PHYSICAL REVIEW D 88, 098301 (2013)

Comment on "Bare Higgs mass at Planck scale"

D. R. Timothy Jones*

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom (Received 3 October 2013; published 12 November 2013)

Old and new calculations of the Higgs mass quadratic divergence are compared.

DOI: 10.1103/PhysRevD.88.098301 PACS numbers: 14.80.Bn, 11.10.Hi, 11.15.Bt

I. INTRODUCTION

The standard model (SM) Higgs-like particle of mass 125 GeV recently discovered at the LHC [1,2] has resulted in a revival of interest in the old Veltman observation [3] that it is possible to arrange the cancellation of the quadratic divergence in the Higgs mass by imposing a certain relation upon the coupling constants of the theory [4–8]. In the notation of Ref. [4], the quadratic divergence at one loop is proportional to

$$Q_1 = \lambda + \frac{1}{8}g^{2} + \frac{3}{8}g^2 - y_t^2. \tag{1}$$

Veltman, in fact, expressed the relation in terms of the particle masses,

$$Q_1' = 2Q_1v^2 = m_H^2 + 2m_W^2 + m_Z^2 - 4m_t^2, (2)$$

whereas Ref. [9] opted to use mass ratios. In the notation of Ref. [9],

$$\Delta_1 = Q_1'/m_W^2 = H + 3 + \tan^2\theta_W - 4T \tag{3}$$

where $m_W^2 = \frac{1}{4}g^2v^2$, $m_Z^2 = \frac{1}{4}(g^2 + g'^2)v^2$, $m_H^2 = 2\lambda v^2$, $m_t^2 = \frac{1}{2}y_t^2v^2$, $H = m_H^2/m_W^2$, $T = m_t^2/m_W^2$, and v is the Higgs vacuum expectation value. Veltman, I believe, thought of the relation as existing for the *physical* masses of the particles, and in his original paper opted to perform the calculation in the broken phase of the theory (although the symmetric-phase calculation is much simpler, as in fact I remarked to him when he showed me a draft of the paper). Requiring $Q_1' = 0$ predicts $m_H \approx 315$ GeV, clearly at odds with the recent observations.

Now if it really was in terms of physical masses, Eq. (2) would be renormalization-group-invariant. However Eq. (1), expressed as it is in terms of renormalized couplings, is clearly renormalization-scale dependent, and recent interest in it has centered on the effect of running Q_1 up to higher energies and perhaps matching it on to an underlying supersymmetric theory at some scale [7,10]. The observation [4,10] that Q_1 changes sign at some high scale (the value of this scale being quite sensitive to the precise value of the top mass) has led to the remarkable suggestion [5] that this sign change is actually the trigger for electroweak symmetry breaking.

In fact the issue of the scale dependence of Q_1 was considered in general theories and in the particular case of the SM many years ago [9,11–14]. This work included the observation that in a Yukawa-scalar nongauge theory, there exists an intriguing relationship between the scale dependence of Q_1 and the leading quadratic divergence at the two-loop level. In fact, requiring Q_1 to be both zero and scale independent to leading order in the β functions leads to precisely the same condition as requiring the two-loop leading quadratic divergence to vanish!

In Ref. [11], the *leading* quadratic divergence at L loops was defined in the context of regularization by dimensional reduction (DRED) [15,16] as the residue of the pole at d=4-2/L in the IR-regulated two-particle amplitude. This definition corresponds, in fact, to associating the *leading* quadratic divergence at two loops with the (IR-regulated) integral

$$I_2 = \int \frac{d^d k d^d q}{k^2 q^2 (k+q)^2},\tag{4}$$

which is precisely what was done in Ref. [4]. At two loops one also encounters

$$I_1 = \int \frac{d^d k d^d q}{(k^2)^2 q^2},\tag{5}$$

which has a pole at d=2 and is cancelled by the one-loop counterterm insertion contribution.

In Ref. [4], a calculation of the two-loop quadratic divergence in the Higgs mass was presented, and the coefficient of I_2 was found to be proportional to Q_2 where

$$Q_{2} = -\left(9y_{t}^{4} + y_{t}^{2}\left(-\frac{7}{12}g^{2} + \frac{9}{4}g^{2} - 16g_{3}^{2}\right) + \frac{77}{16}g^{4} + \frac{243}{16}g^{4} + \lambda(-18y_{t}^{2} + 3g^{2} + 9g^{2}) - 10\lambda^{2}\right).$$
 (6)

It appears the authors were unaware of the previous calculation of the same quantity [17] (using DRED) of Ref. [9], where the result found was proportional to Δ_2 , given by

^{*}drtj@liverpool.ac.uk

COMMENTS

$$\Delta_2 = \frac{9}{2}H^2 + 27HT - 54T^2 - 9H(3 + \tan^2\theta_W)$$

$$- T(27 - 7\tan^2\theta_W - s) + \frac{189}{2} + 45\tan^2\theta_W$$

$$+ \frac{261}{2}\tan^4\theta_W, \tag{7}$$

where $s = 192g_3^2/g^2$.

Reducing Δ_2 to the same notation as Q_2 we obtain

$$m_W^4 \Delta_2 = -\frac{3}{2} \left(9y_t^4 + y_t^2 \left(-\frac{7}{12} g'^2 + \frac{9}{4} g^2 - 16g_3^2 \right) - \frac{87}{16} g'^4 - \frac{63}{16} g^4 - \frac{15}{8} g^2 g'^2 + \lambda (-18y_t^2 + 3g'^2 + 9g^2) - 12\lambda^2 \right), \tag{8}$$

and we see that most terms agree. (The overall factor is not significant; in Refs. [9,11–13] we were concerned with seeking theories *without* quadratic divergences). However the λ^2 , g^4 , g'^4 and $g^2g'^2$ terms do not agree, in both magnitude and sign in the case of the g^4 , g'^4 terms. The disagreement was noted in Ref. [5], the author of which opted to believe the result of Ref. [4].

Note that the result of Ref. [4] has no $g^2g'^2$ term. On this particular point we can easily see, I believe, that Ref. [4] is incorrect as follows.

The calculations of Ref. [4] were done in the Landau gauge, in which gauge, as they remark, it is easy to see that graphs of the general form of Fig. 1 do not contribute. In the Landau gauge there is, however, one graph that *does* give rise to a $g^2g'^2$ term, shown in Fig. 2.

I have calculated the graph shown in Fig. 2 in the Landau gauge, and obtained a result in agreement with Eq. (7).

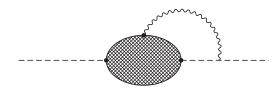


FIG. 1. A class of graphs free of quadratic divergences.

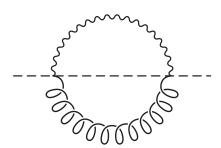


FIG. 2. Nonzero contribution proportional to $g^2g^{\prime 2}$.

It seems to me likely that the authors of Ref. [4] have inadvertently omitted this graph.

With regard to the remaining discrepancies, the difference in the λ^2 terms presumably results from an error by one group or the other. For the g^4 , g'^4 terms, two issues arise. The first is gauge invariance; I am not aware of a proof that the whole result is gauge invariant, but I believe it is. The fact that I have obtained the same result for the $g^2g'^2$ term using the Landau gauge as that of Ref. [9] (where the calculations were performed in a background Feynman gauge, using configuration-space methods) is some evidence for this. The second issue arises from the fact that using DRED, the ϵ -scalars peculiar to that scheme *themselves* develop a one-loop self-energy quadratic divergence. As described in Ref. [9], this leads to a breakdown in the relationship between the leading two-loop divergence Q_2 and the quantity

$$A_{11} = \beta_{\lambda_i}^{(1)} \cdot \frac{\partial}{\partial \lambda_i} Q_1 - Q_1 \cdot \frac{\partial}{\partial \lambda_i} \beta_{\lambda_i}^{(1)}$$
 (9)

that, as mentioned above, had been observed in nongauge theories. It would thus have been very interesting had the result of Ref. [4] for Q_2 agreed with A_{11} but it does not. In any event, I believe that using DRED and identifying the d=3 pole is equivalent to the procedure of Ref. [4].

My confidence in the result of Ref. [9] relies on the general results Eqs. (3.5) and (3.8) given there and the renormalization-group check on the reduction to the SM case described in the Appendix of that reference. In this context, however, I should remark that there is a typo in Eq. (4.3) of the published version of that reference, which should read

$$A_{11} = \frac{9}{2}H^2 + 27HT - 54T^2 - 9H(3 + \tan^2\theta_W)$$

$$-T(27 - 7\tan^2\theta_W - s) + \frac{21}{2} + 45\tan^2\theta_W$$

$$+ \frac{109}{2}\tan^4\theta_W. \tag{10}$$

Note that Eq. (4.5) of Ref. [9], which is obtained by substituting $\Delta_1 = 0$ from Eq. (4.1) into Eq. (4.3), is in fact correct. From Eq. (10) we obtain

$$m_W^4 A_{11} = -\frac{3}{2} \left(9y_t^4 + y_t^2 \left(-\frac{7}{12}g'^2 + \frac{9}{4}g^2 - 16g_3^2 \right) - \frac{109}{48}g'^4 - \frac{7}{16}g^4 - \frac{15}{8}g^2g'^2 + \lambda(-18y_t^2 + 3g'^2 + 9g^2) - 12\lambda^2 \right). \tag{11}$$

The difference between A_{11} and Δ_2 was, as we indicated above, associated by Ref. [9] with the ϵ -scalar self-energy component of the diagrams shown in Fig. 3 [in fact only Fig. 3(b) contributes]. It is easy to check that the difference

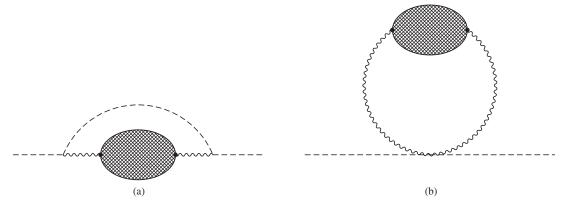


FIG. 3. A class of graphs with the ϵ -scalar self energy.

between Eq. (8) and (11) above is consistent with Eq. (3.9) of Ref. [9].

With a *physical* cutoff for the quadratic divergence, it is reasonable to argue [4] that, away from $Q_1 = 0$, the effect of the two-loop quadratic divergence Q_2 is small compared to that of Q_1 . Therefore the disagreements I have indicated above will not have much impact on the thrust of the arguments presented in Refs. [4–8], although it may well change the scale at which the *total* quadratic divergence reaches zero by an appreciable amount. For possible future

applications it is as well to clarify which of the two calculations discussed here is correct.

ACKNOWLEDGMENTS

This research was supported in part by the Science and Technology Research Council [grant number ST/J000493/1]. I thank Marty Einhorn for drawing my attention to Ref. [4], and Ian Jack for reintroducing me to FEYNDIAGRAM.

^[1] G. Aad *et al.* (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012); F. Gianotti, talk at CERN, 2012.

^[2] S. Chatrachyan *et al.* (CMS Collaboration), Phys. Lett. B **710**, 26 (2012); J. Incandela, talk at CERN, 2012.

^[3] M. J. G. Veltman, Acta Phys. Pol. B 12, 437 (1981).

^[4] Y. Hamada, H. Kawai, and K.-y. Oda, Phys. Rev. D 87, 053009 (2013).

^[5] F. Jegerlehner, arXiv:1304.7813.

^[6] F. Jegerlehner, arXiv:1305.6652.

^[7] I. Masina and M. Quiros, Phys. Rev. D 88, 093003 (2013).

^[8] L. Bian, Phys. Rev. D 88, 056022 (2013).

^[9] M. S. Al-sarhi, I. Jack, and D. R. T. Jones, Z. Phys. C 55, 283 (1992).

^[10] J. A. Casas, J. R. Espinosa, and I. Hidalgo, J. High Energy Phys. 11 (2004) 057.

^[11] I. Jack and D. R. T. Jones, Phys. Lett. B 234, 321 (1990).

^[12] I. Jack and D. R. T. Jones, Nucl. Phys. **B342**, 127 (1990).

^[13] M. S. Al-Sarhi, I. Jack, and D. R. T. Jones, Nucl. Phys. B345, 431 (1990).

^[14] M. B. Einhorn and D. R. T. Jones, Phys. Rev. D 46, 5206 (1992).

^[15] W. Siegel, Phys. Lett. **84B**, 193 (1979).

^[16] D. M. Capper, D. R. T. Jones, and P. van Nieuwenhuizen, Nucl. Phys. **B167**, 479 (1980).

^[17] And, indeed, this quantity in a general renormalizable theory [11].