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In this work, we build a covariant basis for operators acting on the ðj; 0Þ � ð0; jÞ Lorentz group

representations. The construction is based on an analysis of the covariant properties of the parity operator,

which for these representations transforms as the completely temporal component of a symmetrical tensor

of rank 2j. The covariant properties of parity involve the Jordan algebra of anticommutators of the Lorentz

group generators which unlike the Lie algebra is not universal. We make the construction explicit for

j ¼ 1=2, 1 and 3=2, reproducing well-known results for the j ¼ 1=2 case. We provide an algorithm for the

corresponding calculations for arbitrary j. This covariant basis provides an inventory of all the possible

interaction terms for gauge and nongauge theories of fields for these representations. In particular, it

supplies a single second-rank antisymmetric structure, which in the Poincaré projector formalism implies

a single Pauli term arising from gauge interactions and a single (free) parameter g, the gyromagnetic

factor. This simple structure predicts that for an elementary particle in this formalism all multipole

moments, Ql
E and Ql

M, are dictated by the complete algebraic structure of the Lorentz generators and the

value of g. We explicitly calculate the multipole moments, for arbitrary j up to l ¼ 8. Comparing with

results in the literature we find that only the electric charge and magnetic moment of a spin j particle are

independent of the Lorentz representation under which it transforms, all higher multipoles being

representation dependent. Finally we show that the propagation of the corresponding spin j waves in

an electromagnetic background is causal.
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I. INTRODUCTION

The Standard Model of particle physics has three ingre-
dients: a base spacetime, whose symmetries allow us to
classify the asymptotically free states; a gauge group,
which fixes the number and properties of gauge particles;
and a particular spectrum of matter particles, whose
number and interactions are largely unfixed [1].
Supersymmetry and extra-dimensional models represent
attempts to modify our conventional understanding of the
first ingredient, while extensions of the gauge group, in-
cluding grand unified theories, are extrapolations of the
second one which also enlarge the content of spin 1=2
matter fields. The recent discovery of a particle with a
mass around 126 GeV at the LHC [2,3] as expected for
the Higgs of the Standard Model seems discouraging for
both approaches at least in the short run [4], and therefore it
may prove valuable to focus on different avenues for going
beyond the standard model (SM).

In this concern, it is worthwhile to remark that the SM
makes use of only a few representations of the homoge-
neous Lorentz group. These representations are identified
with the three basic types of fields entering this construc-
tion: the (0, 0) representation for the Higgs field, the (1=2,
1=2) representation for the gauge fields and the (1=2, 0)
and (0, 1=2) representation for the matter fields. Certainly,
so far we have no general principle restricting the spin
content of these building blocks. Some theories for physics
beyond the standard model like supersymmetric models

modify this correlation and consider Lorentz representa-
tions with high spin content which enter as gauge fields,
such as the spinor-vector representation ½ð1=2; 0Þ �
ð0; 1=2Þ� � ð1=2; 1=2Þ.
High spin fields naturally appear also in phenomenology

(e.g., the hadronic contribution to the leptonic g� 2) and
in beyond-the-SM model building (e.g., supergravity and
strings). An explanation of the family structure of the SM
involving compositeness is also likely to imply the exis-
tence of some high spin states. However, the description of
high spin (j > 1) elementary systems is a longstanding
problem in quantum field theory.
Conventional constructions for high spin fields (like

Dirac-Fierz-Pauli [5,6] or Rarita-Schwinger [7]) are
plagued by well-known problems, which can be traced to
ambiguities in the selection and propagation of the desired
degrees of freedom. These ambiguities can give rise to
inconsistencies like superluminal propagation and other
nonlocalities, or the appearance of ghosts [8–14].
Quantum fields which satisfy the cluster decomposition

principle [15] are built as induced representations of the
semidirect product t4 2soð1; 3Þ on representations of the
Lorentz algebra. This often means that we use fields
with redundant or unwanted degrees of freedom. We can
generically understand the Velo-Zwanziger problems as a
failure to discard these degrees of freedom in the presence
of interactions.
We can identify three classes of high spin constructions.

There are those in the spirit of Dirac-Fierz-Pauli, where

PHYSICAL REVIEW D 88, 096012 (2013)

1550-7998=2013=88(9)=096012(15) 096012-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.096012


either constrictions or auxiliary fields are used to remove
unwanted degrees of freedom in order to exclusively
propagate an irreducible representation of the Poincaré
group [5–7,16–18]. Then, there are constructions which
renounce to fix a single spin and mass, as in Bhabha or
Kemmer-Duffin-Petiau [19–22] theories. Finally, we have
the Joos-Weinberg formalism where no extra spin degrees
of freedom are introduced [23–26] (see [27] for a historical
account.)

Although the properties of free fields are only related to
the Poincaré quantum numbers, regardless of the Lorentz
representations on which the fields are constructed, this is
no longer true for interacting fields. Two quantum fields
with spin j quanta but defined in different Lorentz
representations may share the same asymptotically free
properties, but differ in their interaction properties, like
their electromagnetic moments [28]. A basic element in
the elucidation of the different possibilities to describe
interactions of high spin systems is the classification
of all possible operators acting in the corresponding
Lorentz representation space, which in turn requires the
construction of a covariant basis for these operators.

In a recent series of works [29–32], a proposal for the
description of arbitrary spin particles was detailed, based
on the projection onto subspaces of the Poincaré group for
fields with definite quantum numbers transforming in a
given representation of the Lorentz group. A key ingredient
in the formalism is the construction of the most general
space-time antisymmetric operator in the corresponding
space. In the general case, the construction of this tensor
requires us to classify all operators acting on the chosen
representation space in a covariant manner. In this work we
solve this problem for particles of arbitrary spin j trans-
forming in the ðj; 0Þ � ð0; jÞ representation of the Lorentz
group. We find a covariant basis for all operators with
internal indexes in these representations. We conclude
that there is a single independent antisymmetric operator
which gives rise to a unique Pauli-type interaction term for
all representations ðj; 0Þ � ð0; jÞ and work out the conse-
quences for the multipole electromagnetic moments and
the propagation of spin j waves in an electromagnetic
background.

Although solving this problem is the main motivation
for this work, the scope of the obtained results is beyond
this framework since our covariant basis can be helpful in
general for the construction of models using the ðj; 0Þ �
ð0; jÞ representation, either at the elementary level such as
models for physics beyond the standard model with
elementary high spin matter fields, or at the composite
level in effective theories for hadronic interactions or in the
description of composite objects in physics beyond the
standard model.

The paper is organized as follows: in the next section we
find all the representations having only two possible spin
values, which are suitable to be used in the Poincaré

projector formalism when we impose also to have at
most a second order Lagrangian theory. In Sec. III we
present the construction of the parity-based covariant basis
for ðj; 0Þ � ð0; jÞ representations and their connection with
the associated Jordan and Lie algebras. In Sec. IV we work
out the consequences of this algebraic structure for the
electromagnetic multipole moments of an elementary
particle described by the Poincaré projector formalism
and study the corresponding propagation of spin j waves
in an electromagnetic background. Our conclusions are
presented in Sec. V.

II. GENERAL POINCARÉ PROJECTORS

The Poincaré algebra is the semidirect product
t4 2soð1; 3Þ, satisfying the Lie brackets

i½M��;P��¼���P�����P�; ½P�;P��¼0

i½M��;M���¼���M������M������M��þ���M��;

(1)

where indexes run as � ¼ 0; . . . ; 3. The soð1; 3Þ subalge-
bra generated by the M�� is the Lorentz algebra. It is

customary to separate the Lorentz generators into rotations
J and boosts K operators

M0i ¼ Ki; Mij ¼ �ijkJk: (2)

The Poincaré algebra has two algebraic invariants with
the corresponding Casimir operators given by

C2 ¼ P�P� C4 ¼ W�W�: (3)

where W� stands for the Pauli-Lubanski four-vector

W� ¼ 1

2
"����M

��P�: (4)

The Poincaré one-particle states are then characterized by
the quantum numbers coming from

C2j�i ¼ m2j�i C4j�i ¼ �m2jðjþ 1Þj�i; (5)

where m denotes the mass and j the spin. Now, the fields
which enter our theories are linear combinations of the
creation and annihilation operators of these states, defined
by the relation jm2; ji ¼ ayðm2; jÞj0i and its adjoint. The
transformation properties of the creation and annihilation
operators under the Poincaré group are fixed by this rela-
tion, and in turn they fix (through Poincaré invariance
of the scattering matrix and cluster decomposition) the
general form for the fields as [15]

c lðxÞ ¼
Z

d�ð�eip�x!lð�Þayð�Þ þ 	e�ip�x!c
l ð�Það�ÞÞ;

(6)

where � is the set of labels ½m2; j; p�; ��, with � the
quantum number of the little group (i.e., spin projection
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for massive fields or helicity for massless fields) and �, 	
are constants. The coefficients!l and!

c
l in this expression

transform in some representation of the Lorentz group. In
order to consider this construction complete, all that
remains is to choose coefficients with the appropriate
transformation rules and the constants �, 	 with the appro-
priate values to properly account for discrete symmetries.

Conventionally, we construct our field theories using
only a handful of (in general, reducible) Lorentz represen-
tations: Dirac spinors, four-vectors, spinor-vectors and
higher order tensors for higher spin. We require, however,
that these fields carry irreducible representations of the
Poincaré group, that is, particles with definite mass and
spin. Indeed, it is when this requisite is not properly
satisfied that inconsistencies manifest, like superluminal
propagation or the appearance of spurious degrees of free-
dom. The role of equations of motion is then to covariantly
ensure that only the desired degrees of freedom are present.

The homogeneous Lorentz algebra soð1; 3Þ is locally
isomorphic to the direct sum suð2ÞA � suð2ÞB, spanned by
the combinations of rotation J and boost K generators

A ¼ 1

2
ðJ� iKÞ B ¼ 1

2
ðJþ iKÞ: (7)

These two sets commute:

½A;B� ¼ 0: (8)

Therefore, we can label the irreducible Lorentz represen-
tations with two suð2Þ numbers ða; bÞ. There are two
Casimir operators for the Lorentz group, M��M

�� and

M��
~M��, where the dual tensor ~M�� is defined as

~M�� � 1

2
"��
�M
�: (9)

These operators can be recast in terms of the suð2Þ Casimir
operators A2 and B2 as

M��M
�� ¼ 4ðA2 þ B2Þ (10)

M��
~M�� ¼ �4iðA2 � B2Þ: (11)

The (linear, unitary) parity operator induces the following
transformations of the Lorentz generators

�J��1 ¼ J (12)

�K��1 ¼ �K; (13)

so that A and B transform into each other:

�A��1 ¼ B (14)

�B��1 ¼ A: (15)

This immediately suggests a broad classification of the
Lorentz representations (enlarged by parity) into two
groups. First, the ða; aÞ representations that transform

into themselves under the action of parity, for which the
second invariant is null, that is,M��

~M�� ¼ 0. These were

the representations proposed by Fierz and Pauli to describe
arbitrary integer spin j ¼ 2a [6]. Second, we have the
reducible ða; bÞ � ðb; aÞ representations with a � b, for
which ða; bÞ and ðb; aÞ are exchanged by parity. We call
these chiral representations, because for them we can
define a chirality operator

� ¼ i

4aðaþ 1Þ � 4bðbþ 1ÞM��
~M��: (16)

Since � is proportional to a Casimir operator of the Lorentz
group, we have the commutation rule

½�;M��� ¼ 0: (17)

These chiral representations include the Joos-Weinberg
representations [24] which correspond to b ¼ 0.
The specific form of the projector selecting the degrees

of freedom with quantum numbers ðm; jÞ depends on the
spin content of the chosen representation. By working in
Lorentz representations containing at most two spin
sectors, we can build second-order projections in the
momenta which can be implemented in Lagrangian form
without the addition of constraints or auxiliary degrees of
freedom [29].
In general, the representation ða; bÞ contains states with

all spins between ja� bj and aþ b. Those with at most
two spin sectors which are also irreducible representations
for parity can be enumerated as follows:

(i) The nonchiral representations (0, 0) and ð12 ; 12Þ.
(ii) The single-spin chiral representations ðj; 0Þ � ð0; jÞ

with j � 1
2 .

(iii) The double-spin chiral representations ðj� 1
2 ;

1
2Þ �ð12 ; j� 1

2Þ with j > 1.

For the single-spin ðj; 0Þ � ð0; jÞ representation the
Poincaré projector is

P fm;jg ¼ P2

m2

�
W2

�jðjþ 1ÞP2

�
: (18)

We remark that this projector fixes the appropriate mass
and spin quantum numbers but in general other properties
of the particles such as parity are not fixed.
On the other hand, for the double-spin representations,

we use instead the projector

P fm;jg ¼
�

W2

�2jm2
� jðj� 1Þ

2j

P2

m2

�
(19)

which removes the unwanted spin j� 1 components of the
field to ensure that only spin j is propagated [29].
This projection produces second order equations of

motion of the form

ðT��P
�P� �m2Þ� ¼ 0; (20)
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for both fermions and bosons where the specific form of the
tensor T�� depends on the chosen Lorentz representation.

However, as discussed in the previous works [28–30], only
the symmetric part of the operator T�� is fixed by the

projector. This requires us to construct the most general
space-time antisymmetric operator which is clearly repre-
sentation dependent. Furthermore, a given Lorentz repre-
sentation will house, in addition to these antisymmetric
operators relevant for the description of gauge interactions,
many other operators which can be relevant for nongauge
or self-interactions. In this work we aim to classify all
of them for the restricted class of single-spin chiral
ðj; 0Þ � ð0; jÞ representations, in a construction based on
the covariant properties of the parity operator.

III. COVARIANT BASIS INDUCED BY PARITY FOR
THE ðj; 0Þ � ð0; jÞ REPRESENTATION SPACE

The specific representation of operators depends on our
choice for the basis; thus we start by fixing our conventions
for the basis in ðj; 0Þ � ð0; jÞ space. For the ‘‘right’’ repre-
sentation ðj; 0Þ we choose the angular momentum basis
fjj;miRg. Similarly, for the ‘‘left’’ representation ð0; jÞ we
chose to work with the corresponding fjj;miLg basis. The
Lorentz generators for the ðj; 0Þ and ð0; jÞ representations
are

MR
0i ¼ ðKRÞi; MR

ij ¼ �ijkðJRÞk; (21)

ML
0i ¼ ðKLÞi; ML

ij ¼ �ijkðJLÞk; (22)

where JR ¼ JL ¼ � are the conventional ð2jþ1Þ�ð2jþ1Þ
angular momentum matrices and KR ¼ �KL ¼ i�. With
this choice the states fjj; miR; jj; miLg form a basis for the
direct sum ðj; 0Þ � ð0; jÞ representation space which we
will denote as chiral basis in the following. In this basis
the Lorentz generators take the following form:

J ¼ � 0

0 �

 !
; K ¼ i� 0

0 �i�

 !
: (23)

The components of the Lorentz antisymmetric tensor for
the ðj; 0Þ � ð0; jÞ representation can be written in terms of
these matrices as

Mij ¼ �ijk
�k 0

0 �k

 !
M0i ¼ i

�i 0

0 ��i

 !
: (24)

In the chiral basis, the chirality operator in Eq. (16) takes
the diagonal form

� ¼ 12jþ1 0

0 �12jþ1

 !
; (25)

and the parity operator which swaps the chiral subspaces
ðj; 0Þ and ð0; jÞ takes the form

� ¼ 0 12jþ1

12jþ1 0

 !
: (26)

Thus, parity and chirality anticommute for all ðj; 0Þ � ð0; jÞ
representations

f�; �g ¼ 0: (27)

For these representations the Lorentz generators also
satisfy

K ¼ i�J; (28)

which can be covariantly written as

~M�� ¼ �i�M��: (29)

Now, the parity operator fulfills the relations

½�; J� ¼ 0 (30)

½�;K� ¼ 2�K; (31)

or in covariant form

½M��;�� ¼ i�0�ð2i�M0�Þ � i�0�ð2i�M0�Þ: (32)

As these commutation rules make clear, parity,
while rotating as a scalar, is not a Lorentz scalar under
boosts. A straightforward calculation yields the following
commutation rules for the object Vk ¼ 2i�M0k:

½Mij; Vk� ¼ �i�ikVj þ i�jkVi

½M0i; Vj� ¼ �2�fM0i;M0jg:
(33)

The composite object Vk rotates as a vector but it does not
behave as a vector under boosts. The transformation prop-
erties under boosts involve the anticommutator fM0i;M0jg
(the Jordan algebra of Lorentz generators), which, in con-
trast to the Lie algebra, is not universal. Writing Eqs. (33)
in covariant notation we get

½M��;V�� ¼ ið���V�����V�Þþ i�0��0�V�

� i�0��0�V�� i�0��0�V�þ i�0��0�V�

� 2i�0��fM0�;M0�gþ 2i�0��fM0�;M0�gÞ:
(34)

The appearance of the quantity �fM0�;M0�g on the right-

hand side suggests that in general the covariant properties
of � will depend on the transformation properties of the
objects

t�1;�2
¼ fM0�1

;M0�2
g; . . . (35)

t�1...�2j
¼ ft�1...�2j�1

;M0�2j
g: (36)

By calculating, for a particular representation, the
commutators with the Lorentz generators of the series
ð�;�M0�;�t�1�2

; . . .Þ we will eventually arrive at a set
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of objects transforming into themselves. It will be shown
below that these operators form a symmetric tensor S�1...�2j

whose time component S0...0 is �.
In order to make our parity-based construction transpar-

ent, we start by studying the simplest case, the ð12 ; 0Þ �ð0; 12Þ space which for obvious reasons we denote as Dirac

representation in the following. Here and in the following,
the inner product in the matrix space is taken to be

A � B ¼ Tr½AB�: (37)

A basis for the operators acting on the ðj; 0Þ � ð0; jÞ
representation space can be obtained from the exterior
product of states in the fjj; miR; jj;miLg basis. This set
provides a basis for constructing the most general bilinear
in the fields with definite Lorentz transformation proper-
ties. In particular for j ¼ 1=2, examining the Lorentz
decomposition of the external product of states in this basis
we get��

1

2
; 0

�
�
�
0;
1

2

��
2 ¼ ð0; 0Þ2 � ð1; 0Þ � ð0; 1Þ �

�
1

2
;
1

2

�
2
:

In this equation, the left side stands for the exterior product
of the basis states; in the right side we have the Lorentz
decomposition of this product, with subscripts denoting
multiplicity. It corresponds to a pair of scalars, an antisym-
metric tensor, and a pair of four-vectors.

The first operator transforming in the (0, 0) representa-
tion is the unit operator 1. Given that the chirality operator
commutes with the Lorentz generators (17), we can
use this operator as the second operator transforming in
the (0, 0) representation. Operators transforming in the
ð1; 0Þ � ð0; 1Þ are clearly the Lorentz generators M��.

The remaining operators can be built analyzing the cova-
riant properties of parity.

Recalling the transformation rules in Eq. (34), we need
to construct the tij operators. For the Dirac representation,

fM0i;M0jg ¼ 1
2ij. Defining the object

S� ¼ �0��� 2i�M0�; (38)

we can see that it transforms as a four-vector

½M��; S�� ¼ i���S� � i���S�: (39)

Thus we conclude that � transforms as the zeroth compo-
nent of the four-vector S�.

An important property induced by Eqs. (17) and (27) and
the specific form of S� in Eq. (38) is

f�; S�g ¼ 0; (40)

which implies the orthogonality of � and S�. A simple

combination of Eqs. (17) and (39) shows that �S� trans-

forms also as a four-vector. Finally, a direct calculation
yields that these are independent operators.

In summary, for the ð1=2; 0Þ � ð0; 1=2Þ representation
our parity-based construction yields the following cova-
riant basis:

f1; �; S�; �S�;M��g: (41)

It is well known that the conventional sixteen matrices,

f1; �5; ��; �5��;���g; (42)

form a basis for this operator space, with the Lorentz
generators for this representation space given by M�� ¼
1
2���. A direct comparison shows that our procedure

reproduces the conventional covariant basis with the ��

matrices in the Weyl representation, except for an irrele-
vant 1=2 normalization factor in M��. It is also clear that

the specific form of the operators in Eq. (41) depend on the
choice of the basis we use for the states in ð1=2; 0Þ �
ð0; 1=2Þ.
In terms of the covariant operator S� in Eq. (38), the

rest-frame parity projection equation

1

2
ð1	�Þc ð0Þ ¼ c ð0Þ (43)

transforms, for an arbitrary frame, into the familiar

ðS�P� 
mÞc ðpÞ ¼ 0: (44)

From this perspective, the Dirac equation is simply the
covariant projection over parity-invariant subspaces in
the ð1=2; 0Þ � ð0; 1=2Þ representation space and the Dirac
algebra satisfied by the S� matrices,

fS�; S�g ¼ 2���; (45)

is just a manifestation of the covariant properties of the
parity operator.
Using the projection over states with well-defined spin

and mass produces a condition of the general form in
Eq. (20). For the ð1=2; 0Þ � ð0; 1=2Þ representation, the
symmetric part of the T�� space-time tensor is fixed by

the projector to be ���, but the antisymmetric part is not;

thus its general form must be constructed in terms of the
covariant basis. For this representation the only possibility
is a term gM��, with g arbitrary, which upon gauging

produces an interaction

gM��F
��: (46)

Such a formalism has been studied at one loop for the
Abelian and non-Abelian cases [31,32,34].

A. Lorentz structure of the operators acting
on ð1; 0Þ � ð0; 1Þ

As a second example, let us proceed in full detail with
the ð1; 0Þ � ð0; 1Þ construction, which then we can general-
ize to arbitrary j. The conventional angular momentum
generators entering Eq. (24) for this representation are
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�1 ¼ 1

2

0
ffiffiffi
2

p
0ffiffiffi

2
p

0
ffiffiffi
2

p

0
ffiffiffi
2

p
0

0
BB@

1
CCA �2 ¼ i

2

0 � ffiffiffi
2

p
0ffiffiffi

2
p

0 � ffiffiffi
2

p

0
ffiffiffi
2

p
0

0
BB@

1
CCA

�3 ¼ 1

2

2 0 0

0 0 0

0 0 �2

0
BB@

1
CCA: (47)

A basis for the operators acting on the ð1; 0Þ � ð0; 1Þ
space can be obtained via the external products of the
states in the fjj; miR; jj; miLg basis which has the following
Lorentz decomposition:

½ð1; 0Þ � ð0; 1Þ�2 ¼ ð0; 0Þ2 � ð1; 1Þ2 � ð1; 0Þ � ð0; 1Þ
� ð2; 0Þ � ð0; 2Þ: (48)

We may identify the two operators transforming in the
(0, 0) representation as the unit and chirality operators,
and the Lorentz generators with the operators transforming
in the ð1; 0Þ � ð0; 1Þ. However, it is not obvious how we can
construct the operators transforming in the two (1, 1) and
the ð2; 0Þ � ð0; 2Þ Lorentz representations. In order to con-
struct these operators while aiming to envision the general
case, we briefly review the theory of soð1; 3Þ Young
projectors.

An arbitrary traceless Lorentz tensor of rank r can be
decomposed in an orthogonal basis given by all the com-
pletely traceless tensors enumerated by all possible Young
tableaux of r boxes. These Young tableaux index the
representations of the symmetric group SN . We identify
them with the permutation properties of the Lorentz in-
dices of our tensor. For example, a symmetrical tensor S��

of rank 2 corresponds to a row Young tableau

while an antisymmetrical tensor corresponds to the column

Young tableau

AYoung projector associated with some Young tableau
is an operator which projects a general tensor into the
subspace with the symmetries of the tableau. Since these
projectors are built with the metric tensor ���, which is an

invariant tensor of the Lorentz algebra, the Young projec-
tion is also invariant. Therefore, the subspaces transform
separately. This fact is at the root of our decomposition.

We are interested in the chiral representations, which
produce either totally symmetrical or self-dual/anti-self-
dual tensors. We only need the characterization of the
Young diagrams with one and two rows [33]. The dimen-
sion of a completely traceless tensor (i.e., a tensor for
which every contraction vanishes) in soð1; 3Þ is given by
the following combinatorial formulas:

(49)

(50)

These diagrams describe either a symmetrical tensor of
rank n, or a mixed-symmetry tensor of rank nþm. The
factor 2 comes about because we are considering both the
self-dual and anti-self-dual parts. (For an in-depth discus-
sion of this technical point, see Chapter 9 of [33]).
The Young projector corresponding to a given Young

pattern is constructed as the product of the appropriate
symmetrizers and antisymmetrizers. For a row or column
Young tableau, we have the pure symmetrizers and anti-
symmetrizers, while for mixed-symmetry tableaux we
choose to first antisymmetrize index subsets, and then to
symmetrize as appropriate. This choice is not unique, but is
convenient for calculations [35,36]. For example, to obtain
the Young projector corresponding to the diagram

(51)

we first antisymmetrize the column pairs, and then sym-
metrize the row pairs:

P��
�
��	� / S�


��S��
�A

��
��A

�
	�; (52)

with a suitable normalization.
Coming back to the ð1; 0Þ � ð0; 1Þ representation, we

again have two scalars, which are chosen as the unit
operator and the chirality operator �. We expect that the
rest of the covariant basis will be decomposable as

(53)

This result tells us that the basis we seek is provided by the
following operators:

f1; �; S��;S��;M��; C��
�g; (54)

where S�� is a symmetric traceless (S�� ¼ 0) tensor

operator thus having nine independent components which
coincide with the degrees of freedom of the (1, 1) Lorentz
representation. Similar results hold for the S�� tensor

operator which also has nine independent components.
As for the C��
� tensor operator, it has the following

symmetries:

C��
� ¼�C��
� ¼�C���
; C��
� ¼ C
���: (55)

It is traceless (i.e., the contraction of any pair of indices
vanishes), and it satisfies the algebraic Bianchi identity

C��
� þ C�
�� þ C���
 ¼ 0: (56)

A fourth rank tensor has 256 components but it is easy to
convince ourselves that these symmetries restrict this ten-
sor to have only ten independent components, which are
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precisely the number of degrees of freedom in the ð2; 0Þ �
ð0; 2Þ Lorentz representation. The calculation is simple,
and familiar from the Riemann tensor: our tensor is akin
to a rank 2 symmetrical tensor in six dimensions, which has
21 independent components, but the traceless condition
removes ten, and the Bianchi identity removes one, leaving
the aforementioned ten independent components.

Aiming to construct explicitly the tensors in the operator
basis in Eq. (54), we calculate the Lorentz commutators of
the series �;�M0i;�tij; . . .

½M��;�� ¼ �2�0��M0� � 2�0��M0�

½M��;�M0i� ¼ �i��i�M0� þ i��i�M0� þ �0��t�i

� �0��t�i

½M��;�tij� ¼ ��0��t�ij þ �0��t�ij � i��i�t�j

þ i��i�t�j � i��j�t�i þ i��j�t�i:

(57)

For this representation the following relation holds:

t��� ¼ ���M0� þ ���M0� þ 2���M0�: (58)

The conclusion is that the operators
ð�;�M0�;�fM0�;M0�gÞ transform into themselves

under the Lorentz group, and therefore the symmetric
traceless tensor S�� must be constructed as a linear combi-
nation of these operators. It is easy to check that the
appropriate combination is

S�� ¼ ���� � i�ð�0�M0� þ �0�M0�Þ ��fM0�;M0�g:
(59)

These operators are also traceless in the ‘‘spinor’’ space,
and consequently orthogonal to the unit operator. Using
Eqs. (17) and (27) it is easy to show that

f�; S��g ¼ 0; (60)

which yields

Trð�S��Þ ¼ 0: (61)

Thus � and S�� are also orthogonal operators.
A straightforward calculation yields the following com-

mutation relations:

i½M��;S
��¼��
S�����
S��þ���S�
����S�


fM��;S
�g¼"�����S
�þ"���
�S��

i½S��;S
��¼��
M��þ��
M��þ���M�
þ���M�
:

(62)

Using these relations and Eq. (60) it is possible to show that
�S�� is also an independent set of nine orthogonal opera-

tors; thus the second traceless symmetric tensor is given by
S�� ¼ �S��.

Finally, the fourth-order Weyl-like tensor C��
� can be

built from the productM��M
� by applying the projection

operator

(63)

which gives

T��
� ¼ 4fM��;M
�g þ 2fM�
;M��g � 2fM��;M�
g:
(64)

Removing the Young-projected trace of this tensor we get

C��
� ¼ T��
� þ 1

2
ð��½
T��� � ��½
T���Þ

� 1

6
��½
����T�

�

¼ T��
� � 8ð��
��� � ��
���Þ (65)

where

T�� ¼ T���
�: (66)

Finally, the following tensor

C��
� ¼ 4fM��;M
�g þ 2fM�
;M��g � 2fM��;M�
g
� 8ð��
��� � ��
���Þ (67)

obeys the symmetries in Eqs. (55) and the Bianchi identity
in Eq. (56). These relations together with the vanishing of
all contractions

C�
�

� ¼ 0; (68)

leave only ten independent components. A direct calcula-
tion shows that this set is orthogonal to the previously
constructed operators.
Summarizing our construction for this representation,

the parity-based covariant basis for ð1; 0Þ � ð0; 1Þ is given
by the set

f1; �; S��; �S��;M��; C��
�g: (69)

Concerning the Poincaré projector formalism, the most
general antisymmetric tensor T�� for this representation

can be expanded in terms of the operators in the basis in
Eq. (69). Beyond M�� the only possibilities are the con-

tractionsC��
�M

� andC��
��


�. The latter contraction

vanishes due to the properties of the C tensor and the
former is not independent and in turn can be expanded in
terms of the covariant basis. Since the only antisymmetric
tensor with the appropriate symmetries is the Lorentz
generator tensor, this contraction must be proportional to
M��. In summary, the most general antisymmetric tensor

for ð1; 0Þ � ð0; 1Þ representation space is of the form gM��.

It is clear that high spin brings into the construction
commutators and anticommutators of the generators and
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it is important to realize the algebraic structure of
these operators. We start with the Dirac space where the
following commutation relations hold:

½S�; S�� ¼ 4iM�� ½�S�; �S�� ¼ 4iM��

½�S�; S�� ¼ 2���� ½�; S�� ¼ 2�S�

½�; �S�� ¼ 2S�:

(70)

For anticommutators, we get the following results:

fS�; S�g ¼ 2���1 f�; S�g ¼ 0

f�S�; �S�g ¼ �2���1 f�; �S�g ¼ 0

f�S�; S�g ¼ 4 ~M�� f�;�g ¼ 21

fS�;M��g ¼ �"���
�S

 f�;M��g¼ 2i ~M��

f�S�;M��g ¼ �"���
S

:

(71)

These relations are schematically summarized in Tables I
and II.

Let us consider now the covariant basis we have
constructed for the ð1; 0Þ � ð0; 1Þ representation. Besides
the commutation rules in Eqs. (62), a straightforward
calculation yields the following Lie brackets

½�S��; �S��� ¼ i���M�� þ i���M�� þ i���M��

þ i���M��

½�S��; S��� ¼ 4

3

�
������ þ ������ � 1

2
������

�

� i

6
ð ~C���� þ ~C����Þ

½�; S��� ¼ 2�S�� ½�;�S��� ¼ 2S��; (72)

and the anticommutators

fS��; S��g ¼ 4

3

�
������ þ ������ � 1

2
������

�

� 1

6
ðC���� þ C����Þ

f�S��; �S��g ¼ � 4

3

�
������ þ ������ � 1

2
������

�

þ 1

6
ðC���� þ C����Þ

f�S��; S��g ¼ 1

2
ð���

~M�� þ ���
~M��Þ

þ 1

2
ð���

~M�� þ ���
~M��Þ

fM��;M��g ¼ 4

3
ð������ � ������Þ

� 8

6
i"�����þ 1

6
C����

f�; S��g ¼ 0 f�; �S��g ¼ 0: (73)

Here ~C���� ¼ 1
2 ���


�C
��� ¼ �i�C����. The similar-

ities with the Dirac case can best be seen in Tables III
and IV.

B. Lorentz structure of the ð3=2; 0Þ � ð0; 3=2Þ
As a final explicit example let us now consider the j ¼ 3

2

case. The angular momentum matrices are given by

TABLE II. Algebraic Jordan structure of the Dirac basis.

Jordan {�,�} 1 � S� �S� M��

1 1 � S� �S� M��

� � 1 0 0 M��

S� S� 0 1 M�� �S�
�S� �S� 0 M�� 1 S�
M�� M�� M�� �S� S� 1, �

TABLE III. Algebraic Lie structure of the ð1; 0Þ � ð0; 1Þ basis.
Lie [�,�] 1 � S�� �S�� M�� C����

1 0 0 0 0 0 0

� 0 0 �S�� S�� 0 0

S�� 0 �S�� M�� �, C���� S�� �S��

�S�� 0 S�� �, C���� M�� �S�� S��

M�� 0 0 S�� �S�� M�� C����

C���� 0 0 �S�� S�� C���� M��

TABLE I. Algebraic Lie structure of the Dirac basis.

Lie [�,�] 1 � S� �S� M��

1 0 0 0 0 0

� 0 0 �S� S� 0

S� 0 �S� M�� � S�
�S� 0 S� � M�� �S�
M�� 0 0 S� �S� M��

TABLE IV. Algebraic Jordan structure of the ð1; 0Þ � ð0; 1Þ
basis.

Jordan

{�,�} 1 � S�� �S�� M�� C����

1 1 � S�� �S�� M�� C����

� � 1 0 0 M�� C����

S�� S�� 0 1, C���� M�� �S�� S��

�S�� �S�� 0 M�� 1, C���� S�� �S��

M�� M�� M�� �S�� S�� 1, �, C���� M��

C���� C����C���� S�� �S�� M�� 1, �, C����
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�1 ¼ 1

2

0
ffiffiffi
3

p
0 0ffiffiffi

3
p

0 2 0

0 2 0
ffiffiffi
3

p

0 0
ffiffiffi
3

p
0

0
BBBBB@

1
CCCCCA

�2 ¼ i

2

0 � ffiffiffi
3

p
0 0ffiffiffi

3
p

0 �2 0

0 2 0 � ffiffiffi
3

p

0 0
ffiffiffi
3

p
0

0
BBBBB@

1
CCCCCA

�3 ¼ 1

2

3 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �3

0
BBBBB@

1
CCCCCA:

(74)

In this case the external product of states in the basis
decomposes as

ð0; 0Þ2 �
�
3

2
;
3

2

�
2
� ð1; 0Þ � ð0; 1Þ � ð2; 0Þ � ð0; 2Þ

� ð3; 0Þ � ð0; 3Þ: (75)

Here, besides the 1 and � scalars, we have the
decomposition

(76)

This corresponds to a pair of third-rank totally symmetrical
tensors, and the operators

fM��; C����;D����
�g: (77)

The C tensor is given by Eq. (68) with the appropriate
changes in the M�� operators. In the calculation of the

remaining tensors it is useful to define the quantity

fA; B;Cg ¼ ABCþ ACBþ BACþ BCAþ CABþ CBA:

The symmetric tensor is constructed along the lines of the
j ¼ 1 case. We just quote the final result

S���¼1

2
�ð��0��0��0�þ����0�þ����0�þ����0�Þþ i

9
�½7���M0�þ7���M0�þ7���M0��

� i�ð�0��0�M0�þ�0��0�M0�þ�0��0�M0�Þþ2i

9
�fM0�;M0�;M0�g: (78)

To build the sixth-order tensor D����
�, we apply the Young projector

to the product M��M��M
� to get

Y����
� ¼ 4

18
fM��;M��;M
�g þ 2

18
fM��;M�
;M��g � 2

18
fM��;M��;M
�g þ 2

18
fM�
;M��;M��g

� 2

18
fM��;M��;M�
g þ 2

18
fM��;M��;M
�g � 2

18
fM��;M��;M
�g þ 1

18
fM��;M�
;M��g

� 1

18
fM��;M��;M�
g þ 1

18
fM��;M��;M�
g � 1

18
fM��;M�
;M��g þ 1

18
fM�
;M��;M��g

� 1

18
fM�
;M��;M��g þ 1

18
fM��;M��;M�
g � 1

18
fM��;M��;M�
g: (79)

As with the C tensor, this tensor is not traceless and we
need to remove the Young-projected contractions, which
are of the form

Y�
�
��
� ¼ ����M
� þ 1

2
��
M�� � 1

2
���M
�

þ 1

2
���M�
 � 1

2
��
M��

� Y��
�: (80)

The Young-projected trace is proportional to the following
tensor:

�����
� ¼���Y��
�����Y��
�����Y��
�

þ���Y��
�þ��
Y�������
Y����

����Y�
��þ���Y�
��þ��
Y����

���
Y��������Y�
��þ���Y�
��: (81)
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The final result for the D tensor is

D����
� ¼ Y����
� þ 41

60
�����
�: (82)

This tensor is antisymmetric in the ��, �� and 
� in-
dices; completely symmetric under the exchange of these
pairs; and traceless (the contraction of any pair of indices
vanishes). It also satisfies the generalized Bianchi identity

D����
� þD���
�� þD�����
 ¼ 0: (83)

Notice that the D tensor is like a symmetric third-rank
tensor in six dimensions (the six possible values of the
antisymmetric pairs of indices), which has 56 components.
The traceless condition then removes 36 of those compo-
nents, and the generalized Bianchi identity removes
another six, leaving only 14 independent components
which are the degrees of freedom for the ð3; 0Þ � ð0; 3Þ
representation.

Concerning the Poincaré projector formalism for the
ð3=2; 0Þ � ð0; 3=2Þ representation, the antisymmetric part
of the space-time tensor T�� in Eq. (20) must be con-

structed with the elements of the basis. Here, in principle
we can have contractions of C and D tensors among
themselves and with products of the metric tensor or of
the generators. All these possible products are operators
that can be expanded in terms of the basis and the result
must be a rank 2 tensor antisymmetric under the exchange
� $ �. Since the only rank 2 tensor with this property in
the basis is the Lorentz generator tensor, these products
must be proportional to M��; thus electromagnetic prop-

erties are in this case also of the form gM��F
�� when we

use the gauge principle.

C. The general structure of ðj; 0Þ � ð0; jÞ fields
In general, for the ð4jþ 2Þ-dimensional representations

ðj; 0Þ � ð0; jÞ the external product of the states in the basis
has the decomposition

½ðj; 0Þ � ð0; jÞ�2 ¼ M2j
i¼0

½ði; 0Þ � ð0; iÞ� � 2ðj; jÞ: (84)

We can construct, for every j, a set of operators which form
a basis for this square space. In general this set will contain
the scalars f1; �g, and a pair of symmetrical tensors trans-
forming as ðj; jÞ. The chirality and parity operators are
given by Eqs. (25) and (26). Parity turns out to be the
time component of the totally symmetric tensor S�1�2...�2j

transforming as ðj; jÞ. In general chirality and parity
anticommute which in turn causes that chirality and the
symmetric tensor S to also anticommute. The second sym-
metric tensor is given in general as �S�1�2...�2j . In addition
the covariant basis contains the series

(85)

which gives the generators, plus a series of generalizations
of the Weyl tensor

fM��;C����;D����
�; E����
��; . . .g: (86)

These tensors are to be constructed by taking the product of
2j generators, applying the Young projector and removing
all contractions.
Concerning the Poincaré projector formalism for the

ðj; 0Þ � ð0; jÞ, the antisymmetric part of the space-time
tensor T�� in Eq. (20) in general must be constructed

with the elements of a basis of this space. When using
our covariant basis, due to the properties of the C;D; E . . .
tensors coming from the Young projectors it is clear that
the result found for j ¼ 1=2, 1, 3=2 is valid for any j. The
contractions of these tensors among themselves, with the
metric tensor or with the generators yielding a rank 2
antisymmetric tensor, are necessarily proportional to
M�� or they vanish. In consequence, for arbitrary j, the

most general space-time tensor in Eq. (20) is given by

T�� ¼ ��� � igM��: (87)

There are two direct consequences of this result: (i) the
multipole electromagnetic moments of a spin j particle in
this formalism are dictated by two free parameters, the
electric charge e and the gyromagnetic factor g; and (ii) the
propagation of spin j waves in an electromagnetic back-
ground is causal. In the next section we elaborate on these
points.

IV. ELECTROMAGNETIC STRUCTURE AND
CAUSAL PROPAGATION FOR THE ðj; 0Þ � ð0; jÞ

REPRESENTATION

In the Poincaré projector formalism, the Lagrangian for
an interacting elementary particle transforming in the
ðj; 0Þ � ð0; jÞ representation is

L ¼ D�cT��D
�c �m2 �c c ; (88)

where �c ¼ c y�, D� ¼ @� þ ieA� for a particle of
charge e and T�� stands for a space-time tensor. The

Poincaré projector fixes only the symmetric part of this
tensor. The antisymmetric part must be constructed in
terms of the basis for the operators acting on the ðj; 0Þ �
ð0; jÞ representation. According to results in the last sec-
tion, the most general space-time tensor is given by the
tensor in Eq. (87). This is the tensor used in [28] to
calculate the multipole moments of a particle transforming
in these representations for j ¼ 1=2, 1, 3=2. It is shown
there that the multipole moments are dictated solely by the
two parameters appearing in the Lagrangian, the charge e
and the gyromagnetic factor g. Our results in the previous
sections put these calculations on a firm basis and allow us
to generalize them to particles of arbitrary spin j.
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The electromagnetic current is simply calculated to be

J�ðp0; 	0;p; 	Þ ¼ e �uðp0; 	0Þ½ðp0 þ pÞ�
þ igM��ðp0 � pÞ��uðp; 	Þ: (89)

The multipole moments of this current can be calculated
from the charge and current densities using the Breit frame
where

p0 ¼ ð!=2;q=2Þ; p ¼ ð!=2;�q=2Þ: (90)

In terms of the Breit current defined by

JB�ðq; j; 	Þ ¼ 1

!
J�ðp0; 	;p; 	Þ; (91)

with ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
, the electromagnetic moments for a

particle of spin j and polarization 	 are given by

Ql
Eðq; j; 	Þ ¼ bl0ð�irqÞ%Eðq; j; 	Þjq¼0;

Ql
Mðq; s; 	Þ ¼

1

lþ 1
bl0ð�irqÞ%Mðq; j; 	Þjq¼0;

(92)

where the electric, %Eðq; j; 	Þ, and the magnetic,
%Mðq; j; 	Þ, densities are given by

%Eðq; j; 	Þ ¼ J0Bðq; j; 	Þ;
%Mðq; j; 	Þ ¼ rq � ½JBðq; j; 	Þ � q�; (93)

and the bl0 operators are given by

bl0ðrÞ ¼ l!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�=ð2lþ 1Þ

p
rlYl0ð�Þ: (94)

Explicitly, for l ¼ 1; 2; . . . 8 these operators read

b00ðrÞ¼ 1; b10ðrÞ¼ z; b20ðrÞ¼ 3z2� r2;

b30ðrÞ¼ 3zð5z2�3r2Þ; b40ðrÞ¼ 3ð35z4�30z2r2þ3r4Þ;
b50ðrÞ¼ 15zð63z4�70z2r2þ15r4Þ;
b60ðrÞ¼ 45ð231z6�315z4r2þ105z2r4�5r6Þ;
b70ðrÞ¼ 315zð429z6�693z4r2þ315z2r4�35r6Þ;
b80ðrÞ¼ 315ð6435z8�12012z6r2þ6930z4r4

�1260z2r6þ35r8Þ: (95)

The electromagnetic current can be rewritten as

J�ðp0; 	0;p; 	Þ ¼ e �uð0; 	0Þ½ðp0 þ pÞ�Bð�p0ÞBðpÞ
þ igBð�p0ÞM��BðpÞðp0 � pÞ��uð0; 	Þ;

(96)

where BðpÞ stands for the boost operator.
In the Breit frame we obtain

Bð�p0Þ ¼ exp ½iK �’0�; BðpÞ ¼ exp ½�iK �’� (97)

with

cosh’0 ¼ !

2m
¼ cosh’; sinh’0 ¼ jqj

2m
¼ sinh’: (98)

In terms of the unitary vector n ¼ q=jqj the corresponding
angles are

’ ¼ �n’; ’0 ¼ n’; (99)

and hence

Bð�p0Þ ¼ BðpÞ ¼ exp ½iK � n’� � BðqÞ: (100)

The time component of the electromagnetic current then
becomes

J0ðp0; 	0;p; 	Þ ¼ e �uð0; 	0Þ½ð!� igK � njqjÞ
� exp ½i2K � n’��uð0; 	Þ: (101)

For the representations ðj; 0Þ � ð0; jÞ the rotations and
boosts generators are related as iK ¼ ��J, which when
used for the charge density in the Breit frame yield

%Eðq; j; 	Þ ¼ e �uð0; 	0ÞOð�; xÞuð0; 	Þ; (102)

where x ¼ jqj
2m , � ¼ J � n and the operator Oð�; xÞ is

given by

Oð�; xÞ ¼
�
1þ g��xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

�
exp ½�2�� sinh�1ðxÞ�: (103)

The electric multipoles involve the matrix elements of
derivatives with respect to qi of this operator; for this
reason, it is convenient to expand Oð�; xÞ in powers of x.
Expanding and using �2 ¼ 1 we get

Oð�;xÞ ¼ 1þ ðg� 2Þ��x� 2ðg� 1Þ�2x2

þ�

6
½ð12g� 8Þ�2 � ð3g� 2Þ��x3 þ �� � (104)

The calculation of the lth multipole requires the lth deriva-
tives of this operator, with only the order xl term contrib-
uting. Using f�;�g ¼ 0, ½�; J� ¼ 0 and ½�; J� ¼ 0, it can
be shown that the matrix elements of odd powers of x
between states of the same parity vanish. As a conse-
quence, odd electric multipole moments vanish for parti-
cles of well-defined parity. Skipping odd terms in the
expansion we rewrite the operator in Eq. (103) up to order
x8 as

Oð�;xÞ ¼ 1� 2ðg� 1Þ�2x2� 2ð2g� 1Þ
3

½�4��2�x4

� 4ð3g� 1Þ
45

½�6� 5�4þ 4�2�x6

� 2ð4g� 1Þ
315

½�8� 14�6þ 49�4� 36�2�x8þ . . .

(105)

The calculation of the electric multipole moments for
arbitrary values of j and 	 is now straightforward. The
first five nonvanishing electric multipole moments, for
arbitrary j, are given by
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Q0
Eðj; 	Þ ¼ e Q2

Eðj; 	Þ ¼ � eðg� 1Þ
m2

hJ2 � 3J2z i

Q4
Eðj; 	Þ ¼ � e

m4
3ð2g� 1Þh3J4 � 30J2J2z þ 35J4z

� 6J2 þ 25J2z i
Q6

Eðj; 	Þ ¼ � e

m6
ð3g� 1Þ45h5J6 � 105J4J2z þ 315J2J4z

� 231J6z � 40J4 þ 525J2J2z � 735J4z þ 60J2

� 294J2z i
Q8

Eðj; 	Þ ¼ � e

m8
ð4g� 1Þ315h35J8 � 1260J6Jz2 � 700J6

þ 6930J4Jz4 þ 18270J4Jz2 þ 3780J4

� 12012J2Jz66� 64680J2Jz4 � 59388J2Jz2

� 5040J2 þ 6435Jz8 þ 54054Jz6 þ 93555Jz4

þ 27396Jz2i (106)

where we used the shorthand notation

hOi � �uð0; 	ÞOuð0; 	Þ: (107)

It is worth remarking that, for a given j, the special
combination of J2 and Jz appearing in Ql

Eðj; 	Þ in
Eqs. (106) vanishes for l > 2j. This is a consequence of
the full algebraic structure of the covariant basis for ðj; 0Þ �
ð0; jÞ representation, which at this level manifests in the
fact that the rotation generators satisfy

Yj
	¼�j

ðJ � n� 	Þ ¼ 0; (108)

for an arbitrary unitary vector n. For n ¼ k this relation
lowers the powers of Jz appearing inQ

l
Eðj; 	Þ and causes it

to vanish for l > 2j. The simplest example is j ¼ 1=2 in
whose case J2z ¼ 1=4. In this case, the combinations of J2

and Jz appearing in Ql
Eðj; 	Þ for l > 1 reduce to the unity

operator (J2 is diagonal) with vanishing coefficient, as can
be easily checked. For j ¼ 1 we get J3z ¼ Jz in which case
the combinations of J2 and Jz appearing inQ

l
Eðj; 	Þ for l >

2 reduce to a linear combination of the unity operator and
Jz with vanishing coefficients. Similar results are obtained
for higher values of j. Therefore, we understand the well-
known fact that a spin j particle can have at most 2j
nonvanishing electric multipole moments as a consequence
of the full algebra satisfied by the elements of the basis of
operators acting on the ðj; 0Þ � ð0; jÞ representation.

As for the magnetic current a similar calculation yields

%Mðq; j; 	Þ ¼ ieg½ �uð0; 	Þ½rq �Mðq; jÞ�uð0; 	Þ� (109)

with

Mðq; jÞ ¼ 1

!
BðqÞ½ðJ � qÞq� jqj2J�BðqÞ: (110)

To evaluate the magnetic multipoles we calculate the de-
rivatives of this operator and then evaluate them at q ¼ 0.
Notice that the lth magnetic moment receives contributions
only of the term qlþ1 in the expansion of Mðq; jÞ. In
particular, the calculation of Q1

M does not involve the
specific structure of the boost operator. For l even, the
term qlþ1 in the expansion of Mðq; jÞ contains a factor �
and the even magnetic multipole moments vanish for the
same reason as the odd electric moments do. The non-
vanishing lowest order magnetic multipoles are given by

Q1
Mðj;	Þ ¼

eg

2m
hJzi Q3

Mðj;	Þ ¼
eg

2m3
9h3J2Jz� 5J3z � Jzi

Q5
Mðj;	Þ ¼

eg

2m5

75

2
h15J4Jz� 70J2J3z þ 63J5z � 50J2Jz

þ 105J3z þ 12Jzi:
Q7

Mðj;	Þ ¼
eg

2m7

2205

2
h35J6Jz� 315J4J3z þ 693J2J5z

� 429J7z � 385J4Jzþ 2205J2J3z � 2310J5z

þ 882J2Jz� 2121J3z � 180Jzi: (111)

We would like to remark that, beyond the gauge principle,
our calculation depends only on the space-time structure of
the ðj; 0Þ � ð0; jÞ representation: (i) the Poincaré projector,
(ii) the explicit form of the Lorentz generators and (iii) the
properties of the parity-based covariant basis. This is,
therefore, a calculation from first principles, and our
main result in this section is that, beyond the electric
charge, all multipole moments for an elementary particle
in this formalism are dictated by a single Lorentz structure,
namely M��, and consequently all multipole moments are

dictated by the value of the corresponding constant, g, the
gyromagnetic factor. This is a free parameter in the
Poincaré projector formalism but for low values of j it
has been fixed to be g ¼ 2 [28–32]. On the other hand,
there is a variety of consistency arguments for this value to
be universal (see [37] for a review and further references)
and we consider this value in our numerical computations
below.
The existence of relations among multipole moments for

elementary particles has been noticed before. The calcu-
lation of Q1

M, Q
2
E and Q3

M for j ¼ 1=2, 1, 3=2 in the
Poincaré projector formalism was done in Ref. [28]. Our
alternative derivation confirms results in this work but the
form ofQ3

M in Eq. (4.52d) of [28] is valid only for j ¼ 3=2.
The relation between Q3

M and the matrix elements of the
rotation generators valid for every value of j is given in
Eqs. (111) and for j ¼ 3=2 agrees with Eq. (4.52d) of [28].
Recently, a systematic calculation of the multipole
moments for particles of arbitrary spin j transforming in
the Rarita-Schwinger representations was performed in
Ref. [38], using a well-motivated ansatz for the electro-
magnetic current written in terms of the covariant Lorentz
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structures and multipole form factorsGElðq2Þ andGMlðq2Þ.
As remarked there, as defined in this reference, GElð0Þ and
GMlð0Þ have an interpretation of electromagnetic multipole
moments only for l ¼ 0, 1, 2. For l > 2 these form factors
at zero transferred momentum are related to conventional
electromagnetic multipole moments through l-dependent
factors. The multipole form factors GElð0Þ and GMlð0Þ
calculated in that work are related to our multipole
moments in Eqs. (106) and (111) with 	 ¼ j. The appro-
priate quantities to compare with results obtained in
Ref. [38] are [39]

ĜEl ¼ml

e

2l

ðl!Þ2Q
l
Eðj;jÞ; ĜMl ¼ 2ml

e

2l

ðl!Þ2Q
l
Mðj;jÞ: (112)

We list the values for ĜEl and ĜMl predicted by the
Poincaré projector formalism for the lowest values of j and
l in Table V. In general, spin j particles transforming in
different representations of the Lorentz group have differ-
ent electromagnetic properties. This has been noticed be-
fore in Ref. [28] based on a similar calculation for j ¼ 1,
3=2. The only representation-independent multipole mo-
ments are the charge and the magnetic moment. This is not
a surprising result because these are the only multipole
moments that are independent of the specific structure of
the boost operators. The electric charge is completely
independent of the Lorentz structure (it is associated to a
global symmetry), whereas the magnetic moment is related
to the rotation generators, which for a fixed value of j have
the same algebraic structure even if they are embedded in
different Lorentz representations. Beyond these multi-
poles, it is clear from Eqs. (101) and (110) that the specific
structure of the boost operators becomes important, and
since this structure is different for different representations,
we should not expect the same multipole moments, a fact
reflected in Table V when compared with Table I of
Ref. [38]. In general, the quantities in Eq. (112) for the
ðj; 0Þ � ð0; jÞ representation obtained here are related to
those for the Rarita-Schwinger representation obtained in
Ref. [38] by

ĜEl ¼
�
1� gl

2

�
GElð0Þ; ĜMl ¼ gl

2
GMlð0Þ: (113)

Finally, we would like to remark on another important
side result of our construction of the covariant basis
for operators acting on the ðj; 0Þ � ð0; jÞ representation:
the restriction of the antisymmetric part of the
space-time tensor T�� to be given solely by the Lorentz

generators’ tensorM�� yields causal propagation of spin j

waves in an electromagnetic background. Indeed, this
problem has been studied in Ref. [40] for j ¼ 1 under
the assumption that the most general tensor is given by
Eq. (87) for j ¼ 1. Once we have proved that this is indeed
the case and that this result is valid for arbitrary j, the
generalization to the propagation of high spin waves is
straightforward. The gauged classical equation of motion
for arbitrary j can be rewritten as�

D�D� þ g

2
M��F

�� þm2

�
c ¼ 0: (114)

Notice that Eq. (114) is a set of coupled equations for the
2ð2jþ 1Þ components of the spinor c i. Using the form of
the generators in Eq. (24) it is easy to see that all the
components have a second time derivative. The character-
istic determinant is the determinant of the operator OðnÞ
obtained from the highest derivatives in this equation when
derivatives of the field @�c are replaced by a constant
four-vector n�. The nature of the propagation of classical
waves is determined by the vanishing of the characteristic
determinant

det ½OðnÞ� ¼ ðn2Þ2ð2jþ1Þ ¼ 0: (115)

The solutions for the timelike components of n� are n0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q
which are always real and according to the

Currant-Hilbert criterion the propagation of spin jwaves in
the Poincaré projector formalism is causal.
Since all the components c i have a second time deriva-

tive either in the free or in the interacting case, as discussed
in [40] for the case j ¼ 1, this formalism actually describes
the dynamics of a degenerate parity doublet. As pointed
out by Weinberg [15], when the field is built as in Eq. (6)
the properties of the one-particle states described by the
field are related to the properties of the coefficients !lð�Þ,
!c

l ð�Þ. Beyond mass and spin, these coefficients furnish a

record of the choice made to ensure the desired properties
of the field under discrete transformations. In the Poincaré
projector formalism, the dynamics is dictated solely by the
projection onto Poincaré eigensubspaces and the appropri-
ate degrees of freedom for the single-particle states are
fixed through a judicious choice of the coefficients !lð�Þ,
!c

l ð�Þ. The spacetime properties of the parity operator are

such that it commutes with the Poincaré projector. This
justifies our use of definite-parity states for the calculation
of the electromagnetic moments.

TABLE V. Multipole moments normalized according to
Eq. (112).

j ĜE0 ĜM1 ĜE2 ĜM3 ĜE4 ĜM5 ĜE6 ĜM7 ĜE8

0 1 0 0 0 0 0 0 0 0

1=2 1 1 0 0 0 0 0 0 0

1 1 2 1 0 0 0 0 0 0

3=2 1 3 3 �3 0 0 0 0 0

2 1 4 6 �12 �3 0 0 0 0

5=2 1 5 10 �30 �15 5 0 0 0

3 1 6 15 �60 �45 30 5 0 0

7=2 1 7 21 �105 �105 105 35 �7 0

4 1 8 28 �168 �210 280 140 �56 �7
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V. CONCLUSIONS

In this work we study the transformation properties of
the rest-frame parity operator under Lorentz transforma-
tions for the ðj; 0Þ � ð0; jÞ representation spaces. We show
that while rotating as a scalar, under boosts its transforma-
tion properties involve the Jordan algebra of the generators,
which is representation dependent. Using these general
properties and the Young projectors for soð1; 3Þ we show
that the rest-frame parity operator transforms as the com-
pletely temporal component of a symmetric traceless ten-
sor of rank 2j. We provide an algorithm for the calculation
of a covariant basis for arbitrary j. For a given j, this basis
contains the corresponding identity (1) and chirality (�)
operators, the Lorentz generators (M��) and two symmet-

ric traceless tensors of rank 2j. The time component of the
first symmetric traceless tensor denoted by S�1�2...�2j is
precisely the rest-frame parity operator and the second
symmetric traceless operator is given by the product
�S�1�2...�2j . In addition, for j > 1 the basis contains tensor
operators with the symmetry properties of the Weyl tensor
and its generalizations.

We explicitly construct the basis for j ¼ 1=2, 1, 3=2. For
j ¼ 1=2we reproduce the conventional Dirac basis and rest-
frame parity is the time component of a four-vector operator
(in this case the ‘‘symmetric’’ tensor of rank 2j ¼ 1) that
turns out to be the conventional Dirac matrices ��; the
chirality operator coincides with the �5 Dirac matrix. For
j ¼ 1 the basis is given by f1; �; S��; �S��;M��; C��
�g.
We explicitly construct the symmetric traceless tensor S��

and the C��
� tensor which has the symmetries of the Weyl

tensor. These two tensors involve the Jordan algebra of the
generators. For j ¼ 3=2 the basis contains the operators
f1; �; S���; �S���;M��; C��
�;D����
�g. The C tensor

has the same form as the j ¼ 1 case just replacing the
j ¼ 1 generators with those of j ¼ 3=2. We give explicit
expressions for the S��� and D����
� tensors.

The formulation of theories for particles, either elemen-
tary or composite, transforming in these representations
can be done using our covariant basis which has a clear
physical interpretation in terms of parity or chirality prop-
erties. In particular, in the Poincaré projector formalism for
the ðj; 0Þ � ð0; jÞ representations we find that the antisym-
metric part of the involved space-time tensor is given by
M�� for all j. This simple structure yields two direct

physical consequences: (i) the multipole moments of ele-
mentary spin j particles are not independent, they are
dictated by the value of the gyromagnetic factor g, and
(ii) the propagation of spin j waves in an electromagnetic
background is causal.
We calculate the multipole moments and compare with

existing calculations in the literature. We conclude that
except for Q0

E and Q1
M the multipole moments are repre-

sentation specific. The universality of Q0
E is due to a

global symmetry while that of Q1
M is due to the fact

that it involves only the algebraic properties of the gen-
erators of rotations which are independent of the chosen
Lorentz representation. Higher multipole moments de-
pend on the algebraic structure of the boost generators.
The structure is different for different Lorentz represen-
tations. This difference in the complete algebraic structure
is at the root of the representation dependence of higher
multipole moments.
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