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We investigate spontaneous global symmetry breaking in the absence of Lorentz invariance and study

technical naturalness of Nambu-Goldstone modes for which the dispersion relation exhibits a hierarchy of

multicritical phenomena with Lifshitz scaling and dynamical exponents z > 1. For example, we find

Nambu-Goldstone modes with a technically natural quadratic dispersion relation which do not break time

reversal symmetry and are associated with a single broken symmetry generator, not a pair. The mechanism

is protected by an enhanced ‘‘polynomial shift’’ symmetry in the free-field limit.
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I. INTRODUCTION

Gapless Nambu-Goldstone (NG) modes [1–4] appear
prominently across an impressive array of physical phe-
nomena, both relativistic and nonrelativistic (for reviews,
see, e.g., Refs. [5–9]). They are a robust consequence of
spontaneous symmetry breaking. Moreover, when further
combined with gauge symmetries, they lead to the Higgs
phenomenon, responsible for controlling the origin of
elementary particle masses.

The NG modes are controlled by Goldstone’s theorem:
A spontaneously broken generator of a continuous internal
rigid symmetry implies the existence of a gapless mode.
With Lorentz invariance, the theorem implies a one-to-one
correspondence between the generators of broken symme-
try and massless NG modes, but in the nonrelativistic
setting, it leaves questions [10–12]: What is the number
of independent NG modes? What are their low-energy
dispersion relations?

In this paper, we study the general classification of NG
modes, and their naturalness, in nonrelativistic theories
with Lifshitz symmetries. The important concept of natu-
ralness is behind many successes of modern physics, but it
also leads to some of its most intriguing and persistent
puzzles. A system is technically natural if its low-energy
behavior follows from that at higher energy scales, without
requiring fine-tuning [13]. Perhaps the most famous
‘‘naturalness problem’’ comes from the apparent smallness
of the cosmological constant [14–16], suggesting that
something fundamental is still missing in our understand-
ing of gravity and cosmology. And now that the Higgs
boson has been discovered, (un)naturalness at the TeV
scale is again at the forefront of high-energy particle
physics [17–21]. In the context of quantum gravity, theo-
ries with Lifshitz symmetries have been studied at least in
part because of their improved short-distance (UV) behav-
ior [22–24]. Our study illustrates that in Lifshitz-type
theories, not only the short-distance behavior but also the
concept of naturalness acquires interesting new features.

II. EFFECTIVE FIELD THEORYAND
GOLDSTONE’S THEOREM

In Refs. [25,26], elegant arguments based on effective
field theory (EFT) have been used to clarify the conse-
quences of Goldstone’s theorem in the absence of Lorentz
invariance. The main idea is to classify possible NG modes
by classifying the EFTs available for describing their low-
energy dynamics. We start with the NG field components
�A, A ¼ 1; . . . ; n, which serve as coordinates on the space
of possible vacua M ¼ G=H in a system with symmetries
broken spontaneously from G to H � G. Our spacetime
will be the flat RDþ1 with coordinates t, xi, i ¼ 1; . . . ; D,
and we impose the Lifshitz symmetry consisting of all
Euclidean isometries of the spatial RD and the time trans-
lations. At the fixed points of the renormalization group
(RG), this symmetry is enhanced by anisotropic scaling
symmetry xi ! bxi, t ! bzt, with the dynamical exponent
z characterizing the degree of anisotropy at the fixed point.
Arguments of Refs. [25,26] suggest that the generic

low-energy EFT action for the NG fields �A with these
symmetries is

Seff ¼ 1

2

Z
dtdDxf�Að�Þ _�A þ gABð�Þ _�A _�B

� hABð�Þ@i�A@i�
B þ � � �g; (1)

where �A, gAB, and hAB are backgrounds transforming
appropriately under G, and ‘‘� � �’’ stands for higher-order
derivative terms. The term linear in _�A is only possible
because of the special role of time. Lorentz invariance
would require �A ¼ 0 and gAB ¼ hAB, thus reproducing
the standard relativistic result: one massless, linearly dis-
persing NG mode per each broken symmetry generator. In
the nonrelativistic case, turning on�A leads to two types of
NG bosons [25,26]. First, those field components that get
their canonical momentum from �A form canonical pairs;
each pair corresponds to a pair of broken generators and
gives one type-B NG mode with a quadratic dispersion.
The remaining, type-A modes then get their canonical
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momenta from the second term in Eq. (1) and behave
as in the relativistic case, with z ¼ 1. In both cases,
higher values of z can arise if hAB becomes accidentally
degenerate [25].

We will show that in Lifshitz-type theories, hAB can be
small naturally, without fine-tuning. When that happens,
the low-energy behavior of the NG modes will be deter-
mined by the next term, of higher order in @i. The argument
can be iterated: When the terms of order @4 are also small,
terms with z ¼ 3 will step in, etc. This results in a hier-
archy of multicritical type-A and type-B NG modes with
increasing values of z. Compared to the generic NG modes
described by Eq. (1), these multicritical NG modes are
anomalously slow at low energies.

III. z¼ 2 LINEAR AND NONLINEAR
OðNÞ SIGMA MODELS

We will demonstrate our results by focusing on a simple
but representative example of symmetry breaking, the
OðNÞ nonlinear sigma model (NLSM) with target space
SN�1. (For some background on Lifshitz scalar theories,
see Refs. [22,27–31].) Until stated otherwise, we will also
impose time reversal invariance, to forbid �A. The action
of the OðNÞ-invariant z ¼ 2 Lifshitz NLSM [29] is then

SNLSM ¼ 1

2G2

Z
dtdDxfgAB _�A _�B � e2gAB��

A��B

� �1ðgAB@i�A@j�
BÞðgCD@i�C@j�

DÞ
� �2ðgAB@i�A@i�

BÞ2 � c2gAB@i�
A@i�

Bg: (2)

Here ��A � @i@i�
A þ �A

BC@i�
B@i�

C, gAB is the round

metric on the unit SN�1 (later we will use gAB ¼ �AB þ
�A�B=ð1� �CD�

C�DÞ), and �A
BC is its connection. The

Gaussian z ¼ 2 RG fixed point is defined by the first two
terms in Eq. (2) as G ! 0. We define scaling dimensions
throughout in the units of spatial momentum, ½@i� � 1.
Due to its geometric origin, the NG field �A is dimension-
less, ½�A� ¼ 0. The first four terms in SNLSM are all of the
same dimension, so ½e2� ¼ ½�1� ¼ ½�2� ¼ 0. We can set
e ¼ 1 by the rescaling of space and time and will do so
throughout the paper. All interactions are controlled by
the coupling constant G, for which the dimension is ½G� ¼
ð2�DÞ=2. Thus, the critical spacetime dimension of
the system, at which the first four terms in Eq. (2) are
classically marginal, is equal to 2þ 1. The remaining term
has a coupling of dimension ½c2� ¼ 2 and represents a
relevant deformation away from z ¼ 2, even in the non-
interacting limit G ! 0. Since c determines the speed of
the NG modes in the k ! 0 limit, we refer to this term as
the ‘‘speed term’’ for short. Given the symmetries, this
relevant deformation is unique.

We are mainly interested in 3þ 1 dimensions, so we set
D ¼ 3 from now on. Since this is above the critical dimen-
sion of 2þ 1 and ½G� is negative, the theory described by
Eq. (2) must be viewed as an EFT: SNLSM gives the first few

(most relevant) terms out of an infinite sequence of
operators of growing dimension, compatible with all the
symmetries. It is best to think of this EFT as descending
from some UV completion. For example, we can engineer
this effective NLSM by starting with the z ¼ 2 linear
sigma model (LSM) of the unconstrained OðNÞ vector
�I, I ¼ 1; . . . ; N and action

SLSM ¼ 1

2

Z
dtd3x

�
_�I _�I � e2@2�I@2�I � c2@i�

I@i�
I

� ½e1�I�I þ e2ð�I�IÞ2�@i�J@i�
J

� f1ð�I@i�
IÞð�J@i�

JÞ
� f2ð�I�IÞð�J@i�

JÞð�K@i�
KÞ �m4�I�I

� �

2
ð�I�IÞ2 � X5

s¼3

gs
s!

ð�I�IÞs
�
: (3)

The first two terms define the Gaussian z ¼ 2 fixed point.
We again set e ¼ 1 by rescaling space and time. At this
fixed point, the field is of dimension ½�� ¼ 1=2, and the
dimensions of the couplings—in the order from the mar-
ginal to the more relevant—are: ½e� ¼ ½g5� ¼ ½e2� ¼
½f2� ¼ 0, ½g4� ¼ ½e1� ¼ ½f1� ¼ 1, ½g3� ¼ ½c2� ¼ 2, ½�� ¼
3, and ½m4� ¼ 4.
This theory can be studied in the unbroken phase,

the broken phase with a spatially uniform condensate
(which we take to lie along the Nth component, h�Ni¼v),
or in a spatially modulated phase which also breaks spon-
taneously some of the spacetime symmetry. We will focus
on the unbroken and the uniformly broken phases. In the
latter, we will write �I ¼ ð�A; vþ �Þ. Changing varia-

bles to �I ¼ ðr�A; r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �AB�

A�B
p Þ and integrating out

perturbatively the gapped radial field r� v gives the
NLSM (2) of the gapless �A at leading order, followed
by higher-derivative corrections. This is an expansion in
the powers of the momenta jkj=mgap and frequency

!=m2
gap, where mgap is the gap scale of the radial mode.

IV. QUANTUM CORRECTIONS TO c2

The simplest example with a uniform broken phase is
given by the special case of LSM, in which we turn off all
self-interaction couplings except � and also set c2 ¼ 0
classically. This theory is super-renormalizable: Since
½�� ¼ 3, the theory becomes free at asymptotically high
energies and stays weakly coupled until we reach the scale

of strong coupling ms ¼ �1=3. Since the speed term is
relevant, our intuition from the relativistic theory may
suggest that once interactions are turned on, relevant terms
are generated by loop corrections, with a leading power-
law dependence on the UV momentum cutoff �. In fact,
this does not happen here. To show this, consider the
broken phase, with the potential minimized by
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v ¼ m2ffiffiffiffi
�

p ; (4)

and set c2 ¼ 0 at the classical level. The �A fields are
gapless and represent our NG modes. The � has a gapped
dispersion relation, !2 ¼ jkj4 þ 2m4. The Feynman rules
in the broken phase are almost identical to those of
the relativistic version of this theory [32], except for the
nonrelativistic form of the propagators,

(5)

Because of the z ¼ 2 anisotropy, the superficial degree
of divergence of a diagram with L loops, E external legs
and V3 cubic vertices is D ¼ 8� 2E� 3L� 2V3. Loop
corrections to the speed term are actually finite. If we start
at the classical level by setting c2 ¼ 0, this relation can be
viewed as a ‘‘zeroth-order natural relation’’ (in the sense of
Ref. [32]): True classically and acquiring only finite cor-
rections at all loops. We can even set c2 at any order to zero
by a finite local counterterm, but an infinite counterterm for
c2 is not needed for renormalizability.

How large is this finite correction to c2? At one loop, five
diagrams (shown in Fig. 1) contribute to the inverse propa-
gator �ABð!;kÞ � ð!2 � jkj4 þ�ð!;kÞÞ�AB. We can
read off the one-loop correction to c2 ¼ 0 by expanding
� ¼ ��m4 � �c2k2 þ � � � . Four of these diagrams give a
(linearly) divergent contribution to �m4, but both the di-
vergent and finite contributions to �m4 sum to zero, as they
must by Goldstone’s theorem. The next term in � is then
proportional to k2 and finite. It gets its only one-loop
contribution from diagram (d) in Fig. 1, for which the
explicit evaluation gives

�c2 ¼ 27=4 � 5
63�5=2

�
�

�
5

4

��
2 �

m
� 0:0125

�

m
: (6)

Thus, the first quantum correction to c2 is indeed finite and
nonzero. But is it small or large? There are much higher
scales in the theory, such as m and �, yet in our weak
coupling limit, the correction to the speed term is found to
be �c2 / �=m naturally. In this sense, �c2 is small, and so
c2 can also be small without fine-tuning.

We can also calculate �c2 at one loop in the effective
NLSM. The Feynman rules derived from Eq. (2) for the
rescaled field�A=G involve a propagator independent ofG
(in which we set c2 ¼ 0) and an infinite sequence of
vertices with an arbritrary even number of legs, of which
wewill only need the lowest one. When the radial direction
of � is integrated out in our super-renormalizable LSM, at
the leading order we get Eq. (2) withG ¼ 1=v, �1 ¼ 0 and
�2 ¼ 1. In this special case, the 4-vertex is

The first quantum correction to �c2 comes at one loop,
from , and it is cubically divergent. With the

sharp cutoff at jkj ¼ �, we get

�c2 ¼ G2�3

3�2
: (7)

This theory is only an EFT, and its natural cutoff scale� is
given by m, the gap scale of the �. With this value of the
cutoff, the one-loop result (7) gives �c2 ¼ Oð�=mÞ, which
matches our LSM result.
If one wishes to extend the control over the LSM beyond

weak coupling in �, one can take the large-N limit, holding
the ’t Hooft coupling �N fixed. In this limit, the LSM and
the NLSM actually become equivalent, by the same argu-
ment as in the relativistic case [33]. An explicit calculation
shows that at largeN, �c2 is not just finite but actually zero,
to all orders in the ’t Hooft coupling.

V. NATURALNESS

Now, we return to the question of naturalness of small
�c2, in the technical context articulated in Ref. [13]. As a
warm-up, consider first our super-renormalizable LSM in
its unbroken phase. The leading contribution to the speed
term in the inverse propagator of �I is now at two-loop

order, from . This diagram is finite; even the

leading constant, independent of ! and k, only yields a
finite correction to the gapm4. The contribution of orderk2

is then also finite and gives �c2 ¼ ��2=m4, with � a pure
number independent of all couplings. But is this �c2 small?
Let us first recall a well-known fact from the relativistic

��4 theory [13]: � and m2 may be simultaneously small,
�", because in the limit of " ! 0, the system acquires
an enhanced symmetry—in this case, the constant shift
symmetry,

�I ! �I þ aI: (8)

The same constant shift symmetry works also in our
super-renormalizable Lifshitz LSM. Restoring dimensions,
we have

A B

(a)

B BA A

(b)

A B A B

(e)(c) (d)

FIG. 1. One-loop corrections to �AB of the NG modes in the
broken phase of the super-renormalizable LSM.
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� ¼ Oð"�3Þ; m4 ¼ Oð"�4Þ: (9)

Here � is the scale at which the constant shift symmetry is
broken (or other new physics steps in) and represents the
scale of naturalness: The theory is natural until we reach
the scale � ¼ Oðm4=�Þ. This result is sensible—if we
wish for the scale of naturalness to be much larger than
the gap scale, � � m, we must keep the theory at weak
coupling, �=m3 	 1. Now, how about the speed term? If
we assume that c2 is also technically small, c2 � ", this
assumption predicts c2 ¼ Oð�2=m4Þ, which is exactly the
result we found above in our explicit perturbative calcu-
lation. It looks like there must be a symmetry at play,
protecting simultaneously the smallness of m4, � as well
as c2. We propose that the symmetry in question is the
generalized shift symmetry (8), with aI now a quadratic
polynomial in the spatial coordinates,

aI ¼ aIijx
ixj þ aIix

i þ aI0: (10)

The speed term @i�
I@i�

I is forbidden by this ‘‘quadratic
shift’’ symmetry, while @2�I@2�I is invariant up to a total
derivative. This symmetry holds in the free-field limit and
will be broken by interactions. It can be viewed as a
generalization of the Galileon symmetry, much studied
in cosmology [34], which acts by shifts linear in the
spacetime coordinates.

As long as the coupling is weak, the unbroken phase of
the LSM exhibits a natural hierarchy of scales, c 	 m 	
�, with the speed term much smaller than the gap scale.
The effects of the speed term on the value of z would only
become significant at low-enough energies, where the
system is already gapped. Note that another interesting
option is also available, since there is no obligation to
keep c small at the classical level. If instead we choose c
much above the gap scale m (but below the naturalness
scale �), as we go to lower energies, the system will
experience a crossover from z ¼ 2 to z ¼ 1 before reach-
ing the gap, and the theory will flow to the relativistic ��4

in the infrared. The coupling � can stay small throughout
the RG flow from the free z ¼ 2 fixed point in the UV to
the z ¼ 1 theory in the infrared.

Now consider the same LSM in the broken phase. In this
case, we are not trying to make m small—this is a fixed
scale, setting the nonzero gap of the �. Moreover, the �’s
are gapless, by Goldstone’s theorem. We claim that c2 can
be naturally small in the regime of small �,

� ¼ Oð"�3Þ; c2 ¼ Oð"�2Þ; (11)

as a consequence of an enhanced symmetry. The symmetry
in question is again the quadratic shift symmetry, now
acting only on the gapless NG modes in their free-
field limit: �A ! �A þ aAijx

ixj þ � � � . It follows from

Eq. (4) that the radius v of the vacuum manifold

SN�1 goes to infinity with " ! 0, v ¼ Oðm2=
ffiffiffiffiffiffiffiffiffi
�3"

p Þ, and
v ! 1 corresponds to the free-field limit of the �’s.

Our enhanced symmetry does not protectm from acquiring
large corrections; we can view m in principle as a separate
mass scale, but it is natural to take it to be of the order of
the naturalness scale, m ¼ Oð�Þ. Altogether, this predicts
�c2 ¼ Oð�=�Þ ¼ Oð�=mÞ, in accord with our explicit
loop result (6).
The technically natural smallness of the speed term

in our examples is not an artifact of the super-
renormalizability of our LSM. To see that, consider the
full renormalizable LSM (3), first in the unbroken phase.
As we turn off all self-interactions by sending " ! 0, the
enhanced quadratic shift symmetry will again protect the
smallness of c2 � ". In terms of the naturalness scale �,
this argument predicts that in the action (3), all the devia-
tions from the z ¼ 2 Gaussian fixed point can be naturally
of order " in the units set by �:

e2 ¼ Oð"Þ; . . . ; c2 ¼ Oð"�2Þ;
� ¼ Oð"�3Þ; m4 ¼ Oð"�4Þ:

If we want the naturalness scale to be much larger than
the gap scale, � � m, all couplings must be small; for
example, e2 ¼ Oðm4=�4Þ 	 1, etc. We then get an
estimate �c2 ¼ Oðe2�2Þ ¼ Oð ffiffiffiffiffi

e2
p

m2Þ 	 m2; as in the

super-renormalizable case, the speed term can be natu-
rally much smaller than the gap scale. This prediction
can be verified by a direct loop calculation. The leading
contribution to �c2 comes from several two-loop dia-

grams, including with one e2 vertex. Each loop in

this diagram is separately linearly divergent, giving
�c2 � e2�

2 ¼ Oð ffiffiffiffiffi
e2

p
m2Þ, in accord with our scaling

argument.
The story extends naturally to the broken phase of the

renormalizable LSM, although this theory is technically
rather complicated: The h�i itself is no longer given by
Eq. (4), but it is at the minimum of a generic fifth-order
polynomial in �I�I. It is thus more practical to run our
argument directly in the low-energy NLSM. The advantage
is that even for the generic renormalizable LSM (3),
the leading-order NLSM action is of the general form
(2). The leading order of matching gives G ¼ 1=v, with
v the radius of the vacuum manifold SN�1. The NLSM is
weakly coupled when this radius is large. The enhanced
quadratic shift symmetry of the NGmodes�A in their free-
field limit implies G2 ¼ Oð"=�Þ and c2 ¼ Oð"�2Þ with
�1;2 ¼ Oð1Þ and predicts

c2 ¼ OðG2�3Þ: (12)

The naturalness scale � is set by the gap of the � particle,
which is generally of order m. Thus, Eq. (12) implies that
in the large-v regime of the weakly coupled NLSM, the
speed term is naturally much smaller than the naturalness
scale. This can be again confirmed by a direct loop
calculation: The leading contribution to �c2 comes from
the one-loop diagram . This diagram is cubically
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divergent, and its vertex gives a G2 factor, leading to
�c2 �G2�3. Setting ��� confirms our scaling predic-
tion (12). In the special case of our super-renormalizable
LSM, we can go one step further and use Eq. (4) and G ¼
1=v to reproduce again our earlier result, �c2 ¼ Oð�=mÞ.

VI. DISCUSSION

We have shown that type-A NG modes can naturally
have an anomalously slow speed, characterized by an
effective z ¼ 2 dispersion relation. Our arguments can
be easily iterated, leading to type-A NG modes with
higher dispersion of z ¼ 3; 4; . . . . In such higher multi-
critical cases, the smallness of all the relevant terms is
protected by the enhanced ‘‘polynomial shift’’ symmetry
in the free-field limit, with aI now a polynomial in xi of
degree 2z� 2.

At fixed spatial dimension, this pattern of multicritical
symmetry breaking will eventually run into infrared diver-
gences and a multicritical version of the Coleman–
Mermin–Wagner theorem [35,36]: We can increase z until
we reach z ¼ D, at which point no symmetry breaking
with this or higher scaling is possible—the candidate NG
mode described by the free z ¼ D scalar in Dþ 1 space-
time dimensions does not exist as a physical object, since
its propagator is a log and depends on the infrared regula-
tor. This theory would have to supply its own infrared
regulator, for example, by crossing over to z < D in the
far infrared, after spending a lot of RG time in the vicinity
of z ¼ D at intermediate scales.

Our results also extend easily to type-B NG modes,
which break time reversal invariance. Instead of their

generic z ¼ 2 dispersion, they can exhibit a z ¼ 4
(or higher) behavior over a large range of energy scales.
In all these cases, the multicritical behavior of the NG

modes will have consequences for their low-energy
scattering, generalizing the low-energy theorems known
from the relativistic case [7]. The scattering amplitudes
will exhibit a higher-power effective dependence on the
momenta, with the power controlled by z.
Finally, it would be very interesting to extend our analy-

sis to the spatially modulated phases of Lifshitz theories, in
which the spacetime symmetries are further broken spon-
taneously and where one can expect spatially modulated
NG modes.
The results of this paper refine the classification of NG

modes in nonrelativistic systems, and we expect them to be
useful for understanding symmetry breaking in a broad class
of phenomena, including relativistic matter at nonzero den-
sity or chemical potential, and areas of condensed matter,
such as superconductivity, quantum critical phenomena
[37], and dynamical critical systems [38]. Since our results
also shed interesting new light on the concept of naturalness,
we are hopeful that they may stimulate new insights in areas
where puzzles of naturalness have been most prominent:
particle physics, quantum gravity, and cosmology.
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