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The theoretical description of fermions in the presence of Lorentz and CPT violation is developed. We

classify all Lorentz- and CPT-violating and invariant terms in the quadratic Lagrange density for a Dirac

fermion, including operators of arbitrary mass dimension. The exact dispersion relation is obtained in

closed and compact form, and projection operators for the spinors are derived. The Pauli Hamiltonians for

particles and antiparticles are extracted, and observable combinations of operators are identified. We

characterize and enumerate the coefficients for Lorentz violation for any operator mass dimension via a

decomposition using spin-weighted spherical harmonics. The restriction of the general theory to various

special cases is presented, including isotropic models, the nonrelativistic and ultrarelativistic limits, and

the minimal Standard-Model Extension. Expressions are derived in several limits for the fermion

dispersion relation, the associated fermion group velocity, and the fermion spin-precession frequency.

We connect the analysis to some other formalisms and use the results to extract constraints from

astrophysical observations on isotropic ultrarelativistic spherical coefficients for Lorentz violation.
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I. INTRODUCTION

The invariance of the laws of nature under Lorentz
transformations is well established, being based on an
extensive series of investigations originating in classic tests
such as the Michelson–Morley, Kennedy–Thorndike, Ives–
Stilwell, and Hughes–Drever experiments [1–4]. Interest in
precision tests of relativity has experienced a renewal in
recent years, following the realization that tiny departures
from Lorentz invariance could arise in a fundamental
theory such as strings [5]. During this period, experiments
using techniques from many subfields have achieved
striking sensitivities to a variety of effects from Lorentz
violation [6].

The general framework characterizing violations of
Lorentz invariance is the Standard-Model Extension
(SME) [7,8], which is a realistic effective quantum field
theory incorporating General Relativity and the Standard
Model. Terms in the SME violating CPT symmetry also
violateLorentz invariance [9], so the SMEalso characterizes
CPT violation. Each Lorentz-violating term in the SME
action is a coordinate-independent scalar density involving
a Lorentz-violating operator contracted with a controlling
coefficient. The mass dimension d of the operator fixes the
dimensionality of the corresponding coefficient. In the
popular scenario with General Relativity and the Standard
Model emerging as the low-energy limit of an underlying
theory of quantum gravity at the Planck scale MP �
1019 GeV, terms with larger d can plausibly be viewed as
higher-order corrections in a series approximating the
underlying physics. Other scenarios can also be envisaged.

The focus of the present work is Lorentz violation
in fermions. The realistic nature of the SME means that
it can readily be applied to analyze observational and

experimental data, but existing studies of Lorentz violation
with fermions are primarily concerned with the minimal
SME, obtained by restricting attention to operators of
renormalizable dimensions d � 4. To date, the minimal
SME has been adopted as the theoretical framework in
searches for Lorentz violation in the fermion sector involv-
ing electrons [10], protons and neutrons [11], muons [12],
neutrinos [13], quarks [14], and gravitational couplings of
various species [8,15]. Discussions in the literature of the
nonminimal SME fermion sector are more limited. The
general structure and properties of the nonminimal neu-
trino sector have been investigated [16], and results are
known for some special nonminimal SME-based models
[17–21], including ones with nonminimal fermion inter-
actions [22]. However, a complete description of the
nonminimal SME fermion sector remains an open issue.
In the present work, we seek to address this gap in the

literature by extending the existing treatment of nonmini-
mal Lorentz violation to include quadratic fermion opera-
tors of arbitrary mass dimension d, thereby opening the
path for additional searches for Lorentz violation. To
achieve a reasonable scope, we restrict the analysis to flat
spacetime with a Dirac-type action invariant under space-
time translations and phase rotations, so that energy, mo-
mentum, and charge are conserved. This scope suffices for
applications to many experimental situations involving
fermions and can be applied to studies of matter following
methods used in the minimal sector [23]. It also serves as a
basis for further theoretical investigations of foundational
aspects of Lorentz violation, including mathematical
topics such as the underling pseudo–Riemann-Finsler ge-
ometry [24] and physical issues such as causality and
stability [25,26], where operators of large d can dominate
the associated physics. Other applications are expected to
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include phenomenological topics such as radiative correc-
tions in Lorentz-violating models, where loop processes
involving terms of a given d can naturally induce effective
operators of different dimensions. Our results are also
potentially relevant for some proposed theories naturally
generating effective field theories dominated by SME
operators of dimension d > 4, such as supersymmetric
Lorentz-violating models [27] or noncommutative quan-
tum electrodynamics [28], in which the corresponding
SME operators have d � 6 [29].

The primary goal of this work is to develop the quadratic
nonminimal SME fermion sector to the point where prac-
tical applications become feasible. This requires extracting
key information from the general SME action, including
basic features of fermion behavior in the presence of
Lorentz violation. Typical applications are expected to
involve measurements of aspects of fermion propagation,
such as times of flight or spin-precession rates, and studies
of fermion energy levels in systems such as atoms. The
former require characterizing the anisotropy, dispersion,
and birefringence in fermion propagation, which can con-
veniently be addressed via the dispersion relation, while
the latter can be addressed by studying induced level shifts
using the perturbative Hamiltonian for Lorentz violation.
Here, we obtain the exact dispersion relation and the
perturbative Hamiltonian, and we develop a methodology
to study the corresponding effects using a decomposition in
spherical harmonics. This permits a classification of all
observables in terms of four sets of coefficients for Lorentz
violation having straightforward rotation properties, which
is expected to simplify future experimental analyses.

This paper is organized as follows. The general qua-
dratic action for a Dirac field is studied in Sec. II. The basic
framework is reviewed in Sec. II A, while the role of field
redefinitions in determining physical observables is deter-
mined in Sec. II B. The exact vacuum dispersion relation is
obtained in a closed and compact form in Sec. II C, and
some of its physical properties are described in Sec. II D.
Covariant projection operators for the spinor solutions to
the modified Dirac equation are presented in Sec. II E. We
then turn to the construction of the Hamiltonians for par-
ticles and antiparticles, deriving expressions for both in
Sec. III A and converting them to explicitly covariant forms
in Sec. III B. Taking advantage of the approximate rota-
tional symmetry relevant for many applications, we per-
form in Sec. IV a decomposition of the Hamiltonian in
spin-weighted spherical harmonics. This calculation yields
a complete set of observable coefficients for Lorentz viola-
tion, cataloged according to properties of the corresponding
operators. We develop the isotropic limit for the perturba-
tiveHamiltonian and present the general isotropic Lagrange
density for operator dimensions d ¼ 3, 4, 5, 6 in both
Cartesian and spherical coefficients. In Sec. V, we turn to
a description of various special cases of the framework,
including the nonrelativistic and ultrarelativistic limits and

the minimal SME. Section VI contains applications of the
results to dispersion, group velocity, and birefringence,
along with a discussion of connections between the non-
minimal fermion sector of the SME and other field theoretic
and kinematical results in the literature. We also provide a
compilation of existing astrophysical limits on isotropic
Lorentz violation translated into constraints on spherical
SME coefficients. Section VII summarizes the results ob-
tained in this work. Throughout this paper, we adopt con-
ventions matching those of the prior studies of nonminimal
Lorentz violation in Refs. [16,30].

II. SINGLE DIRAC FERMION

In this section, we consider the effective action for a
single Dirac fermion, allowing for operators of arbitrary
dimension. Attention is restricted to terms that are qua-
dratic in the fermion field, which gives rise to a linear
theory. Features of the corresponding modified Dirac equa-
tion are also considered, including observability and field
redefinitions. We derive an explicit expression for the exact
dispersion relation, and we determine an approximation
valid to leading order in Lorentz violation. The result
reveals features including anisotropy, dispersion, and bire-
fringence. Leading-order expressions for the eigenspinors
are also presented.

A. Basics

Given the conventional Dirac Lagrange density, the
effective theory describing the fermion behavior in the
presence of general Lorentz violation can be obtained by
adding terms formed from tensor operators contracted with
coefficients for Lorentz violation [7]. The coefficients play
the role of background fields generating the Lorentz vio-
lation, and the resulting theory is coordinate independent.
For a single Dirac fermion c of massmc , this construction

and the requirement of a linear theory imply that the action
S extends the usual Dirac action for c by a quadratic
functional of c and its derivatives,

S ¼
Z

Ld4x;

L ¼ 1

2
�c ð��i@� �mc þ Q̂Þc þ H:c:;

(1)

where Q̂ is a 4� 4 spinor-matrix operator involving de-

rivatives i@�. Without loss of generality, Q̂ can be taken to

obey the Hermiticity condition Q̂ ¼ �0Q̂
y�0. Since Q̂ is

general, it includes both all Lorentz-invariant and all
Lorentz-violating effects. The latter may be Planck sup-

pressed and in any case are generically tiny, so we treat Q̂
as a perturbative contribution when needed to insure that
deviations from the conventional Dirac situation are small.
In particular, this implies that any extra modes associated
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with the higher-order derivatives in Q̂ can be neglected for
practical purposes.

The operator Q̂ can describe effects of Lorentz violation
arising either spontaneously or explicitly. Spontaneous
Lorentz violation occurs when tensor fields dynamically
acquire vacuum expectation values [5], which play the role

of background tensors in the operator Q̂. In contrast,
explicit Lorentz violation involves background tensors in

Q̂ that are externally prescribed. In both cases, the opera-

tor Q̂ can in principle depend on spacetime position.
However, to maintain invariance of the action (1) under
spacetime translations and hence preserve energy-
momentum conservation, we require here that the operator

Q̂ is spacetime constant. This insures a focus on pure
Lorentz violation and minimizes complications in analyses
at both the theoretical and experimental levels. In the
context of spontaneous Lorentz violation, imposing space-
time translation symmetry is equivalent to disregarding
solitonic background fields along with any massive and
Nambu–Goldstone modes [31]. In certain situations these
modes play the role of the photon in Einstein–Maxwell
theory [8,32], the graviton [33], or other force mediators
[34,35], so in these cases some care may be needed in

interpreting results for spacetime-constant Q̂.

Note that spacetime constancy of Q̂ can be either an exact
feature of the model or an approximation to dominant or
averaged effects in a more complete theory. The complete
theory may even be fully Lorentz invariant. Existing
or hypothetical forces typically give rise to effects with
dominant contributions appearing as backgrounds in a given
experimental situation, which can serve as effective Lorentz
violation in a phenomenological description. For instance, in
a local laboratory, the gravitational force produces a direction
dependence that plays the role of explicit Lorentz violation in
the corresponding effective theory. Hypothetical ultraweak
forces can in principle be constrained or even detected in this
way. For example, sharp constraints on torsion have been
obtained by studying the effective Lorentz violation associ-
ated with a torsion background [36]. In general, viable mod-
els for Lorentz-invariant interactions generating effective

operators of the form Q̂ must be consistent with known
constraints on Lorentz violation [6].

In this subsection, we perform a decomposition of Q̂
that ultimately permits the enumeration and characteriza-
tion of the coefficients for Lorentz violation appearing in

the Lagrange density (1). Expanding Q̂ in the basis of 16
Dirac matrices explicitly reveals the spin content,

Q̂ ¼ X
I

Q̂I�I

¼ Ŝ þ iP̂�5 þ V̂
�
�� þ Â��5�� þ 1

2
T̂

��
���;

(2)

where the 16 operators Q̂I ¼ fŜ; P̂ ; V̂
�
;Â�; T̂

��g are
Dirac-scalar functions of the derivatives i@� with mass

dimension 1. In momentum space, each operator Q̂I
can

be viewed as a series of terms,

Q̂I ¼ X1
d¼3

QðdÞI�1�2...�d�3p�1
p�2

. . .p�d�3
; (3)

with p� ¼ i@�. All the coefficients QðdÞI�1�2...�d�3 are

spacetime independent and have dimension 4� d.
Also, they can all be assumed real by Hermiticity.
Note that any of these coefficients proportional to com-
binations of products of the Lorentz-invariant tensors
��� and ��	�� correspond to Lorentz-invariant operators
in the theory (1).
Often, it is convenient to work with an alternative

decomposition of Q̂ that parallels the formalism widely
used for the single-fermion limit of the minimal SME [7].
This parallel suggests writing

��p� �mc þ Q̂ ¼ �̂�p� � M̂; (4)

where �̂�p� and M̂ consist of operators of even and
odd mass dimension, respectively. Decomposing these
operators in terms of the basis of 16 Dirac matrices
yields

�̂� ¼ �� þ ĉ���� þ d̂���5�� þ ê� þ if̂��5 þ 1

2
ĝ�	���	;

M̂¼mc þ m̂þ im̂5�5 þ â��� þ b̂��5�� þ 1

2
Ĥ�����:

(5)

In these expressions, the operators ĉ��, d̂�� are CPT

even and dimensionless; ê�, f̂�, ĝ�
� are CPT odd and

dimensionless; m̂, m̂5, Ĥ
�� are CPT even and of dimen-

sion 1; and â�, b̂� are CPT odd and of dimension 1. If

desired, a chiral mass term im5�5 can be added to M̂, but
in many situations this can be absorbed into mc via a

chiral rotation without loss of generality, and so we omit
it from Eq. (5). The operators m̂ and m̂5 consist solely of
higher-derivative terms of nonrenormalizable dimension,
but all the others appearing in Eq. (5) have equivalents in
the minimal SME.

In Eq. (4), the operator �̂� is contracted with p�. This

implies that the operators ĉ��, d̂��, ê�, f̂�, ĝ�
� are also
contracted with p�, and it motivates the introduction of
contracted operators via

ĉ� ¼ ĉ��p�; d̂� ¼ d̂��p�; ê ¼ ê�p�;

f̂ ¼ f̂�p�; ĝ�	 ¼ ĝ�	�p�:
(6)

The notation for each operator has been chosen so that its
CPT handedness corresponds to that of its analog in the
minimal SME. In terms of these operators, we find
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Ŝ ¼ ê� m̂; P̂ ¼ f̂� m̂5; V̂
� ¼ ĉ� � â�;

Â� ¼ d̂� � b̂�; T̂
�� ¼ ĝ�� � Ĥ��: (7)

These expressions provide the explicit link between the
decompositions (2) and (4).

Each of the 10 component operators ê, m̂, f̂, m̂5, ĉ
�, â�,

d̂�, b̂�, ĝ��, Ĥ�� can be expanded in Cartesian momentum
components following the form of Eq. (3), yielding 10
infinite series of real coefficients. For example, the opera-
tor ĉ� can be written as

ĉ� ¼ X
d even

cðdÞ��1...�d�3p�1
. . .p�d�3

: (8)

Each term in this sum involves a coefficient cðdÞ��1...�d�3 ,
for which the index � controls the spin nature of the
operator and the d� 3 symmetric indices �1 . . .�d�3 con-
trol the momentum dependence. In the analogous expan-
sions for the photon sector [30], the spin and momentum
dependence are intertwined by gauge symmetry, which
complicates the counting of components. Here, however,

the number of independent coefficients in cðdÞ��1...�d�3 for
each d can be obtained directly as 2dðd� 1Þðd� 2Þ=3.
The coefficients for the nine other operators can be treated
similarly. Table I lists the 10 operators, their corresponding
coefficients, and some of their properties.

B. Field redefinitions

In the context of the minimal SME, the freedom to
choose coordinates and to redefine fields while leaving
the physics unchanged makes some coefficients for
Lorentz violation physically unobservable [7,8,35,37–40].
This feature extends to the nonminimal sector. The effects
of a coordinate choice, which amounts to selecting the
sector in which the effective background spacetime metric
has the usual diagonal Minkowski form, are analogous to
those in the minimal SME and imply 10 combinations of
coefficients are always unobservable. Also, the freedom to
redefine the fermion c by a position-dependent phase,

c ¼ exp ðix�v�Þc 0 (9)

for a suitable v�, can be used as in the minimal SME to

remove four constant coefficients coupling like a gauge
potential. However, the freedom to make field redefinitions
involving the spinor space, which eliminates and recom-
bines certain coefficients in the Lagrange density, is more
involved when the nonminimal sector is incorporated.
Here, we consider field redefinitions of the form

c ¼ ð1þ ẐÞc 0; (10)

where Ẑ is an arbitrary p-dependent operator. For this
redefinition to leave the physics unaffected, the dominant
modes in the Lagrange density must remain dominant in
the redefined theory, and so the perturbative assumption for

the operator Q̂ in the Dirac action (1) must be maintained.

This implies that Ẑ itself must be perturbative.
Under the redefinition (10), the operator in the Dirac

action (1) acquires a new form,

c y�0ðp ���mc þQ̂Þc � c 0y�0ðp ���mc þQ̂0Þc 0;

(11)

where

Q̂ 0 ¼ Q̂þðp ���mc ÞẐþ�0Ẑ
y�0ðp ���mc Þ: (12)

To explore the implications of this structure, it is useful to

split Ẑ into a Hermitian piece X̂ and an anti-Hermitian

piece Ŷ, defined according to

Ẑ ¼ X̂ þ iŶ; X̂ ¼ 1

2
ðẐþ �0Ẑ

y�0Þ;

Ŷ ¼ 1

2i
ðẐ� �0Ẑ

y�0Þ;
(13)

where both X̂ and Ŷ obey the same Hermiticity condition as

the Q̂ operator, X̂ ¼ �0X̂
y�0, Ŷ ¼ �0Ŷ

y�0. The operator

Q̂0
is then given by

Q̂0 ¼ Q̂� 2mc X̂ þ p�f��; X̂g þ ip�½��; Ŷ�: (14)

This shows that a suitable choice of X̂ or Ŷ can combine

with Q̂ to reduce the observable content of Q̂0
.

TABLE I. Operators and coefficients for a Dirac fermion.

Operator Type d CPT Cartesian coefficients Number

m̂ Scalar odd, � 5 Even mðdÞ�1...�d�3 dðd� 1Þðd� 2Þ=6
m̂5 Pseudoscalar odd, � 5 Even m

ðdÞ�1...�d�3

5 dðd� 1Þðd� 2Þ=6
â� Vector odd, � 3 Odd aðdÞ��1...�d�3 2dðd� 1Þðd� 2Þ=3
b̂� Pseudovector odd, � 3 Odd bðdÞ��1...�d�3 2dðd� 1Þðd� 2Þ=3
ĉ� Vector even, � 4 Even cðdÞ��1...�d�3 2dðd� 1Þðd� 2Þ=3
d̂� Pseudovector even, � 4 Even dðdÞ��1...�d�3 2dðd� 1Þðd� 2Þ=3
ê Scalar even, � 4 Odd eðdÞ�1...�d�3 dðd� 1Þðd� 2Þ=6
f̂ Pseudoscalar even, � 4 Odd fðdÞ�1...�d�3 dðd� 1Þðd� 2Þ=6
ĝ�� Tensor even, � 4 Odd gðdÞ���1...�d�3 dðd� 1Þðd� 2Þ
Ĥ�� Tensor odd, � 3 Even HðdÞ���1...�d�3 dðd� 1Þðd� 2Þ
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To determine explicitly which pieces of Q̂ are affected,

we can decompose both X̂ and Ŷ in the basis of 16 Dirac
matrices,

X̂¼ X̂Sþ iX̂P�5þ X̂�
V��þ X̂�

A�5��þ1

2
X̂��
T ���;

Ŷ¼ ŶSþ iŶP�5þ Ŷ
�
V��þ Ŷ

�
A�5��þ1

2
Ŷ
��
T ���:

(15)

Each component of X̂ and Ŷ in these expansions can be

considered independently. The component ŶS evidently

has no effect on Q̂, but the other nine generate field
redefinitions mixing various Lorentz-violating operators
and acting to remove some of them at leading order. In
what follows, we apply each field redefinition in turn,

determining the changes �Q̂ ¼ Q̂0 � Q̂ and identifying
the resulting effects.

First, consider transformations involving the compo-

nents of X̂. A nonzero X̂S gives

�Ŝ ¼ �2mc X̂S; �V̂
� ¼ 2X̂Sp

�; (16)

showing that for mc � 0 the scalar operator Ŝ can be

removed by absorbing it into the vector V̂
�
. Using X̂P

instead produces

�P̂ ¼ �2mc X̂P; (17)

which reveals that the pseudoscalar operator P̂ can also be

removed. A nonzero X̂�
V gives

�Ŝ ¼ 2p�X̂
�
V ; �V̂

� ¼ �2mc X̂
�
V ; (18)

which reconfirms that the scalar and vector operators mix

under field redefinitions. Using X̂�
A yields

�Â� ¼�2mc X̂
�
A ; �T̂

�� ¼�2���
�p
X̂A�; (19)

so the pseudovector operators Â�
can be absorbed into the

tensor ones. Finally, a nonzero X̂
��
T gives

�Â� ¼����
�p�X̂T
�; �T̂
�� ¼�2mc X̂

��
T ; (20)

again showing that the pseudovector and tensor operators
mix.

Next, we turn to transformations involving the compo-

nents of Ŷ. Taking nonzero ŶS has no effect, as mentioned

above. Using ŶP gives

�Â� ¼ 2p�ŶP; (21)

which permits the removal of the component of Â�

proportional to p�. A nonzero Ŷ
�
V gives

�T̂
�� ¼ 2p½�Ŷ��

V : (22)

In the minimal sector, this can be used to remove the

trace component of gð4Þ��
. More generally, the
coefficients appearing in the expansion of the dual
~̂
T

�� ¼ 1
2 �

��
�T̂ 
� can be split into pieces that transform

under two different representations of the Lorentz group,
with one set antisymmetric in the first three indices and the
other antisymmetric in the first two indices with vanishing
antisymmetrization on any three indices. The above field

redefinition with Ŷ
�
V can be used to remove the first piece.

Taking instead a nonzero Ŷ
�
A � 0 gives

�P̂ ¼ �2p�Y
�
A ; (23)

which reconfirms that the pseudoscalar operator P̂ can be

removed. Finally, using Ŷ
��
T leads to

�V̂
� ¼ 2Ŷ��

T p�: (24)

In this case, the coefficients appearing in the expansion of

V̂
�
can be split into a piece that is totally symmetric and

one with mixed symmetry that is antisymmetric in the first

two indices. The field redefinition with Ŷ
��
T allows the

removal of the piece with mixed symmetry.
We thus see that the physical observables in the quadratic

fermion theory (1) are restricted to pieces of V̂
�
and T̂

��
.

The relationships (7) show these observables correspond to

parts of â�, ĉ�, ĝ��, and Ĥ��. This feature parallels results
for the neutrino sector, where the propagation of neutrinos
is controlled by four effective coefficients of these types
despite themultiple flavors, the mixing, and the handedness
of the fermions [16]. It also reduces correctly to known
results in the minimal SME [7,8].
Using the field redefinitions, we can define a canonical

set of effective operators representing physical observables
in the quadratic theory (1),

Ŝeff ¼ 0; P̂ eff ¼ 0; Â�
eff ¼ 0;

V̂
�
eff ¼

�
V̂

� þ 1

mc

p�Ŝ
�
½0�
;

~̂
T

��

eff ¼
�
~̂
T

�� þ 1

mc

p½�Â��
�
½2�
;

(25)

where the subscript [n] indicates that the coefficients ap-
pearing in the operator expansion are restricted to an irre-
ducible representation antisymmetric in the first n indices.
The relationships (7) imply the corresponding definitions

â�eff¼
�
â�� 1

mc

p�ê

�
½0�
¼X

d

aðdÞ��1...�d�3

eff p�1
...p�d�3

;

ĉ�eff¼
�
ĉ�� 1

mc

p�m̂

�
½0�
¼X

d

cðdÞ��1...�d�3

eff p�1
...p�d�3

;

~̂g
��
eff ¼

�
~̂g��� 1

mc

p½�b̂��
�
½2�
¼X

d

~g
ðdÞ���1...�d�3

eff p�1
...p�d�3

;

~̂H
��
eff ¼

�
~̂H
��� 1

mc

p½�d̂��
�
½2�

¼X
d

~HðdÞ���1...�d�3

eff p�1
...p�d�3

: (26)
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Note that the analysis of field redefinitions naturally

leads to expansions of the duals ~̂g��
eff ,

~̂H
��
eff rather than the

tensor operators ĝ
��
eff , Ĥ

��
eff directly.

In terms of the fundamental coefficients, the effective
coefficients are

a
ðdÞ��1...�d�3

eff ¼
�
aðdÞ��1...�d�3� 1

mc

���1eðd�1Þ�2...�d�3

�
½0�;

c
ðdÞ��1...�d�3

eff ¼
�
cðdÞ��1...�d�3 � 1

mc

���1mðd�1Þ�2...�d�3

�
½0�;

~g
ðdÞ���1...�d�3

eff ¼
�
~gðdÞ���1...�d�3

� 1

mc

��1½�bðd�1Þ���2...�d�3

�
½2�;

~H
ðdÞ���1...�d�3

eff ¼
�
~HðdÞ���1...�d�3

� 1

mc

��1½�dðd�1Þ���2...�d�3

�
½2�: (27)

In these equations, the dual coefficients are defined by

~gðdÞ���1...�d�3 ¼ 1

2
���


�g
ðdÞ
��1...�d�3 ;

~HðdÞ���1...�d�3 ¼ 1

2
���


�H
ðdÞ
��1...�d�3 :

(28)

Also, the subscript [0] indicates symmetrization on all
indices, while [2] indicates symmetrization on
��1 . . .�d�3 followed by antisymmetrization on ��.

The above results demonstrate, for example, that

leading-order signals from b̂� can be absorbed into those

from ~̂g��, while signals from d̂� merge with those of ~̂H
��
.

As an illustration, the d ¼ 4 terms in d̂� can be absorbed

into the d ¼ 5 terms in ~̂H
��
, giving rise to effective coef-

ficients ~Hð5Þ��1�2�3

eff . This example also reveals the poten-

tially surprising result that an operator naively having
renormalizable dimension and hence lying in the minimal
SMEmay in fact most naturally be regarded as belonging to
the nonminimal sector and having nonrenormalizable di-
mension. Note also that the Cartesian coefficients

m
ðdÞ�1...�d�3

5 and fðdÞ�1...�d�3 have no observable role. This

is consistent with known results for the minimal case
[8,39,40]. Moreover, additional field redefinitions or coor-
dinate choices can further reduce the number of observable
effects. For example, the phase redefinition (9) shows that

the effective coefficient a
ð3Þ�
eff is unobservable. All the ef-

fective operators, their Cartesian effective coefficients, and
some of their properties are compiled in Table II.
A few of the effective coefficients correspond to

Lorentz-invariant operators in the theory (1). They must
be formed from combinations of products of the Lorentz-
invariant tensors ��� and ���
� multiplied by constant

scalars. The coefficients aðdÞ��1...�d�3

eff and ~gðdÞ���1...�d�3

eff

both have an odd number of indices, so they all produce
Lorentz-violating effects. Inspection reveals that the sym-

metries of the coefficients ~HðdÞ���1...�d�3

eff preclude con-

structing them in terms of invariant tensors as well. The
only option for generating Lorentz-invariant operators is

therefore to use the coefficients cðdÞ��1...�d�3

eff constructed as

completely symmetrized products of the metric,

c
ðdÞ��1...�d�3

eff;LI ¼ 1

ðd�2Þ!c
ðdÞ
LI �

ð��1��2�3 . . .��d�4�d�3Þ: (29)

This reveals that there is exactly one Lorentz-invariant
effective operator at each even dimension d ¼ 4; 6; . . . .
No Lorentz-invariant effective operators exist for odd d.
The addition of interactions or the presence of a non-

Minkowski background typically changes the set of physi-
cal observables by affecting the implementation of field
redefinitions. For generality in what follows, we therefore
present calculations and results with all coefficients explic-
itly included. However, expressions relevant for physical
measurements can be expected to yield only observable
quantities. For example, the effective coefficients appear-
ing in the Hamiltonian derived in Sec. III below are com-
patible with this structure of observables.

C. Exact vacuum dispersion relation

The action (1) leads to the modified Dirac equation

ðp � ��mc þ Q̂Þc ¼ 0; (30)

where Q̂ can be viewed as the expression (2). Formally, the
exact dispersion relation for plane-wave solutions in
the vacuum is found by requiring that the determinant of
the modified Dirac operator vanishes,

det ðp � ��mc þ Q̂Þ ¼ 0: (31)

This condition determines the propagation of spinor wave
packets in the presence of Lorentz-violating operators of
arbitrary dimension.

TABLE II. Effective operators and effective coefficients for a Dirac fermion.

Operator Type d CPT Cartesian coefficients Number

â
�
eff Vector Odd, � 3 Odd a

ðdÞ��1...�d�3

eff ðdþ 1Þdðd� 1Þ=6
ĉ
�
eff Vector Even, � 4 Even c

ðdÞ��1...�d�3

eff ðdþ 1Þdðd� 1Þ=6
~̂g
��
eff Tensor Even, � 4 Odd ~g

ðdÞ���1...�d�3

eff ðdþ 1Þdðd� 2Þ=2
~̂H
��
eff Tensor Odd, � 3 Even ~HðdÞ���1...�d�3

eff ðdþ 1Þdðd� 2Þ=2
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An explicit form for the dispersion relation (31) can
be obtained by direct calculation. One method proceeds
by adopting a chiral representation of the Dirac matrices
and breaking the modified Dirac operator into 2� 2 blocks
A, B, C, D,

p � ��mc þ Q̂ ¼ A B

C D

 !
: (32)

It is convenient to introduce the notation �� ¼ ð�0; �jÞ,
where �0 is the 2� 2 identity matrix and �j are the usual
three Pauli matrices. The adjoint matrices are �� ¼
ð�0;��jÞ, and they satisfy the basic identity

����� ¼ ��� þ i

2
����	 ��

k�	: (33)

The block decomposition can then be written

A B

C D

 !
¼ Ŝ� þ i

2 T̂
��
� �� ��� V̂

�
���

V̂
�
þ ��� Ŝþ þ i

2 T̂
��
þ �����

0
@

1
A;

(34)

where

Ŝ	 ¼ �mc þ Ŝ 	 iP̂ ; V̂
�
	 ¼ p� þ V̂

� 	 Â�;

T̂
��
	 ¼ 1

2
ðT̂ �� 	 i

~̂
T

��Þ: (35)

Here,
~̂
T

��
is the dual of T̂

��
. Note that T̂

��
	 ¼ 	i

~̂
T

��

	
are the two chiral components of the tensor operator T̂

��
.

The determinant (31) can be obtained from the block
form (32) using the identity

det
A B

C D

 !
¼ det ðADÞ þ det ðBCÞ � trð �BA �CDÞ; (36)

where �B ¼ adjðBÞ and �C ¼ adjðCÞ are matrix adjoints.
This quantity can be directly evaluated using the basic
result (33) and the subsidiary identities

tr ð ����� ��k�	Þ ¼ 2����	;

trð ����� ��k�	 ��
��Þ ¼ 2����
���	
�;

����	T
��� ¼ 4T��	; ����	T

�	þ ¼ �4Tþ��;

(37)

where ����	 is defined by

����	 ¼ �����	 � �����	 þ ��	��� � i����	: (38)

The calculation outlined above yields an explicit form
for the exact dispersion relation (31) of the modified Dirac
operator. We find

ðŜ2
� � T̂

2
�ÞðŜ2

þ � T̂
2
þÞ þ V̂

2
�V̂

2
þ

� 2V̂� � ðŜ� þ 2iT̂ �Þ � ðŜþ � 2iT̂ þÞ � V̂þ ¼ 0;

(39)

where T̂
2
	 ¼ T̂

��
	 T̂ 	��. This compact expression holds

for a Dirac field experiencing Lorentz violation involving
operators of arbitrary mass dimension. It reduces correctly
to the well-known result for the renormalizable theory [25]
and its nonrelativistic limit [23]. In terms of the effective
operators (25), we obtain

0 ¼ ðpþ V̂ effÞ4 þ ðm2
c � T̂

2
eff�Þðm2

c � T̂
2
effþÞ

� 2ðpþ V̂ effÞ � ðmc � 2iT̂ eff�Þ
� ðmc þ 2iT̂ effþÞ � ðpþ V̂ effÞ; (40)

where T̂
��
eff	 ¼ 1

2 ðT̂
��
eff 	 i

~̂
T

��

eff Þ.
The superficially quartic nature of the dispersion relation

(39) reflects the usual presence of the four independent
Dirac spinors, representing two spin projections for each of
the particle and antiparticle modes. However, viewed as a
function of p�, the dispersion relation (39) represents an

algebraic variety Rðp�Þ of arbitrarily high order rather

than the usual Dirac quartic. When the coefficients for
Lorentz violation are small, four roots ofR appear as small
corrections to the four roots of the usual Dirac equation,
while the remaining roots represent high-frequency modes
that are physically uninteresting. This behavior is analo-
gous to that found for the exact covariant dispersion relation
for photons in the presence of Lorentz-violating operators
of arbitrary dimension, which is given as Eq. (30) of
Ref. [30]. We remark in passing that the explicit dispersion
relation (39) can be expected to have an interpretation in
terms of the geodesic motion of a classical particle in a
Finsler spacetime, paralleling the existing treatment of the
renormalizable case [24,40].

D. Properties

For many practical purposes, and to gain insight about
the physical content of the exact result (39), it is useful
to consider the approximate dispersion relation valid at
leading order in Lorentz violation. Since Lorentz violation

is expected to be small, Q̂ can be taken as a perturbation
on the conventional Dirac operator p � ��mc . The dis-

persion relation can therefore be expanded in the small

operators Ŝ, P̂ , V̂
�
, Â�

, T̂
��
.

At leading order, this expansion yields the approximate
dispersion relation

p2 �m2
c � 2ð�mc Ŝ � p � V̂ 	�Þ; (41)

where

�2 ¼ðp �ÂÞ2�m2
cÂ

2�2mcp � ~̂T �Âþp � ~̂T � ~̂T �p
¼p � ~̂T eff � ~̂T eff �p: (42)

Solving for the energy E gives
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E�E0�
mc Ŝþp �V̂

E0

	 �

E0

¼E0�p �V̂ eff

E0

	 �

E0

; (43)

where E0
2 ¼ m2

c þ p2. The results in this section are valid

for E0 of either sign, but in subsequent sections we take

E0 > 0. Note that the terms V̂ , Ŝ, and � depend on the
4-momentum, which at the relevant order in Lorentz vio-
lation can be taken as p� � ðE0;pÞ on the right-hand side
of this equation.

The two sign choices for E0 correspond to particle and
antiparticle modes, so in the presence of nonzero Lorentz
violation the dispersion relation (43) can have four non-
degenerate solutions for each p. The usual spin degeneracy
of a free Dirac fermion is broken when� is nonzero, which
requires pseudovector or tensor operators for Lorentz vio-
lation. In contrast, the scalar and vector operators for
Lorentz violation can shift the energy but preserve the
spin degeneracy. The degeneracy between particles and
antiparticles is broken when any of these operators have
nonzero CPT-odd components. Note, however, that the
pseudoscalar operator plays no role in the leading-order
dispersion relation.

The dispersion relation (43) describes various kinds of
deviations from the conventional Lorentz-covariant behav-
ior of a massive fermion. Many are analogous to effects
appearing in the nonminimal photon sector of the SME
[30,41]. Among them are anisotropy, dispersion, and
birefringence.

Anisotropy is a consequence of violation of rotation
invariance, which implies the properties of the fermion
depend on the momentum orientation p̂. For example,
the group velocity vg ¼ @E=@p becomes a direction-

dependent quantity. We emphasize that in practice anisot-
ropy is always present in models with physical Lorentz
violation, even ones formulated as being rotation invariant
in a particular frame, because boosts induce rotations. For
example, any laboratory frame is instantaneously boosted
by the Earth’s rotation and revolution about the Sun, and
these boosts necessarily introduce anisotropy.

When a dispersion relation is nonlinear, component
waves in a packet travel at different phase velocities vp ¼
p=E. This dispersion is a familiar feature for a conventional
massive fermion, and most Lorentz-violating operators are
dispersive. Indeed, the only nondispersive terms in the
Lagrange density (1) are those with a single derivative.
However, certain dispersive terms are unobservable at lead-
ing order in Lorentz violation. For example, the dispersive

operators contained in the pseudoscalar P̂ play no role in
the dispersion relation (43). Also, the restrictionE � E0 on
the right-hand side of this equation implies that some dis-

persive operators in V̂ , Ŝ, and� produce effects in vacuum
propagation that are unobservable at leading order.
Changing the boundary conditions or introducing amedium
leaves unaffected the basic dispersive nature of an operator,

which is associated with its derivative structure. However,
the corresponding change in the physics can trigger disper-
sion controlled by coefficients for Lorentz violation that at
leading order are unobservable in the vacuum case. This is
analogous to the situation for photon propagation [30].
In the presence of Lorentz violation, the fermion spin

projections can mix during propagation because spin may
no longer be conserved. Following the terminology for the
analogous mixing of photon spins in Lorentz-violating elec-
trodynamics, we refer to this spin mixing as fermion bire-
fringence. It occurs whenever a particular solution to the
dispersion relation is associated with only one low-energy
mode instead of the usual two degenerate spin modes. The
dispersion relation (43) holds for plane-wave solutions
obeying the usual boundary conditions for vacuum propa-
gation, and its form implies that fermion birefringence
occurs whenever the combination � of coefficients given
in Eq. (42) is nonzero. Note, however, that other situations
such as a fermion trapped in a spherical container can
involve different boundary conditions and hence can lead
to spin-mixing effects controlled by different combinations
of coefficients. Also, the presence of a medium such as
matter or a background electromagnetic field can be ex-
pected tomodify the combination of coefficients controlling
fermion birefringence, which again parallels the situation
for Lorentz-violating effects in photon propagation [30].

E. Spinors

A basic feature of the conventional Dirac equation is that
the four linearly independent eigenspinors can be written
using covariant projection operators as

u	ðp; nÞ ¼ P	�þc ; v	ðp; nÞ ¼ P
��c ; (44)

where the projection operators �	 select positive- and
negative-energy states, while

P	 ¼ 1

2
ð1	 �5n � �Þ (45)

project the spin along a polarization vector n� satisfying
n2 ¼ �1 and n � p ¼ 0 but otherwise having arbitrary
orientation. The freedom in the choice of the unit spacelike
transverse vector n� reflects the spin degeneracy of the
eigenspinors. However, in the presence of perturbative
Lorentz violation, the breaking of spin degeneracy for
� � 0 implies that each solution to the dispersion relation
becomes an eigenmode having a definite spin polarization.
The polarization projection operators P	 must therefore
involve a vector n� with a definite orientation. Next, we
obtain an approximation representation of n�.
The birefringent term involving 	� can be isolated

from the modified Dirac equation at leading order in
Lorentz violation by acting on the left with the operator

ðpþ V̂ Þ � �þ ðmc � ŜÞ. Using both the modified Dirac

equation and the result (41) in the form ½ðpþ V̂ Þ2 �
ðmc � ŜÞ2�2 � 4�2 permits the elimination of terms at
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second order in Lorentz-violating operators. This generates
the equation

½	�� �5ðp � Â�mcÂ � �� p � ~̂
T � �Þ�c � 0;

(46)

which for � � 0 motivates the definition

P	 � 1

2

�
1	 �5ðp � Â�mcÂ � �� p � ~̂

T � �Þ
�

�
:

(47)

A short calculation reveals that

½�5ðp � Â�mcÂ � �� p � ~̂
T � �Þ�2 ¼ �2; (48)

ensuring that P	 are indeed orthogonal projection
operators.

To express the projectors (47) in the form (45), we use
mc c � p � �c and thereby identify the spacelike vector

n� as

n� � p � Âp� �m2
cÂ

� þmc
~̂
T

��
p�

mc�
� 1

�
N�; (49)

which satisfies n2 ¼ �1 and n � p � 0, as required. The
spacelike vector

N� ¼
�
~̂
T

�� þ 1

mc

p½�Â��
�
p� ¼ ~̂

T
��

eff p�c (50)

obeying N2 ¼ ��2 and N � p � 0 is introduced for nota-
tional convenience in what follows. The expression for n�,
which is at zeroth order in Lorentz violation, fixes the
dominant polarization required for a solution to approxi-
mate the exact eigenspinor. Note that if � ¼ 0 the deriva-
tion breaks down, but the spin degeneracy is then restored,
and so n� can be approximated as a unit spacelike trans-
verse vector, as usual. Note also that the subscripts on
the projections P	 correspond to the signs in the modified
dispersion relation (43), so polarizing a fermion along
n� increases the energy while the opposite polarization
decreases it.

III. HAMILTONIAN

The construction of the exact Hamiltonian associated
with the full theory (1) is complicated by the higher-order
time derivatives that appear. For most practical applications,
however, it suffices to obtain an effective Hamiltonian
that describes correctly the behavior at leading order in
Lorentz violation.We present here a perturbative derivation
of the Hamiltonian via a generalization of the standard
approach, and we extract the relativistic combinations of
coefficients that it contains.

A. Construction

The goal of the standard approach to constructing the
Hamiltonian is to find a unitary transformation U ¼ UðpÞ
converting the modified Dirac equation (30) to the form

U�0ðp ���mc þQ̂ÞUyUc ¼ðE�HÞUc ¼0; (51)

where E � p0 and the 4� 4 relativistic Hamiltonian H is
block diagonal or ‘‘even’’ with vanishing 2� 2 off-
diagonal ‘‘odd’’ blocks. This decouples the positive and
negative energy states, and the diagonal blocks give the
2� 2 relativistic Hamiltonians describing particles and
antiparticles. We adopt the chiral representation, in which
the matrices �� are block off diagonal, so we seek U such
that Eq. (51) involves only an even number of �� matrices.
Since the Lorentz violation is perturbative, it is useful to
write

H ¼ H0 þ �H; (52)

where H0 ¼ �0ðp � �þmc Þ is the usual 4� 4 Dirac

Hamiltonian for the Lorentz-invariant case and �H con-
tains the Lorentz-violating modifications.

Consider first the usual Lorentz-invariant case with Q̂¼0
and �H ¼ 0. An appropriate transformation U ¼ VW ¼
WV is the product of the two commuting transformations

V ¼ 1þ �0�5ffiffiffi
2

p ; WðpÞ ¼ E0 þmc þ p � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ðE0 þmc Þ

q ; (53)

with E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

c

q
> 0. Direct calculation shows that

this transformation gives the expected block-diagonal
Hamiltonian

H0 ¼ ��5E0 ¼
E0 0

0 �E0

 !
: (54)

The upper 2� 2 block describes positive-energy particles
with Hamiltonian h0 ¼ E0, while after the usual reinter-
pretation, the lower negative-energy block gives the
Hamiltonian �h0 ¼ E0 for positive-energy antiparticles.

In the Lorentz-violating case, if Q̂ is nonzero but con-

tains only the operators Ŝ and V̂
�
, then the same proce-

dure can be used to perform the block diagonalization.

It suffices to replace p� with p� þ V̂� and mc with

mc � Ŝ in the transformation (53). In contrast, the general

case involving also nonzero P̂ , Â�
, and T̂

��
is challeng-

ing. However, a perturbative treatment can be adopted to
implement the block diagonalization at leading order in
Lorentz violation.
To zeroth order, the transformation U is given by the

product VW. So, we start by applying this,

VW�0ðp � ��mc þ Q̂ÞWyVy

¼ Eþ �5E0 þ VW�0Q̂WyVy: (55)
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The Lorentz-invariant terms are block diagonal, but the last
term contains both even and odd parts. The even part of any
matrix M can be extracted by applying the even matrix �5

to give Meven ¼ ðMþ �5M�5Þ=2. To remove the odd part
at first order in Lorentz violation, we can therefore modify
U by an additional small transformation,

U ¼
�
1þ 1

4E0

½�5; VW�0Q̂WyVy�
�
VW: (56)

This gives

U�0ðp � ��mc þ Q̂ÞUy

¼ Eþ �5E0 þ ðVW�0Q̂WyVyÞeven (57)

at first order in Lorentz violation. We can now identify
the leading-order block-diagonal Lorentz-violating
Hamiltonian as

�H ¼ �ðVW�0Q̂WyVyÞeven: (58)

Substituting for Q̂ using Eq. (2) and performing some
explicit calculations, we obtain the result

�H ¼ 1

E0

½mc Ŝ�5 � E0V̂
0 � V̂

j
pj�5 þ Â0pj�j�0

þmcÂ
j�j�0�5 þ Âjpjpk�k�0�5=ðE0 þmc Þ

þ ipjT̂
0k
�j�k þ iT̂

0j
pj � E0

~̂
T

0j
�j�0

þ ~̂
T

0j
pjpk�k�0=ðE0 þmc Þ�: (59)

The upper 2� 2 block of this operator represents the
leading-order perturbation �h to the positive-energy
Hamiltonian for particles,

�h ¼ �þ� � �
E0

; (60)

where

� ¼ �mc Ŝ � E0V̂
0 þ pjV̂

j ¼ �p�V̂
�
eff (61)

and the spin dependence is controlled by

�j ¼ Â0pj �mcÂ
j � Âkpkpj=ðE0 þmc Þ

� E0

~̂
T

0j � ~̂
T

jk
pk þ ~̂

T
0k
pkpj=ðE0 þmc Þ

¼ �E0

~̂
T

0j

eff � ~̂
T

jk

effp
k þ ~̂

T
0k

effp
kpj=ðE0 þmc Þ: (62)

These results reduce to those established in Ref. [23]
for operators of minimal dimension d ¼ 3 and d ¼ 4, as
expected. We emphasize that the 2� 2 Hamiltonian

h ¼ h0 þ �h (63)

is fully relativistic.
After reinterpretation, the lower 2� 2 block of Eq. (59)

gives the change � �h to the positive-energy Hamiltonian for
antiparticles,

� �h ¼
��þ� � ��

E0

; (64)

where

�� ¼ �mc Ŝ þ E0V̂
0 þ pjV̂

j
(65)

and

��j ¼ Â0pj þmcÂ
j þ Âkpkpj=ðE0 þmc Þ

� E0

~̂
T

0j þ ~̂
T

jk
pk þ ~̂

T
0k
pkpj=ðE0 þmc Þ: (66)

Note that in the Lorentz-violating terms, we can take
p0�E0 for particles andp0��E0 for antiparticles because
corrections to these approximations contribute only at
second order. Since the physical antiparticle 3-momentum
is �p, the corresponding physical 4-momentum can be
taken to be �p�. This implies that the antiparticle

Hamiltonian

�h ¼ �h0 þ � �h (67)

can be obtained from h by changing the sign of all
coefficients for CPT-odd operators, as expected.
The Lorentz-violating portion of the transformation (56)

can be expressed in an alternative form by commuting VW
through to the right. This gives

U ¼ VW

�
1� 1

4E2
0

½H0; �0Q̂�
�
: (68)

We then find

U�0ðp � ��mc þ Q̂ÞUy

¼ VWðE�H0 þ�þ�0Q̂�þ þ���0Q̂��ÞWyVy;

(69)

where �	 ¼ ð1	H0=E0Þ=2 are the usual projection op-
erators for energy. This equation reveals that the net effect
of the Lorentz-violating part ofU is to remove the portions

of Q̂ mixing the usual particle and antiparticle states.

B. Coefficients

The explicit nature of the terms (61) and (62) in
the perturbation Hamiltonian �h obscures the relativistic
combinations of coefficients from which they are formed.
A more elegant form for �h that displays these combina-
tions can be obtained using the relativistic polarization
vector N� defined in Eq. (49).
The spin vector �j is related to N� by

�j ¼ Nj � N0pj

E0 þmc

¼ Nj � Nkpkpj

E0ðE0 þmc Þ
¼ Nj

? þmc

E0

Nj
k; (70)

where N? and Nk are the components of N perpendicular

and parallel to p, respectively. Note that both N? and
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mcNk remain finite even in the massless limit. The mag-

nitude of the spin vector is j�j ¼ �, so the spin-dependent
energy shifts are �=E0 for spin along � and ��=E0 for
spin opposite �, as expected.

To gain further insight, consider a massive particle in its
rest frame with N0 ¼ 0 and N2 ¼ �2, and introduce the
rest-frame polarization unit vector N0. Boosting to an
arbitrary frame then gives

N0 ¼ jpj
mc

jN0
kj; N ¼ N0

? þ E0

mc

N0
k; (71)

where N0
k and N0

? are the projections of N0 parallel and
perpendicular to p, respectively. Comparing to Eq. (70)
reveals that � is the rest-frame N vector,

� ¼ N0: (72)

Note that N0 depends on p� because the required boost

varies with p�.

The above considerations permit us to write � � � as

� � � ¼ �N���; (73)

where

�0 ¼ p � �
mc

; �j ¼ �j þ pj�0

E0 þmc

: (74)

The perturbation Hamiltonian (60) therefore takes the form

�h ¼ �� N���
E0

; (75)

showing that the spin-dependent Lorentz violation is fixed
by the relativistic polarization vector N� given in Eq. (49).

We can now expand � and N� in powers of momentum
p� to extract the effective coefficients for Lorentz viola-
tion that appear in the Hamiltonian. In practice, it is
convenient to split � and N� into CPT-odd and
CPT-even pieces for this purpose.

Expanding � yields

� ¼ X
d

�ðdÞ�1...�d�2p�1
. . .p�d�2

; (76)

where even and odd d are associated with CPT-even and
CPT-odd Lorentz violations, respectively, and the coeffi-

cients �ðdÞ�1...�d�2 have mass dimension 4� d. Separating
the CPT-even and CPT-odd parts and substituting the
definitions (26) into the expression (76) gives

�odd � â�effp� ¼ X
d

aðdÞ�1...�d�2

eff p�1
. . .p�d�2

;

�even � �ĉ
�
effp� ¼ �X

d

c
ðdÞ�1...�d�2

eff p�1
. . .p�d�2

;

(77)

where the effective coefficients are given in terms of
fundamental coefficients by Eq. (27).

Similarly, expanding N� yields

N� ¼ X
d

NðdÞ��1...�d�2p�1
. . .p�d�2

; (78)

where now even and odd d are associated with CPT-odd
and CPT-even Lorentz violations, respectively, with the

coefficients NðdÞ��1...�d�2 having mass dimension 4� d.
Note that constant N� is forbidden by the restriction
p � N ¼ 0. Separating the CPT-even and CPT-odd parts
and combining the definitions (26) and the result (50) gives

N�
odd � ~̂g��

eff p� ¼
X
d

~gðdÞ��1...�d�2

eff p�1
. . .p�d�2

;

N
�
even �� ~̂H

��
eff p� ¼�X

d

~H
ðdÞ��1...�d�2

eff p�1
. . .p�d�2

;
(79)

where again the effective coefficients are given in terms of
fundamental coefficients by Eq. (27).
The above analysis reveals that the perturbative

Hamiltonian �h in Eq. (60) can conveniently be split into
four pieces according to

�h ¼ ha þ hc þ hg þ hH;

¼ 1

E0

ðâ�eff � ĉ�eff � ~̂g
��
eff �� þ ~̂H

��
eff ��Þp�; (80)

where the explicit expansions for â�eff , ĉ�eff ,
~̂g��
eff , and

~̂H
��
eff are given by Eqs. (77) and (79). Each of

the four component Hamiltonians is uniquely specified
by spin and CPT properties: the spin-independent terms
ha and hc are CPT odd and CPT even, respectively, as are
the spin-dependent terms hg and hH. Note that the structure

of the results obtained above is compatible with the dis-
cussion in Sec. II B concerning field redefinitions and
physical observables.

IV. SPHERICAL DECOMPOSITION

The complexity of the two-component perturbative
Hamiltonian (80) and the appearance of coefficients with
numerous indices make a general analysis of physical im-
plications unwieldy for arbitrary d. Some of the difficulties
can be alleviated by performing a spherical-harmonic de-
composition of the Hamiltonian. For example, a typical
experimental application involves a transformation from a
noninertial laboratory frame to the canonical Sun-centered
inertial frame [6,37,42], which is generically dominated by
rotations and is therefore simpler in spherical basis. For
each d, the spherical-harmonic decomposition yields a set
of coefficients equivalent to those introduced in Sec. II A
but having comparatively simple rotation properties. This
permits a systematic classification of the coefficients affect-
ing the dynamics and is also advantageous because rotation
violations are a key signature of Lorentz violation.

FERMIONS WITH LORENTZ-VIOLATING OPERATORS OF . . . PHYSICAL REVIEW D 88, 096006 (2013)

096006-11



A. Basics

Since the Hamiltonian (80) is expressed in momentum
space, the relevant spherical coordinates also lie in this
space. We can introduce spherical polar angles 
,� via the
unit 3-momentum vector p̂ ¼ p=jpj written in the form
p̂ ¼ ðsin 
 cos�; sin 
 sin�; cos
Þ. Rotation scalars can
then be expanded in terms of the usual spherical harmonics

0Yjmðp̂Þ � Yjmð
;�Þ. However, the expansion of rotation

tensors requires some form of generalized spherical har-
monics. We adopt here the spin-weighted spherical har-
monics sYjmðp̂Þ � sYjmð
;�Þ, which permit the spherical

decomposition of tensors in the helicity basis. The spin
weight s of an irreducible tensor is defined as the negative
of its helicity and is limited by jsj � j. A summary of
properties of the spin-weighted spherical harmonics is
given in Appendix A of Ref. [30].

In the perturbative Hamiltonian (80), ha and hc trans-
form as scalars under rotations, while hg and hH are spin

dependent through the quantity � � � ¼ �N��� and so

have nontrivial rotation properties. To perform the expan-
sion in spin-weighted spherical harmonics, we therefore
require the decomposition of � � � in the helicity basis.
The helicity basis vectors are defined as �̂r ¼ �̂r ¼ p̂

and �̂	 ¼ �̂
 ¼ ð�̂ 	 i�̂Þ= ffiffiffi
2

p
, where �̂ and �̂ are the

usual unit vectors associated with the polar angle 
 and
azimuthal angle �. The helicity decomposition is

� � � ¼ �w�
w ¼ �w�w ¼ ���� þ �r�r þ �þ�þ;

(81)

where the repeated index w is summed over w ¼ þ, r, �,
and �w ¼ �̂w � �, �w ¼ �̂w � �. The component �r ¼
�̂r � � is a rotational scalar with spin weight zero and can
therefore be expanded in the usual spherical harmonics

0Yjmðp̂Þ. The components �	 ¼ �̂	 � � have spin weight

s ¼ 	1 and can be expanded in the harmonics 	1Yjmðp̂Þ,
while the components �	 ¼ �̂	 � � ¼ �
 have helicity
	1. The Pauli matrices in the helicity basis are

�r ¼ �r ¼ cos 
 sin
e�i�

sin 
ei� � cos 


 !
;

�	 ¼ �
 ¼ 1ffiffiffi
2

p � sin 
 ðcos 
	 1Þe�i�

ðcos 

 1Þei� sin 


 !
:

(82)

Up to constants, �r is the helicity operator, and �	 are
helicity ladder operators. To see this, consider the special

frame in which �̂ ¼ x̂, �̂ ¼ ŷ, p̂ ¼ ẑ and so

�r ¼
1 0

0 �1

 !
; �þ ¼ ffiffiffi

2
p 0 1

0 0

 !
; �� ¼ ffiffiffi

2
p 0 0

1 0

 !
:

(83)

This shows that �þ raises the helicity and �� lowers it.
Acting with � � � on a spinor � with components ð�"; �#Þ
having helicities (þ 1=2, �1=2), respectively, gives

� � � �"
�#

 !
¼ �r�" þ

ffiffiffi
2

p
�þ�#

��r�# þ
ffiffiffi
2

p
���"

0
@

1
A: (84)

The first component maintains its positive helicity because
�r�" is the product of objects with helicity 0 and þ1=2,
while �þ�# is the product of objects with helicity þ1 and

�1=2. Similarly, the second component remains an object
of helicity�1=2. We can conclude that �r ¼ �r generates
helicity-dependent effects without changing the helicity,
�þ ¼ �� is associated with a raising of helicity, and
�� ¼ �þ is associated with a lowering of helicity.

B. Decomposition

We can now proceed with the spherical decomposition
of the perturbative Hamiltonian (80). The components ha
and hc are rotational scalars and so can be expanded in the
usual spherical polar coordinates as

ha ¼
X
dnjm

E0
d�3�njpjn0Yjmðp̂ÞaðdÞnjm;

hc ¼ �X
dnjm

E0
d�3�njpjn0Yjmðp̂ÞcðdÞnjm:

(85)

In contrast, the spin-dependent component Hamiltonians
hg and hH transform nontrivially under rotations and must

therefore first be separated into spin-weighted components,

hg ¼ ðhgÞw�w; hH ¼ ðhHÞw�w: (86)

At the end of this subsection, we show that these compo-
nents have expansions

ðhgÞr ¼ �mc

X
dnjm

E0
d�4�njpjn0Yjmðp̂Þðnþ 1ÞgðdÞð0BÞnjm ;

ðhgÞ	 ¼ X
dnjm

E0
d�3�njpjn	1Yjmðp̂Þ

�
2
4	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

2

s
gðdÞð0BÞnjm 	 gðdÞð1BÞnjm þ igðdÞð1EÞnjm

3
5;

ðhHÞr ¼ mc

X
dnjm

E0
d�4�njpjn0Yjmðp̂Þðnþ 1ÞHðdÞð0BÞ

njm ;

ðhHÞ	 ¼ �X
dnjm

E0
d�3�njpjn	1Yjmðp̂Þ

�
2
4	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

2

s
HðdÞð0BÞ

njm 	HðdÞð1BÞ
njm þ iHðdÞð1EÞ

njm

3
5:

(87)

The full perturbative Hamiltonian (80) is therefore given
by the expansion
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�h ¼ ha þ hc þ ðhgÞþ�þ þ ðhgÞr�r þ ðhgÞ���

þ ðhHÞþ�þ þ ðhHÞr�r þ ðhHÞ���; (88)

where the component Hamiltonians are given by Eqs. (85)
and (87).

The properties and index ranges of the eight sets of
spherical coefficients appearing in these expansions are
summarized in Table III. All coefficients have mass di-
mension 4� d. The first column of the table lists the
coefficients. The second column specifies the CPT hand-
edness of the corresponding operators. The third column
gives the behavior of the operators under parity, where
operators with E-type parity acquire a sign ð�1Þj and those
with B-type parity acquire a sign ð�1Þjþ1. The next three
columns list the allowed ranges of d, n, and j, while
the final column provides the number of independent
coefficients appearing for each d.

The coefficients given in the expansions (85) and (87)
and listed in Table III comprise the set of observable quan-
tities at leading order in Lorentz violation. Each set of
coefficients Kjm obeys the complex conjugation relation

K�
jm ¼ ð�1ÞmKjð�mÞ; (89)

which stems from the reality of the underlying tensors in
momentum space and ultimately from theHermiticity of the
Hamiltonian (80) and the theory (1). The coefficients have
comparatively simple properties under rotations, which can
be implemented using the standard Wigner rotation matri-
ces in parallel with the treatments for the photon and
neutrino sectors given in Sec. V of Ref. [30] and Sec. VI
of Ref. [16]. As an example, the relation between coeffi-
cients Klab

jm in a standard laboratory frame with x axis

pointing south and y axis pointing east to coefficients
Kjm in the canonical Sun-centered frame [6,37,42] is

K lab
jm ¼ X

m0
eim

0!
T
dðjÞ
mm0 ð��ÞKjm0 ; (90)

where!
 is the sidereal rotation frequency of the Earth, T

is the sidereal time, the quantities dðjÞ

mm0 are the ‘‘little’’

Wigner matrices given in Eq. (136) of Ref. [30], and � is
the colatitude of the laboratory in the northern hemisphere.
This expression only involves a linear combination mixing
the azimuthal components labeled by m0.
The subset of isotropic coefficients can be identified by

imposing j ¼ m ¼ 0 in the spherical-harmonic expansion
of the Hamiltonian (80). In this limit, the helicity-flipping
pieces of the Hamiltonian vanish. This is because helicity
	1 is incompatible with j ¼ 0 or, equivalently, because the
spin weight is limited by jsj � j. As a result, the perturba-
tive isotropic Hamiltonian takes the form

�h
� ¼ h

�
a þ h

�
c þ ðh� gÞr�r þ ðh�HÞr�r; (91)

where

h
�
a ¼

X
dn

E0
d�3�njpjna� ðdÞn ;

h
�
c ¼�X

dn

E0
d�3�njpjnc� ðdÞn ;

ðh� gÞr ¼�mc

X
dn

E0
d�4�njpjng� ðdÞn ;

ðh�HÞr ¼mc

X
dn

E0
d�4�njpjnH� ðdÞ

n :

(92)

In these expressions, the isotropic coefficients are related
to the spherical coefficients through

a
� ðdÞ
n ¼ 1ffiffiffiffiffiffiffi

4�
p aðdÞn00; c

� ðdÞ
n ¼ 1ffiffiffiffiffiffiffi

4�
p cðdÞn00;

g
� ðdÞ
n ¼ 1ffiffiffiffiffiffiffi

4�
p ðnþ 1ÞgðdÞð0BÞn00 ; H

� ðdÞ
n ¼ 1ffiffiffiffiffiffiffi

4�
p ðnþ 1ÞHðdÞð0BÞ

n00 :

(93)

These relations give equivalent representations for the
spherical coefficients with j ¼ 0 listed in Table III. All

TABLE III. Spherical coefficients for Lorentz violation.

Coefficient CPT Parity type d n j Number

aðdÞnjm Odd E Odd, � 3 0; 1; . . . ; d� 2 n; n� 2; n� 4; . . . � 0 1
6 ðdþ 1Þdðd� 1Þ

cðdÞnjm Even E Even, � 4 0; 1; . . . ; d� 2 n; n� 2; n� 4; . . . � 0 1
6 ðdþ 1Þdðd� 1Þ

gðdÞð0BÞnjm Odd B Even, � 4 0; 1; . . . ; d� 3 nþ 1; n� 1; n� 3; . . . � 0 1
6 ðdþ 1Þdðd� 1Þ � 1

gðdÞð1BÞnjm Odd B Even, � 4 2; 3; . . . ; d� 2 n� 1; n� 3; n� 5; . . . � 1 1
6 ðd� 2Þðd2 � d� 3Þ

gðdÞð1EÞnjm Odd E Even, � 4 1; 2; . . . ; d� 2 n; n� 2; n� 4; . . . � 1 1
6 ðdþ 2Þdðd� 2Þ

HðdÞð0BÞ
njm Even B Odd, � 3 0; 1; . . . ; d� 3 nþ 1; n� 1; n� 3; . . . � 0 1

6 ðdþ 1Þdðd� 1Þ � 1

HðdÞð1BÞ
njm Even B Odd, � 5 2; 3; . . . ; d� 2 n� 1; n� 3; n� 5; . . . � 1 1

6 ðdþ 1Þðd� 1Þðd� 3Þ
HðdÞð1EÞ

njm Even E Odd, � 3 1; 2; . . . ; d� 2 n; n� 2; n� 4; . . . � 1 1
6 ðd� 1Þðd2 þ d� 3Þ

a
� ðdÞ
n Odd Even Odd, � 3 0; 2; 4; . . . ; d� 3 0 1

2 ðd� 1Þ
c
� ðdÞ
n Even Even Even, � 4 0; 2; 4; . . . ; d� 2 0 1

2d

g
� ðdÞ
n Odd Odd Even, � 4 1; 3; 5; . . . ; d� 3 0 1

2 ðd� 2Þ
H
� ðdÞ
n Even Odd Odd, � 5 1; 3; 5; . . . ; d� 4 0 1

2 ðd� 3Þ
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the isotropic coefficients havemass dimension 4� d. Their
index ranges and counting are summarized in Table III.
Note that the result (29) implies exactly one linear

combination of c
� ðdÞ
n at each even d controls a Lorentz-

invariant operator.
To illustrate the connection between the Cartesian and

isotropic coefficients in the context of the Lagrange density
(1), we can consider the explicit form of the effective
isotropic theory for the first few dimensions d ¼ 3, 4, 5,
6. At d ¼ 3 only one term exists,

Q̂ð3Þ
eff ¼ �að3Þ0eff �0 � �a

� ð3Þ
0 �0; (94)

representing an isotropic CPT-violating operator. Note,
however, that the phase redefinition (9) can be used to
show this term has no observable effects, as discussed in
Sec. II B. At d ¼ 4 there are three independent isotropic
terms, given by

Q̂ð4Þ
eff ¼ cð4Þ00eff p0�0 þ 1

3
cð4Þjjeff pk�k þ 1

3
i~gð4Þ0jjeff pk�5�

0k

� c
� ð4Þ
0 p0�0 þ c

� ð4Þ
2 pk�k � ig

� ð4Þ
1 pk�5�

0k: (95)

Since d is even, one combination of the coefficients

c
� ð4Þ
n must be associated with a Lorentz-invariant operator,
and it is

cð4Þ00eff � cð4Þjjeff ¼ c
� ð4Þ
0 � 3c

� ð4Þ
2 : (96)

At d ¼ 5, the theory also contains three independent
isotropic terms,

Q̂ð5Þ
eff ¼ �að5Þ000eff p0p0�0 � 1

3
að5Þ0jjeff ðpkpk�0 þ 2p0pk�kÞ

� 2

3
i ~Hð5Þ0j0j

eff p0pk�5�
0k

� �a
� ð5Þ
0 p0p0�0 � 1

3
a
� ð5Þ
2 ðpkpk�0 þ 2p0pk�kÞ

þ iH
� ð5Þ
1 p0pk�5�

0k; (97)

all of which are Lorentz violating. This is the lowest

dimension d at which the effective coefficientsH
� ðdÞ
n appear.

Finally, at d ¼ 6 there are five isotropic terms,

Q̂ð6Þ
eff ¼ cð6Þ0000eff p0p0p0�0 þ cð6Þ00jjeff ðp0pkpk�0 þ p0p0pk�kÞ þ 1

5
cð6Þjjkkeff plplpn�n þ i~gð6Þ0j00jeff p0p0pk�5�

0k

þ 1

5
i~gð6Þ0jjkkeff plplpn�5�

0n

� c
� ð6Þ
0 p0p0p0�0 þ 1

2
c
� ð6Þ
2 ðp0pkpk�0 þ p0p0pk�kÞ þ c

� ð6Þ
4 plplpn�n � ig

� ð6Þ
1 p0p0pk�5�

0k � ig
� ð6Þ
3 plplpn�5�

0n: (98)

At this dimension another Lorentz-invariant trace appears,
associated with the coefficient combination

cð6Þ0000eff � 2cð6Þ00jjeff þ cð6Þjjkkeff ¼ c
� ð6Þ
0 � c

� ð6Þ
2 þ 5c

� ð6Þ
4 : (99)

More generally, both even dimensions d ¼ 2k and odd
dimensions d ¼ 2kþ 1 have 2k� 1 independent isotropic
terms. For even dimensions one combination is Lorentz
invariant, and the number of independent CPT-even and
CPT-odd Lorentz-violating operators is the same. For odd
dimensions all terms are Lorentz violating, and the
CPT-odd Lorentz-violating operators number one more
than the CPT-even ones.

The remainder of this section derives the results (87).
The reader uninterested in the derivation can proceed
directly to the discussion of dispersion and birefringence
in Sec. VIA.

The coefficients ~gðdÞ���1...�d�3

eff are antisymmetric in

the first two indices and symmetric in the remaining in-

dices, and their appearance in the operator ~̂g
��
eff p� in con-

junction with p� implies that they can be taken to vanish
under antisymmetrization of any three indices. The opera-

tor ~̂g��
eff therefore obeys the Maxwell-like equation

@	 ~̂g��
eff þ @�~̂g�	eff þ @� ~̂g	�eff ¼ 0, which in turn constrains

the coefficients in the spherical expansion.

To understand this constraint, it is useful to define a

pseudovector Ej ¼ ~̂gj0eff and a vector Bj ¼ ��jkl~̂gkleff=2, in
terms of which the constraint equation resembles the
homogeneous Maxwell equations,

r � E þ @0B ¼ 0; r �B ¼ 0: (100)

Prior to imposing these constraint equations, the spherical-
harmonic expansion of the operators Ej and Bj can be
written as

Er ¼
X
dnjm

E0
d�3�njpjnYjmðp̂ÞðEðdÞÞð0BÞnjm ;

E	 ¼ X
dnjm

E0
d�3�njpjn	1Yjmðp̂Þð	ðEðdÞÞð1BÞnjm þ iðEðdÞÞð1EÞnjm Þ;

Br ¼
X
dnjm

E0
d�3�njpjnYjmðp̂ÞðBðdÞÞð0EÞnjm ;

B	 ¼ X
dnjm

E0
d�3�njpjn	1Yjmðp̂Þð	ðBðdÞÞð1EÞnjm þ iðBðdÞÞð1BÞnjm Þ:

(101)

Equation (100) imply interrelations between the six sets
of coefficients in these expansions.
The first equation of Eq. (100) yields two constraints on

E-type coefficients and one on B-type coefficients,
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ðBðdÞÞð0EÞnjm ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jðjþ1Þp
nþ2

ðBðdÞÞð1EÞnjm ;

ðEðdÞÞð1EÞnjm ¼d�2�n

nþ1
ðBðdÞÞð1EÞðn�1Þjm;

ðEðdÞÞð1BÞnjm ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jðjþ1Þp
2ðnþ1Þ ðEðdÞÞð0BÞnjm�d�2�n

nþ1
ðBðdÞÞð1BÞðn�1Þjm:

(102)

The second of Eqs. (100) ensures vanishing divergence of
B but provides no additional constraints. Careful consid-
eration of the index ranges of all the coefficients reveals

that we can choose ðEðdÞÞð0BÞnjm , ðBðdÞÞð1BÞnjm , and ðBðdÞÞð1EÞnjm to

be a set of independent coefficients. Consequently, the
expansions (101) become

Er¼
X
dnjm

E0
d�3�njpjnYjmðp̂ÞðEðdÞÞð0BÞnjm ;

E	¼ X
dnjm

E0
d�3�njpjn	1Yjmðp̂Þ

�
2
4


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jðjþ1Þp
2ðnþ1Þ ðEðdÞÞð0BÞnjm

þd�2�n

nþ1
ð
ðBðdÞÞð1BÞðn�1Þjmþ iðBðdÞÞð1EÞðn�1ÞjmÞ

3
5;

Br¼
X
dnjm

E0
d�3�njpjnYjmðp̂Þð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jðjþ1Þp
nþ2

ðBðdÞÞð1EÞnjm ;

B	¼ X
dnjm

E0
d�3�njpjn	1Yjmðp̂Þ

�
	ðBðdÞÞð1EÞnjm þ iðBðdÞÞð1BÞnjm

�
:

(103)

The helicity-basis components of the Hamiltonian hg
can now be written as

ðhgÞr ¼
mc

E0
2
p̂j ~̂gj�effp� ¼ mc

E0

Er;

ðhgÞ	 ¼ 1

E0

�̂j	~̂g
j�
effp� ¼ 1

E0

ðE0E	 	 ijpjB	Þ:
(104)

We can now choose the convenient match

ðEðdÞÞð0BÞnjm ¼ �ðnþ 1ÞgðdÞð0BÞnjm ;

ðBðdÞÞð1BÞðn�1Þjm ¼ �nþ 1

d� 1
gðdÞð1BÞnjm ;

ðBðdÞÞð1EÞðn�1Þjm ¼ nþ 1

d� 1
gðdÞð1EÞnjm ;

(105)

which gives the first two equations in Eq. (87). The calcu-

lation for the CPT-even operators ~̂H
��
eff is similar to that for

~̂g��
eff , up to an overall sign.

V. LIMITING CASES

For many applications it is appropriate to consider
limiting cases of the Lorentz-violating Hamiltonian (80).
In this section, we consider in turn the nonrelativistic
limit, the ultrarelativistic case, and the restriction to the
minimal SME.

A. Nonrelativistic

The nonrelativistic limit of the Lorentz-violating
Hamiltonian (80) can be obtained directly from the
spherical-harmonic expansions obtained in Sec. IV by
expanding the energy E0 in the usual power series in jpj,

E0 � mc þ jpj2
2mc

� jpj4
8m3

c

þ � � � : (106)

In many common physics applications, this series can be
truncated as desired, but here it entangles contributions
from different dimensions d into any given power n of
the momentum jpjn. Some care is therefore required in
constructing the nonrelativistic limit.
Consider first ha. Substituting the nonrelativistic series

(106) for E0 produces

ha¼
X
njm

jpjn0Yjmðp̂Þ

�
�X

d

md�3�n
c

X
k�n=2

ðd�3�nþ2kÞ=2
k

 !
aðdÞðn�2kÞjm

�
;

(107)

where ( jk ) denotes a binomial coefficient. The summation

over k represents the linear combination of coefficients at
dimension d appearing in the nonrelativistic limit. The sum
over d gives the combination of coefficients of different
dimensions contributing to the momentum dependence
jpjn. The expression (107) can be viewed as an expansion
in the momentum magnitude jpjn and direction p̂ involv-
ing nonrelativistic coefficients consisting of the terms in
parentheses. Each such nonrelativistic coefficient is a su-
perposition of the original spherical coefficients with fixed
values of j and m but summed over d and k. We denote
these nonrelativistic coefficients by aNRnjm, thereby obtain-

ing the nonrelativistic form of ha. The same reduction can
be applied to obtain the nonrelativistic form of all terms in
the Hamiltonian (80).
The result of this procedure is the perturbative nonrela-

tivistic Hamiltonian

�hNR ¼ hNRa þ hNRc þ ðhNRg Þþ�þ þ ðhNRg Þr�r

þ ðhNRg Þ��� þ ðhNRH Þþ�þ þ ðhNRH Þr�r

þ ðhNRH Þ���; (108)

where the spin-independent terms take the form
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hNRa ¼ X
njm

jpjn0Yjmðp̂ÞaNRnjm; hNRc ¼ �X
njm

jpjn0Yjmðp̂ÞcNRnjm; (109)

and the spin-dependent terms are

ðhNRg Þr ¼ �X
njm

jpjn0Yjmðp̂ÞgNRð0BÞnjm ; ðhNRg Þ	 ¼ X
njm

jpjn	1Yjmðp̂Þð	gNRð1BÞnjm þ igNRð1EÞnjm Þ;

ðhNRH Þr ¼
X
njm

jpjn0Yjmðp̂ÞHNRð0BÞ
njm ; ðhNRH Þ	 ¼ �X

njm

jpjn	1Yjmðp̂Þð	HNRð1BÞ
njm þ iHNRð1EÞ

njm Þ:
(110)

The nonrelativistic coefficients are related to the spherical coefficients via

aNRnjm ¼X
d

md�3�n
c

X
k�n=2

ðd� 3� nþ 2kÞ=2
k

 !
aðdÞðn�2kÞjm; (111)

together with an identical equation relating the coefficients cNRnjm to cðdÞnjm, and via

gNRð0BÞnjm ¼ X
d

md�3�n
c

X
k�n=2

ðn� 2kþ 1Þ ðd� 4� nþ 2kÞ=2
k

 !
gðdÞð0BÞðn�2kÞjm;

gNRð1BÞnjm ¼ X
d

md�3�n
c

X
k�n=2

ðd� 3� nþ 2kÞ=2
k

 !24gðdÞð1BÞðn�2kÞjm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

2

s
gðdÞð0BÞðn�2kÞjm

3
5;

gNRð1EÞnjm ¼ X
d

md�3�n
c

X
k�n=2

ðd� 3� nþ 2kÞ=2
k

 !
gðdÞð1EÞðn�2kÞjm;

(112)

together with three identical equations relating the coeffi-

cients HNRð0BÞ
njm to HðdÞð0BÞ

njm , HNRð1BÞ
njm to HðdÞð1BÞ

njm and HðdÞð0BÞ
njm ,

and HNRð1EÞ
njm to HðdÞð1EÞ

njm . In all these expressions, the entan-

glement of coefficients with different dimensions d arising
from the series (106) is manifest. For example, the coeffi-

cients aðdÞ111 contribute to all j ¼ m ¼ 1 terms at order jpjn
for n ¼ 1; 3; 5; . . . . However, for all coefficients the mini-
mum d required to produce anisotropies with a particular j is
jþ 2. This means that probing effects with large j and n

offers sensitivity to Lorentz violation involving large d that
is independent of results from lower values of n.
Some properties of the nonrelativistic coefficients are

summarized in Table IV. The first column lists the coef-
ficients, while the second column shows the allowed values
of n. The third column lists the allowed range of j, while
the last column specifies the number of independent coef-
ficients for each n value. In this column, �n ¼ 1 for even n,
and �n ¼ 0 for odd n. All nonrelativistic coefficients have
mass dimension 1� n.

TABLE IV. Nonrelativistic coefficients for Lorentz violation.

Coefficient n j Number

aNRnjm � 0 n; n� 2; n� 4; . . . � 0 1
2 ðnþ 1Þðnþ 2Þ

cNRnjm � 0 n; n� 2; n� 4; . . . � 0 1
2 ðnþ 1Þðnþ 2Þ

gNRð0BÞnjm � 0 nþ 1; n� 1; n� 3; . . . � 0 1
2 ðnþ 2Þðnþ 3Þ

gNRð1BÞnjm � 0 nþ 1; n� 1; n� 3; . . . � 1 1
2 ðnþ 1þ �nÞðnþ 4� �nÞ

gNRð1EÞnjm � 1 n; n� 2; n� 4; . . . � 1 1
2 ðnþ 1� �nÞðnþ 2þ �nÞ

HNRð0BÞ
njm � 0 nþ 1; n� 1; n� 3; . . . � 0 1

2 ðnþ 2Þðnþ 3Þ
HNRð1BÞ

njm � 0 nþ 1; n� 1; n� 3; . . . � 1 1
2 ðnþ 1þ �nÞðnþ 4� �nÞ

HNRð1EÞ
njm � 1 n; n� 2; n� 4; . . . � 1 1

2 ðnþ 1� �nÞðnþ 2þ �nÞ

a
�NR
n Even, � 0 0 1

c
�NR
n Even, � 0 0 1

g
�NR
n Odd, � 0 0 1

H
� NR

n Odd, � 0 0 1
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In the isotropic limit, the component nonrelativistic
Hamiltonians reduce to

h
�NR
a ¼X

n

jpjna�NRn ; h
�NR
c ¼�X

n

jpjnc�NRn ;

ðh�NRg Þr ¼�X
n

jpjng�NRn ; ðh�NRH Þr ¼
X
n

jpjnH� NR

n :

(113)

The nonrelativistic isotropic coefficients in these expres-
sions are related to the spherical isotropic coefficients by

a
�NR
n ¼ 1ffiffiffiffiffiffiffi

4�
p aNRn00; c

�NR
n ¼ 1ffiffiffiffiffiffiffi

4�
p cNRn00;

g
�NR
n ¼ 1ffiffiffiffiffiffiffi

4�
p gNRð0BÞn00 ; H

� NR

n ¼ 1ffiffiffiffiffiffiffi
4�

p HNRð0BÞ
n00 :

(114)

The nonrelativistic isotropic coefficients have mass
dimension 1� n, and their index and counting properties
are provided in Table IV. None correspond to Lorentz-
invariant operators.

B. Ultrarelativistic

A detailed discussion of the ultrarelativistic limit in
the context of neutrinos is given in Ref. [16]. Here, we
consider the single-fermion ultrarelativistic limit of the
Hamiltonian (80). Expanding E0 gives

E0 � jpj þ m2
c

2jpj �
m4

c

8jpj3 þ � � � : (115)

However, substitution of this full series into the spherical
decomposition of the perturbative Hamiltonian generates
an expansion in powers of jpjd instead of jpjn, and the
result retains the coefficient complexity of the exact ex-
pressions (85) and (87). For example, substitution of the
full series (115) into the term ha produces

ha ¼
X
djm

jpjd�3
0Yjmðp̂Þ

X
nk

ðd�3�nþ2kÞ=2
k

 !
m2k

c a
ðdþ2kÞ
njm ;

(116)

showing that coefficients with arbitrary n contribute at
each d. This situation differs from the nonrelativistic
limit, where substitution of the full analogous series (106)
leads to a simplification of the coefficient structure. We
therefore limit attention here to the dominant term in the
series (115), which yields the perturbation Hamiltonian in
the ultrarelativistic limit to order mc .

To see the effect of taking this ultrarelativistic limit,
consider first ha. For E0 ! jpj the above expression
reduces to

ha �
X
djm

jpjd�3
0Yjmðp̂Þ

�X
n

aðdÞnjm

�
; (117)

which takes the form of an expansion in jpj and p̂ with
ultrarelativistic coefficients consisting of the term in pa-

rentheses. We denote these coefficients by aURðdÞjm . They are

superpositions of spherical coefficients with different val-
ues of n. Repeating this limiting procedure produces the
ultrarelativistic limit of all terms in the Hamiltonian (80).
The resulting perturbative ultrarelativistic Hamiltonian

has the form

�hUR ¼ hURa þ hURc þ ðhURg Þþ�þ þ ðhURg Þr�r

þ ðhURg Þ��� þ ðhURH Þþ�þ þ ðhURH Þr�r

þ ðhURH Þ���; (118)

where the spin-independent terms are

hURa ¼ X
djm

jpjd�3
0Yjmðp̂ÞaURðdÞjm ; (119)

hURc ¼ �X
djm

jpjd�3
0Yjmðp̂ÞcURðdÞjm (120)

and the spin-dependent terms are

ðhURg Þr ¼�mc

X
djm

jpjd�4
0Yjmðp̂Þ

2
4gURðdÞð0BÞjm þ

ffiffiffiffiffiffiffiffiffiffiffi
2j

jþ1

s
gURðdÞð1BÞjm

3
5;

ðhURg Þ	 ¼X
djm

jpjd�3	1Yjmðp̂Þ½	gURðdÞð1BÞjm þ igURðdÞð1EÞjm �;

ðhURH Þr ¼mc

X
djm

jpjd�4
0Yjmðp̂Þ

2
4HURðdÞð0BÞ

jm þ
ffiffiffiffiffiffiffiffiffiffiffi
2j

jþ1

s
HURðdÞð1BÞ

jm

3
5;

ðhURH Þ	 ¼�X
djm

jpjd�3
	1Yjmðp̂Þ½	HURðdÞð1BÞ

jm þ iHURðdÞð1EÞ
jm �:

(121)

Most of the ultrarelativistic coefficients KURðdÞ
jm are related to the spherical coefficients KðdÞ

njm by expressions of the form

K URðdÞ
jm ¼ X

n

KðdÞ
njm: (122)
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However, for the B-type coefficients it is convenient to define

gURðdÞð0BÞjm ¼ X
n

2
4ðnþ 1� jÞgðdÞð0BÞnjm �

ffiffiffiffiffiffiffiffiffiffiffiffi
2j

jþ 1

s
gðdÞð1BÞnjm

3
5; gURðdÞð1BÞjm ¼ X

n

2
4gðdÞð1BÞnjm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

2

s
gðdÞð0BÞnjm

3
5;

HURðdÞð0BÞ
jm ¼ X

n

2
4ðnþ 1� jÞHðdÞð0BÞ

njm �
ffiffiffiffiffiffiffiffiffiffiffiffi
2j

jþ 1

s
HðdÞð1BÞ

njm

3
5; HURðdÞð1BÞ

jm ¼ X
n

2
4HðdÞð1BÞ

njm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

2

s
HðdÞð0BÞ

njm

3
5:

(123)

Each ultrarelativistic coefficient has mass dimension
4� d.

Information about the index ranges and counting of the
ultrarelativistic coefficients is collected in Table V. The
first column lists the coefficients, the next two provide
the allowed ranges of d and j, and the final column gives
the number of independent coefficients at each d.

In the isotropic limit, the ultrarelativistic Hamiltonian
components become

h
�UR
a ¼ X

d

jpjd�3a
�URðdÞ; h

�UR
c ¼ �X

d

jpjd�3c
�URðdÞ;

ðh�URg Þr ¼ �mc

X
d

jpjd�4g
�URðdÞ;

ðh�URH Þr ¼ mc

X
d

jpjd�4H
� URðdÞ

: (124)

The connection between the ultrarelativistic isotropic co-
efficients and the spherical isotropic coefficients is

a
�URðdÞ ¼ 1ffiffiffiffiffiffiffi

4�
p aURðdÞ00 ; c

�URðdÞ ¼ 1ffiffiffiffiffiffiffi
4�

p cURðdÞ00 ;

g
�URðdÞ ¼ 1ffiffiffiffiffiffiffi

4�
p gURðdÞð0BÞ00 ; H

� URðdÞ ¼ 1ffiffiffiffiffiffiffi
4�

p HURðdÞð0BÞ
00 :

(125)

The ultrarelativistic isotropic coefficients have mass di-
mension 4� d, and there is no more than 1 coefficient of
any given type at each d. None of them correspond to
Lorentz-invariant operators. The allowed dimensions d
are given in Table V.

We remark in passing that the above results differ in
detail from those obtained in the analysis of the nonmini-
mal neutrino sector in Ref. [16]. The differences arise
because the neutrino treatment involves Dirac- and
Majorana-type couplings of multiple flavors of left-handed
fermions, while the present discussion involves a single
Dirac fermion without helicity restriction.

C. Minimal SME

The minimal SME in flat spacetime [7] consists of op-
erators of renormalizable dimension d ¼ 3, 4. In the present

context, this involves the Cartesian coefficients að3Þ�, bð3Þ�,
cð4Þ��, dð4Þ��, eð4Þ�, fð4Þ�, gð4Þ	��, andHð3Þ��. Of these, the

coefficient fð4Þ� plays no observable role and can be dis-
regarded [39,40], as described in Sec. II B. Restricting
attention to this coefficient set, the Cartesian expansion

introduced in Sec. II A can be matched to the spherical-
harmonic one presented in Sec. IV. This produces a set
of relations connecting the minimal Cartesian and the
spherical coefficients for Lorentz violation.
The Cartesian expansion of the perturbative Hamiltonian

(75) is given byEqs. (76) and (78). For the spin-independent
piece involving �, we can use the expressions (27) for the
effective coefficients in Eq. (77) to project onto theminimal
SME terms with d ¼ 3 and d ¼ 4, giving

�ð3Þ ¼ að3Þ�p�; �ð4Þ ¼ �cð4Þ��p�p�;

�ð5Þ ¼ � p2

mc

eð4Þ�p�:
(126)

For the spin-dependent terms in N�, combining Eq. (27)
with Eq. (79) and projecting onto the minimal SME coef-
ficients yields

Nð3Þ� ¼ � ~Hð3Þ��p�;

Nð4Þ� ¼ ~g
ð4Þ��	
eff p�p	 ¼

�
~gð4Þ��	 � 1

mc

�	½�bð3Þ��
�
p�p	;

Nð5Þ� ¼ 1

mc

ðp�dð4Þ�	p�p	 � p2dð4Þ��p�Þ: (127)

Note that in these expressions we are using the dual

coefficients ~gð4Þ	�� and ~Hð3Þ�� introduced in the expansions

(26). Since in the minimal case ~gð4Þ��	 and bð3Þ� always

appear in the same linear combination ~g
ð4Þ��	
eff , we use the

TABLE V. Ultrarelativistic coefficients for Lorentz violation.

Coefficient d j Number

aURðdÞjm Odd, � 3 0 � j � d� 2 ðd� 1Þ2
cURðdÞjm Even, � 4 0 � j � d� 2 ðd� 1Þ2
gURðdÞð0BÞjm Even, � 4 0 � j � d� 3 ðd� 2Þ2
gURðdÞð1BÞjm Even, � 4 1 � j � d� 2 ðd� 2Þd
gURðdÞð1EÞjm Even, � 4 1 � j � d� 2 ðd� 2Þd
HURðdÞð0BÞ

jm Odd, � 5 0 � j � d� 3 ðd� 2Þ2
HURðdÞð1BÞ

jm Odd, � 3 1 � j � d� 2 ðd� 2Þd
HURðdÞð1EÞ

jm Odd, � 3 1 � j � d� 2 ðd� 2Þd
a
�URðdÞ

Odd, � 3 0 1

c
�URðdÞ

Even, � 4 0 1

g
�URðdÞ

Even, � 4 0 1

H
� URðdÞ

Even, � 5 0 1

V. ALAN KOSTELECKÝ AND MATTHEW MEWES PHYSICAL REVIEW D 88, 096006 (2013)

096006-18



latter in making the matches that follow. Note also that the

Lorentz-invariant trace dð4Þ����� is absent from Eq. (127).

We can now match these results to the spherical expan-
sion of the perturbative Hamiltonian (75) as written in the
form (88). This gives relations between the spherical co-
efficients and the Cartesian ones for the minimal SME. To
express compactly some results, it is convenient to define
an azimuthal spin vector,

x	 ¼ x̂
 iŷ: (128)

Considering first the match for spin-independent effects,

we find the four coefficients a
ð3Þ�
eff are related to the four

spherical coefficients að3Þnjm by

að3Þ000 ¼
ffiffiffiffiffiffiffi
4�

p
að3Þteff ; að3Þ11ð�1Þ ¼ �

ffiffiffiffiffiffiffi
2�

3

s
xj�a

ð3Þj
eff ;

að3Þ110 ¼ �
ffiffiffiffiffiffiffi
4�

3

s
að3Þzeff ; að3Þ111 ¼

ffiffiffiffiffiffiffi
2�

3

s
xjþa

ð3Þj
eff :

(129)

The coefficients cð4Þ�� are related to the spherical coeffi-

cients cð4Þnjm by

cð4Þ000 ¼
ffiffiffiffiffiffiffi
4�

p
cð4Þtt; cð4Þ11ð�1Þ ¼�

ffiffiffiffiffiffiffi
8�

3

s
xj�cð4Þtj;

cð4Þ110 ¼�
ffiffiffiffiffiffiffiffiffi
16�

3

s
cð4Þtz; cð4Þ111 ¼

ffiffiffiffiffiffiffi
8�

3

s
xjþcð4Þtj;

cð4Þ200 ¼
ffiffiffiffiffiffiffi
4�

9

s
cð4Þjj; cð4Þ22ð�2Þ ¼

ffiffiffiffiffiffiffi
2�

15

s
xj�xk�cð4Þjk;

cð4Þ22ð�1Þ ¼
ffiffiffiffiffiffiffi
8�

15

s
xj�cð4Þjz; cð4Þ220 ¼

ffiffiffiffiffiffiffi
4�

5

s �
cð4Þzz�1

3
cð4Þjj

�
;

cð4Þ221 ¼�
ffiffiffiffiffiffiffi
8�

15

s
xjþcð4Þjz; cð4Þ222 ¼

ffiffiffiffiffiffiffi
2�

15

s
xjþxkþcð4Þjk: (130)

Note that this set of 10 coefficients contains the trace

combination ���c
ð4Þ�� associated with a Lorentz-invariant

operator. This trace can be removed by adding the con-

straint cð4Þ000 ¼ 3cð4Þ200 involving the two isotropic compo-

nents of cð4Þnjm. Finally, as is apparent from Eq. (126), the

minimal Cartesian coefficients eð4Þ� act effectively as

d ¼ 5 coefficients að5Þ� according to

að5Þ200 ¼ �að5Þ000 ¼
1

mc

ffiffiffiffiffiffiffi
4�

p
eð4Þt;

að5Þ31ð�1Þ ¼ �að5Þ11ð�1Þ ¼ � 1

mc

ffiffiffiffiffiffiffi
2�

3

s
xj�eð4Þj;

að5Þ310 ¼ �að5Þ110 ¼ � 1

mc

ffiffiffiffiffiffiffi
4�

3

s
eð4Þz;

að5Þ311 ¼ �að5Þ111 ¼
1

mc

ffiffiffiffiffiffiffi
2�

3

s
xjþeð4Þj:

(131)

Turning next to the match for spin-dependent effects, we

begin with the terms involving ~gð4Þ��

eff . Disregarding the

unobservable totally antisymmetric part leaves 20
Cartesian coefficients, which can be connected to the

twelve B-type spherical coefficients gð4Þð0BÞnjm , gð4Þð1BÞnjm and

the eight E-type spherical coefficients gð4Þð1EÞnjm . The nine

B-type spherical coefficients gð4Þð0BÞnjm are related to

Cartesian ones by

gð4Þð0BÞ01ð�1Þ ¼
ffiffiffiffiffiffiffi
2�

3

s
xj�~g

ð4Þtjt
eff ; gð4Þð0BÞ010 ¼

ffiffiffiffiffiffiffi
4�

3

s
~gð4Þtzteff ;

gð4Þð0BÞ011 ¼ �
ffiffiffiffiffiffiffi
2�

3

s
xjþ~g

ð4Þtjt
eff ; gð4Þð0BÞ100 ¼ �

ffiffiffiffi
�

9

r
~gð4Þtjjeff ;

gð4Þð0BÞ12ð�2Þ ¼ �
ffiffiffiffiffiffi
�

30

r
xj�xk�~g

ð4Þtjk
eff ;

gð4Þð0BÞ12ð�1Þ ¼ �
ffiffiffiffiffiffi
�

30

r
xj�ð~gð4Þtjzeff þ ~gð4Þtzjeff Þ;

gð4Þð0BÞ120 ¼ �
ffiffiffiffi
�

5

r
ð~gð4Þtzzeff � 1

3
~gð4Þtjjeff Þ;

gð4Þð0BÞ121 ¼
ffiffiffiffiffiffi
�

30

r
xjþð~gð4Þtjzeff þ ~gð4Þtzjeff Þ;

gð4Þð0BÞ122 ¼ �
ffiffiffiffiffiffi
�

30

r
xjþxkþ~g

ð4Þtjk
eff : (132)

The three B-type spherical coefficients gð4Þð1BÞnjm are given by

the equations

gð4Þð1BÞ21ð�1Þ ¼ �
ffiffiffiffi
�

6

r
xj�~g

ð4Þjkk
eff ; gð4Þð1BÞ210 ¼ �

ffiffiffiffi
�

3

r
~gð4Þzjjeff ;

gð4Þð1BÞ211 ¼
ffiffiffiffi
�

6

r
xjþ~g

ð4Þjkk
eff ; (133)

while the expressions for the eight E-type spherical coef-
ficients are
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gð4Þð1EÞ11ð�1Þ ¼�i

ffiffiffiffiffiffiffi
3�

2

s
xj�~g

ð4Þjzt
eff ; gð4Þð1EÞ110 ¼�i

ffiffiffiffiffiffiffi
3�

4

s
xjþxk�~g

ð4Þjkt
eff ;

gð4Þð1EÞ111 ¼�i

ffiffiffiffiffiffiffi
3�

2

s
xjþ~g

ð4Þjzt
eff ; gð4Þð1EÞ22ð�2Þ ¼�i

ffiffiffiffiffiffi
�

10

r
xj�xk�~g

ð4Þzjk
eff ;

gð4Þð1EÞ22ð�1Þ ¼ i

ffiffiffiffiffiffiffi
2�

5

s
xj�
�
~gð4Þjzzeff �1

2
~gð4Þjkkeff

�
;

gð4Þð1EÞ220 ¼ i

ffiffiffiffiffiffiffi
3�

20

s
xjþxk�~g

ð4Þjkz
eff ;

gð4Þð1EÞ221 ¼ i

ffiffiffiffiffiffiffi
2�

5

s
xjþ
�
~gð4Þjzzeff �1

2
~gð4Þjkkeff

�
;

gð4Þð1EÞ222 ¼ i

ffiffiffiffiffiffi
�

10

r
xjþxkþ~g

ð4Þzjk
eff : (134)

Using the pseudotensor nature of the coefficients ~gð4Þ��

eff ,

one can verify that the E-type and B-type coefficients are
associated with operators having parity ð�1Þj and ð�1Þjþ1,
respectively.

The six components of the antisymmetric Cartesian

coefficients ~Hð3Þ�� can be used to obtain the three B-type

spherical coefficients Hð3Þð0BÞ
njm and the three E-type spheri-

cal coefficientsHð3Þð1EÞ
njm . The three B-type ones are given by

Hð3Þð0BÞ
01ð�1Þ ¼

ffiffiffiffiffiffiffi
2�

3

s
xj� ~Hð3Þtj;

Hð3Þð0BÞ
010 ¼

ffiffiffiffiffiffiffi
4�

3

s
~Hð3Þtz;

Hð3Þð0BÞ
011 ¼ �

ffiffiffiffiffiffiffi
2�

3

s
xjþ ~Hð3Þtj;

(135)

while the three E-type ones are found to be

Hð3Þð1EÞ
11ð�1Þ ¼ �i

ffiffiffiffiffiffiffi
2�

3

s
xj� ~Hð3Þjz;

Hð3Þð1EÞ
110 ¼ �i

ffiffiffiffi
�

3

r
xjþxk� ~Hð3Þjk;

Hð3Þð1EÞ
111 ¼ �i

ffiffiffiffiffiffiffi
2�

3

s
xjþ ~Hð3Þjz:

(136)

The remaining 15 Cartesian coefficients dð4Þ�� specify

15 independent spherical coefficients Hð5Þð0BÞ
njm and Hð5Þð1EÞ

njm

corresponding to operators with mass dimension d ¼ 5, as
can be seen from Eq. (127). The six B-type spherical

coefficients Hð5Þð0BÞ
njm with even n are given by

Hð5Þð0BÞ
01ð�1Þ ¼� 1

mc

ffiffiffiffiffiffiffi
2�

3

s
xj�dð4Þjt; Hð5Þð0BÞ

010 ¼� 1

mc

ffiffiffiffiffiffiffi
4�

3

s
dð4Þzt;

Hð5Þð0BÞ
011 ¼ 1

mc

ffiffiffiffiffiffiffi
2�

3

s
xjþdð4Þjt; Hð5Þð0BÞ

21ð�1Þ ¼� 1

3mc

ffiffiffiffiffiffiffi
2�

3

s
xj�dð4Þtj;

Hð5Þð0BÞ
210 ¼� 1

3mc

ffiffiffiffiffiffiffi
4�

3

s
dð4Þtz; Hð5Þð0BÞ

211 ¼ 1

3mc

ffiffiffiffiffiffiffi
2�

3

s
xjþdð4Þtj:

(137)

The six B-type spherical coefficients Hð5Þð0BÞ
njm with odd n

are determined in terms of the six symmetric parts of dð4Þjk
to be

Hð5Þð0BÞ
100 ¼

ffiffiffiffi
�

p
mc

�
dð4Þtt þ 1

3
dð4Þjj

�
;

Hð5Þð0BÞ
12ð�2Þ ¼

1

mc

ffiffiffiffiffiffi
�

30

r
xj�xk�dð4Þjk;

Hð5Þð0BÞ
12ð�1Þ ¼

1

mc

ffiffiffiffiffiffi
�

30

r
xj�ðdð4Þjz þ dð4ÞzjÞ;

Hð5Þð0BÞ
120 ¼ 1

mc

ffiffiffiffi
�

5

r �
dð4Þzz � 1

3
dð4Þjj

�
;

Hð5Þð0BÞ
121 ¼ � 1

mc

ffiffiffiffiffiffi
�

30

r
xjþðdð4Þjz þ dð4ÞzjÞ;

Hð5Þð0BÞ
122 ¼ 1

mc

ffiffiffiffiffiffi
�

30

r
xjþxkþdð4Þjk:

(138)

The three E-type spherical coefficients Hð5Þð1EÞ
njm are speci-

fied in terms of the antisymmetric part of dð4Þjk by

Hð5Þð1EÞ
11ð�1Þ ¼ � i

mc

ffiffiffiffi
�

6

r
xj�ðdð4Þjz � dð4ÞzjÞ;

Hð5Þð1EÞ
110 ¼ � i

mc

ffiffiffiffiffiffi
�

12

r
xjþxk�ðdð4Þjk � dð4ÞkjÞ;

Hð5Þð1EÞ
111 ¼ � i

mc

ffiffiffiffi
�

6

r
xjþðdð4Þjz � dð4ÞzjÞ:

(139)

Finally, we remark that the remaining nonzero spherical
coefficients can be constructed as combinations of the 15
above independent ones according to

Hð5Þð1BÞ
21m ¼�Hð5Þð0BÞ

01m �Hð5Þð0BÞ
21m ; Hð5Þð1BÞ

32m ¼� ffiffiffi
3

p
Hð5Þð0BÞ

12m ;

Hð5Þð1EÞ
31m ¼�Hð5Þð1EÞ

11m : (140)

Note that some spherical coefficients remain zero, as ex-
pected from the analysis in Sec. II B showing that the

absorption of the pseudovector operators Â�
involves

only parts of the tensor operators T̂
��
.
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VI. APPLICATIONS

Given the spherical decomposition and the various limit-
ing cases, several immediate applications become feasible.
In this section, we begin by revisiting the topics of disper-
sion and birefringence discussed in Sec. II D, presenting
quantitative expressions for the dispersion relation, the
group velocity, and the fermion spin precession in various
limits. We next take advantage of the generality of the
SME framework to make connections to other special
models in the literature, which yields some interesting
insights. With these results in hand, we can then translate
existing astrophysical limits on isotropic Lorentz violation
in the fermion sector into constraints on isotropic spherical
SME coefficients, thereby revealing the relationships be-
tween the various approaches and the scope of the coverage
of coefficient space.

A. Dispersion and birefringence

Using the spherical decomposition to extend the discus-
sion in Sec. II D, we can generate expressions for the
dispersion relation, including several useful limiting cases.
We can also determine the group velocity of a fermion
wave packet and the spin precession of the fermion
induced by birefringence.

For simplicity, we begin by neglecting spin-dependent
effects. Using the result (41) expressed in the spherical
basis and with the birefringent contributions set to zero, the
dispersion relation can be written as

p2 �m2
c ¼ 2E0�E; (141)

where

�E ¼ X
dnjm

E0
d�3�njpjn0YjmðaðdÞnjm � cðdÞnjmÞ: (142)

The modified group velocity vg ¼ @E=@p obeys

jvgj ¼ jpj
E0

þ X
dnjm

ððd� 3Þp2 þ nm2
c Þ

� E0
d�5�njpjn�1

0Yjmðp̂ÞðaðdÞnjm � cðdÞnjmÞ: (143)

Note that either increases or decreases in the velocity are
possible, depending on the signs of the coefficients and on
the direction of travel. Note also that the corresponding
expressions for antifermions involve opposite signs for the

coefficients aðdÞnjm.

Including spin dependence is straightforward in the
isotropic limit. The isotropic dispersion relation also takes

the form (141). Denoting E as E
�
for this case, we have

�E
� ¼X

dn

E0
d�3�njpjnða� ðdÞn �c

� ðdÞ
n Þ

	mc

X
dn

E0
d�4�njpjnð�g

� ðdÞ
n þH

� ðdÞ
n Þ

¼X
dn

E0
d�3�njpjnða� ðdÞn 
mcg

� ðdþ1Þ
n �c

� ðdÞ
n 	mcH

� ðdþ1Þ
n Þ:

(144)

In these expressions, the upper and lower signs corres-
pond to positive and negative helicities, respectively. The
modified group velocity in this case is

jv� gj ¼ jpj
E0

þX
dn

ððd� 3Þp2 þ nm2
c ÞE0

d�5�n

� jpjn�1ða� ðdÞn 
mcg
� ðdþ1Þ
n gn � c

� ðdÞ
n 	mcH

� ðdþ1Þ
n Þ:
(145)

The results for antiparticles take the same form but with

opposite signs for the coefficients a
� ðdÞ
n and g

� ðdþ1Þ
n . We thus

see that the two helicities for each fermion species and the
two for the corresponding antifermions all experience
generically distinct dispersion relations and group
velocities.
Many applications involve fermions at high energies,

where the ultrarelativistic limit may be appropriate. In
this limit, the dispersion relation takes the form

p2 �m2
c ¼ 2jpj�EUR; (146)

where

�EUR ¼ X
d

jpjd�3ða�URðdÞ 
mc g
�URðdþ1Þ � c

�URðdÞ

	mcH
� URðdþ1ÞÞ (147)

in terms of the ultrarelativistic coefficients defined in
Table V. The modified group velocity is

jvUR
g j ¼ 1þX

d

ðd� 3Þjpjd�4ða�URðdÞ 
mcg
�URðdþ1Þ

� c
�URðdÞ 	mcH

� URðdþ1ÞÞ: (148)

The above expansions have some intriguing consequen-
ces. One popular approach in the literature focuses on

isotropic modifications to p2 or �E
�

involving powers
only of jpj, restricted to dimensions d � 5 or d � 6. A
potentially surprising feature in this context is that the

expansions of p2 and of �E
�
produce two completely differ-

ent limits of the general theory. As can be seen from
Eqs. (141) and (144), expanding p2 in this way requires

imposing the condition n ¼ d� 2, while expanding �E
�

requires n ¼ d� 3 instead, so the two expansions involve
distinct coefficients. Explicitly, we find
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p2 �m2 ¼ 
2mc g
� ð4Þ
1 jpj � 2c

� ð4Þ
2 jpj2 
 2mc g

� ð6Þ
3 jpj3

� 2c
� ð6Þ
4 jpj4 þ � � � (149)

and

�E
� ¼ a

� ð3Þ
0 	mcH

� ð5Þ
1 jpj þ a

� ð5Þ
2 jpj2 	mcH

� ð7Þ
3 jpj3 þ � � � ;

(150)

showing that the two approaches have orthogonal content.
Note that both expansions contain terms with odd and even
powers of jpj, but the first involves only operators of even
dimension d while the second involves only operators of
odd d. The attribution of operator dimensionality in this
way is an automatic and natural consequence of the free-
dom to use field redefinitions to absorb some effects into
others, discussed in Sec. II B.

The isotropic expansions of p2 and �E
�
can be arranged

to match if we stipulate a priori that only ultrarelativistic
physics is relevant. In the ultrarelavistic limit, we obtain

p2 �m2 ¼ 2ða�URð3Þ 
mcg
�URð4ÞÞjpj

þ 2ð�c
�URð4Þ 	mcH

� URð5ÞÞjpj2
þ 2ða�URð5Þ 
mc g

�URð6ÞÞjpj3

þ 2ð�c
�URð6Þ 	mcH

� URð7ÞÞjpj4 þ � � �
¼ 2jpj�EUR: (151)

This expression reveals that the natural attribution of
operator dimensionalities in the ultrarelavistic expansions
involves a mixing of operators of different d at each power
of jpj.

The components hg and hH of the perturbative

Hamiltonian give rise to birefringence, which can be
viewed as a Larmor-like precession of the spin S as the
particle travels. Writing the expressions (86) in the form
hg ¼ hg � � and hH ¼ hH � �, the rate of change of the

spin expectation value of a particle state localized in
momentum space is given via the commutator of the
Hamiltonian h with the spin S as

dhSi
dt

¼ hi½h;S�i � 2ðhg þ hHÞ � hSi: (152)

The precession frequency is then ! ¼ 2ðhg þ hHÞ. This
generalizes the result obtained for muon precession and
used to extract constraints on muon Lorentz violation from
storage-ring data [12]. In the helicity basis, we can write
the result (152) in component form as

dhSui
dt

¼ �uvw2ðhg þ hHÞvhSwi; (153)

where u, v, w range over components labeled by (þ , r,�)
and the nonzero components of the antisymmetric tensor
�uvw are specified by �þr� ¼ �i.

In the isotropic limit, the nonzero spin-dependent terms

are given by ðh� gÞr and ðh�HÞr. The helicity states then

become stationary states, and the expression for the spin
precession takes the simple form

dhS	i
dt

¼ 
2iðh� gþ h
�
HÞrhS	i; (154)

where

ðh� g þ h
�
HÞr ¼ �mc

X
dn

E0
d�4�njpjnðg� ðdÞn �H

� ðdÞ
n Þ: (155)

The expectation value hSri of the helicity remains constant
in this limit.

B. Connections to other formalisms

A few special models containing quadratic fermion op-
erators with d > 4 can be found in the existing literature.
The generality of the SME-based analysis presented above
implies that any special model based on standard field
theory can be described using a selected subset of the
Cartesian coefficients in Table I or, equivalently, of the
spherical coefficients in Table III. The SME framework
also incorporates several kinematical frameworks in a
field-theoretic context. In this subsection, we summarize
some of these links, treating first field-theoretic models and
then kinematical formalisms.

1. Field-theoretic models

Consider first special models defined via a Lagrange
density for a Dirac fermion of mass mc that contains

quadratic fermion operators with d > 4. Examples in the
literature include models with a few specific Lorentz-
violating operators of dimensions d ¼ 5 and d ¼ 6.
Here, we identify the correspondence between these
models and the SME coefficients for Lorentz violation.
One special model with quadratic Dirac operators is

given by Myers and Pospelov [17]. This model involves
two d ¼ 5 operators for Lorentz violation constructed
using a timelike vector n�, which fixes a preferred
frame, and two corresponding parameters �1=MP,
�2=MP. Matching the operators to the SME framework
reveals that the nonzero Cartesian coefficients for Lorentz
violation are given by

að5Þ��� ¼ �1

MP

n�n�n�; bð5Þ��� ¼ � �2

MP

n�n�n�:

(156)

In the preferred frame with n� ¼ ð1; 0; 0; 0Þ, the model is
isotropic and can therefore be matched to isotropic spheri-
cal coefficients in the SME. We find the correspondence

a
� ð5Þ
0 ¼ �1

MP

; g
� ð6Þ
1 ¼ � �2

mcMP

: (157)

The model therefore involves two of the eight possible
observable isotropic degrees of freedom with d ¼ 5 and
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d ¼ 6 listed in Table III and displayed explicitly in
Eqs. (97) and (98): one of the three for d ¼ 5, and one
of the five for d ¼ 6. Note that the parameter �2=MP is
most naturally viewed as an observable isotropic d ¼ 6
coefficient due to the freedom to make field redefinitions

absorbing all b̂� coefficients, as discussed in Sec. II B.
An extension of this model is given by Mattingly [18],

who uses the notation u� � n�, EP � MP. In addition to
the two operators (156), this extension includes two others

with d ¼ 5 parametrized by �ð5Þ
L =MP, �

ð5Þ
R =MP and four

more with d ¼ 6 controlled by the real parameters

�ð6Þ
L =MP, �ð6Þ

R =MP, ~�ð6Þ
L =MP, ~�ð6Þ

R =MP. Matching the
d ¼ 5 terms to the Cartesian coefficients in the SME yields
nonzero contributions

mð5Þ�� ¼ �ð�ð5Þ
L þ �ð5Þ

R Þ
2MP

n�n�;

mð5Þ��
5 ¼ �i

ð�ð5Þ
L � �ð5Þ

R Þ
2MP

n�n�:

(158)

In the SME framework, Hermiticity requires �ð5Þ
R ¼ �ð5Þ�

L .
This condition appears to have been overlooked in the

literature. If �ð5Þ
L and �ð5Þ

R are both real, then only mð5Þ��
is nonzero; if both parameters are imaginary, then only

mð5Þ��
5 is nonzero; while even when both parameters

are complex only two degrees of freedom appear. For
the d ¼ 6 terms, the corresponding nonzero Cartesian co-
efficients in the SME are given by

cð6Þ����¼ð�ð6Þ
L þ�ð6Þ

R Þ
2M2

P

n�n�n�n�þð~�ð6Þ
L þ ~�ð6Þ

R Þ
2M2

P

n�n����;

dð6Þ����¼ð�ð6Þ
L ��ð6Þ

R Þ
2M2

P

n�n�n�n�þð~�ð6Þ
L � ~�ð6Þ

R Þ
2M2

P

n�n����:

(159)

This model is also isotropic in the preferred frame with
n� ¼ ð1; 0; 0; 0Þ. Matching all the additional terms to the
isotropic spherical coefficients in the SME in this frame
gives

c
� ð6Þ
0 ¼ �ð5Þ

L þ �ð5Þ
R

2mcMP

þ �ð6Þ
L þ �ð6Þ

R þ ~�ð6Þ
L þ ~�ð6Þ

R

2M2
P

;

c
� ð6Þ
2 ¼ ��ð5Þ

L þ �ð5Þ
R

2mcMP

� ~�ð6Þ
L þ ~�ð6Þ

R

2M2
P

;

H
� ð7Þ
1 ¼ �ð6Þ

L � �ð6Þ
R þ ~�ð6Þ

L � ~�ð6Þ
R

2mcM
2
P

;

H
� ð7Þ
3 ¼ � ~�ð6Þ

L � ~�ð6Þ
R

2mcM
2
P

:

(160)

This match reveals that the couplings �ð5Þ
L , �ð5Þ

R are most
naturally viewed as a single real observable isotropic cou-
pling at d ¼ 6, involving observable effects that are

inseparable from those governed by the coefficient sum

~�ð6Þ
L þ ~�ð6Þ

R . The combination associated with mð5Þ��
5 in

Eq. (158) has no observable effects, as shown in
Sec. II B. Also, the four degrees of freedom in the real

parameters �ð6Þ
L , �ð6Þ

R , ~�ð6Þ
L , ~�ð6Þ

R are most naturally inter-
preted as two of the five observable isotropic coefficients
with d ¼ 6 and two of the five with d ¼ 7.
Another special model involving quadratic Dirac opera-

tors is considered by Rubtsov, Satunin, and Sibiryakov
[19]. This isotropic model contains a d ¼ 4 term and a
d ¼ 6 term, with parameters ß and g. It corresponds to the
SME framework in the limit

cð4Þjk ¼ �ß�jk; cð6Þjklm ¼ �g�jk�lm: (161)

In the preferred frame, the match to the isotropic spherical
coefficients in the SME is

c
� ð4Þ
2 ¼ �ß; c

� ð6Þ
4 ¼ �g=M2; (162)

showing that the model involves another of the five pos-
sible isotropic operators for d ¼ 6 displayed in Table III
and Eq. (98).
A more general model focusing on d ¼ 5 operators is

given by Bolokhov and Pospelov [20], who limit attention
to operators that cannot be reduced to ones with d < 5
using the equations of motion. The model involves qua-
dratic fermion operators expressed in terms of parameters

h��1 , h��2 , C
���
1 , C

���
2 , E

����
1 , and E

ðdÞ����
4 . These pa-

rameters form a subset of the d ¼ 5 Cartesian coefficients
listed in Table I. Explicitly, we find the relations

mð5Þ�� ¼ 2h��1 ; mð5Þ��
5 ¼ �2ih��2 ;

að5Þ��� ¼ 6C
���
1 ; bð5Þ��� ¼ �6C

���
2 ;

Hð5Þ���� ¼ 12E����
1 þ 16EðdÞ����

4 :

(163)

Counting the degrees of freedom in each relation is in-

structive. The parameters h��1 and h��2 are symmetric, and
so each have 10 independent components, matching the

SME counting formð5Þ�� andmð5Þ��
5 . The parametersC���

1

and C���
2 are totally symmetric, giving 20þ 20 indepen-

dent components, whereas the SME coefficients að5Þ���

and bð5Þ��� contain a total of 40þ 40 degrees of freedom.
We remark in passing that the 20 parameters C

��

1 corre-

spond to the 20 on-shell effective coefficients að5Þ���eff in

Eq. (77). The parameter E
����
1 is antisymmetrized in ��

and then symmetrized in ���, giving a total of 45 inde-

pendent components, while E����
4 is antisymmetrized in

��� and then symmetrized in ��, generating 15 indepen-
dent components. The total is 45þ 15 ¼ 60, matching the

counting for the SME coefficients Hð5Þ����. Note, how-

ever, that the 45 components of E����
1 cannot be matched

to the 45 on-shell SME effective coefficients Hð5Þ����
eff in

Eq. (79).
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2. Kinematical formalisms

In the context of the photon sector, Sec. IV F of Ref. [30]
discusses the relationship between the SME and several
kinematical formalisms purporting to describe aspects of
Lorentz violation based on modifications of the transfor-
mation laws. In this subsection, we revisit these discus-
sions briefly in light of the insights provided by the
nonminimal fermion sector.

One kinematical approach involves models called de-
formed special relativities (DSR). These are defined as
smooth nonlinear momentum-space representations of
the usual Lorentz transformations, which is known to
imply that they have no observable consequences beyond
conventional special relativity [43]. All corresponding co-
efficients for Lorentz violation in the photon sector are
explicitly constructed in Sec. IV F 3 of Ref. [30] and
are indeed found to be unobservable. Since DSR models
are sector-independent by definition, a parallel analysis
holds for the nonminimal fermion sector discussed in the
present work, and so further consideration of DSR models
in this context provides no new insights.

Another kinematical approach, the Robertson–
Mansouri–Sexl (RMS) formalism [44], does describe cer-
tain physical deviations from special relativity. The RMS
formalism can be viewed as a special limit of the SME
requiring flat spacetime, the existence of a universal pre-
ferred frame U in which light is conventional, and only
isotropic Lorentz violation affecting clocks and rods in U.
The three RMS parameters a, b, d are experiment depen-
dent unless identical clocks and rods in the same physical
states are used as the reference standards, so caution is
required in comparing results from different experiments.
For any given experiment, the RMS parameters can in
principle be expressed in terms of SME coefficients by
incorporating the underlying physics of the clocks and
rods. The mapping from the SME to the RMS formalism
is described in Sec. IV F 2 of Ref. [30].

The development of the nonminimal fermion sector in
the present work offers the opportunity to investigate fur-
ther the relationship between the RMS formalism and the
SME by considering effects from the fermion content of
clocks and rods. In general, the behavior of physical clocks
and rods is complicated and determined by properties of
their component particles and the forces involved. A de-
tailed SME description is therefore necessary for a careful
treatment of Lorentz violation in this context. However, a
phenomenological treatment in the SME vein using simple
model clocks and rods can illustrate some of the basic
features to be expected from Lorentz violation and their
role in the RMS formalism.

Consider first a clock in conventional special relativity
that ticks at a frequency!0 in a comoving inertial frame. In
a different boosted frame, the frequency ! � p0 of the
clock and the wave vector p of its oscillations obey a
dispersion-type relation p�p

� � !2 � p2 ¼ !2
0, where

the invariant !0 plays the role of a particle mass. In
the presence of Lorentz violation, this dispersion relation
becomes modified. Ignoring possible spin effects for
simplicity, the modified relation can be written

p2 ¼ !2
0 þ 2âc � 2ĉc; (164)

where âc and ĉc are p�-dependent effective Lorentz-
violating corrections associated with CPT-odd and
CPT-even operators, respectively. If the clock is a single
fermion of mass mc , Eq. (164) can be viewed as a special

limit of the modified dispersion relation (41) derived in
Sec. II D [45]. To match to the RMS formalism, we must
further restrict the clock dispersion relation by assuming
the existence of a preferred universal frame U in which the
physics describing the clock is isotropic. The dispersion
relation (164) then takes the form

p2 ¼ !2
0 þ 2

X
dn

!d�2�njpjnðða� cÞðdÞn � ðc�cÞðdÞn Þ; (165)

involving only the isotropic effective coefficients for

Lorentz violation ða� cÞðdÞn and ðc�cÞðdÞn . The allowed values
of d and n and the coefficient counting are the same as
those given in the last four rows of Table III.
Suppose a clock obeying (165) moves at a constant

speed v in the x direction relative to U. In the comoving
inertial frame, the clock wave 4-vector can be written as
k� ¼ ð!c; 0; 0; 0Þ, where!c denotes the ticking frequency.
In the frame U, the wave 4-vector takes the form p� ¼
ð�!c; �v!c; 0; 0Þ. Combining this expression with the
dispersion relation (165), the velocity-dependent ratio of
the clock ticking frequencies !cðvÞ and !cð0Þ � !c is

!cðvÞ
!cð0Þ

¼ 1þX
dn

!d�4
0 ðvn�d�2 � �n0Þðða� cÞðdÞn � ðc�cÞðdÞn Þ:

(166)

In the SME, the frequency!cðvÞ is frame dependent. In the
RMS formalism, however, this clock serves as the time
standard, with all other times measured relative to it. The
ratio (166) reduces to 1 for vanishing v and is an even
function of v because n is even, in agreement with RMS
postulates.
Next, consider a rod in conventional special relativity

with length and orientation specified by a rest-frame wave
vector k0 and a corresponding wave 4-vector k

� ¼ ð0; k0Þ.
A simple choice of rod is the Compton wavelength of a
single particle, which could be of a species different from
any involved in the time standard. Other rod choices are
possible, such as one formed from particles with frequen-
cies locked to an internal clock. In a boosted frame, the
wave 4-vector p� of the rod obeys the dispersion-type
relation p2 ¼ �jk0j2. In the presence of Lorentz violation,
and assuming as before the existence of a universal pre-
ferred frame U as required by the RMS formalism, the
modified dispersion relation for the rod can be written as
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p2 ¼ �jk0j2 þ 2
X
dn

!d�2�njpjnðða� rÞðdÞn � ðc�rÞðdÞn Þ; (167)

where the allowed values of d and n and the coefficient
counting parallel those for the clock.

If a rod with wave vector kr in a comoving frame moves
at speed v in the x direction relative to the frame U, then its
wave 4-vector in U is p� ¼ ð�vkxr; �kxr; kyr; kzrÞ. Using
the dispersion relation (167) reveals that the velocity-
dependent ratio of the wave-vector magnitudes jkrðvÞj
and jkrð0Þj � jkrj is
jkrðvÞj
jkrð0Þj ¼1�X

dn

jk0jd�4

�
�d�2vd�2�n

k ð1�v2
?Þn=2��n;d�2

�

�ðða� rÞðdÞn �ðc�rÞðdÞn Þ; (168)

where vk and v? are the components of the boost velocity

parallel and perpendicular to the rod, respectively.
This expression characterizes the variations in rod length
in different Lorentz frames, explicitly showing the orienta-
tion and velocity dependence arising in the SME context. In
contrast, the rod serves as the length standard in the RMS
formalism, with all other lengths measured relative to it.

The result (168) illuminates some aspects of the RMS

formalism. The coefficients ðc�rÞðdÞn associated with
CPT-even effects have indices d and n taking only even
values, and hence they introduce dilations involving only
even powers of v. This is in agreement with the RMS

postulates. However, the coefficients ða� rÞðdÞn controlling
CPT-odd effects produce shifts that are odd in v, so boosts
in opposite directions give different effects. This possibil-
ity lies outside the RMS formalism despite its origin in
comparatively simple isotropic Lorentz violations in U.

The expression (168) has another significant implica-
tion: the rod length measured in RMS coordinates is the
same when the rod is oriented along any of the three
coordinate axes, but it typically differs for other orienta-
tions. This feature appears to have been overlooked in the
literature. It emerges here in the context of a simple SME-
based model, but the dependence of the ratio (168) on
parallel and perpendicular velocities suggests it is a generic
aspect of Lorentz violation. In particular, the RMS trans-
formation assumes one rod is aligned along the boost axis
and the other two are perpendicular. The expression (168)
therefore implies that nonstandard choices of rod orienta-
tion lie outside the RMS formalism because they cannot be
linked to the frame U via a transformation of the RMS
form. This is problematic for laboratory experiments at-
tempting to report bounds in the RMS language because
the results of any measurement are meaningful only when
the chosen length standards are correctly aligned with a
particular boost and moreover only when this alignment is
maintained throughout the measurement process. This re-
quirement is challenging and perhaps impossible to satisfy
in practice due to the rotation and orbital revolution of

the Earth and to the motion of the solar system relative to
the frame U.
For the simple model with clocks of type (165) and rods

of type (167) with RMS-compatible orientations, we can
construct explicitly the RMS transformation T from U to
the boosted frame and identify the RMS parameters a, b, d
and hence the factors �, �, and � multiplying their v2

components. Assuming Einstein synchronization, T takes
the form

T ¼

a�2 �av�2 0 0

�bv b 0 0

0 0 d 0

0 0 0 d

0
BBBBB@

1
CCCCCA; (169)

where a, b, and d are functions of v that reduce to a ¼
1=�, b ¼ �, and d ¼ 1 in the Lorentz-invariant limit. The
RMS transformation can be viewed as the product T ¼ C�
of a standard Lorentz transformation � from U to the
comoving Lorentz frame with coordinate dilations C scal-
ing space and time relative to the chosen clocks and rods
[30]. In terms of RMS functions, the scaling matrix C is
diagonal with entries (a�, b=�, d, d). The ratio (166) then
implies that the time-dilation function a is given by

a ¼ 1

�
þ 1

�

X
dn

!d�4
0 ðvn�d�2 � �n0Þðða� cÞðdÞn � ðc�cÞðdÞn Þ

¼ 1þ v2

�
� 1

2
þX

d

!d�4
0

�
d� 2

2
ða� cÞðdÞ0

� d� 2

2
ðc�cÞðdÞ0 þ ða� cÞðdÞ2 � ðc�cÞðdÞ2

��
þOðv4Þ: (170)

The coefficient of v2 is the expression for the RMS
parameter � in terms of SME coefficients for Lorentz
violation in this simple model.
To find the RMS functions b and d for spatial dilations,

consider first a rod oriented along the boost direction x and
two rods in the orthogonal y and z directions. For the rod
lying along the x axis, the ratio (168) gives

b¼���
X
dn

jk0jd�4ð�d�2vd�2�n��n;d�2Þðða� rÞðdÞn �ðc�rÞðdÞn Þ

¼1�v
X
d

jk0jd�4ða� rÞðdÞd�3

þv2

�
1

2
þX

d

jk0jd�4

�
ðc�rÞðdÞd�4þ

d�2

2
ðc�rÞðdÞd�2

��
þOðv3Þ:

(171)

The term linear in the boost v stems from CPT violation
and lies outside the RMS formalism, as discussed above.
The coefficient of the term quadratic in v2 is the RMS
parameter �.
Next, consider a rod lying along the y or z axis. In the

simple model with the ratio (168), no dilation along these
directions is produced, and so the RMS parameter d is
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found to be d ¼ 1, implying � ¼ 0. However, the result
(168) accounts only for modifications arising from the
coupling of the intrinsic wavelengths of the rod compo-
nents to the Lorentz-violating vacuum. A more realistic
phenomenological description of a rod must also allow for
couplings of the rod bulk properties such as its macro-
scopic momentum or spin. For example, if the rod has mass
M, then its bulk 4-momentum in the boosted frame takes
the form P� ¼ M�ð1;vÞ. Suppose the effective dispersion
relation for the rod can be written as

p2 ¼ �jk0j2 � 2CrP
2 (172)

instead of the result (167). The modification vanishes when
the rod is at rest in U but otherwise leads to an isotropic rod
distortion given by

b

�
¼ d ¼ jkrðvÞj

jkrð0Þj ¼ 1þ jk0j�2CrM
2�2v2

¼ 1þ ðjk0j�2CrM
2Þv2 þOðv4Þ: (173)

In this case, the RMS parameter d is nonzero, and the
coefficient multiplying v2 is the parameter � ¼ �� 1

2 .

Note that in more realistic models, the parameters � and

� are independent and both nonzero. For example, the
simple phenomenological model obtained by adding the
two modifications (167) and (173) generates independent
nonzero parameters � and �.

C. Astrophysical bounds

A number of papers in the literature obtain bounds on
various kinds of isotropic Lorentz violation from astrophys-
ical observations. A few of these are based on field-theoretic
models, but the bulk use an approach based on isotropic
dispersion relations. The results obtained in Secs. VIA and
VIB 1 make feasible a translation of these various bounds
into constraints on isotropic spherical coefficients in the
SME. This translation also clarifies the relationships be-
tween the different bounds and reveals the coverage of the
available coefficient space achieved to date.
Since all the astrophysical bounds are obtained at high

energies, it is appropriate to work in the ultrarelativistic
limit of the SME, with dispersion relation given by
Eq. (151). The existing bounds only involve operator di-
mensions d � 6. The possibility of helicity dependence is
disregarded by many authors, so it is also appropriate to set

to zero the coefficients g
�URð6Þ

and H
� URð5Þ

in these cases.

TABLE VI. Astrophysical limits on isotropic SME coefficients. Units are GeV4�d.

Dimension Sector Lower bound Coefficient Upper bound Source

d ¼ 4 Electron c
�URð4Þ
e <1:5� 10�15 [46]

�5� 10�13< c
�URð4Þ
e [47]

�1:3� 10�15< c
�URð4Þ
e <2� 10�16 [48]

�1:2� 10�16< c
�URð4Þ
e [49]

�6� 10�20< c
�URð4Þ
e [50]

Proton �5� 10�23< c
�URð4Þ
p [46]

c
�URð4Þ
p <5� 10�24 [47]

�2� 10�22< c
�URð4Þ
p [49]

c
�URð4Þ
p <4:5� 10�23 [51]

�9:8� 10�22< c
�URð4Þ
p � c

�URð4Þ
e <9:8� 10�22 [52]

Quark �1� 10�23< c
�URð4Þ
q <1:8� 10�21 [53]

�1� 10�23< c
�URð4Þ
q � 2c

�URð4Þ
e <2� 10�20 [53]

d ¼ 5 Electron a
�URð5Þ
e <6:5� 10�27 [54]

�3:5� 10�27< a
�URð5Þ
e [55]

�1� 10�34< a
�URð5Þ
e �meg

�URð6Þ
e <1� 10�34 [53]

�4� 10�25< a
�URð5Þ
e 	meg

�URð6Þ
e <4� 10�25 [56]

�1� 10�20< a
�URð5Þ
e <2:8� 10�17 [21]

Muon �1� 10�34< a
�URð5Þ
� �m�g

�URð6Þ
� <1� 10�34 [53]

Tau �2� 10�33< a
�URð5Þ
� �m�g

�URð6Þ
� <2� 10�33 [53]

d ¼ 6 Electron �8:5� 10�20< c
�URð6Þ
e <2:5� 10�23 [53]

�5:4� 10�14< g
�URð6Þ
e <5:4� 10�14 [21]

Muon �8:5� 10�20< c
�URð6Þ
� <2:5� 10�23 [53]

Proton �3:4� 10�45< c
�URð6Þ
p <3:4� 10�42 [57]

Quark �6:3� 10�23< c
�URð6Þ
q <1:7� 10�22 [53]
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The reported bounds involve a variety of particle species,
including electrons, muons, taus, protons, and quarks.
For the latter, all the partonic quarks are assumed to have
the same dispersion relation. Since the present focus is on
fermions, Lorentz violation in bosons such as pions or
photons is neglected for simplicity when making
conversions.

Table VI compiles some resulting constraints on iso-
tropic Lorentz violation in the SME. The first two columns
of this table list the operator dimension and the sector of
the SME involved. The table includes constraints on mini-
mal SME operators with d ¼ 4 as well as on ones with
nonminimal dimensions. The next three columns of the
table contain the constraints on ultrarelativistic isotropic
spherical coefficients obtained from existing bounds. The
coefficients for different particle species are distinguished
with a subscript denoting the species in question. The final
column provides the source from which the constraint is
extracted.

The table reveals that the existing bounds span different
coefficients. However, of the seven types of possible iso-
tropic ultrarelativistic spherical coefficients with d � 6,

namely, a
�URð3Þ

, c
�URð4Þ

, g
�URð4Þ

, a
�URð5Þ

, H
� URð5Þ

, c
�URð6Þ

, and

g
�URð6Þ

, constraints exist on at most four of them for any one
species. We see that even within the very restrictive as-
sumption of isotropic ultrarelativistic Lorentz violation,
much of the coefficient space is unconstrained to date.
Also notably lacking are limits for neutral fermions, in-
cluding neutrons and other baryons. We remark in passing
that numerous constraints exist on nonisotropic minimal
fermion operators [6], including some extracted from stud-
ies of mesons and some at impressive sensitivities.
Nonetheless, the experimental coverage of SME coeffi-
cients in the fermion sector is at present limited to a tiny
fraction of the available possibilities.

VII. SUMMARY

In this work, the general quadratic theory of a single
Dirac fermion in the presence of Lorentz violation has been
developed. Our discussion began with the construction and
basic properties of the theory (1), including two useful

decompositions of the general spinor-matrix operator Q̂
for Lorentz violation. The first reveals the different spin

content via the operators Ŝ, P̂ , V̂
�
, Â�

, T̂
��
, while the

second displays CPT and other properties via the notation

m̂, m̂5, â
�, b̂�, ĉ��, d̂��, ê�, f̂�, ĝ�
�, Ĥ�� paralleling the

conventions in the minimal SME. Table I compiles some
features of the corresponding coefficients for Lorentz vio-
lation. In Sec. II B, we show that the physical observables
in the pure quadratic theory (1) are restricted to pieces of

V̂
�
and T̂

��
, generalizing known results for the minimal

SME and for the nonminimal neutrino sector.
We next constructed the exact dispersion relation for a

fermion wave packet, obtaining the closed and compact

form (39). For some practical applications, an approximate
expression for the energy valid at leading order in Lorentz
violation is useful, and this is provided in Eq. (43). The
form of this equation reveals that fermions experience
anisotropy, dispersion, and birefringence when in the
presence of Lorentz violation. The covariant projection
operator yielding the spinor polarization is derived, and
the corresponding relativistic polarization vector is given
in Eq. (49).
With these key results in hand, we next turned to the

construction of the particle and antiparticle Hamiltonians
associated with the theory (1). The 2� 2 Hamiltonian for
particles is given as Eq. (60) in Sec. III A, while that for
antiparticles is in Eq. (64). Using the relativistic polariza-
tion vector, we can reduce the structure of these expres-
sions to the conceptually simple form (80), which separates
the particle Hamiltonian into four pieces according to spin
and CPT properties.
Despite its conceptual simplicity, the explicit form of the

Hamiltonian (80) involves coefficients with numerous in-
dices and is unwieldy for many practical applications. In
Sec. IV, we have taken advantage of the approximate
rotation symmetry present in many experimental situations
to decompose the Hamiltonian in spherical harmonics. The
result (88) involves eight sets of spherical coefficients that
characterize all types of Lorentz violation for a single
Dirac fermion. Table III summarizes the basic properties
of these coefficients. Their comparatively simple proper-
ties under rotation, exemplified in Eq. (90), make them
well suited to explicit analyses. The isotropic limit of the
perturbative Hamiltonian, which can be useful in some
treatments, is obtained in Eq. (91), and the corresponding
isotropic Lagrange density for operator dimensions d ¼ 3,
4, 5, 6 is given in Eq. (94) through (98).
For many practical purposes, limiting cases of the gen-

eral formalism are useful. Section V extracts the nonrela-
tivistic and ultrarelativistic cases and their isotropic limits.
The nonrelativistic Hamiltonian is given in Eq. (108),
and the corresponding coefficients are summarized in
Table IV. The ultrarelativistic Hamiltonian is presented in
Eq. (118), and Table V lists properties of its coefficients.
This section also explicitly connects the spherical decom-
position for operators of renormalizable dimension with
standard expressions for the minimal SME.
The final technical discussions in this paper concern

immediate applications of our results. In Sec. VIA, the
issue of dispersion and birefringence is revisited in the
spherical language. The dispersion relation, group velocity,
and the spin-precession rate (152) are derived in compact
forms in various limiting cases. We then address in
Sec. VI B the relationships between the present general
framework and some special field-theoretic models and
kinematical approaches in the literature. The combination
of the above results permits translation of a wide variety
of existing astrophysical bounds on isotropic Lorentz
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violation into constraints on isotropic spherical SME

coefficients, which are compiled in Table VI.
Overall, the results in this paper offer a comprehensive

theoretical framework for investigations of Lorentz and

CPT violation involving quadratic fermion operators. The

physical effects identified here provide a basis for future

experimental searches.Numerous types ofLorentz andCPT

violation are unconstrained to date, and the prospects for
exploration and the potential for discovery remain bright.

ACKNOWLEDGMENTS

This work was supported in part by the Department of
Energy under Grant No. DE-FG02-13ER42002 and by the
Indiana University Center for Spacetime Symmetries.

[1] A. A. Michelson and E.W. Morley, Am. J. Sci. s3-34, 333
(1887); Philos. Mag. 24, 449 (1887).

[2] R. J. Kennedy and E.M. Thorndike, Phys. Rev. 42, 400
(1932).

[3] H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am. 28, 215
(1938).

[4] V.W. Hughes, H.G. Robinson, and V. Beltran-Lopez,
Phys. Rev. Lett. 4, 342 (1960); R.W. P. Drever, Philos.
Mag. 6, 683 (1961).
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[33] V. A. Kostelecký and R. Potting, Gen. Relativ. Gravit. 37,
1675 (2005); Phys. Rev. D 79, 065018 (2009); S.M.
Carroll, H. Tam, and I. K. Wehus, Phys. Rev. D 80,
025020 (2009); J. L. Chkareuli, C. D. Froggatt, and H. B.
Nielsen, Nucl. Phys. B848, 498 (2011).

[34] N. Arkani-Hamed, H.-C. Cheng, M. Luty, and J. Thaler,
J. High Energy Phys. 07 (2005) 029; Q. G. Bailey and
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