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I. INTRODUCTION

The standard model (SM) Higgs-like particle of mass
125 GeV recently discovered at the LHC [1,2] has resulted
in a revival of interest in the old Veltman observation [3]
that it is possible to arrange the cancellation of the qua-
dratic divergence in the Higgs mass by imposing a certain
relation upon the coupling constants of the theory [4–8]. In
the notation of Ref. [4], the quadratic divergence at one
loop is proportional to

Q1 ¼ �þ 1

8
g02 þ 3

8
g2 � y2t : (1)

Veltman, in fact, expressed the relation in terms of the
particle masses,

Q0
1 ¼ 2Q1v

2 ¼ m2
H þ 2m2

W þm2
Z � 4m2

t ; (2)

whereas Ref. [9] opted to use mass ratios. In the notation of
Ref. [9],

�1 ¼ Q0
1=m

2
W ¼ H þ 3þ tan 2�W � 4T (3)

where m2
W ¼ 1

4 g
2v2, m2

Z ¼ 1
4 ðg2 þ g02Þv2, m2

H ¼ 2�v2,

m2
t ¼ 1

2 y
2
t v

2, H ¼ m2
H=m

2
W , T ¼ m2

t =m
2
W , and v is the

Higgs vacuum expectation value. Veltman, I believe,
thought of the relation as existing for the physical masses
of the particles, and in his original paper opted to perform
the calculation in the broken phase of the theory (although
the symmetric-phase calculation is much simpler, as in fact
I remarked to him when he showed me a draft of the paper).
Requiring Q0

1 ¼ 0 predicts mH � 315 GeV, clearly at
odds with the recent observations.

Now if it really was in terms of physical masses,
Eq. (2) would be renormalization-group-invariant. However
Eq. (1), expressed as it is in terms of renormalized cou-
plings, is clearly renormalization-scale dependent, and re-
cent interest in it has centered on the effect of running Q1

up to higher energies and perhaps matching it on to an
underlying supersymmetric theory at some scale [7,10].
The observation [4,10] that Q1 changes sign at some high
scale (the value of this scale being quite sensitive to the
precise value of the top mass) has led to the remarkable
suggestion [5] that this sign change is actually the trigger for
electroweak symmetry breaking.

In fact the issue of the scale dependence of Q1 was
considered in general theories and in the particular case
of the SM many years ago [9,11–14]. This work included
the observation that in a Yukawa-scalar nongauge theory,
there exists an intriguing relationship between the scale
dependence of Q1 and the leading quadratic divergence at
the two-loop level. In fact, requiringQ1 to be both zero and
scale independent to leading order in the � functions leads
to precisely the same condition as requiring the two-loop
leading quadratic divergence to vanish!
In Ref. [11], the leading quadratic divergence at L loops

was defined in the context of regularization by dimensional
reduction (DRED) [15,16] as the residue of the pole at
d ¼ 4� 2=L in the IR-regulated two-particle amplitude.
This definition corresponds, in fact, to associating the
leading quadratic divergence at two loops with the
(IR-regulated) integral

I2 ¼
Z ddkddq

k2q2ðkþ qÞ2 ; (4)

which is precisely what was done in Ref. [4]. At two loops
one also encounters

I1 ¼
Z ddkddq

ðk2Þ2q2 ; (5)

which has a pole at d ¼ 2 and is cancelled by the one-loop
counterterm insertion contribution.
In Ref. [4], a calculation of the two-loop quadratic

divergence in the Higgs mass was presented, and the
coefficient of I2 was found to be proportional to Q2 where

Q2 ¼�
�
9y4t þy2t

�
� 7

12
g02þ9

4
g2�16g23

�
þ77

16
g04

þ243

16
g4þ�ð�18y2t þ3g02þ9g2Þ�10�2

�
: (6)

It appears the authors were unaware of the previous
calculation of the same quantity [17] (using DRED) of
Ref. [9], where the result found was proportional to �2,
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�2 ¼ 9

2
H2 þ 27HT � 54T2 � 9Hð3þ tan 2�WÞ

� Tð27� 7tan 2�W � sÞ þ 189

2
þ 45tan 2�W

þ 261

2
tan 4�W; (7)

where s ¼ 192g23=g
2.

Reducing �2 to the same notation as Q2 we obtain

m4
W�2 ¼ � 3

2

�
9y4t þ y2t

�
� 7

12
g02 þ 9

4
g2 � 16g23

�

� 87

16
g04 � 63

16
g4 � 15

8
g2g02

þ �ð�18y2t þ 3g02 þ 9g2Þ � 12�2

�
; (8)

and we see that most terms agree. (The overall factor is not
significant; in Refs. [9,11–13] we were concerned with
seeking theories without quadratic divergences). However
the �2, g4, g04 and g2g02 terms do not agree, in both
magnitude and sign in the case of the g4, g04 terms. The
disagreement was noted in Ref. [5], the author of which
opted to believe the result of Ref. [4].

Note that the result of Ref. [4] has no g2g02 term. On this
particular point we can easily see, I believe, that Ref. [4] is
incorrect as follows.

The calculations of Ref. [4] were done in the Landau
gauge, in which gauge, as they remark, it is easy to see that
graphs of the general form of Fig. 1 do not contribute. In
the Landau gauge there is, however, one graph that does
give rise to a g2g02 term, shown in Fig. 2.

I have calculated the graph shown in Fig. 2 in the Landau
gauge, and obtained a result in agreement with Eq. (7).

It seems to me likely that the authors of Ref. [4] have
inadvertently omitted this graph.
With regard to the remaining discrepancies, the differ-

ence in the �2 terms presumably results from an error by
one group or the other. For the g4, g04 terms, two issues
arise. The first is gauge invariance; I am not aware of a
proof that the whole result is gauge invariant, but I believe
it is. The fact that I have obtained the same result for the
g2g02 term using the Landau gauge as that of Ref. [9]
(where the calculations were performed in a background
Feynman gauge, using configuration-space methods) is
some evidence for this. The second issue arises from
the fact that using DRED, the �-scalars peculiar to that
scheme themselves develop a one-loop self-energy qua-
dratic divergence. As described in Ref. [9], this leads
to a breakdown in the relationship between the leading
two-loop divergence Q2 and the quantity

A11 ¼ �ð1Þ
�i
:
@

@�i

Q1 �Q1:
@

@�i

�ð1Þ
�i

(9)

that, as mentioned above, had been observed in nongauge
theories. It would thus have been very interesting had the
result of Ref. [4] for Q2 agreed with A11 but it does not. In
any event, I believe that using DRED and identifying the
d ¼ 3 pole is equivalent to the procedure of Ref. [4].
My confidence in the result of Ref. [9] relies on the

general results Eqs. (3.5) and (3.8) given there and the
renormalization-group check on the reduction to the SM
case described in the Appendix of that reference. In this
context, however, I should remark that there is a typo in
Eq. (4.3) of the published version of that reference, which
should read

A11 ¼ 9

2
H2 þ 27HT � 54T2 � 9Hð3þ tan 2�WÞ

� Tð27� 7tan 2�W � sÞ þ 21

2
þ 45tan 2�W

þ 109

2
tan 4�W: (10)

Note that Eq. (4.5) of Ref. [9], which is obtained by
substituting �1 ¼ 0 from Eq. (4.1) into Eq. (4.3), is in
fact correct. From Eq. (10) we obtain

m4
WA11 ¼ � 3

2

�
9y4t þ y2t

�
� 7

12
g02 þ 9

4
g2 � 16g23

�

� 109

48
g04 � 7

16
g4 � 15

8
g2g02

þ �ð�18y2t þ 3g02 þ 9g2Þ � 12�2

�
: (11)

The difference between A11 and �2 was, as we indicated
above, associated by Ref. [9] with the �-scalar self-energy
component of the diagrams shown in Fig. 3 [in fact only
Fig. 3(b) contributes]. It is easy to check that the difference

FIG. 1. A class of graphs free of quadratic divergences.

FIG. 2. Nonzero contribution proportional to g2g02.
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between Eq. (8) and (11) above is consistent with Eq. (3.9)
of Ref. [9].

With a physical cutoff for the quadratic divergence, it is
reasonable to argue [4] that, away from Q1 ¼ 0, the effect
of the two-loop quadratic divergenceQ2 is small compared
to that of Q1. Therefore the disagreements I have indicated
above will not have much impact on the thrust of the
arguments presented in Refs. [4–8], although it may well
change the scale at which the total quadratic divergence
reaches zero by an appreciable amount. For possible future

applications it is as well to clarify which of the two
calculations discussed here is correct.
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FIG. 3. A class of graphs with the �-scalar self energy.
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