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We study numerical evolutions of nonlinear gravitational waves in moving-puncture coordinates.

We adopt two different types of initial data—Brill and Teukolsky waves—and evolve them with two

independent codes producing consistent results. We find that Brill data fail to produce long-term

evolutions for common choices of coordinates and parameters, unless the initial amplitude is small,

while Teukolsky wave initial data lead to stable evolutions, at least for amplitudes sufficiently far from

criticality. The critical amplitude separates initial data whose evolutions leave behind flat space from those

that lead to a black hole. For the latter we follow the interaction of the wave, the formation of a horizon,

and the settling down into a time-independent trumpet geometry. We explore the differences between Brill

and Teukolsky data and show that for less common choices of the parameters—in particular negative

amplitudes—Brill data can be evolved with moving-puncture coordinates and behave similarly to

Teukolsky waves.
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I. INTRODUCTION

The first successful simulations of binary black hole
merger and coalescence [1–3] marked a massive break-
through in the field of numerical relativity. Since then, nu-
merous simulations of black hole binaries have produced
important results, including predictions of the emitted gravi-
tational wave forms for various binary configurations. Many
of these simulations have been performed with some version
of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
mulation [4–6]. Their success depends crucially on the use of
suitable coordinate conditions. For simulations of compact
objects, the 1þ log slicing condition [7] together with the
Gamma-driver shift condition [8,9] have proven versatile.
The combination is often referred to as ‘‘moving-puncture’’
coordinates.

The geometric properties of moving-puncture coordinates
have been analyzed by [10–14]. These studies showed that
dynamical evolutions of a Schwarzschild black hole result in
spatial slices that do not encounter the central singularity,
and instead asymptote to a finite areal radius. In a Penrose
diagram, these slices connect spatial infinity in one universe
with timelike infinity in the other. In an embedding diagram
(see, e.g., Fig. 2 in [13]) the slices resemble a trumpet, which
explains why they are called ‘‘trumpet’’ slices.

It is not obvious that, in general, moving-puncture coor-
dinates work well for regular initial data that collapse to a
black hole. Following earlier work [15], two independent
calculations [16,17] considered stellar collapse and found
that, in the cases considered, moving-puncture coordinates
can indeed lead to stable evolution, with the newly formed
black hole expressed in a trumpet geometry. The primary
motivation for this paper is to answer the following question:

in what scenario, if any, can the collapse of gravitational
waves to a black hole be followed in moving-puncture
coordinates? To do this we consider axisymmetric
vacuum data of two types, namely Brill and Teukolsky
waves [18,19].
A secondary motivation comes from the context of

critical collapse (see [20,21] for reviews). Critical collapse
in gravitational systems was first discovered by Choptuik
[22], who considered scalar fields in spherical symmetry.
Parametrizing the strength of the initial data with some
parameter, say A, it is found that for sufficiently small A the
fields ultimately propagate to infinity and leave behind flat
space, possibly after interacting in a nonlinear fashion.
Above a critical value A? of the amplitude, however, the
fields collapse and form a black hole. In the vicinity of A?

the solution displays critical behavior familiar from other
fields of physics.
Similar behavior was found in other gravitational systems.

Of relevance here, Abrahams and Evans [23,24] reported
critical phenomena in the collapse of axisymmetric gravita-
tional waves. Unfortunately it has proven difficult to repro-
duce these results. Various authors have studied the evolution
of gravitational wave initial data (see Table I for a list of
published results), but only Sorkin [30] has been able to
identify critical behavior. Even his study, which adopted
Brill wave initial data [18,31] and used a generalized har-
monic code [1,32,33] in axisymmetry [34], required fine-
tuning of free parameters in the gauge source functions that
specify the coordinates. Sorkin found qualitative differences
from the earlier work. For example, he reports that, at least
for part of the parameter space, the waves collapse to form a
singularity on a ring in the equatorial plane, whereas
Abrahams and Evans [24] found the singularity to form at
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the center. Sorkin also found a significantly larger value for
the critical amplitude than in earlier studies of the same data.

Following the first question, our final aim is to report that
under evolution Brill data [18,31] behave differently from
Teukolsky data [19], at least for common choices of the
parameters. These Brill waves fail to produce stable,
long-term evolutions when evolved with moving-puncture
coordinates, unless the initial amplitude is small, while
Teukolsky data lead to stable evolutions, unless the initial
amplitude is close to criticality. The obvious question is the
following: why is it so difficult to evolve Brill wave data?
To begin to address this question we identify qualitative
differences in the two initial data types and examine the
effect of these differences on the evolution. We also note
that the original studies of Abrahams and Evans [23,24]
adopted Teukolsky wave initial data. Since then, all pub-
lished work that we are aware of has used Brill wave initial
data (see Table I)—perhaps because the latter can be con-
structed more easily. This choice may have contributed to
the difficulty of studying critical phenomena in vacuum
spacetimes.

The paper is organized as follows. In Sec. II we review
relevant results from the 3þ 1 split of spacetime. In Sec. III
we discuss the construction and evolution of Brill and
Teukolsky wave data. In Sec. IV we discuss some possible
causes of the differences in behavior between the two types.
In Sec. V we summarize. Appendix contains a description
of the codes employed. We adopt geometrized units
G ¼ c ¼ 1.

II. THE 3þ 1 DECOMPOSITION

Space-time split: We solve Einstein’s field equations in
vacuum with the help of a 3þ 1 decomposition ([35,36];
see [37–39] for pedagogical introductions). We write the
spacetime metric in the form

ds2 ¼ gabdx
adxb

¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (1)

where � is the lapse function, �i the shift vector, and �ij

the spatial metric. Here and in the following indices
a; b; . . . run over spacetime indices, while indices i; j; . . .
run over space indices only. Einstein’s field equations split

into two sets, namely the Hamiltonian and momentum
constraints and the evolution equations.
Constraint and evolution equations: The Hamiltonian

and momentum constraints are given by

Rþ K2 � KijK
ij ¼ 0; (2)

DjK
ij �DiK ¼ 0: (3)

Here R is the trace of the Ricci tensor Rij associated with

the spatial metric �ij, Di is the covariant derivative asso-

ciated with �ij, Kij is the extrinsic curvature

Kij ¼ � 1

2�
@t�ij þDði�jÞ; (4)

and K ¼ �ijKij its trace.

Equation (4) can be solved for the time derivative of the
spatial metric �ij, which provides one of the two evolution

equations. A second evolution equation results from
Einstein’s equations and determines the time derivative
of the extrinsic curvature. We construct numerical solu-
tions to the constraint and evolution equations, using the
two independent codes described in Appendix . We employ
a conformal transformation of the spatial metric,

�ij ¼ c 4 ��ij; (5)

where c is a conformal factor and ��ij a conformally

related metric. The Hamiltonian constraint can then be
written as an elliptic equation for the conformal factor,

�D2c ¼ c

8
�Rþ c 5

8
ðK2 � KijK

ijÞ; (6)

where �D2 and �R are the Laplace operator and Ricci scalar
associated with ��ij. Solving the constraints results in data

describing the gravitational fields at one instant of time.
Gauge choice: The lapse function � and the shift vector

�i encode the coordinate freedom and can be chosen
freely. Most often we use the 1þ log slicing condition
[7] and the Gamma-driver shift [8,9] conditions,

ð@t � �j@jÞ� ¼ �2�K; (7)

ð@t � �j@jÞ�i ¼ �S
��i � ��i; (8)

TABLE I. Summary of published results on numerical simulations of nonlinear waves.

Authors Year Data type Slicing and gauge References Comments

Eppley 1978 Brill Maximal slicing/quasi-isotropic [25] Small amplitude waves only

Abrahams & Evans 1992 Teukolsky Maximal slicing/quasi-isotropic [23,24] Reported critical behavior

Alcubierre et al. 2000 Brill Maximal slicing/zero shift [26]

Garfinkle & Duncan 2001 Brill Maximal slicing/quasi-isotropic [27]

Santamaria 2006 Brill Multiple choices [28]

Rinne 2008 Brill Maximal slicing/quasi-isotropic [29]

Sorkin 2011 Brill Family of gauge source functions [30] Reported critical behavior
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where ��i � ��jk ��i
jk, are called conformal connection func-

tions. Here ��i
jk are the connection coefficients associated

with the conformally related metric ��ij. At t ¼ 0 we initi-

alize the lapse and shift with � ¼ 1 and �i ¼ 0. Together,
the two conditions are usually called ‘‘moving-puncture’’
coordinates. We consider alternatives to (7) and (8); in
particular we use a ‘‘nonadvective’’ version of the above
conditions, in which the shift terms on the left-hand sides
are omitted, and evolutions with zero shift.

III. NUMERICAL EVOLUTIONS OF BRILL
AND TEUKOLSKY WAVES

A. Brill waves

Initial data: Brill wave initial data [18,31] can be con-
structed by writing the spatial metric �ij in the form

dl2 ¼ �ijdx
idxj ¼ c 4½e2qðd�2 þ dz2Þ þ �2d�2�: (9)

Here �, z, and � are cylindrical coordinates, c is the
conformal factor, and q ¼ qðr; �Þ is an arbitrary axisym-
metric seed function. Under the further assumption of time
symmetry the momentum constraint (3) is solved identi-
cally, and the Hamiltonian constraint (2) reduces to a linear
elliptic equation for c ,

r2c ¼ � c

4

�
@2q

@�2
þ @2q

@z2

�
; (10)

where r2 denotes the flat, three-dimensional Laplace op-
erator. For our applications we choose the seed function q
according to

qð�; zÞ ¼ A

�
�

	

�
2
e�½ð���0Þ2�z2�=	2

; (11)

where A is a measure of the resulting wave amplitude, 	 of
the wavelength, and �0 of the center of the initial wave.
Throughout we set 	 ¼ 1, which determines the units of
all dimensional results. Given choices for these parameters
we solve Eq. (10) for c and insert the result, together with
q, into the metric (9). We experiment with different values
of A and �0 in what follows. For a given choice of the
parameter �0 in the Brill seed function (11), the resulting
spacetime depends on the amplitude A, although some
gauge conditions may be unsuitable for computing it. In
this section we will focus on ‘‘central’’ waves with �0 ¼ 0.

Evolution of A ¼ 1 centered Brill data: Following pre-
vious attempts in other coordinate systems (see Table I) we
explore the dynamical evolution of Brill wave initial data
with moving-puncture coordinates. For small A, the waves
represent a linear perturbation of flat space that will propa-
gate to spatial infinity and leave behind flat space. As an
example let us consider the evolution of a centered wave
with A ¼ 1. For these initial data the Kretschmann scalar,

I ¼ CabcdC
abcd; (12)

with the Weyl tensor Cabcd ¼ Rabcd in vacuum, takes its
maximum value of � 216 at the origin. We evolve with
�S ¼ 1 and � ¼ 3 � 1=ð10MÞ in the Gamma-driver
condition (8), and find that, at the origin, the lapse function
decreases initially, but quickly moves back toward unity.
In Fig. 1 we compare this behavior with that for other
amplitudes. The initial pulse in the Kretschmann scalar
disperses away and leaves behind I ¼ 0, indicating that the
space is flat.
Evolution of A ¼ 2:5 centered Brill data: For larger, but

still subcritical A, the waves will interact nonlinearly be-
fore dispersing, but ultimately they still leave behind flat
space. The Kretschmann scalar for centered Brill data with
A ¼ 2:5 takes its maximum at the origin, but now with a
value of � 2320. We evolved these data with � ¼ 2 �
2=ð5MÞ. The lapse at the origin again decreases at early
times, this time to smaller values than for A ¼ 1, and then
returns to unity. The Kretschmann scalar also disperses to
infinity, as before.
Evolution of A ¼ 5 centered Brill data: For amplitudes

larger than some critical A? one expects black hole
formation. For larger values of A our simulations are not
successful, in the sense that we are not able to track the
formation of an apparent horizon as it settles down to a
Schwarzschild hole. We show more detailed results for
A ¼ 5 in Fig. 2, where profiles of the lapse function �,
the metric component �xx, and trace K are plotted at
different instants of time. The lapse collapses in the central
region and develops a minimum along a ring of radius
r � 2:0 in the equatorial plane in a simulation with � ¼
11:4 � 8=M. The metric simultaneously develops an in-
creasingly large gradient across this ring, which ultimately
turns into a discontinuity if we use � ¼ 0 in the Gamma-
driver condition (8). Associated with this gradient is a large

FIG. 1 (color online). The central value of the lapse as a
function of time for Brill waves with �0 ¼ 0, evolved with
moving-puncture gauge conditions. We show results for different
values of A. For weak-field initial data with A ¼ 1, the wave
disperses to spatial infinity and leaves behind flat space, as
expected. For larger values of A, however, our simulations
develop discontinuities in the metric functions, which spoil the
further evolution of the wave.
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numerical error that can be seen, for example, in the
violation of the constraints. A pulse in the lapse then
approaches the origin, so that the region with a nearly
vanishing lapse becomes smaller. As this happens the trace
of the extrinsic curvature at the incoming lapse pulse
becomes large, negative, and sharp, ending in a numerical
failure that we believe is a coordinate singularity. Similar
behavior has been observed with the 1þ log gauge else-
where; see for example [40]. Furthermore, we were able to
reproduce this failure in the spherical code used to develop
the Z4c formulation [41–45] by evolving flat space with a
perturbed initial lapse with precisely the gauge of the
Brill wave evolutions. This feature causes the numerical
approximation to fail at around t ¼ 5:5. Curiously here, in
preliminary tests, we found that mesh refinement can cause
problems. Often coarser grids are used to push the outer
boundary far away inexpensively. But we found that the
solutions being constructed are so extreme that if the grids
are too coarse then they will fail during the single Runge-
Kutta time step needed before the data from the finer boxes
can be used to overwrite coarse grid data.

Discussion, comparison with the literature: The basic
picture is similar to other nonlinear dynamical systems for
which the strength of the initial fields is controlled by a
parameter A, which separates two distinct states at some
critical value A?. Near this value such systems may display
critical behavior, as reviewed elsewhere [20,21]. For vac-
uum spacetimes, critical collapse was first reported by
[23,24], who used Teukolsky data. To the best of our
knowledge, all published results since then have adopted
Brill initial data (see Table I). Only one author, Sorkin [30],
has reported critical phenomena for Brill data, and even
those simulations required significant fine-tuning of pa-
rameters in the gauge conditions. The study also reports
qualitative differences from the earlier work; in particular,

[30] finds that a spacetime singularity forms on a ring of
nonzero radius in the equatorial plane, while for the simu-
lations of [23,24] the singularity formed centrally. Finally,
Sorkin reports a critical value of A? � 6:27, in contrast
to smaller values found in earlier studies, for example
A? � 4:76 in [28]. The size of the difference is puzzling.
Unfortunately, since we have not been able to evolve large
data reliably with the moving-puncture gauge, we cannot
shed any light on the issue here.
Summary: We conclude that moving-puncture coordi-

nates are not suitable for the evolution of the Brill waves
considered in this section. For several other coordinate
choices, including maximal slicing for the lapse, as well
as quasi-isotropic or zero shift, it also appears to be diffi-
cult to obtain sufficiently reliable simulations that allow
the study of critical phenomena in the vicinity of the
critical amplitude. We know from other studies that
moving-puncture coordinates can be used in collapse sce-
narios, so rather than altering the gauge choice we will
study evolutions of different initial gravitational wave data.

B. Teukolsky waves

Initial data: Linear solutions to Einstein’s equations
describing quadrupolar gravitational waves can be con-
structed from a seed function

Fðr; tÞ ¼ F1ðt� rÞ þ F2ðtþ rÞ; (13)

where F2 describes an outgoing solution while F1 describes
an ingoing solution (see [19]; see also Sec. 9.1 in [38]; see
also [46] for a generalization to all multipoles). We choose
F1 ¼ �F2 so that the resulting solution exhibits a moment
of time symmetry, and hence Kij ¼ 0, at t ¼ 0. We then

choose

FIG. 2 (color online). Snapshots of the lapse function � (left panel), the ADM metric component �xx (center panel) and the trace of
the extrinsic curvature trKij at different instants of time, for A ¼ 5. We show all quantities along the x axis, with time indicated by

hot-to-cold colors. The lapse develops a minimum on a ring of radius r � 2:0, which then travels toward the origin. The spatial metric
develops a large gradient around the same ring. A sharp feature at radius r � 1:5 appears in the lapse, and K diverges around the same
place. The latter feature is not visible in the metric.
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F1ðuÞ ¼ A

2

�
u

	
e�ððuþr0Þ=	Þ2 þ u

	
e�ððu�r0Þ=	Þ2

�
(14)

with u � t� r. Here A is again a measure of the wave’s
amplitude, 	 of its wavelength, and �0 of the center of
the original wave. Following the prescription in [19] we
construct the spatial metric �ij for a quadrupolar (‘ ¼ 2),

m ¼ 0 wave from the seed function (14). The resulting
metric satisfies Einstein’s equations to linear order in A.
To construct true initial data from the above solution we
only need to solve the Hamiltonian constraint, since the
momentum constraint (3) is satisfied identically by time-
symmetric data. We do so by adopting the above metric at
t ¼ 0 as a conformally related metric ��ij and solving the

Hamiltonian constraint (6) for the conformal factor c .
Following [23,24] we consider ‘‘noncentral’’ initial data,
i.e. wave packets that are initially centered on a positive
radius r0. Specifically, we choose r0 ¼ 2 and 	 ¼ 1=2 for
all simulations presented in this section.

Evolution of Teukolsky data: For a given choice of	 and
r0, the spacetime again depends only on the amplitude A,
although the specifics of the evolution will of course
depend upon the gauge. Time-symmetric initial data rep-
resent a superposition of interacting ingoing and outgoing
waves. At the amplitudes we consider, the interaction of
these waves is weak. The outgoing wave travels toward
infinity and does not play an important role in our simula-
tions. The ingoing wave, on the other hand, travels toward
the origin. For sufficiently small initial amplitudes the time
evolution is well approximated by the analytical, linear
solution. If the amplitude is smaller than a certain critical
value A? we again expect that the evolution ultimately
leaves behind flat space, possibly after interacting in a
nonlinear fashion. For A > A? the waves collapse to form

a black hole. Note that the wave’s amplitude increases
as it travels from r0 to the origin, so that we expect A?

to be smaller for noncentral initial data than for similar
‘‘central’’ initial data. We perform evolutions with moving-
puncture coordinates. Our expectations for small initial
data are borne out in practice, so we will not comment
further.
Numerical evolution of supercritical data: The main

result of this work is that we are able to evolve
Teukolsky wave initial data through black hole formation.
As an example of such a supercritical evolution we focus
on results for A ¼ 0:0018. As shown in Fig. 3, the central
value of the lapse exhibits several large-amplitude oscil-
lations, but ultimately approaches zero at the center, in-
dicating the formation of a black hole. In Fig. 4 we show
profiles of the lapse at different instances of time. At early
times, the lapse takes a minimum at finite radius, but at
later times it collapses most rapidly at the center. This
behavior should be compared with what we found for
Brill waves, for which the lapse always collapses most
rapidly at a finite radius (see the top panel in Fig. 2). The
peak of the curvature scalar occurs at the origin. We found
that an apparent horizon forms at t � 4:2. In Fig. 5 we show
the ‘‘world tube’’ of this horizon in a spacetime diagram.
Collapse to a black hole and horizon formation: Our

initial data are axisymmetric, but carry no angular momen-
tum. Therefore, if a black hole forms in the time evolution
of these initial data, this black hole must ultimately settle
down into a Schwarzschild black hole. However, since
the initial data are not spherically symmetric, the newly
formed black hole may also deviate from spherical sym-
metry. We then expect that these deviations from spherical
symmetry lead to quasinormal oscillations in the horizon
that damp away and leave behind a Schwarzschild black
hole. This behavior can be observed in the horizon’s world

FIG. 3 (color online). The central value of the lapse as a
function of time for Teukolsky waves with r0 ¼ 2 and 	 ¼
1=2, evolved with moving-puncture gauge conditions. We show
results for different values of A. For subcritical initial data with
A < A? � 0:0015, the wave disperses to spatial infinity and
leaves behind flat space, while for A > A? the fields collapse
to form a black hole.

FIG. 4 (color online). Profiles of the lapse function � for a
Teukolsky wave with amplitude A ¼ 0:0018. Even though at
early times the lapse forms a minimum at finite radius r, it
ultimately collapses most rapidly at the center. This behavior is
qualitatively different from the behavior of the lapse in the
collapse of a Brill wave, as shown in the top panel of Fig. 2.
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tube in Fig. 5, which clearly shows these initial oscillations
with a rapidly decreasing amplitude, leaving behind a
spherical horizon at late times. We note, however, that
Fig. 5 only shows the coordinate location of the horizon,
which does not have an immediate physical meaning. As a
(spatial) coordinate-independent measure of the horizon’s
deviation from spherical symmetry we plot its equatorial
and polar proper circumferences in Fig. 6. Both circum-
ferences perform a damped oscillation, almost exactly out
of phase, and, as expected, settle down to the same, time-
independent value. The circumference of a Schwarzschild
black hole is given by

C ¼ 2
R ¼ 4
M; (15)

where R ¼ 2M is the circumferential radius of a
Schwarzschild black hole. We therefore include the value
4
Mirr in Fig. 6, where we compute the black hole’s irre-
ducible mass Mirr from the proper area of its apparent
horizon. Figure 6 shows that both the polar and equatorial
proper circumferences settle down to the Schwarzschild
circumference, demonstrating that the initially distorted
black hole settles down to the trumpet geometry. The fact
that the late-time horizon takes a spherical shape even in
coordinate space, as seen in Fig. 5, demonstrates that the
Gamma-driver shift condition (8) allows the coordinate
evolution to reflect the spherical symmetry of the spacetime.

Horizon tendicity:As an alternative (spatial) coordinate-
independent measure of the horizon geometry we compute
its tendicity,

ENN � Eijs
isj; (16)

where Eij is the electric part of the Weyl tensor, and si the

spatial unit normal on the horizon (see [47–49]; see also
[50] for an analytical demonstration). For a Schwarzschild
black hole the tendicity is

ESS
NN ¼ � 1

4M2
(17)

(see, e.g., [47,50]). In Fig. 5 we have indicated the horizon
tendicity using a color coding. At early times, the tendicity
varies significantly across the horizon, meaning that the
horizon is significantly distorted, while at late times the
tendicity becomes increasingly uniform across the horizon,
with a value close to the analytical value (17) for a
Schwarzschild black hole. As the newly formed black
hole performs quasinormal oscillations, deviations of the
tendicity from its average value propagate across the hori-
zon in a wavelike manner, from the poles to the equator and
back. This can be seen in the color-coding in Fig. 5. For a
detailed analysis of quasinormal modes using the tendex-
vortex formalism, see [49].
Approach to a trumpet slice: To complete this section we

analyze the late-time solution to which our dynamical
evolutions settle down. Given that we use moving-puncture
coordinates, we expect that a black hole settles down into a
trumpet geometry [10,12,13,51]. To compare results with
the analytical solutions for a maximally sliced trumpet
solution [51], we show in Fig. 7 results for an evolution
with the ‘‘nonadvective’’ version of the 1þ log slicing (7)
and Gamma-driver (8) [we also used �S ¼ 3=4 and � ¼ 0
in (8) for these simulations]. In Fig. 7 we show a snapshot
of the lapse at time t ¼ 15:8 and compare our numerical

FIG. 6 (color online). The equatorial and polar proper circum-
ference of the newly formed horizon of a Teukolsky wave for
A ¼ 0:0018. Also included is the irreducible mass Mirr, multi-
plied by 4
, which equals the proper circumference of a spheri-
cally symmetric Schwarzschild black hole [see Eq. (15)]. The
initially formed black hole is not spherical, but oscillates and
settles down into a Schwarzschild black hole. During the initial
oscillation the irreducible mass of the black hole still increases
by a few percent.

FIG. 5 (color online). A ‘‘world tube’’ showing the newly
formed horizon in the collapse of a Teukolsky wave for A ¼
0:0018. For each instant of time we show a ring that represents the
coordinate location of the horizon along lines of constant longi-
tude, going from one pole to the other and back. Connecting these
rings for different times results in the cylinderlike shape shown in
the figures. The shape of this cylinder demonstrates the horizon’s
initial quasinormal oscillation, while the color coding shows the
horizon’s tendicity ENNM

2. After a few oscillations the horizon
settles down into that of a static Schwarzschild black hole.
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results with the analytical results of [51]. We plot the lapse
as a function of areal radius R in order to compare gauge-
invariant quantities. The agreement is excellent, after an
overall scale factor has been adjusted. This scale factor
allows for the fact that the analytical solution assumes that
the lapse approaches unity at spatial infinity, while our
dynamical simulations do not impose this condition. We
compare numerical and analytical values for the shift and
find similarly good agreement.

Experiments near the critical region: As we increase the
amplitude from 0, we observe increasingly large and rapid
oscillations. This can be seen inFig. 3,wherewe showcentral
values of the lapse as a function of time for different values
of the amplitude A. For the simulations shown in Fig. 3 we
adopted the moving-puncture coordinates (7) and (8) with
� � 2=MADM. We experimented with the nonadvective ver-
sion of the 1þ log slicing condition (7) and found similar
results. We summarize our results in Table II, where we list
the initial Arnowitt-Deser-Misner (ADM) mass and the irre-
ducible mass of the black hole if such a black hole forms. As
can be seen in Table II and Fig. 3, the critical value of the
amplitude is between A ¼ 0:00148 and A ¼ 0:00164. For
A > A? the lapse ultimately collapses to zero at the center.
For both sub- and supercritical values of the amplitude, the
lapse exhibitsmore and larger oscillations before returning to
unity or collapsing to zero for amplitudes closer to the critical
value. This behavior is an indication of the critical behavior
in the vicinity of the critical amplitude.

Summary: We conclude that, at least for amplitudes not
too close to the critical amplitude, moving-puncture
coordinates are well suited to simulate the evolution of
Teukolsky waves. For subcritical waves we follow the
nonlinear interaction of the waves and their dispersal to
spatial infinity, while for supercritical waves we track their
implosion, detect the formation of apparent horizons, and
follow the evolution of the newly formed black holes as
they settles down to spherical symmetry. For amplitudes
close to the critical amplitude our codes fail. We believe
that this is caused by the lack of sufficient resolution as,
close to the critical amplitude, the dynamical evolution
leads to increasingly small features.

IV. CHARACTERIZATION OF INITIAL DATA

Evolving Brill and Teukolsky waves in Sec. III we
found that Teukolsky data can be evolved with moving-
puncture coordinates without problems—except, possibly,
in the immediate proximity of the critical point—whereas
Brill data are more troublesome. While it is difficult to
pinpoint what exactly creates this difference in behavior,
we offer some speculations on the causes of these differ-
ences in this section. An obvious set of questions presents
themselves. The Brill data were centered at the origin,
whereas the Teukolsky data were not. Could this be the
cause of the difference? Are the two types of data some-
how geometrically different? If so, would this difference
be maintained in time evolution, and can we modify the
Brill data to make it more amenable to numerical

FIG. 7 (color online). Radial profile of the lapse � for the
collapse of a Teukolsky wave with A ¼ 0:0018, at time t ¼ 15:8
(crosses). This evolution is carried out with ‘‘nonadvective’’
1þ log slicing, so that we can easily compare with the analyti-
cal solution for a maximally sliced trumpet solution (solid line).
Note that the overall scale of the analytical solution for the lapse
is set by the boundary condition at r ¼ 1. The numerical
solution, however, results from the collapse of nonlinear wave
initial data and is not affected by the boundary condition at
spatial infinity; accordingly, the overall factor of the solution for
the lapse may be different. Here we found excellent agreement
by multiplying the analytical solution with a factor of 0.98. The
innermost few grid points are affected by numerical noise that
results from finite differencing across the singularity at r ¼ 0.

TABLE II. Summary of results for nonlinear Teukolsky waves
with different initial amplitude A. The amplitudes A ¼ 0:00148
and A ¼ 0:00164 are, respectively, the highest subcritical and
lowest supercritical data we tried that did not fail. We tabulate
the irreducible mass Mirr of the black hole, if a black hole
formed in the evolution, the initial ADM mass MADM, and the
ratio between the two. The irreducible mass increases while the
initially formed black hole settles down into equilibrium (com-
pare Fig. 6); we list here the near-equilibrium value after several
oscillation periods.

A Mirr MADM Mirr=MADM

0.00140 � � � 0.222 � � �
0.00142 � � � 0.229 � � �
0.00144 � � � 0.236 � � �
0.00146 � � � 0.243 � � �
0.00148 � � � 0.250 � � �
0.00164 0.144 0.312 0.460

0.00166 0.151 0.321 0.470

0.00168 0.158 0.329 0.480

0.00170 0.164 0.338 0.513

0.00175 0.181 0.360 0.550

0.00180 0.197 0.383 0.584

0.00200 0.265 0.486 0.737
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evolution with the moving-puncture gauge? We address
each of these issues in turn.

A. Off-center Brill wave evolutions

Small data:We evolve two sets of weak, off-center Brill
wave initial data with offset �0 ¼ 4 in (11). Specifically, we
choose data with amplitudes A ¼ 0:053 and A ¼ 0:0815,
which have ADM masses � 0:59 and � 1:4, respectively.
For the weaker A ¼ 0:053 data we use � � 1=M, while
for A ¼ 0:0815 we chose � � 2=M. As for earlier weak
Brill data we found that both waves disperse after a brief
interaction around the origin. For the weaker data, the
Kretschmann scalar takes a maximum value �48 at the
origin, while for the stronger data the maximum is � 200,
again at the origin.

Large data: We now take the same offset but A ¼ 0:12,
whichmakes theADMmass� 3:15.We used� ¼ 8=M. As
in the ‘‘small data’’ tests, the lapse initially decreases most
rapidly around the peak of the seed function in the xy plane.
It then decreases to zero near the origin. Then an incoming
gauge wave travels along the z axis toward the origin. Since

the speed of the gauge wave is � ffiffiffiffiffiffi
2�

p
, and travels from a

region with �� 1 to one with �� 0, there is a rapid blue-
shift effect; the solution becomes badly resolved. At some
point in time, around the interface of these two regions, the
trace of the extrinsic curvature becomes negative, which
leads to an increase in the lapse [see Eq. (7)]. Ultimately,
this results in a coordinate singularity causing the code to fail
at t � 16.We note a remarkable similarity between the lapse
profilewe obtain, shown in Fig. 8, and that shown in Fig. 2 of
[40] where such coordinate singularities were studied in
evolutions of flat space. We conclude that, for sufficiently
large amplitudes, moving-puncture coordinates fail even for
off-centered Brill wave initial data.

B. Axisymmetric twist-free, time symmetric data

Harmonic spatial coordinates:We start by searching for
differences in the geometry of Brill and Teukolsky waves.
In cylindrical coordinates, the conformally related metric
for Brill wave initial data is given by

��ij ¼
eq 0 0

0 eq 0

0 0 �2

0
BB@

1
CCA (18)

[see Eq. (9)], whereas for Teukolsky waves the confor-
mally related metric takes the form

��ij ¼
���� ���z 0

���z ��zz 0

0 0 ����

0
BB@

1
CCA: (19)

Evidently, the two data sets are given in different coordi-
nate systems, and a meaningful comparison can only be
made once they have been expressed in the same coordi-
nates. However, any axisymmetric, twist-free metric can be
brought into the form

��ij ¼
eq 0 0

0 eq 0

0 0 �2V

0
BB@

1
CCA; (20)

in some coordinate system ð%; �;�Þ. Crudely speaking,
this is possible because the two-metric in the �-z subspace
can always be brought into an explicitly conformally flat
form [[52], Ch. 3, Ex. 2].
Geometrically oblate and prolate initial data: Any

spherically symmetric metric can be brought into the form
(20) with V ¼ eq. For our gravitational wave initial data,
which are not spherically symmetric, V will, in general, be
different from eq. Evidently, deviations of V from eq can be
produced in two ways: either V > eq or V < eq. We char-
acterize data with V > eq as geometrically oblate and data
with V < eq as geometrically prolate. We use the word
‘‘geometrically’’ to distinguish the terminology from that
normally used with Brill waves, where the word oblate or
prolate applies to the seed function. Clearly, both V and eq

are functions of the coordinates, so that data may be geo-
metrically oblate in some region and prolate in another.
We also point out that we apply this characterization only
to the initial data; it is not evident whether or how this
characterization is maintained during a time evolution,
even if the data are globally geometrically oblate or prolate
initially. The characterization as geometrically oblate or
prolate may nevertheless be a useful distinction between
the geometries of Brill and Teukolsky data evolved earlier.
An example of initial data of a certain character that is
maintained is given in [53].
Geometric oblateness of Brill and Teukolsky data: For

the Brill wave initial data of Sec. III A we have V ¼ 1;
moreover we chose a positive amplitude A in the seed

FIG. 8 (color online). Profiles of the lapse at different instan-
ces of time along the z axis for an off-centered Brill wave with
A ¼ 0:12 and �0 ¼ 4:0. Initially the lapse collapses at the center.
At late times of the evolution, a gauge pulse is traveling in and
gets blueshifted. At the interface between the collapsed lapse and
the gauge pulse, a coordinate singularity appears. This leads to a
failure of the simulation.
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function (11), which results in eq � 1. This means that the
Brill wave initial data of Sec. III A are geometrically
prolate everywhere except on the z axis. For Teukolsky
waves the classification is less obvious, because it requires
an additional coordinate transformation. Interestingly,
however, Fig. 3 in [24] shows that the geometry close to
the center is geometrically oblate. (The quantity e� used
by [24] is a measure of the ratio eq=V; the fact that their �
is negative in a region around the origin implies that the
geometry is oblate there.) This observation could point to
a fundamental difference in the geometries of A > 0 Brill
and Teukolsky waves.

Discussion: These arguments are neither rigorous nor
complete, but they lead to an immediate suggestion: if it
were true that geometrically oblate data are better behaved
in dynamical evolutions than prolate data—for example in
the sense that they form a singularity at the center rather
than on a ring—then it would be of interest to produce
geometrically oblate Brill wave initial data. We consider
such data next.

C. Negative-amplitude Brill waves

Geometrically oblate Brill waves: In this section we
consider geometrically oblate Brill wave data. Such data
can be produced in exactly the sameway as the prolate data
in Sec. III A, by adopting negative amplitudes A < 0 in the
seed function (11).

Centered geometrically oblate Brill waves: We evolved
three sets of initial data with �0 ¼ 0 and A < 0, namely
A ¼ �1, A ¼ �2:5, and A ¼ �5, with ADM masses of
approximately 0.61, 1.37, and 3.15, respectively. As in the
geometrically prolate case, the first two data sets just allow
the Kretschmann scalar to propagate away, taking maximal
values of about 56 and 1072 appearing at the origin. For the
stronger field evolution the numerics again eventually fail,
although now at around t ¼ 22:5. In Fig. 9 we show

profiles of the lapse at different instances of time for
such a Brill wave with A ¼ �5. Interestingly, these pro-
files are qualitatively different from those for the geomet-
rically prolate, positive-amplitude Brill waves shown in the
top panel of Fig. 2. While for geometrically prolate Brill
waves the lapse always takes a minimum at finite radius,
which we found to coincide with the development of
increasingly large gradients in the spatial metric, for
negative-amplitude Brill waves the lapse ultimately takes
a minimum at the center. This is the same behavior that we
highlighted for Teukolsky waves in Fig. 4. We were able to
follow the collapse of geometrically oblate Brill wave past
black hole formation, and in contrast to positive-amplitude
Brill waves we were also able to locate apparent horizons,
at least in the spherical coordinate code [54]. However, at
least with the setup we chose, the BAM apparent horizon
finder did not give reliable results. At late times, steep
gradients in the metric functions again appeared, but this
timewell inside the horizon, close to the center. Ultimately,
these gradients spoil further numerical evolution.
Off-center geometrically oblate Brill waves: We again

evolved three sets of initial data A ¼ �0:044, A ¼ �0:061,
and A ¼ �0:08125, all with �0 ¼ 4. The ADM masses of
these spacetimes are approximately 0.61, 1.36, and 3.15 with
peak values of the Kretschmann scalar initially around 64,
108, and 88, respectively. It is interesting that the ‘‘larger’’
initial data do not have the largest initial Kretschmann, but
the evolution leaves no doubt that the A ¼ �0:08125 data
are indeed the stronger. As in our previous results the two
weaker data sets leave behind I ¼ 0, with greater oscillations

FIG. 9 (color online). Profiles of the lapse at different instan-
ces of time for a negative-amplitude, centered Brill wave with
A ¼ �5. These profiles should be compared with (a) those of a
positive-amplitude Brill wave in the top panel in Fig. 2, and
(b) those for a Teukolsky wave in Fig. 4.

FIG. 10 (color online). Snapshots of the apparent horizon for
supercritical off-center geometrically oblate Brill waves. The
apparent horizon is first discovered at t ¼ 36:4 and has a peanut-
like shape, where in the plots the z axis runs vertically. The
subsequent frames show the oscillations of the horizon, which
jumps at t � 65.

COLLAPSE OF NONLINEAR GRAVITATIONAL WAVES IN . . . PHYSICAL REVIEW D 88, 103009 (2013)

103009-9



in the Kretschmann scalar in the A ¼ �0:061 case.
The maximum of the Kretschmann scalar in the evolution
of the A ¼ �0:044 is around 19 and occurs at the origin at
t ’ 7:4. Likewise with the A ¼ �0:061 data, the maximum
occurs at the origin,with a value around 373 at t ’ 12. In both
the A ¼ �0:044 and the A ¼ �0:061 evolutions the
Kretschmann scalar propagates away predominantly along
the symmetry axis. We evolved the strongest data A ¼
�0:08125 set in the BAM code until t ¼ 150. It collapses to
form a black hole similar to the Teukolsky data presented
in Sec. IIIB. An apparent horizon was first discovered at
t ¼ 36:4. In Fig. 10 some snapshots of the evolution of the
horizon are plotted. The apparent horizon mass eventually
settles down to M ¼ 1:73. Comparing the maximum reso-
lution in this simulation relative to this scale with the earlier
Teukolskywave BAM evolution forA ¼ 0:00175, the present
data have roughly 9 times the resolution, which may explain
whywe did not obtain reliable results from the BAM apparent
horizon finder earlier. So by choosing the parameters in the
Brill wave data carefully we can obtain evolutions compa-
rable to those we had with Teukolsky initial data.

V. SUMMARY

We presented numerical simulations of nonlinear gravi-
tational waves. We adopted two different types of initial
data—Brill and Teukolsky waves—and evolved them with
two independent numerical codes.

We consistently find that positive amplitude Brill waves,
most commonly evolved in the literature, fail to produce
long-term stable evolutions with the moving-puncture
gauge, unless the initial amplitude is small. Evolving these
data with this gauge leads to steep gradients in metric
functions, which ultimately spoil the numerical evolution.
Comparing with earlier studies it seems most likely that the
failure is a coordinate singularity. For positive-amplitude
Brill waves we are also unable to locate black hole
horizons, even for data that we believe do form black holes.

On the other hand, we find that Teukolsky waves do allow
a stable, long-term evolution in moving-puncture coordi-
nates, unless the initial amplitude is close to critical. We
followed the evolution of the waves and their collapse to a
black hole, tracking the newly formed horizon, and confirm-
ing that the spatial slices settle down to a trumpet geometry.

The primary motivation was therefore to provide one
more example of successful simulations with moving-
puncture coordinates that track the collapse of regular
initial data to a black hole. Another motivation is to point
out the surprising, qualitative differences between Brill and
Teukolsky wave initial data. We speculate that the choice
of initial data has significantly contributed to the fact that
the original studies of criticality in the collapse of non-
linear waves [24] have been so difficult to reproduce. In
retrospect, it is surprising that none of the studies after [24]
considered Teukolsky waves. Apart from choosing Brill
waves for technical convenience, this may appear justified

because critical phenomena are not expected to depend on
details of the initial data, which is an aspect of universality
found in many studies. However, wave collapse in axisym-
metry also marks a departure from spherical symmetry
often used in other studies. Axisymmetry opens up the
possibility that new geometric aspects matter, and the
present study is an example.
Our findings also raise new questions. In particular, it

would be desirable to understand why Brill and Teukolsky
waves behave so differently. We discussed a characteriza-
tion of twist-free, axisymmetric data as geometrically
either prolate or oblate. While this characterization does
point to qualitative differences in the respective geome-
tries, our analysis is incomplete in the sense that it does not
consider the time dependence of the characterization. We
believe that it would be worthwhile to further pursue this or
similar approaches in order to gain a deeper insight into the
geometries of these waves. On the basis of this character-
ization, as an attempt to make the Brill wave data as close
as possible to the Teukolsky evolutions, we evolved off-
center negative amplitude Brill waves. We found that we
were once again able to evolve such data through apparent
horizon formation, and furthermore as they settle down to a
Schwarzschild black hole.
Unfortunately, our simulations still break down, even for

Teukolsky waves, in the most interesting regime, namely
close to the critical amplitude. This prevents us from
analyzing critical phenomena with our current simulations.
We believe that this failure occurs because of the lack of
sufficient spatial grid resolution. As one approaches the
critical point, the evolution leads to oscillations on increas-
ingly small scales. At least with moving-puncture coordi-
nates, the underresolution of these oscillations causes the
lapse to become negative, which then spoils the numerical
evolution. The need for increasingly fine spatial resolution
in the vicinity of the critical point is not a new revelation,
of course; it explains, for example, why a well-adjusted
adaptive grid refinement proved so crucial in the original
simulations of Choptuik [22]. We also cannot exclude
the possibility that the moving-puncture coordinates them-
selves fail close to the critical point, irrespective of reso-
lution. In either case, we plan to develop techniques (for
example unequal grid spacing in our spherical-coordinate
code), and experiment with the slicing and gauge condi-
tions, in order to study critical phenomena in the collapse
of nonlinear waves in the future.
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APPENDIX: NUMERICS

The numerical results presented in this paper were pro-
duced with two different numerical codes. Both of these
codes evolve Einstein’s equations in the BSSN formulation
[4–6] using finite-difference methods, but in completely
independent implementations.

The BAM code: One of our codes is the BAM code,
which adopts Cartesian coordinates and is described in
[45,55–57]. The evolutions in this paper were performed
with an explicit fourth-order Runge-Kutta method and
fourth-order finite differences for the spatial derivatives.
Mesh refinement is provided by a hierarchy of cell-
centered nested Cartesian grids and Berger-Oliger time
stepping.Metric variables are interpolated in space bymeans
of sixth-order Lagrangian polynomials. Interpolation in
Berger-Oliger time stepping is performed at second order.
In Fig. 11 we show a convergence test for a Brill wave with
positive amplitude A ¼ 5.

The spherical-polar coordinate code: Our other code is
an implementation of BSSN in spherical polar coordinates
[54]. The code adopts a reference-metric formulation of the
BSSN formalism [58], uses a partially implicit Runge-
Kutta method for the time evolution [59,60], and scales
out appropriate factors of r and sin� from all tensorial
quantities. Spatial derivatives are evaluated using fourth-
order finite differencing, except for advective (shift) terms,
which are evaluated to third order. Our current implemen-
tation differs from that described in [54] in that it now uses
a third-order finite differencing for the advective terms
(rather than second order), in that we have implemented
an apparent horizon finder using the approach of [61,62],
and in that we now use trilinos software [63,64] to solve
elliptic equations. While this code does not make any

symmetry assumptions, the axisymmetric solutions
considered in this paper can be computed efficiently by
choosing the minimum number of grid points possible in
the � direction.
Comparison: The codes produce consistent results. As

an example, we compare in Fig. 11 the lapse function �
in the equatorial plane at a time t � 3 for a collapsing
Teukolsky wave.
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