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We study the thermodynamics of higher-dimensional singly spinning asymptotically AdS black holes

in the canonical (fixed J) ensemble of extended phase space, where the cosmological constant is treated

as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Along

with the usual small/large black hole phase transition, we find a new phenomenon of reentrant phase

transitions for all d � 6 dimensions, in which a monotonic variation of the temperature yields two phase

transitions from large to small and back to large black holes. This situation is similar to that seen in

multicomponent liquids.
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I. INTRODUCTION

In view of the AdS/CFT correspondence, phase transi-
tions in asymptotically AdS black holes allow for a dual
interpretation in the thermal conformal field theory (CFT)
living on the AdS boundary—the principal example being
the well-known radiation/Schwarzschild-AdS black hole
Hawking-Page transition [1] which can be interpreted as
a confinement/deconfinement phase transition in the dual
quark gluon plasma [2]. Charged [3–6] and rotating [7,8]
asymptotically AdS back holes possess an interesting
feature—they allow for a first order small-black-hole/
large-black-hole phase (SBH/LBH) transition which is in
many ways reminiscent of the liquid/gas transition of the
Van der Waals fluid. This superficial analogy was recently
found more intriguing [9] by considering a thermodynamic
analysis in an extended phase space where the cosmologi-
cal constant is identified with thermodynamic pressure and
its variations are included in the first law of black hole
thermodynamics. This notion emerges from geometric
derivations of the Smarr formula [10] that (i) imply the
mass of an AdS black hole should be interpreted as the
enthalpy of the spacetime and (ii) allow for a computation
of the conjugate thermodynamic volume. Intensive and
extensive quantities are now properly identified [9] and
the SBH/LBH transition can be understood as a liquid/gas
phase transition by employing Maxwell’s equal area law to
the P� V diagram. Coexistence lines and critical expo-
nents are then seen to match those of a Van der Waals fluid.

In this paper we report the finding of an interesting
phenomena, observed previously in multicomponent
fluids, e.g., [11], of black hole reentrant phase transitions
(RPTs). A system undergoes an RPT if a monotonic varia-
tion of any thermodynamic quantity results in two
(or more) phase transitions such that the final state is

macroscopically similar to the initial state. We find for a
certain range of pressures (and a given angular momentum)
that a monotonic lowering of the temperature yields a
large-small-large black hole transition, where we refer to
the latter ‘‘large’’ state as an intermediate black hole (IBH).
This situation is accompanied by a discontinuity in the
global minimum of the Gibbs free energy, referred to as
a zeroth-order phase transition, a phenomenon seen in
superfluidity and superconductivity [12], and recently for
Born-Infeld black holes [13]. We find the RPT to be
generic for all rotating AdS black holes in d � 6
dimensions.

II. EXTENDED PHASE SPACE
THERMODYNAMICS

Rotating AdS black holes were constructed in d ¼ 4 by
Carter [14] and later generalized to all higher dimensions
[15–17]. In what follows we limit ourselves to the case
of singly spinning black holes for which only one of
the rotation parameters is nontrivial. In d spacetime
dimensions the metric reads
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d�2 is the metric for the (d� 2)-sphere and
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with l the AdS radius. The associated thermodynamic
quantities read (in Planck units) [18]
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where rþ is the black hole horizon radius (the largest

positive real root of � ¼ 0) and !d¼2�
dþ1
2 =�½ðdþ1Þ=2�

is the volume of the unit d sphere.
We interpret the negative cosmological constant � as a

positive thermodynamic pressure P [7,10,19,20]

P ¼ � 1

8�
� ¼ ðd� 1Þðd� 2Þ

16�l2
; (7)

in which case the first law of black hole thermodynamics
and Smarr formula [10] are

�M ¼ T�Sþ�H�J þ V�P; (8)

d� 3

d� 2
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d� 2
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where the thermodynamic volume conjugate to P is [19]
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It obeys the so-called reverse isoperimetric inequality [19]

and in the nonrotating case becomes V ¼ !d�2r
d�1
þ

d�1 , which is

the spatial volume of a round sphere of radius rþ in the
Euclidean space.

III. REENTRANT PHASE TRANSITION

The thermodynamic behavior of the system is governed
by the Gibbs free energy G ¼ GðT; P; . . .Þ, which reads
(I being the Euclidean action [17])

G¼M�TS¼ I
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and depends on an external parameter J. We can plot it for
fixed J parametrically, first expressing a ¼ aðJ; rþ; PÞ
using (4) and then inserting the (well-behaved) solution
into the expressions for G and T, consequently expressed
as functions of P and rþ.

A simple criterion used for investigating the thermody-
namic stability is the positivity of the specific heat. For a

canonical ensemble in the extended phase space, it is
natural to consider the specific heat at constant pressure

CP ¼ T

�
dS

dT

�
P
; (12)

which is different from the specific heat at constant ther-
modynamic volume,CV . We take negativity ofCP as a sign
of local thermodynamic instability. Note that, as always,
we calculate this quantity for fixed J. That is, our specific
heat at constant P is in fact a specific heat at constant ðP; JÞ
and coincides with CJ considered in previous studies, e.g.
[21]. When plotting the Gibbs free energy we plot branches
with CP > 0 in red solid lines and branches with CP < 0 in
dashed blue lines.
The behavior ofG depends crucially on the dimension d.

For d ¼ 4 and d ¼ 5 the situation is illustrated in Fig. 1.
For P> Pc and any temperature there is only one branch
of locally thermodynamically stable black holes (with
positive CP) whereas for P< Pc the characteristic swal-
lowtail behavior indicating the SBH/LBH phase transition
emerges, with the global minimum of G having CP > 0.
The corresponding P� T diagram (not shown) is reminis-
cent of what was observed for charged black holes in [9]
and is analogous to the Van der Waals P� T diagram.
In d � 6 the situation is more subtle and markedly

different as shown in Figs. 2 and 3. For P> Pc, G resem-
bles the curve characteristic for the Schwarzschild-AdS
black hole, known from the Hawking-Page transition [1]:
the upper branch corresponds to small unstable black holes

P Pc P Pc P Pc
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T
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0.6

1

1.4
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FIG. 1 (color online). Gibbs free energy in d ¼ 5 for various
values of P and J ¼ 1. As with charged AdS black holes in any
dimension, we see characteristic swallowtail behavior indicating
an SBH/LBH transition. Solid red/dashed blue lines correspond
to CP positive/negative, respectively; the CP < 0 line indicates a
local thermodynamic instability where the Gibbs energy is not a
local minimum; at the joins CP diverges. The behavior of G in
d ¼ 4 is similar.
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with CP < 0 whereas the lower branch describes stable
large black holes with CP > 0. There is a critical point at
P ¼ Pc, and for the range of pressures P 2 ðPt; PcÞ and
temperatures T 2 ðTt; TcÞ there is a standard first order
SBH/LBH phase transition, reminiscent of the Van der
Waals phase transition [9]. However for Pc>Pz¼P>Pt

three separate phases of black holes emerge (see Fig. 4):
intermediate black holes (on the left), small (middle),
and large (on the right). This holds for T 2 ðTt; TzÞ,
P 2 ðPt; PzÞ (see Ref. [22] for details as to how these
points are determined) and terminates at T ¼ Tt. Small
and large black holes are separated by a standard first order
phase transition, but the intermediate and small are sepa-
rated by a finite jump in G, which in this range has a
discontinuous global minimum (Fig. 3). This is the RPT,
first observed in a nicotine/water mixture [23], and since
seen in multicomponent fluid systems, gels, ferroelectrics,
liquid crystals, and binary gases [11]. Finally, for T < Tt

only one LBH phase exists.
Consider Fig. 3. If we start decreasing the temperature

from, say T ¼ 0:24, the system follows the lower solid
(red) curve until it joins the upper solid (red) curve—this
corresponds to a first order SBH/LBH phase transition.
As T continues to decrease the system follows this upper
curve until T ¼ T0 2 ðTt; TzÞ, where G has a discontinuity
at its global minimum. Further decreasing T, the system
jumps to the uppermost red line—this corresponds to the
zeroth order phase transition between small and intermedi-
ate black holes.

FIG. 3 (color online). Zeroth order phase transition in d ¼ 6.
A closeup of Fig. 2 illustrating the discontinuity in the global
minimum of G at T ¼ T0 � 0:2339 2 ðTt; TzÞ (denoted by the
vertical line). We have set P ¼ 0:0564 2 ðPt; PzÞ and J ¼ 1.
Solid red/dashed blue lines correspond to CP positive/negative,
respectively; black arrows indicate increasing rþ. The blue
dashed curve with the smallest rþ admits black holes subject
to the ultraspinning instabilities [27]; all other branches are
stable with respect to this instability.
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FIG. 2 (color online). Gibbs free energy in d ¼ 6 for various
values of P and J ¼ 1. Solid red/dashed blue lines correspond to
CP positive/negative, respectively. As with Schwarzschild-AdS
black holes, for P � Pc, the (lower) LBH branch is thermody-
namically stable whereas the upper branch is unstable. For
P ¼ Pc we observe critical behavior. At the joins of dashed (blue)
and solid (red) lines CP diverges. For P 2 ðPt; PzÞ we observe a
‘‘zeroth-order phase transition’’ signifying the onset of an RPT.

FIG. 4 (color online). P� T diagram in d ¼ 6. The coexis-
tence line of the first order phase transition between small and
large black holes is depicted by a thick black solid line for J ¼ 1.
It initiates from the critical point ðPc; TcÞ and terminates at
ðPt; TtÞ. The red solid line in the inset indicates the ‘‘coexistence
line’’ of small and intermediate black holes, separated by a finite
gap in G, indicating the RPT. It commences from ðTz; PzÞ and
terminates at ðPt; TtÞ. A similar figure is valid for any d � 6.
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This novel situation is clearly illustrated in the P� T
diagrams in Fig. 4. There is the expected SBH/LBH line of
coexistence corresponding to the liquid/gas Van der Walls
case, ending in a critical point ðTc; PcÞ. This line terminates
at ðTt; PtÞ, where there is a ‘‘triple point’’ between the
small, intermediate, and large black holes. For smaller
values of T there is an unstable line of coexistence (not
shown) between the IBHs and LBHs. For T 2 ðTt; TzÞ
there is a new IBH/SBH line of coexistence (see inset of
Fig. 4) that terminates in another ‘‘critical point’’ ðTz; PzÞ.
The range for the RPT is quite narrow and must be deter-
mined numerically. For example for J ¼ 1 and d ¼ 6
we obtain ðTt; Tz; TcÞ � ð0:2332; 0:2349; 0:3004Þ and
ðPt; Pz; PcÞ � ð0:0553; 0:0579; 0:0958Þ.

IV. EQUATION OF STATE

The equation of state P ¼ PðV; T; JÞ in the canonical
(fixed J) ensemble can be computed by solving Eqs. (3)–(6)
to eliminate ðm; a; rþÞ in terms of the basic thermodynamic
variables. The result can be obtained numerically (see Fig. 5),
but there are two cases of physical interest that can be
approximated analytically: the slowly rotating (a ! 0) case
and the ultraspinning (a ! l) regime.

In the slowly rotating case, we expand in the parameter
� ¼ a=l, to obtain

P¼T

v
� d�3

�ðd�2Þv2
þ �ðd�1Þ16dJ2
4!2

d�2½ðd�2Þv�2ðd�1ÞþOð�4Þ (13)

and it is straightforward to show that Van der Waals
behavior occurs as in d ¼ 4 [13]. The specific volume of

the fluid v is defined by V ¼ ð�vÞd�1!d�2

d�1 , � ¼ 1
4 ðd� 2Þ.

Critical points ðPc; vc; TcÞ can be computed from
@P
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@v2 ¼ 0. We find that the critical exponents � ¼ 0,

� ¼ 1=2, 	 ¼ 1, � ¼ 3 match those of a Van der Waals

fluid, though the critical ratio �c ¼ Pcvc

Tc
¼ 2d�3

4ðd�1Þ differs;
note that it reduces to �c ¼ 5=12 for d ¼ 4 [13].
In the ultraspinning limit a ! l, rþ ! 0. For all d � 6

the geometry of a black hole approaches that of a black
membrane [24,25]; setting f ¼ 1�
R5�d the metric is
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known to be unstable due to the Gregory–Laflamme insta-
bility [26]. The entropy vanishes and the temperature
diverges but both the angular momentum and (specific)

volume V ¼ 8�Ml2

ðd�1Þðd�2Þ remain finite, while the equation of

state is P ¼ 4�
ðd�1Þðd�2Þ

J2

V2 . The same equation of state is

valid for ultraspinning black rings [22]. Expanding about
the ultraspinning limit, � ! 0, we find
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for d ¼ 6; higher-dimensional expansions can likewise be
computed.
In between these two limiting cases a phase transition to

a novel family of black objects branching off the spherical
black holes (e.g., black rings) is expected (see, e.g.,
[27,27,28] and references therein). The exact critical point

FIG. 5 (color online). P� v diagram in d ¼ 5 (inset) and
d ¼ 6. Obviously, in d � 6 the P� v diagram is more complex
than that of the standard Van der Waals, and reflects the inter-
esting behavior of the Gibbs free energy and a possible RPT.
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FIG. 6 (color online). The two approximations. Exact critical
and subcritical isotherms, depicted by black crosses, are com-
pared to the slow spinning expansion (13) denoted by red curves
and the ultraspinning expansion (14) denoted by a blue curve.
Note that the ultraspinning black holes correspond to the upper
branch in the Gibbs free energy which is unstable. We have
considered d ¼ 6 and set J ¼ 1.
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is shifted; we find numerically that the critical ratio �c is
slightly smaller and that all critical exponents remain the
same. The two expansions for the equation of state are,
together with the exact numerical solution, displayed for
the critical temperature in Fig. 6. Obviously, the slow
rotation approximation is effectively accurate for large
values of rþ (rightmost curve) whereas the ultraspinning
one (leftmost curve) is accurate as rþ approaches zero.
Note that ultraspinning instabilities [27] occur in the un-
stable upper branch of black holes in Fig. 3. and so do not
forbid the reentrant phase transition.

V. DISCUSSION

Although the cosmological constant is generally re-
garded as fixed in the action, it is possible to dynamically
generate it using a (d� 1)-form gauge potential and in-
corporate it into a generalized first law [29]. We see that
identifying it as pressure and incorporating its conjugate
volume yields not only a consistent Smarr formula but also

a qualitatively new phase structure in the thermodynamics
of rotating black holes similar to binary fluids. In binary
fluids at low temperatures, directional bonding between
unlike species can lead to a miscible state, which is re-
stored at high temperatures since entropy of mixing domi-
nates. At intermediate temperatures the two fluids become
immiscible. The corresponding physics for d � 6 rotating
black holes remains an interesting subject for further study.
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[17] G.W. Gibbons, H. Lü, D.N. Page, and C.N. Pope,
J. Geom. Phys. 53, 49 (2005).

[18] G.W. Gibbons, M. J. Perry, and C.N. Pope, Classical
Quantum Gravity 22, 1503 (2005).

[19] M. Cvetic, G.W. Gibbons, D. Kubiznak, and C.N. Pope,
Phys. Rev. D 84, 024037 (2011).

[20] B. P. Dolan, in Open Questions in Cosmology, edited by
G. J. Olmo (InTech, Rijeka, Croatia, 2012).

[21] R. Monteiro, M. J. Perry, and J. E. Santos, Phys. Rev. D 80,
024041 (2009).

[22] N.Altamirano,D.Kubiznak, andR.Mann (work in progress).
[23] C. Hudson, Z. Phys. Chem., Abt. A 47, 113 (1904).
[24] R. Emparan and R. C. Myers, J. High Energy Phys. 09

(2003) 025.
[25] M. Caldarelli, R. Emparan, and M. J. Rodriguez, J. High

Energy Phys. 11 (2008) 011.
[26] R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837

(1993).
[27] O. Dias, P. Figueras, R. Monteiro, and J. Santos, J. High

Energy Phys. 12 (2010) 067.
[28] G. S. Hartnett and J. E. Santos, Phys. Rev. D 88, 041505

(2013).
[29] J. D. E. Creighton and R. B. Mann, Phys. Rev. D 52, 4569

(1995).

REENTRANT PHASE TRANSITIONS IN ROTATING . . . PHYSICAL REVIEW D 88, 101502(R) (2013)

RAPID COMMUNICATIONS

101502-5

http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1103/PhysRevD.60.064018
http://dx.doi.org/10.1103/PhysRevD.60.104026
http://dx.doi.org/10.1088/1126-6708/1999/04/024
http://dx.doi.org/10.1088/1126-6708/1999/04/024
http://arXiv.org/abs/1306.4955
http://dx.doi.org/10.1088/0264-9381/17/2/310
http://dx.doi.org/10.1088/0264-9381/17/2/310
http://dx.doi.org/10.1103/PhysRevD.85.044005
http://dx.doi.org/10.1103/PhysRevD.85.044005
http://dx.doi.org/10.1007/JHEP07(2012)033
http://dx.doi.org/10.1007/JHEP07(2012)033
http://dx.doi.org/10.1088/0264-9381/26/19/195011
http://dx.doi.org/10.1088/0264-9381/26/19/195011
http://dx.doi.org/10.1016/0370-1573(94)90015-9
http://dx.doi.org/10.1016/0370-1573(94)90015-9
http://dx.doi.org/10.1023/B:MATN.0000049669.32515.f0
http://dx.doi.org/10.1007/JHEP11(2012)110
http://dx.doi.org/10.1007/JHEP11(2012)110
http://dx.doi.org/10.1103/PhysRevD.59.064005
http://dx.doi.org/10.1103/PhysRevLett.93.171102
http://dx.doi.org/10.1103/PhysRevLett.93.171102
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://dx.doi.org/10.1088/0264-9381/22/9/002
http://dx.doi.org/10.1088/0264-9381/22/9/002
http://dx.doi.org/10.1103/PhysRevD.84.024037
http://dx.doi.org/10.1103/PhysRevD.80.024041
http://dx.doi.org/10.1103/PhysRevD.80.024041
http://dx.doi.org/10.1088/1126-6708/2003/09/025
http://dx.doi.org/10.1088/1126-6708/2003/09/025
http://dx.doi.org/10.1088/1126-6708/2008/11/011
http://dx.doi.org/10.1088/1126-6708/2008/11/011
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1007/JHEP12(2010)067
http://dx.doi.org/10.1007/JHEP12(2010)067
http://dx.doi.org/10.1103/PhysRevD.88.041505
http://dx.doi.org/10.1103/PhysRevD.88.041505
http://dx.doi.org/10.1103/PhysRevD.52.4569
http://dx.doi.org/10.1103/PhysRevD.52.4569

