]. This indicates
that eternality is possible in principle but only if the
homogeneous mode of the positive-pressure content pre-
cisely balances the negative energy repulsive component of
the energy density. This appears problematic, however, in
that we might expect that quantum fluctuations can desta-
bilize this careful balance, causing the universe to collapse
or expand uncontrollably.
In this paper, we examine the simplest version of the

emergent universe, based on a single rolling scalar field in
GR. Our analysis will treat the metric classically (and in
fact fixed) and assume the scalar field is homogeneous but
quantized. Treating the metric quantummechanically (e.g.,
using the Wheeler–de Witt formalism) or including aniso-
tropic perturbations seems very unlikely to increase the
cosmology’s stability. These assumptions allow us to cast
the problem as a simple one-dimensional quantum me-
chanics problem, following the method of Ref. [5], where
the degree of freedom is the value of the scalar field. This
reveals a result that is intuitively perhaps unsurprising: due
to the spreading of any wave packet, it is inconsistent to
have a well-defined state (Gaussian wave packet) in the
asymptotic past as an Einstein static universe as well as a
well-defined state at the beginning of inflation (i.e., at the
end of the first e-folding). We show this by analyzing both
a flat and nearly flat (linear) potential for the wave packet
evolution. Computing the probability of the initial state
evolving into a well-defined preinflationary state, we see
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that it is severely suppressed (and effectively zero in the
past eternal limit). We discuss these calculations and also
comment on the emergent universe in alternative gravita-
tional theories.

II. THE EMERGENT UNIVERSE

The emergent universe evades relevant singularity
theorems [1] by explicitly violating the assumptions that
K ¼ �1, 0 and H � _a=a > 0. The emergent universe is
closed, K ¼ þ1, and has H ¼ 0 initially. This scenario
does not bounce but starts as an Einstein static universe
with finite size in the infinite past, inflates, and then reheats
in the usual manner. In this way it avoids an initial singu-
larity and horizon problem, and the initial size can be large
enough for this scenario to avoid a quantum gravity era.
Although there is an infinite time for inflation, the amount
of inflation is finite (and can be made large).

The simplest setup for the emergent universe is an
Einstein static universe with a cosmological constant
[absorbed into the constant term of the scalar field’s po-
tential, Vð�Þ] and minimally coupled scalar field, �. The
Friedmann equations are

€a

a
¼ � 8�G

3
ð _�2 � Vð�ÞÞ; (1)

H2 ¼ 8�G

3

�
1

2
_�2 þ Vð�Þ

�
� K

a2
; (2)

where a dot represents a time derivative, G is Newton’s
constant, and aðtÞ is the scale factor using the conventions
of Refs. [3,5] (it has units of length1).

A positive minimum for the (initial) scale factor, a0,
2

has H0 ¼ 0 and

3K

8�Ga20
¼ 1

2
_�0

2 þ V0; (3)

where the zero subscript denotes the initial value (the same
time as a0 is defined). Furthermore, Eq. (1), since €a ¼ 0,
tells us that

_�0
2 ¼ V0: (4)

Then the value of the potential at this minimum, or the
initial vacuum energy, is

V0 ¼ K

4�Ga20
ð¼ _�2

0Þ: (5)

Here we see the beginning of a potential problem for the
emergent universe: the Einstein static universe requires a
precise balancing of the kinetic energy of the scalar field

with the vacuum energy. This balancing must persist if the
universe is to be considered static and thus will be sensitive
to quantum fluctuations in the scalar field. In this note we
attempt to analyze this problem via a ‘‘semiclassical’’-like
analysis.
One might also worry about the classical stability of the

Einstein static universe [4]. For the simplest case, we are
considering, where there is no matter, the static universe is
neutrally stable for inhomogeneous linear perturbations.
Homogeneous perturbations will break the balance of the
curvature to vacuum energy, leading to inflation; thus, to
perdure for an indefinite amount of time, this balance in the
zero-mode must be mathematically perfect. We do not
address concerns about this here.3 Rather, we assume that
such a perfect balance is maintainable classically and
investigate the same problem when quantized.

III. INFLATION AS ONE-DIMENSIONAL
QUANTUM MECHANICS

First, let us define our setup and conventions, which
follows closely from Ref. [3,5]. We will take the simplest
case of the universe filled with just a scalar field, �, in a
FLRW background with K ¼ þ1, scale factor aðtÞ, and
Hubble expansion rate H � _a=a. The scalar field obeys

€�þ 3H _�þ V 0ð�Þ ¼ 0; (6)

where the dots denote time derivatives, Vð�Þ is the inflaton
potential, and the prime denotes a derivative with respect to
the argument.
We can cast the evolution of the inflaton as a one-

dimensional quantum mechanics problem by making the
following simplifications:
(i) Treat the background geometry classically (and

fixed); the scale factor is not treated as a field.
(ii) Take the inflaton to be homogeneous and its value

everywhere in space, �, to be the ‘‘coordinate.’’
(iii) Take the inflaton momentum to also be homoge-

neous, and its value, _�, is proportional to the con-
jugate momentum.

From this setup, one sees that we are performing a type
of semi- or ‘‘quasiclassical’’ analysis. For the emergent
universe scenario in particular, this type of analysis will
shed light on the question of stability beyond purely clas-
sical considerations by being the next step in sophistica-
tion. The emergent universe’s behavior in the asymptotic
past should be that of a static universe, which then evolves
ever so slowly for an infinite amount of time. It makes
sense then to treat the background classically and indepen-
dently from the scalar field. However, the delicate tuning of
the scalar field’s kinetic energy leads us to consider any

1The mass dimension of other quantities is ½�� ¼ 1, ½�0� ¼ 1,
½T� ¼ 2.

2The dominance of the curvature term in the past, for suffi-
ciently long inflation, allows such a solution with K ¼ þ1 [6].

3For example, it seems likely that nonlinear coupling between
the modes would leak power from inhomogeneous modes to the
homogeneous mode, making the universe effectively unstable to
all perturbations [7].
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small deviations, especially over the infinite amount of
time. Thus, we treat the scalar field in a quantum mechani-
cal manner. And, as we shall see in the following sections,
our setup is enough to see a serious instability or incon-
sistency in the emergent universe’s evolution.

The Lagrangian4 is

L ¼ 2�a3ðtÞ
�
1

2
_�2 � Vð�Þ

�
: (7)

After performing the usual Legendre transformation, with

conjugate momentum p � 2�2a3ðtÞ _�, the Hamiltonian is

H ¼ 1

2

p2

2�2a3ðtÞ þ 2�2a3ðtÞVð�Þ: (8)

We now define our ‘‘wave function’’ as c ð�; tÞ, which
satisfies the Schrödinger equation from the above
Hamiltonian

i
@c

@t
¼ � 1

2

1

2�2a3
@2c

@�2
þ 2�2a3Vð�Þc : (9)

Taking the potential to have at most quadratic terms and
after the following (‘‘conformal time’’-like) time coordi-
nate change,

T ¼
Z 1

a3ðt0Þ dt
0; (10)

we rewrite the Schrödinger equation as

i
@c

@T
¼ � 1

4�2

@2c

@�2
þ uð�; TÞc ; (11)

with the potential uð�; TÞ given by

uð�; TÞ ¼ 2�2a6ðTÞðc2�2 þ c1�þ c0Þ; (12)

with the only T dependence coming from the prefactor
2�2a6ðTÞ and the � dependence explicit.

We now assume a Gaussian wave packet form for c ,
which we parametrize as

c ð�; TÞ ¼ AðTÞe�BðTÞ½��fðTÞ�2 ; (13)

with A, B, and f as arbitrary functions of T to be solved for.
We plug c into the Schrödinger equation, and by matching
coefficients of each power of �, we have a set of differen-
tial equations for A, B, and f (for more details, see
Ref. [5]).

It will also be useful to think of the wave function in
momentum space (the conjugate momentum, as defined
above), which is given by the usual Fourier transform,

~c ðp; TÞ ¼ ~AðTÞe�½pþ2iBðTÞfðTÞ�2=4BðTÞ; (14)

with ~AðTÞ � AðTÞ exp ½�BðTÞfðTÞ2�= ffiffiffi
2

p
BðTÞ.

IV. INSTABILITY OF THE EMERGENT
UNIVERSE SCENARIO

We can now apply the above framework to the emergent
universe. We will model the potential as being composed
of sections that are completely flat and sections with a
constant slope. This could model a potential that is per-
fectly flat as � ! �1, connected to a sloping portion at
�> 0, or one constructed out of segments that have a slope
approaching zero as � ! �1. In either case, we will
consider the field at some time T ¼ �T0 to be in a
Gaussian wave packet centered at �0 with initial spread
�0 and moving with velocity v0 (which may be zero). We
then evolve the wave packet to later times.
Formulated this way, stability concerns arise almost

immediately. For a given value of Vð�Þ, only one precise

value of _� yields stability, yet � and p / _� are subject to
an uncertainty relation.5 In momentum space, the wave
packet has nonzero width � / 1=�0, so at a given time,
unless � ! 0, there is an infinitesimal probability of a

measurement yielding the value of _� which gives stability.
With probability approaching unity, the field velocity
would have a value for which the universe would evolve
away from the emergent dynamics, into either empty de
Sitter space or a big crunch. Yet in the � ! 0 limit, the
value of � is completely uncertain, and one cannot de-
scribe the situation as a single classical universe.
Similarly, if we assume that the universe can always be

treated in a quasiclassical way (as implicitly assumed by
Ref. [3]), it should have compact support in both field and
field-velocity space. We can then ask the following: if the
wave function at time�T0 ! �1 is a wave packet of finite

width in both � and _�, is there any probability that it will
evolve into a quasiclassical configuration at time
T ¼ 0 at which inflation starts? This can be computed
within our model for either a flat or a constant-slope poten-
tial, as detailed in the next section and in the Appendix.

A. In a flat or linear potential

As a simplest calculation, we study the evolution of a
wave packet in a completely flat potential (c2 ¼ c1 ¼ 0),
which mimics the asymptotic behavior of the emergent
universe. In this case we will need to give the initial wave
packet some ‘‘kick’’ to have an initial nonzero velocity.
The initial state (at time T ¼ �T0) is a Gaussian wave

packet centered at �0 with initial spread �0 and moving
with velocity v0:

c ð�;�T0Þ ¼
�

1

2��2
0

�
1=4

e

�ð���0Þ2
4�2

0

þiv0�0

: (15)

4Note that this is not a Lagrangian density; we have already
integrated over space, hence the volume factor of 2�a3ðtÞ.

5The wave packets are initially minimum uncertainty wave
packets, saturating the uncertainty relationship between� and p,
���p � 1=2. As the packet evolves in the following potentials,
however, �� grows while �p is constant.
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At a time T, the wave packet evolves to

c ð�; TÞ ¼ 1

ð2��2
0Þ1=4

exp

�
�v2

0�
2
0 þ iv0�0

� �2

�ðTÞ ð���0 � 2iv0�
2
0Þ2

� i

2

Z T

�T0

1

�ðT0Þ ½1þ 2�ðT0ÞcðT0Þ�dT0
�
; (16)

with

�ðTÞ � 4�2�2
0 þ iðT0 þ TÞ; (17)

and cðTÞ � 2�2a6ðTÞc0. The center of the wave packet,
which is h�i, moves with constant velocity v as6

h�i ¼ �0 þ ðT0 þ TÞv0

2�2
; (18)

and the quantum mechanically uncertainty in � is

�2
� ¼ j�j2=16�4�2

0; (19)

while the conjugate momentum has

hpi ¼ v0; �p ¼ 1

4�0

: (20)

We now want to calculate the probability that a
well-formed initial wave packet at T ¼ �T0, centered at
� ¼ �0, will evolve into another ‘‘nice’’ wave packet
some time later, T ¼ 0, in this potential. For the final state
to compare with, we will use the initial wave packet with
its center shifted to be lined up with the wave packet that
evolved after time T0 (to time T ¼ 0). In other words, the
initial state is c ð�;�T0Þ, which evolves into c ð�; 0Þ,
which we compare to c ð�;�T0Þj�0¼T0v0=2�

2 . The proba-

bility we are calculating is

P ¼ jh�;�T0j�0¼T0v0=2�
2 je�iHT0 j�;�T0ij2

¼ jh�;�T0j�0¼Tv0=2�
2 j�; 0ij2: (21)

Before specifying the scale factor, the probability is

P ¼
�
T2
0

�2
þ 1

��1=2
; (22)

with � � 8�2�2
0. For a static universe, the scale factor is a

constant, which we set to a0, and T ¼ t=a30. For a long

evolution, we take T0 � �, and the probability, to leading
order in t, is

P � a30�

t0
� 1: (23)

Therefore, for a long evolution (� t0 ! �1) in a constant
potential, the probability of a wave packet evolving into
another well-defined wave packet after a time t0 is much
less than 1, falling like 1=t0.
Since the wave packet spreads in � space, the probabil-

ity could be greater if we allow the shifted final state wave
packet’s width to vary from �0. Call the width �1. The
probability (before specifying a scale factor) is then

P ¼ 8�2�0�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ 16�4ð�2

0 þ �2
1Þ2

q : (24)

This can be maximized to go like �0=
ffiffiffiffiffi
T0

p
, but only if

�1 /
ffiffiffiffiffi
T0

p
, which does not correspond to a well-defined

classical configuration for large T0; this is a more precise
version of the argument at the beginning of this section.
We also consider a linear potential with slope �b. Here

wewill very briefly summarize the results, while the details
of this calculation can be found in the Appendix. The field
now starts at rest and accelerates down the potential. The
final state we take the overlap with will also have a velo-
city. If this velocity exactly matches the velocity of the
wave packet which was evolved in the potential, then the
probability is the same as above, Eq. (23). If the velocities
do not match, there is an additional exponential suppres-
sion which depends on the slope�b. Any constraint on the
final velocity of the wave packet will then also constrain
the length of the linear potential (i.e., amount of time the
field evolves in the linear potential).

V. DISCUSSION AND CONCLUSIONS

The emergent universe paradigm represents an intrigu-
ing effort to construct a cosmology without a past classical
singularity. In this paper we have analyzed a version of this
model in which a scalar field evolves in a potential that is
flat or has a constant slope to approximate the asymptotic
behavior of the emergent universe potential. Assuming a
Gaussian wave packet form for the wave function of the
homogenous mode of the inflaton, we have derived the
evolution of the wave packet in these two types of poten-
tials with a fixed background geometry. We then answered
the following question: what is the probability of a well-
defined initial wave packet evolving into well-defined state
after a time t0? In both cases the probability is proportional
to 1=t0 for large t0. The emergent universe is built on an
infinite past, and thus this probability goes to zero.
It thus appears inconsistent to have both a well-defined

semiclassical approximation to the field and also have
infinite past nonsingular time. If the field has a well-defined
value at any given time (which might be posed as a
boundary condition), then evolving back in time, the
wave functional was spread over a range of values. The
field velocity will also always have a spread of different
values, most of which do not balance the negative pressure
term. If wewere to then include gravity, at yet earlier times,

6This is an example of an expression we rederived that is also
in Ref. [5], where we differ by a factor of 1=2 in front of T (the
other notable instances are the probability densities in Ref. [5]).
We believe this is a typo in these papers, but these factors make
no difference for our analysis.
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the universe would presumably be a superposition domi-
nated by expanding (from a singularity) or contracting
states.

We stress that we have analyzed only one version of the
emergent universe, with a simplified model. Nonetheless,
we believe that the effect that this analysis points to may
be rather generic. For example, consider alternative theo-
ries of gravity. The emergent universe has been studied
extensively in theories such as Hořava–Lifshitz, fðRÞ,
loop quantum gravity,7 and others (see, for instance,
Refs. [8–11], respectively). There have also been several
studies of the stability of the Einstein static universe in
alternative theories (see Ref. [12], for example). However,
in our framework we have, in a sense, decoupled gravity—
it enters only when assessing the affect of the spreading
wave functional. Even in alternative theories in which the
Einstein static universe is more stable than in standard
general relativity, we anticipate that once the wave func-
tional has spread enough, the geometry must follow, and
the spacetime becomes classically ill-defined as well as
containing portions corresponding to singularities.
Therefore, this seems like a generic (and perhaps expected,
given our construction of the scenario) problem with such
an eternal and precisely tuned inflationary scheme.

To avoid this behavior, the field velocity would have to
be stabilized by some mechanism at the correct value,
while still allowing for the field value to evolve appropri-
ately. The potential would have to remain constant for a
static universe, and thus some sort of (classical) driving
and damping terms seem to be necessary. It would also still
be difficult to arrange the appropriate initial conditions. It
is not immediately obvious how one can successfully
achieve this. Another alternative is perhaps a tunneling
scenario (for instance, Ref. [13]). However, then the uni-
verse is necessarily not eternal.

Models in which the field dynamics and material content
are very different would require separate analysis but may
lead to a similar basic conclusion. For example, Graham
et al. [14] construct static and oscillating universes with a
specific nonperfect-fluid energy component that are stable
against small perturbations. However, Mithani and
Vilenkin [15] have shown that this model is unstable to
decay via tunneling.

Although we have analyzed only one version of the
emergent universe, we would argue that our analysis is
pointing to a more general problem: it is very difficult to
devise a system—especially a quantum one—that does
nothing ‘‘forever,’’ then evolves. A truly stationary or
periodic quantum state, which would last forever, would
never evolve, whereas one with any instability will not

endure for an indefinite time. Moreover, the tendency of
quantum effects to destabilize even classically stable con-
figurations suggests that, even if an emergent model were
possible, it would have to be posed at the quantum (and
quantum-gravitational) level, largely undermining the mo-
tivation to provide an early state in which quantum gravi-
tational effects are not crucial.
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APPENDIX: LINEAR POTENTIAL CALCULATION

Here we analyze a potential with a small slope, so the
field rolls down the potential without a need for any initial
push as in Sec. IVA. The potential is given by

uð�; TÞ ¼ 2�2a6ðTÞð�b�þ cÞ; (A1)

and the initial condition is similar to the flat potential case,

c ð�;�T0Þ ¼
�

1

2��2
0

�
1=4

e

�ð���0Þ2
4�2

0 : (A2)

The wave function that solves the Schrödinger equation
in this potential with this initial condition is

c ð�;TÞ ¼ 1

ð2��2
0Þ1=4

exp

���2

�ðTÞ
�
���0

� ib
Z T

�T0

�ðT0Þa6ðT0ÞdT0
�
2

� i

2

Z T

�T0

1

�ðT0Þ
�
1þ4�2

�
c�b�0

� ib2
Z T0

�T0

�ðT00Þa6ðT00ÞdT00
�
�ðT0Þa6ðT0Þ

�
dT0

�
;

(A3)

with the same �ðTÞ as in Eq. (17).
We compute the same probability as in Sec. IVA, except

that in this case the wave packet’s center moves as

h�i ¼ �0 þ bðT0 þ TÞ2
2

; (A4)

and the momentum changes as

7In a quantum theory of gravity, the quantum aspect of our
analysis may be modified. In this case, our framework would
take place in a classical GR limit of quantum gravity (for
instance, the size of the initial universe is large) or cosmological
setting.
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hpi ¼ 2�2a60bðT0 þ TÞ; (A5)

where we again assume a constant scale factor (set to a0).
The uncertainties, �� and �p, are the same as for the

constant potential.
Compared to the flat potential, here the field velocity

increases with time, as

h _�i ¼ bðt0 þ tÞ: (A6)

If one wants the field velocity to remain below some
critical value (e.g., a slow roll condition), then this con-
strains both the potential and the amount of time the field
evolves in the potential.

To compute the probability as we did previously, the
final state shifted wave packet needs an additional phase to
account for a change in the momentum,

exp ½2�2ixa60bðT0 þ TÞ��; (A7)

where x is an arbitrary positive real number scaling the
momentum of the wave packet. With � � 8�2�2

0 as in

Sec. IVA, we find the probability at T ¼ 0 to be

P ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ �2

q exp

�
��2�a120 b2ðx� 1Þ2 T

2
0ðT2

0 þ 1
2�

2Þ
T2
0 þ �2

�
:

(A8)

For large t0 (again T0 ¼ t0=a
3
0 � �), the probability is

P � a30�

t0
exp ½��2�a60b

2ðx� 1Þ2t20�; (A9)

which falls exponentially fast, unless x ¼ 1 (maximizing
the probability with respect to x). In this case the wave
packets have the same final momentum, and the probability
reduces to the result of the flat potential,8

P � a30�

t0
: (A10)

Therefore, at best the linear potential can have the same
probability, proportional to 1=t0, as the flat potential.
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