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We investigate the cosmological predictions of several fðTÞ models, with up to two parameters, at

both the background and the perturbation levels. Using current cosmological observations (geometric

supernovae type Ia, cosmic microwave background and baryonic acoustic oscillation and dynamical

growth data) we impose constraints on the distortion parameter, which quantifies the deviation of these

models from the concordance � cosmology at the background level. In addition we constrain the

growth index � predicted in the context of these models using the latest perturbation growth data in the

context of three parametrizations for �. The evolution of the best fit effective Newton constant, which

incorporates the fðTÞ-gravity effects, is also obtained along with the corresponding 1� error regions.

We show that all the viable parameter sectors of the fðTÞ gravity models considered practically reduce

these models to �CDM. Thus, the degrees of freedom that open up to �CDM in the context of

fðTÞ gravity models are not utilized by the cosmological data leading to an overall disfavor of these

models.
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I. INTRODUCTION

The �CDM model is currently the simplest model
consistent with practically all cosmological observations.
It assumes homogeneity and isotropy on large cosmologi-
cal scales and the presence of a cosmological constant� in
the context of general relativity. Despite its simplicity and
its overall consistency with observations, �CDM has two
weak points:

(1) It requires a theoretically unnatural and fine-tuned
value for �.

(2) It is marginally consistent with some recent large
scale cosmological observations (for instance the
cosmic microwave background anomalies).

Motivated by these two weak points, a wide range of
more complex generalized cosmological models has been
investigated. Most of these models reduce to �CDM for
specific values of their parameters. They can be classified
in two broad classes: Modified gravity models constitute
the one class (see for instance [1]), with the other being
the scalar field dark energy that adheres to general rela-
tivity (see for instance [2,3]). Among the variety of modi-
fied gravity theories, fðTÞ gravity has recently gained a lot
of attention. It is based on the old formulation of the
teleparallel equivalent of general relativity (TEGR)
[4–6]. In teleparallel formulations the dynamical fields

are the four linearly independent vierbeins, while one
uses the curvatureless Weitzenböck connection instead
of the torsionless Levi-Civita one. Thus, one can con-
struct the torsion tensor, which includes all the informa-
tion concerning the gravitational field, and then by
suitable contractions one can write down the correspond-
ing Lagrangian density T [5] (assuming invariance under
general coordinate transformations, global Lorentz and
parity transformations, and requiring up to second-order
terms of the torsion tensor). Finally, fðTÞ gravity arises as
a natural extension of TEGR, if one generalizes the
Lagrangian to be a function of T [7–9], inspired by the
well-known extension of fðRÞ Einstein-Hilbert action.
However, the significant advantage is that although the
curvature tensor contains second-order derivatives of the
metric and thus fðRÞ gravity gives rise to fourth-order
equations which may lead to pathologies, the torsion
tensor includes only products of first derivatives of the
vierbeins, giving rise to second-order field equations.
Although TEGR coincides completely with general rela-

tivity both at the background and perturbation levels,
fðTÞ gravity exhibits novel structural and phenomenologi-
cal features. In particular, imposing a cosmological
background one can extract various cosmological solu-
tions, consistent with the observable behavior [7–13].
Additionally, imposing spherical geometry one can inves-
tigate the spherical, black-hole solutions of fðTÞ gravity
[14]. However, we stress that although TEGR coincides
with GR, fðTÞ gravity does not coincide with fðRÞ exten-
sion, but it rather constitutes a different class of modified
gravity.
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One crucial question is what classes of fðTÞ extensions
are allowed by observations. At the theoretical level, the
aforementioned cosmological and spherical solutions
lead to a variety of such expressions. However, taking
into account observational data, either from cosmological
[11,12,15,16] as well as from Solar System observations
[13], one can show that the deviations from TEGR must
be small.

In the present work we are interested in constraining
the fðTÞ forms using the latest cosmological data, both at
the background and perturbation levels. In order to do so
we need to define the Hubble parameter as a function of
redshift. The issue of using iterative techniques in order to
treat the Hubble expansion in fðRÞ gravity has been
proposed by Starobinsky in Ref. [17]. Furthermore, in a
recent paper some of us [18] used a new iterative ap-
proach in order to observationally constrain deviations of
fðRÞ models from �CDM and general relativity. In this
context, we first showed that all known viable fðRÞ mod-
els may be written as perturbations around �CDM with a
deviation parameter we called b (for b ¼ 0 these models
reduce to �CDM). Using a novel perturbative iterative
technique we were able to construct analytic cosmologi-
cal expansion solutions of a highly nonlinear and stiff
system of ordinary differential equations and impose
cosmological observational constraints on the deviation
parameter b.

We also showed that the observationally viable fðRÞ
models effectively include the cosmological constant
even though they were proposed as being free from a
cosmological constant in the original fðRÞ papers
[17,19]. Inspired by our previous similar work on fðRÞ
gravity [18], we extend it to the case of fðTÞ gravity models
and use the standard joint likelihood analysis of the recent
supernovae type Ia data (SnIa), the cosmic microwave
background (CMB) shift parameters, the baryonic acoustic
oscillations (BAO) and the growth rate data provided by
the various galaxy surveys. Based on these cosmological
observations we identify the viable range of parameters
of five previously proposed fðTÞ models. Additionally,
comparing the resulting analytical expressions of the
fðTÞ Hubble parameter with the numerical solutions at
low and intermediate redshifts, we verify that our iterative
perturbative technique is highly accurate.

The plan of the work is as follows: In Sec. II we briefly
discuss the main properties of the fðTÞ gravity, while in
Sec. III we apply the fðTÞ gravity in a cosmological
framework, providing the relevant equations both at the
background and perturbation levels. In Sec. IV we
present and we analytically elaborate on all the fðTÞ
models of the literature with two parameters (out of
which one is independent). In Sec. V we impose obser-
vational constraints, utilizing three parametrizations
of the growth index. Finally, the main conclusions are
summarized in Sec. VI.

II. fðTÞ GRAVITY

In this section we briefly review the fðTÞ gravitational
paradigm. In this construction the dynamical variables are
the vierbein fields eAðx�Þ.1 The vierbeins at each point x� of
themanifold formanorthonormal basis for the tangent space,
that is, eA � eB ¼ �AB, with �AB ¼ diagð1;�1;�1;�1Þ,
and they can be expressed in terms of the components e�A
in a coordinate basis as eA ¼ e�A@�. Therefore, the metric

tensor is obtained from the dual vierbein through

g��ðxÞ ¼ �ABe
A
�ðxÞeB� ðxÞ: (1)

While in usual gravitational formalism one uses the tor-
sionless Levi-Civita connection, in the present formulation
one uses the curvatureless Weitzenböck connection defined

as �
w�

�� � e�A@�e
A
� [20], and the corresponding torsion

tensor is written as

T�
�� ¼ �

w�

�� � �
w�

�� ¼ e�Að@�eA� � @�e
A
�Þ: (2)

Furthermore, the contorsion tensor, which provides the
difference between Weitzenböck and Levi-Civita connec-
tions, is given by K��

� � � 1
2 ðT��

� � T��
� � T�

��Þ,
while for convenience we define S�

�� � 1
2 ðK��

�þ
��
�T	�

	 � ��
�T

	�
	Þ. Finally, imposing coordinate,

Lorentz and parity symmetries, and the additional require-
ment the Lagrangian to be second order in the torsion
tensor [5,6], one obtains the teleparallel Lagrangian (called
‘‘torsion scalar’’ too)

T � 1

4
T���T��� þ 1

2
T���T��� � T��

�T��
�: (3)

Thus, in the teleparallel gravitational paradigm, all the
information concerning the gravitational field is embedded
in the torsion tensor T�

��, which produces the torsion scalar

T in a similar way as the curvature Riemann tensor gives
rise to the Ricci scalar in standard general relativity.
In the teleparallel equivalent of general relativity the

action is just T. However, one can be inspired by the
fðRÞ extensions of general relativity and extend T to a
function T þ fðTÞ. Therefore, the corresponding action
of fðTÞ gravity reads as

I ¼ 1

16
GN

Z
d4xe½T þ fðTÞ�; (4)

where e ¼ det ðeA�Þ ¼ ffiffiffiffiffiffiffi�g
p

, GN is the gravitational con-

stant, and we use units where the light speed is equal to 1.
Lastly, TEGR and thus general relativity is restored when

1Throughout the manuscript, greek indices �; �; . . . and capi-
tal latin indices A; B; . . . run over all coordinate and tangent
space-time 0, 1, 2, 3, while lowercase latin indices (from the
beginning of the alphabet) a; b; . . . and lowercase latin indices
(from the middle of the alphabet) i; j; . . . run over tangent-space
and spatial coordinates 1, 2, 3, respectively.
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fðTÞ ¼ 0, while if fðTÞ ¼ const we recover general
relativity with a cosmological constant.

III. fðTÞ COSMOLOGY

We now proceed to the cosmological application of
fðTÞ gravity. In order to construct a realistic cosmology
we have to incorporate in the action the matter and the
radiation sectors, respectively. Therefore, the total action is
written as

I ¼ 1

16
GN

Z
d4xe½T þ fðTÞ þ Lm þ Lr�; (5)

where the matter and radiation Lagrangians are assumed to
correspond to perfect fluids with energy densities �m, �r

and pressures Pm, Pr, respectively.
Secondly, in order to examine a universe governed by

fðTÞ gravity, we have to impose the usual homogeneous
and isotropic geometry. Therefore, we consider the com-
mon choice for the vierbein form, that is,

eA� ¼ diagð1; a; a; aÞ; (6)

which corresponds to a flat Friedmann-Robertson-Walker
(FRW) background geometry with metric

ds2 ¼ dt2 � a2ðtÞ�ijdx
idxj; (7)

with aðtÞ the scale factor.

A. Background behavior

Varying the action (5) with respect to the vierbeins we
acquire the field equations

e�1@�ðee�AS���Þ½1þ fT� þ e
�
AS�

��@�ðTÞfTT
� ½1þ fT�e�AT�

��S�
�� þ 1

4
e�A½T þ fðTÞ�

¼ 4
Ge�A T
em

�

�
; (8)

where fT ¼ @f=@T, fTT ¼ @2f=@T2, and T
em

�

�
stands for

the usual energy-momentum tensor.
Inserting the vierbein choice (6) into the field equa-

tions (8) we obtain the modified Friedmann equations

H2 ¼ 8
GN

3
ð�m þ �rÞ � f

6
þ TfT

3
; (9)

_H ¼ � 4
GNð�m þ Pm þ �r þ PrÞ
1þ fT þ 2TfTT

; (10)

where H � _a=a is the Hubble parameter, with the dot
denoting derivatives with respect to the cosmic time t.
We mention that in order to bring the Friedmann equations
closer to their standard form, we used the relation

T ¼ �6H2; (11)

which through (3) arises straightforwardly for a FRW
universe.
Observing the form of the first Friedmann equation (9),

and comparing to the usual one, we deduce that in the
scenario at hand we obtain an effective dark energy sector
of (modified) gravitational origin. In particular, one can
define the dark energy density and pressure as [9]

�DE � 3

8
GN

�
� f

6
þ TfT

3

�
; (12)

PDE � 1

16
GN

�
f� fTT þ 2T2fTT
1þ fT þ 2TfTT

�
; (13)

while its effective equation-of-state parameter reads

w ¼ � f=T � fT þ 2TfTT
½1þ fT þ 2TfTT�½f=T � 2fT� : (14)

In order to quantitatively elaborate the above modified
Friedmann equations, and confront them with observa-
tions, we follow the usual procedure. Firstly we define

E2ðzÞ � H2ðzÞ
H2

0

¼ TðzÞ
T0

; (15)

where T0 � �6H2
0 . Also, we have used the redshift z ¼

a0
a � 1 as the independent variable and denoted by ‘‘0’’ the

current value of a quantity (in the following we set a0 ¼ 1).
Thus, using also that �m ¼ �m0ð1þ zÞ3, �r ¼ �r0ð1þ zÞ4,
we can rewrite the first Friedmann equation (9) as

E2ðz; rÞ ¼ �m0ð1þ zÞ3 þ�r0ð1þ zÞ4 þ�F0yðz; rÞ (16)

with

�F0 ¼ 1��m0 ��r0; (17)

where�i0 ¼ 8
G�i0

3H2
0

is the corresponding density parameter

at present. Therefore, the effect of the fðTÞ gravity is
quantified by the function yðz; rÞ (normalized to unity at
present time), which depends on �m0, �r0, as well as on
the fðTÞ-form parameters r1; r2; . . . , and it is of the form

yðz; rÞ ¼ 1

T0�F0

½f� 2TfT�: (18)

According to Eq. (11) the additional term (18) in the
effective Friedman equation (16) induced by the fðTÞ
term is a function of the Hubble parameter only. Thus,
this term is not completely arbitrary and cannot reproduce
any arbitrary expansion history. As we will show further
below, the interesting point of the current analysis is that
the particular range of degrees of freedom representing
deviations from �CDM in the context of fðTÞ models is
not favored by cosmological observations.
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B. Linear matter perturbations

We now briefly discuss the linear matter perturbations of
fðTÞ gravity. We first review the standard treatment of
perturbations for general dark energy or modified gravity
scenarios. In this analysis, the extra information is quanti-
fied by the effective Newton’s gravitational constant,
which appears in the various observables such as the
growth index. Thus, inserting in these expressions the
calculated effective Newton’s gravitational constant of
fðTÞ gravity, we obtain the corresponding perturbation
observables of fðTÞ cosmology.

In the framework of any dark energy model, including
those of modified gravity (‘‘geometrical dark energy’’), it
is well known that at the subhorizon scales the dark energy
component is expected to be smooth, and thus we can
consider perturbations only on the matter component
of the cosmic fluid [21]. We refer the reader to
Refs. [18,22–27] for full details of the calculation, sum-
marizing only the relevant results in this section.

The basic equation which governs the behavior of the
matter perturbations in the linear regime is written as

€�m þ 2H _�m ¼ 4
Geff�m�m; (19)

where �m is the matter density and GeffðaÞ ¼ GNQðaÞ,
with GN denoting Newton’s gravitational constant. That
is, the effect of the modified gravity at the linear perturba-
tion level is reflected in an effective Newton’s gravitational
constant GeffðaÞ, which in general is evolving. Finally, in
the above analysis it has been found that �mðtÞ / DðtÞ,
where DðtÞ is the linear growth factor normalized to unity
at present time.

In the case of general-relativity-based scalar-field dark
energy models, we obviously have GeffðaÞ ¼ GN [that is,
QðaÞ ¼ 1] and therefore (19) reduces to the usual time-
evolution equation for the mass density contrast [28].
Moreover, in the case of the usual � cosmology, one
can solve (19) analytically in order to obtain the growth
factor [28]

D�ðzÞ ¼ 5�m0E�ðzÞ
2

Z þ1

z

ð1þ uÞdu
E3
�ðuÞ

; (20)

where

E�ðzÞ ¼ ½�m0ð1þ zÞ3 þ 1��m0�1=2 (21)

in the matter dominated era.
In general for either dark energy or modified gravity

scenarios, a useful tool that simplifies the numerical cal-
culations significantly is the growth rate of clustering [28]

FðaÞ ¼ d ln�m

d lna
’ ��

mðaÞ; (22)

where � is the growth index, which is general evolving.
The growth index is very important since it can be used to
distinguish between general relativity and modified gravity

on cosmological scales. Indeed, for a constant dark energy
equation of state parameter w, dark energy scenarios in the
framework of general relativity the growth index is well

approximated by � ’ 3ðw�1Þ
6w�5 [23,29–32], which reduces to

� 6=11 for the concordance � cosmology (w ¼ �1). On
the other hand, for the braneworld model of Dvali,
Gabadadze and Porrati [33] the growth index becomes
� � 11=16 [31,34–36], for some fðRÞ gravity models
one acquires � ’ 0:415� 0:21z for various parameter val-
ues [22,37], while for Finsler-Randers cosmology we have
� � 9=14 [38].
Generally, combining Eq. (19) with the first equality of

(22) we obtain

a
dFðaÞ
da

þ FðaÞ2 þ XðaÞFðaÞ ¼ 3

2
�mðaÞQðaÞ; (23)

with

XðaÞ ¼ 1

2
� 3

2
wðaÞ½1��mðaÞ�; (24)

where we have used that [2,3,18,39]

wðaÞ ¼ �1� 2
3a

d ln E
da

1��mðaÞ ; (25)

�mðaÞ ¼ �m0a
�3

E2ðaÞ ; (26)

and

d�mðaÞ
da

¼ 3

a
wðaÞ�mðaÞ½1��mðaÞ�: (27)

Concerning the functional form of the growth index we
consider various situations. The simplest one is to use a
constant growth index (hereafter �0 model). If we allow �
to be a function of redshift, then Eq. (23) can be expressed
in terms of � ¼ �ðzÞ and it is given by

� ð1þ zÞ�0 ln ð�mÞ þ��
m þ 3wð1��mÞ

�
�� 1

2

�
þ 1

2

¼ 3

2
Q�1��

m ; (28)

where a prime denotes derivative with respect to redshift.
Writing the above equation at the present epoch (z ¼ 0) we
have

��0ð0Þ ln ð�m0Þþ��ð0Þ
m0 þ 3w0ð1��m0Þ

�
�ð0Þ� 1

2

�
þ 1

2

¼ 3

2
Q0�

1��ð0Þ
m0 ; (29)

where Q0 ¼ Qðz ¼ 0Þ and w0 ¼ wðz ¼ 0Þ.
In this work we consider some well known �ðzÞ func-

tional forms (see [40–43]). These parametrizations are
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�ðzÞ ¼

8>>><
>>>:
�0; �0 model;

�0 þ �1z; �1 model;

�0 þ �1ð1� aÞ; �2 model:

(30)

Inserting the �1�2 formulas into Eq. (29) one can easily
write the parameter �1 in terms of �0:

�1 ¼
�

�0

m0 þ 3w0ð�0 � 1
2Þð1��m0Þ � 3

2Q0�
1��0

m0 þ 1
2

ln�m0

:

(31)

Finally, we would like to stress that the �1 parametrization
is valid only at relatively low redshifts 0 � z � 0:5.
Therefore, in the statistical analysis presented below we
utilize a constant growth index, namely, � ¼ �0 þ 0:5�1

for z > 0:5.
Since we now have the general perturbation formulation,

we just need to insertGeffðaÞ, or equivalentlyQðaÞ, of fðTÞ
gravity in the above relations. Unlike the fðRÞ gravity,
the effective Newton’s parameter in fðTÞ gravity is not
affected by the scale but rather it takes the following
form [44]:

QðaÞ ¼ GeffðaÞ
GN

¼ 1

1þ fT
; (32)

as it arises from the complete perturbation analysis [45].
The above can be understood, as it was shown in Ref. [46],
from the fact that the fðTÞ cosmological scenario can be
rewritten as the K-essence model which implies that since
we remain at the Jordan frame we do not expect to have a k
dependence in the effective Newton’s parameter and thus
in the growth factor. However, doing a similar exercise for
the fðRÞ gravity [see Eqs. (8)–(10) in Ref. [47]] one can
easily find that it corresponds to a scalar-tensor theory, i.e.
a nonminimally coupled scalar field which obviously in-
duces a k dependence in the matter density perturbations.
Therefore, in the rest of the work we apply the above
analysis in the case of fðTÞ, that is, with QðaÞ given
by (32).

IV. SPECIFIC fðTÞ MODELS AND THE
DEVIATION FROM �CDM

In this section we review all the specific fðTÞ models
that have appeared in the literature, with two parameters
out of which one is independent. We calculate the function
yðz; rÞ using (18) and their GeffðaÞ using (32). We quantify
the deviation of the function yðz; rÞ from its �CDM value
(constant) through a distortion parameter b. The consid-
ered models are as follows.

(1) The power-law model of Bengochea and Ferraro
(hereafter f1CDM) [8], with

fðTÞ ¼ 	ð�TÞb; (33)

where 	 and b are the two model parameters.
Substituting this fðTÞ form into the modified
Friedmann equation (9) at present, we obtain

	 ¼ ð6H2
0Þ1�b �F0

2b� 1
; (34)

while (18) gives

yðz; bÞ ¼ E2bðz; bÞ: (35)

Additionally, the effective Newton’s constant from
(32) becomes

GeffðzÞ ¼ GN

1þ b�F0

ð1�2bÞE2ð1�bÞ
: (36)

It is evident that for b strictly equal to zero the
f1CDM model reduces to �CDM cosmology,
namely, TþfðTÞ¼T�2� (where � ¼ 3�F0H

2
0 ,

�F0 ¼ ��0), while for b ¼ 1=2 it reduces to the
Dvali-Gabadadze-Porrati (DGP) ones [33]. Note
that in order to obtain an accelerating expansion, it
is required that b < 1.

(2) The Linder model (hereafter f2CDM) [9]

fðTÞ ¼ 	T0ð1� e�p
ffiffiffiffiffiffiffiffi
T=T0

p
Þ; (37)

with 	 and p the two model parameters. In this case
from (9) we find that

	 ¼ �F0

1� ð1þ pÞe�p ; (38)

and from (18) we acquire

yðz; pÞ ¼ 1� ð1þ pEÞe�pE

1� ð1þ pÞe�p ; (39)

while from (32) we obtain

GeffðzÞ ¼ GN

1þ �F0pe
�pE

2E½1�ð1þpÞe�p�
: (40)

Thus, for p ! þ1 the f2CDM reduces to �CDM
cosmology, since

lim
p!þ1½T þ fðTÞ� ¼ T � 2�: (41)

The parameter p of the present f2CDM model has a
different interpretation comparing to b for the
f1CDM model, since the two models are obviously
different. However, since in the limiting case they
both reduce to �CDM paradigm, we can rewrite the
present f2CDM model replacing p ¼ 1=b. In this
case (39) leads to

yðz; bÞ ¼ 1� ð1þ E
bÞe�E=b

1� ð1þ 1
bÞe�1=b

; (42)

which indeed tends to unity for b ! 0þ.
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(3) Motivated by exponential fðRÞ gravity [48], one
can construct the following fðTÞ model (hereafter
f3CDM):

fðTÞ ¼ 	T0ð1� e�pT=T0Þ; (43)

with 	 and p the two model parameters. In this case
we obtain

	 ¼ �F0

1� ð1þ 2pÞe�p ; (44)

yðz; pÞ ¼ 1� ð1þ 2pE2Þe�pE2

1� ð1þ 2pÞe�p ; (45)

and

GeffðzÞ ¼ GN

1þ �F0pe
�pE2

1�ð1þ2pÞe�p

: (46)

Similarly to the previous case we can rewrite
f3CDM model using p ¼ 1=b, obtaining

yðz; bÞ ¼ 1� ð1þ 2E2

b Þe�E2=b

1� ð1þ 2
bÞe�1=b

: (47)

Again, we see that for p ! þ1, or equivalently for
b ! 0þ, the f3CDM model tends to the �CDM
cosmology.

(4) The Bamba et al. logarithmic model (hereafter
f4CDM) [49]

fðTÞ ¼ 	T0

ffiffiffiffiffiffiffiffi
T

qT0

s
ln

�
qT0

T

�
(48)

with 	 and q the two model parameters. In this case
we obtain

	 ¼ �F0
ffiffiffi
q

p
2

; (49)

yðzÞ ¼ EðzÞ; (50)

and

GeffðzÞ ¼ GN

1þ �F0

2E ½ln ð
ffiffi
q

p
E Þ � 1�

: (51)

The fact that the distortion function does not depend
on the model parameters allows us to write (16) as

EðzÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

F0 þ 4½�m0ð1þ zÞ3 þ�r0ð1þ zÞ4�
q

þ�F0

2
: (52)

Interestingly enough, from the above relation we
deduce that at the background level the f4CDM
model coincides with the flat DGP one (with�F0 ¼
�DGP), which implies that the two nonstandard
gravity models are cosmologically equivalent as
far as the cosmic expansion is concerned, in spite

of the fact that the two models have a completely
different geometrical basis. At the perturbative
level, however, we do expect to find differences
between f4CDM and DGP, since GeffðzÞ evolves
differently in two models [in flat DGP gravity we

have Geff ðzÞ
GN

¼ 2þ4�2
mðzÞ

3þ3�2
mðzÞ ].

Notice that this model does not give �CDM cos-
mology for any value of its parameters. However, in
this work we are interested in the viable fðTÞ, in the
sense that these fðTÞmodels can describe the matter
and dark energy eras as well as they are consistent
with the observational data (including Solar System
tests), and finally they have stable perturbations.
Although these necessary analysis have not yet
been performed for all the above fðTÞ models, a
failure of a particular model to pass one of these is
enough to exclude it. Therefore, since the present
f4CDM model coincides with DGP at the back-
ground level, it inherits its disadvantages concerning
the confrontation with observations. Thus, as antici-
pated from previous studies [50], we verify in the
following section that this model is nonviable when
tested using the latest cosmological observations.

(5) The hyperbolic-tangent model (hereafter f5CDM)
[51]

fðTÞ ¼ 	ð�TÞn tanh
�
T0

T

�
(53)

with 	 and n the two model parameters. In this case
we obtain

	 ¼ � �F0ð6H0Þ1�n

½2sech2ð1Þ þ ð1� 2nÞ tanh ð1Þ� ; (54)

yðz; nÞ ¼ E2ðn�1Þ 2sech
2ð 1

E2Þ þ ð1� 2nÞE2 tanh ð 1
E2Þ

2sech2ð1Þ þ ð1� 2nÞ tanh ð1Þ ;

(55)

and

GeffðzÞ ¼ GN

1þ �F0E
2ðn�2Þ½nE2 tanh ð 1

E2
Þ�sech2ð 1

E2
Þ�

2sech2ð1Þþð1�2nÞ tanh ð1Þ

: (56)

The f5CDMmodel does not give�CDM cosmology
for any value of its parameters. However, as we show
in the next section, this model is in mild tension
with the data as it has a best fit �2

min ¼ ð579:583;
580:723; 578:027Þ for the �0, �1 and �2 growth rate
parameterizations, respectively, which is significantly
larger than that of f1–3CDM and �CDM models,
respectively (see Table I). Additionally the current
fðTÞ model has one more free parameter. For the
reasons developed above we consider it as nonviable
(see also akaike information criterion (AIC) test in
Table I.)
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The above five fðTÞ forms are the ones that have been
used in the literature of fðTÞ cosmology, possessing up to
two parameters, out of which one is independent. Clearly,
in principle one could additionally consider their combi-
nations too; however, the appearance of many free parame-
ters would be a significant disadvantage. Therefore, in the
present work we focus only on these five elementary
Ansätze.

As we showed, for the first three the distortion parameter
measures the smooth deviation from the �CDM model.
The other two models do not have �CDM cosmology as a
limiting case; however, as we show in the next section, they
are in tension with observations. Thus, in the rest of this
section we focus on the first three models, namely, on
f1–3CDM ones.

Having performed the above elaboration of various
fðTÞ models, we can now follow the procedure and iter-
ative techniques of Basilakos, Nesseris, and
Perivolaropoulos [18], in which we have shown that all
the observationally viable fðRÞ parameterizations can be
expressed as perturbations deviating from �CDM
cosmology.

For the f1CDM model there are two different, but
complementary, ways we can find analytical approxima-
tions for the Hubble parameter. The first method involves
doing a Taylor expansion of E2ðz; bÞ around b ¼ 0, while
in the second we perform the Taylor expansion in the
modified Friedman equation directly. Below, we briefly

review and test both methods, called M1 and M2,
respectively.
First, from (16) with (35) we can write explicitly the

Hubble parameter for the f1CDM model as

E2ðz;bÞ¼�m0ð1þ zÞ3þ�r0ð1þ zÞ4þ�F0yðz;bÞ; (57)

where

yðz; bÞ ¼ E2bðz; bÞ: (58)

Obviously, in Eq. (57) if we set b strictly equal to zero, then
we get the Hubble parameter for the �CDM model

E2ðz; 0Þ ¼ �m0ð1þ zÞ3 þ�r0ð1þ zÞ4 þ�F0 � E2
�ðzÞ:

(59)

Now, performing a Taylor expansion, up to second order,
on E2ðz; bÞ around b ¼ 0 and with the help of (57) we
arrive at

E2ðz;bÞ ¼E2ðz;0ÞþdE2ðz;bÞ
db

��������b¼0
b

þd2E2ðz;bÞ
db2

��������b¼0

b2

2
þ���

¼E2
�ðzÞþ�F0

dyðz;bÞ
db

��������b¼0
b

þ�F0

d2yðz;bÞ
db2

��������b¼0

b2

2
þ��� : (60)

TABLE I. Statistical results of the overall likelihood analysis: The first column indicates the fðTÞmodel, the second column the �ðzÞ
parametrizations appearing in Sec. III A, the third and fourth columns provide the �m0 and b best values, and the fifth and sixth
columns show the �0 and �1 best fit values. In all cases we have used �8 ¼ 0:8. The last three columns present the goodness-of-fit
statistics (�2

min , AIC and j�AICj ¼ jAIC� � AICfðTÞj). All the error estimates come from the inverse of the Fisher matrix, called the

covariance matrix, and are by definition symmetric.

Expansion

model

Parametrization

model �m0 b �0 �1 �2
min AIC j�AICj

�CDM �0 0:272� 0:003 0:597� 0:046 0 574.227 578.227 0

�1 0:272� 0:003 0:567� 0:066 0:116� 0:191 573.861 579.861 1.634

�2 0:272� 0:003 0:561� 0:068 0:183� 0:269 573.767 579.767 1.540

f1CDM [8]: �0 0:274� 0:008 �0:017� 0:083 0:602� 0:052 0 574.203 580.203 1.976

�1 0:275� 0:008 �0:029� 0:088 0:558� 0:067 0:187� 0:205 573.817 581.817 3.590

�2 0:275� 0:008 �0:030� 0:089 0:564� 0:069 0:213� 0:287 573.640 581.640 3.413

f2CDM [9]: �0 0:272� 0:004 0:121� 0:184 0:596� 0:047 0 574.250 580.250 2.023

�1 0:272� 0:003 0:086� 0:301 0:566� 0:066 0:116� 0:191 573.863 581.863 3.636

�2 0:272� 0:003 0:078� 0:375 0:561� 0:068 0:183� 0:269 573.768 581.768 3.541

f3CDM [48]: �0 0:273� 0:003 0:097� 0:155 0:597� 0:046 0 574.223 580.223 1.996

�1 0:273� 0:003 0:010� 0:324 0:570� 0:067 0:099� 0:192 573.852 581.852 3.625

�2 0:273� 0:003 0:024� 0:183 0:562� 0:068 0:185� 0:269 573.749 581.749 3.522

f4CDM [49]: �0 0:202� 0:002 0:417� 0:031 0 704.481 708.481 130.254

�1 0:202� 0:002 0:468� 0:053 �0:171� 0:136 702.865 708.865 130.638

�2 0:202� 0:002 0:467� 0:052 �0:224� 0:134 703.047 709.047 130.820

f5CDM [51]: �0 0:283� 0:006 0:226� 0:066 0:567� 0:049 0 579.583 585.583 7.356

�1 0:277� 0:006 0:298� 0:049 0:550� 0:065 0:099� 0:191 580.723 588.723 10.496

�2 0:287� 0:007 0:193� 0:074 0:570� 0:070 0:263� 0:298 578.027 586.027 7.800
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The terms involving the derivatives of yðz; bÞ can readily
be calculated from Eq. (58) as

dyðz;bÞ
db

¼ 2Eðz;bÞ2b
�

b

Eðz;bÞ
dEðz;bÞ

db
þ ln½Eðz;bÞ�

�
; (61)

and evaluating the above equation for b ¼ 0 we have

dyðz; bÞ
db

��������b¼0
¼ 2 ln ½Eðz; 0Þ� ¼ ln ½E2

�ðzÞ�: (62)

Similarly for the second derivative term we have

d2yðz; bÞ
db2

��������b¼0
¼ 2�F0 ln ½E2

�ðzÞ�
E2
�ðzÞ

þ ln ½E2
�ðzÞ�2: (63)

Thus, the Taylor expansion up to second order for the first
method M1 becomes

E2ðz; bÞ ¼ E2
�ðzÞ þ�F0 ln ½E2

�ðzÞ�b

þ�F0

�
2�F0 ln ½E2

�ðzÞ�
E2
�ðzÞ

þ ln ½E2
�ðzÞ�2

�
b2

2

þ � � � : (64)

The second method M2 involves performing a Taylor
expansion in the modified Friedman equation (57) directly.
For the details in this case we refer the interested reader to
the Appendix and just present the result here:

E2ðz; bÞ ¼ �b�FW k

�
� e

�E�ðzÞ2
b�F

b�F

�
; (65)

where W kð!Þ is the Lambert function defined via ! �
W kð!ÞeW kð!Þ for all complex numbers !. The Lambert
function has branch-cut discontinuities, so the different
branches are indicated by the integer k. Our solution has
k ¼ 0 (the principal branch) for b � 0 and k ¼ �1 for
b > 0.2

In order to examine the accuracy of the approximations
of (64) and (65), we calculate the average percent deviation
from the exact numerical solution of (57), defined as

hdifferenceðbÞi ¼
	
100 �

�
1� E2

approxðz; bÞ
E2
numericðz; bÞ

�

; (66)

where the average is taken over redshifts in the range z 2
½0; 100�. In Fig. 1 we show the corresponding results. In
particular, on the left plot we show the percent difference
between the numerical solution of Eqs. (16) and (35) and
the analytical approximations of Eqs. (64) and (65) as a
function of z, for various values of the parameter b for both
methodsM1, at first (dashed line) and second order (dotted
line) and M2 (solid black line). As it can be seen, at red-
shifts z & 2methodM2 is significantly better than the first-
order M1, but overall, obviously the second-order method
M2 is much better than the other two.
On the right plot we show the average percent difference

hdifferenceðbÞi between the numerical solution of Eqs. (16)
and (35) and the analytical approximations of Eqs. (64) and
(65) as a function of the parameter b. In this case, the
average over the redshift is taken in the range z 2 ½0; 100�.
Clearly, on average the second-order method is signifi-
cantly better than the other two methods, the first-order
M1 and the M2. Thus, we conclude that the second-order
series expansion of Eq. (64) around�CDM for the f1CDM
model is a very good approximation, especially for realistic
values of the parameter b.
Unfortunately, for the f2CDM and f3CDM models it is

not possible to analytically obtain similar expressions, due

to the presence of terms like�e�1=b, which do not admit a
Taylor expansion around b� 0. However, as mentioned
earlier, they both have the �CDM model as a limit for
b ! 0þ.

V. OBSERVATIONAL CONSTRAINTS

In this section we perform a complete and detailed
observational analysis of the above five fðTÞ models. In
particular, we implement a joint statistical analysis with the
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FIG. 1. Left: The percent difference ðz; bÞ between the numerical solution of Eqs. (16) and (35) and the analytical approximations of
Eqs. (64) and (65) as a function of z, for various values of the parameter b for both methodsM1 (at first and second order) andM2. Right:
The average percent difference hdifferenceðbÞi between the numerical solution of Eqs. (16) and (35) and the analytical approximations of
Eqs. (64) and (65) as a function of the parameter b. In this case, the average over the redshift is taken in the range z 2 ½0; 100�.

2The Lambert function W kð!Þ is defined in MATHEMATICA as
ProductLog½k; !� and can be evaluated to arbitrary precision for
integer values of k and real or complex values of !.
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appropriate Akaike information criterion [52], involving
the latest expansion data (SnIa [53], BAO [54,55] and the
9-year WMAP CMB shift parameter [56]) and the growth
data (as collected by [18]). The likelihood analysis, the
Akaike information criterion, the expansion data, the
growth data and the corresponding covariances can be
found in Table I and Sec. IV of our previous work [18].
Moreover, we mention that since in order to deal with the
growth data we need to know the value of �8, which is
the rms mass fluctuation on R8 ¼ 8h�1 Mpc scales at
redshift z ¼ 0, we treat �8 either as �8 ¼ 0:8 or as a
free parameter. This analysis is significantly improved,
comparing to previous observational constraining of fðTÞ
gravity [11,15,49,51].

Let us now provide a presentation of our statistical
results. In Table I we give the resulting best fit parameters
for the various fðTÞ models under study (we impose here
�8 ¼ 0:8), in which we also show the corresponding quan-
tities for �CDM for comparison.

It is clear that utilizing the combination of the most
recent growth data set with the expansion cosmological
data, we can put tight constraints on ð�m; �Þ. In all cases
the best fit value �m ¼ 0:272� 0:003 is in a very good
agreement with the one found byWMAP9þ SPTþ ACT,
that is, �m ¼ 0:272 [56].

In particular, we find the following.
(a) �0 parametrization.—Regarding the �CDM cosmo-

logical model our best fit value growth is � ¼
0:597� 0:046 that is in a good agreement with pre-
vious studies [18,57–61].Concerning thefðTÞmodels
we obtain ð�;bÞ¼ð0:602�0:052;�0:017�0:083Þ,
ð�;bÞ¼ð0:596�0:047;0:121�0:184Þ and ð�; bÞ ¼
ð0:597 � 0:046; 0:097 � 0:155Þ for the f1CDM,
f2CDM and f3CDM models, respectively, with a
reduced �2

min of �574:2. In Fig. 2 we show the 1�,
2� and 3� confidence contours in the ð�m; bÞ plane,

while in Fig. 3 we present the corresponding contours
in the ð�m; �Þ plane.

(b) �1 parametrization.—In the case of the concordance
� cosmology we find �0 ¼ 0:567� 0:066 and �1 ¼
0:116� 0:191 with �2

min ’ 573:861 which are in

agreement with previous studies [18,32,59,62,63].
For the f1CDM, f2CDM and f3CDM models the
corresponding likelihood functions peak at
ðb; �0; �1Þ ¼ ð�0:029 � 0:088; 0:558 � 0:067;
0:187 � 0:205Þ with �2

min ’ 573:817, ðb; �0; �1Þ ¼
ð0:086� 0:301; 0:566� 0:066; 0:116� 0:191Þ with
�2
min’573:863 and ðb;�0;�1Þ¼ð0:010�0:324;

0:570�0:067;0:099�0:192Þ with �2
min ’ 573:852,

respectively. In Fig. 4 we present the corresponding
1�, 2� and 3� contours in the ð�0; �1Þ plane.

(c) �2 parametrization.—In the case of �CDM model
we have �0 ¼ 0:561� 0:068, �1 ¼ 0:183� 0:269
(�2

min ’ 573:767), while for the f1CDM we obtain

b ¼ �0:030� 0:089, �0 ¼ 0:564� 0:069, �1 ¼
0:213� 0:287 (�2

min ’ 573:640), for the f2CDM
gravity model we find b ¼ 0:150� 0:096, �0¼
0:560�0:068, �1¼0:181�0:271 (�2

min ’ 573:921)
and finally for the f3CDM model we have we
find b ¼ 0:024� 0:183, �0 ¼ 0:562� 0:068, �1 ¼
0:185� 0:269 (�2

min ’ 573:749). In Fig. 5 we

present the corresponding 1�, 2� and 3� contours
in the ð�0; �1Þ plane.

We stress here that in all three previous fðTÞ models,
namely, f1–3CDM ones, the parameter b which quantifies
the deviation from �CDM cosmology is constrained in a
very narrow window around 0. Thus, although these three
models are consistent with observations, their viable forms
are practically indistinguishable from �CDM and there-
fore their new degrees of freedom are disfavored by data.
Finally, in Fig. 6 we show the likelihood contours for

f4CDM model, which as discussed in Sec. IV coincides
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FIG. 2 (color online). Likelihood contours for ��2 � �2 � �2
min equal to 2.30, 6.18 and 11.83, corresponding to 1�, 2� and 3�

confidence levels, in the ð�m; bÞ plane for the �0 growth rate parametrization and the f1CDM (left), f2CDM (middle) and f3CDM
(right) models. In all cases the black point corresponds to the best fit. In this plot and in the ones that follow we have set the parameters
that are not shown to their best fit values for the corresponding model (see Table I).
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FIG. 4 (color online). Likelihood contours for ��2 � �2 � �2
min equal to 2.30, 6.18 and 11.83, corresponding to 1�, 2� and 3�

confidence levels, in the ð�0; �1Þ plane for the �1 growth rate parametrization and for the f1CDM (left), f2CDM (middle) and f3CDM
(right) models. We also include the theoretical �CDM ð�0; �1Þ values given by �1 ¼ ð6=11; �1ð6=11;�m0;bfÞÞ and �2 ¼
ð�0;bf; �1ð�0;bf;�m0;bfÞÞ.
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FIG. 5 (color online). Likelihood contours for ��2 � �2 � �2
min equal to 2.30, 6.18 and 11.83, corresponding to 1�, 2� and 3�

confidence levels, in the ð�0; �1Þ plane for the �2 growth rate parametrization and for the f1CDM (left), f2CDM (middle) and f3CDM
(right) models. We also include the theoretical �CDM ð�0; �1Þ values given by �1 ¼ ð6=11; �1ð6=11;�m0;bfÞÞ and �2 ¼
ð�0;bf; �1ð�0;bf;�m0;bfÞÞ.
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FIG. 3 (color online). Likelihood contours for ��2 � �2 � �2
min equal to 2.30, 6.18 and 11.83, corresponding to 1�, 2� and 3�

confidence levels, in the ð�m; �Þ plane for the �0 growth rate parametrization and the f1CDM (left), f2CDM (middle) and f3CDM
(right) models. In all cases the red point corresponds to ð�m; �Þ ¼ ð0:272; 6=11Þ.
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with DGP at the background level, and thus it shares its
observational disadvantages and therefore we consider it as
nonviable. In the same lines, as we can see from Table I, for
f5CDM model we obtain the best fits �2

min ¼ ð579:583;
580:723; 578:027Þ for the �0, �1 and �2 growth-rate pa-
rameterizations, respectively, while it additionally has one
more free parameter than �CDM. Thus, this model is in
tension with the data.

For completeness, in Figs. 7–9 we present a comparison
of the observed and theoretical evolution of the growth rate

f�8ðzÞ ¼ FðzÞ�8ðzÞ, the evolution of the growth index
�ðzÞ � 6

11 and the evolution of the GeffðzÞ, respectively.
Finally, in order to enhance the validity of the above

results, we repeat the whole analysis by using �8 as a free
parameter. As expected, we find that the corresponding
results are in good agreement, within 1�, with those of
�8 ¼ 0:8 (see Table I). In particular, we find the following.
In the case of the �CDM,
(i) for the �0 model: �2 ¼ 573:254, �m ¼ 0:272�

0:003, �0 ¼ 0:523� 0:0858, �8 ¼ 0:761� 0:038;
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FIG. 6 (color online). Likelihood contours for ��2 � �2 � �2
min equal to 2.30, 6.18 and 11.83, corresponding to 1�, 2� and 3�

confidence levels, for the f4CDM model in the ð�m; �0Þ plane (left) and the ð�0; �1Þ plane (middle) and (right). We also include the
theoretical �CDM ð�0; �1Þ values given by �1 ¼ ð11=16; �1ð11=16;�m0;bfÞÞ (with the value �0 ¼ 11=16 corresponding to the DGP)

and �2 ¼ ð�0;bf; �1ð�0;bf;�m0;bfÞÞ. As was mentioned in the text, the difference between the DGP (green point) and f4CDM (black

point) is due to the different GeffðzÞ, which affects the evolution of the matter density perturbations.
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(ii) for the �1 model: �2 ¼ 572:618, �m ¼ 0:272�
0:003, �0 ¼ 0:485� 0:098, �1 ¼ �0:398� 0:502,

�8 ¼ 0:694� 0:087;
(iii) for the �2 model: �2 ¼ 572:652, �m ¼ 0:272�

0:003, �0¼0:483�0:097, �1 ¼ �0:633� 0:815,

�8 ¼ 0:685� 0:097.
In the case of the f1CDM,
(i) for the �0 model: �2 ¼ 573:618, �m ¼ 0:274�

0:008, b ¼ �0:019� 0:087, �0 ¼ 0:586� 0:090,
�8 ¼ 0:783� 0:041;

(ii) for the �1 model: �2 ¼ 576:124, �m ¼ 0:281�
0:009, b ¼ �0:099� 0:109, �0 ¼ 0:582� 0:092,
�1 ¼ 0:680� 0:443, �8 ¼ 0:752� 0:070;

(iii) for the �2 model: �2 ¼ 573:756, �m ¼ 0:281�
0:008, b ¼ �0:098� 0:104, �0 ¼ 0:569� 0:103,
�1 ¼ 0:077� 0:872, �8 ¼ 0:774� 0:114.

In the case of the f2CDM,
(i) for the �0 model: �2 ¼ 573:264, �m ¼ 0:272�

0:003, b¼0:101�0:186, �0¼0:523�0:086, �8 ¼
0:762� 0:038;

(ii) for the �1 model: �2 ¼ 572:618, �m ¼ 0:272�
0:003, b ¼ 0:052� 2:833, �0 ¼ 0:485� 0:098,
�1 ¼ �0:398� 0:502, �8 ¼ 0:694� 0:087;

(iii) for the �2 model: �2 ¼ 572:817, �m ¼ 0:272�
0:003, b ¼ 0:040� 10:476, �0 ¼ 0:500� 0:113,
�1 ¼ �0:599� 1:022, �8 ¼ 0:699� 0:127.

In the case of the f3CDM,
(i) for the �0 model: �2 ¼ 573:224, �m ¼ 0:273�

0:003, b ¼ 0:050� 2:561, �0 ¼ 0:523� 0:086,
�8 ¼ 0:761� 0:038;

(ii) for the �1 model: �2 ¼ 572:599, �m ¼ 0:273�
0:003, b ¼ 0:051� 2:264, �0 ¼ 0:485� 0:098,
�1 ¼ �0:398� 0:502, �8 ¼ 0:694� 0:087;

(iii) for the �2 model: �2 ¼ 572:636, �m ¼ 0:273�
0:003, b ¼ 0:039� 4:180, �0 ¼ 0:486� 0:098,
�1 ¼ �0:598� 0:817, �8 ¼ 0:688� 0:098.

In the case of the f4CDM,
(i) for the �0 model: �2 ¼ 703:539, �m ¼ 0:202�

0:002, �0 ¼ 0:490� 0:083, �8 ¼ 0:856� 0:061;
(ii) for the �1 model: �2 ¼ 702:419, �m ¼ 0:202�

0:002, �0 ¼ 0:399� 0:113, �1 ¼ �0:418� 0:401,
�8 ¼ 0:703� 0:134;

(iii) for the �2 model: �2 ¼ 702:501, �m ¼ 0:202�
0:002, �0 ¼ 0:379� 0:123, �1¼�0:733�0:713,
�8 ¼ 0:667� 0:154.

In the case of the f5CDM,
(i) for the �0 model: �2 ¼ 577:279, �m ¼ 0:285�

0:006, b ¼ 0:217� 0:067, �0 ¼ 0:550� 0:086,
�8 ¼ 0:765� 0:038;

(ii) for the �1 model: �2 ¼ 577:176, �m ¼ 0:287�
0:007, b ¼ 0:189� 0:076, �0 ¼ 0:524� 0:092,
�1 ¼ 0:057� 0:470, �8 ¼ 0:758� 0:083;

(iii) for the �2 model: �2 ¼ 575:983, �m ¼ 0:287�
0:007, b ¼ 0:189� 0:076, �0 ¼ 0:489� 0:090,
�1 ¼ �0:717� 0:743, �8 ¼ 0:674� 0:078.

Lastly, we would like to emphasize that in all cases
explored here the value of AIC�ð�578:3Þ is smaller than
the corresponding one for the various fðTÞ models, which
implies that the usual �CDM cosmology (�� ¼ 0:597)
seems to provide a better fit than the f1–3CDM gravity
models the expansion and the growth data. On the other
hand, the j�AICj ¼ jAIC� � AICf1–3ðTÞj values point that
the growth data can be consistent with the f1–3CDM
gravity models. We stress here that the f4CDM and
f5CDM models seem to be disfavored by the current
data.

VI. DISCUSSION AND CONCLUSIONS

We have investigated a wide range of different fðTÞ
models, with up to two parameters, both at the back-
ground and at the perturbation level. The functional forms
of fðTÞ considered in this work cover practically all
the functional forms considered in the literature so far.
Despite the fact that the fðTÞ gravity can be derived from
the principle of least action the corresponding fðTÞ
functional forms are phenomenological and even though
they do not correspond to a firm theoretical model they
cover a wide range of independent functional forms. Thus
they represent a wide range of degrees of freedom de-
scribing deviations from �CDM in the context of fðTÞ
models.
Following our previous work Basilakos, Nesseris, and

Perivolaropoulos [18] corresponding to fðRÞ gravity, we
calculated the function yðz; bÞ which quantifies the devia-
tion from �CDM cosmology at the background level. We
also obtained the growth index and the effective Newton
constant, which incorporate the fðTÞ gravity effects at the
perturbation level. Furthermore, we utilized the recent
expansion and growth data, implementing the Akaike in-
formation criterion and three different parametrizations for
the growth index, in order to constraint the parameters of
these fðTÞ models.
Our results show that all viable fðTÞ gravity models

hardly deviate from the �CDM paradigm. In particular,
among the five examined models, the power-law one [8]
(f1CDM), the exponential-square-root one [9] (f2CDM)
and the exponential one (f3CDM) possess�CDM cosmol-
ogy as a limiting case. It is only this limit that is favored by
cosmological observations. In fact, the detailed observa-
tional confrontation showed that these three models at best
fit behave as small perturbations around the concordance
�CDM cosmology, with the parameter b, which quantifies
the deviation from �CDM, constrained in a very narrow
window around 0. The other two fðTÞ models, namely, the
logarithmic one [49] (f4CDM) and the hyperbolic-tangent
one [51] (f5CDM), do not possess�CDM as a limiting case.
We showed that both are in tension with the data. In fact, we
have demonstrated that (f4CDM) coincides with the DGP
model at the background level, whose inconsistency between
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distance measures and horizon scale growth is well known
[50] and also demonstrated by our results.

The derived requirement of fine-tuning of the fðTÞ
constructions at the �CDM, based on cosmological
constraints, would probably be further amplified if we
had considered in addition their consistency with Solar
System tests, which constitute another powerful source of
constraints against any deviation from general relativity. At
this point we would like to make a comment concerning
the Lorentz invariance of fðTÞ theories. As was shown in
[64], for general fðTÞ modifications the field equations are
not invariant under local Lorentz transformations, unless
fðTÞ is a constant or a linear-in-T function, in which case
we reobtain general relativity (that is, �CDM) and local
Lorentz invariance is restored. This feature imposes strict
constraints on the viable fðTÞ forms, since the observatio-
nal bounds on gravitational Lorentz violation are very
narrow [65]. As we have already mentioned above, con-
frontation with Solar System data implies that the non-
trivial fðTÞ modification must be significantly small [13].
In the present analysis we were interested in performing a
pure confrontation of fðTÞ theories with cosmological
data, without imposing any other theoretical constraints.
Thus, from another point of view we verified again that in
all viable fðTÞ scenarios the nontrivial fðTÞ modifications
are so small that these constructions are practically indis-
tinguishable from �CDM. Clearly, taking into account the
above Lorentz violation discussion strengthens our result
that all viable fðTÞ almost coincide with �CDM.

It is therefore safe to conclude that although at early
times the additional degrees of freedom provided by fðTÞ
constructions may play an important role and improve the
inflationary behavior, at late times these extra degrees of
freedom do not appear to be consistent with the degrees of
freedom favored by nature.
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(General Secretariat for Research and Technology) and is
cofinanced by the European Social Fund (ESF) and the
Greek State. This research has been cofinanced by the
European Union (European Social Fund—ESF) and Greek
national funds through the Operational Program ‘‘Education
and Lifelong Learning’’ of the National Strategic Reference
Framework (NSRF)—Research Funding Program:
THALIS. Investing in the society of knowledge through
the European Social Fund.

APPENDIX: DERIVATION OF EQ. (65)

We can rewrite Eq. (57) as

E2ðzÞ ¼ �m0ð1þ zÞ3 þ�r0ð1þ zÞ4 þ�F0E
2bðzÞ

¼ �m0ð1þ zÞ3 þ�r0ð1þ zÞ4 þ�F0 ��F0

þ�F0E
2bðzÞ

¼ E2
�ðzÞ þ�F0½E2bðzÞ � 1�; (A1)

where E2
�ðzÞ is given by Eq. (59) and in the second line we

added and subtracted �F0.
Now, in this case we assume that the Hubble parameter

H2

H2
0

� E2ðzÞ depends on b only implicitly via the Friedmann

equation (59). In other words, we consider b and E2ðzÞ to
be independent, and thus any derivatives with respect to b
are zero. Hence, performing a Taylor expansion of (A1) up
to second order around b ¼ 0 we acquire

E2ðzÞ ¼ E2
�ðzÞ þ ln ½E2ðzÞ��F0b

þ 1

2
ln ½E2ðzÞ�2�F0b

2 þ � � � : (A2)

If we keep only the first-order term and solve for E2ðzÞ, we
obtain

E2ðz; bÞ ¼ �b�F0W k

�
� e

�E�ðzÞ2
b�F0

b�F0

�
; (A3)

where W kð!Þ is the Lambert function defined via ! �
W kð!ÞeW kð!Þ for all complex numbers !. The Lambert
function has branch-cut discontinuities, so the different
branches are indicated by the integer k. Our solution has
k ¼ 0 (the principal branch) for b � 0 and k ¼ �1 for
b > 0.
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