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S3 models offer a low energy approach to describe the observed pattern of masses and mixing, of both

quarks and leptons. In this work, we first revisit an S3 model with only one Higgs electroweak doublet,

where the flavor symmetry must be broken in order to produce an acceptable pattern of masses and mixing

for fermions. Then, we analyze different S3 models where the flavor symmetry is preserved as an exact but

hidden symmetry of the low energy spectra after the electroweak symmetry breaking. The latter models

require the addition of two more Higgs electroweak doublets which are accommodated in an S3 doublet.

We also explore the consequences of adding a fourth Higgs electroweak doublet, thus occupying all three

irreducible representations of S3. We show how the various S3-invariant mass matrices of the different

models can reproduce the two texture zeros and nearest neighbor interaction matrix forms, which have

been found to provide a viable and universal treatment of mixing for both quarks and leptons. We also find

analytical and exact expressions for the Cabibbo-Kobayashi-Maskawa (CKM) matrix of the models in

terms of quark mass ratios. Finally, we compare the expressions of the CKM matrix of the different S3
models with the most up to date values of masses and mixing in the quark sector, via a �2 analysis. We find

that the analytical expressions we derived reproduce remarkably well the most recent experimental data of

the CKM matrix, suggesting that S3 is a symmetry of the quark sector.
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I. INTRODUCTION

The standard model (SM) has been extremely successful
in describing the fundamental interactions of elementary
particles. It has nineteen free parameters, whose value can
only be fixed through the experiment, most of which belong
to the masses of fermions and their mixing. Additionally,
the introduction of more parameters becomes necessary
when the massive nature of neutrinos is considered.

The observed mass spectrum, the mixing pattern, the
fact that there appear to be only three generations of
matter, the origin of charge-parity (CP) violation, among
other puzzles, lack an explanation within the theory and
are generically known as the flavor and CP problems
respectively (see for example [1,2]).

In the late 1960s a relation between the Cabibbo angle

and a quark mass ratio, �q12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
, was found [3,4].

Then, in the 1970s, in a series of papers [5–11], the
importance of this relation was realized and generalized
in order to relate other mixing angles to mass ratios. The
common approach in attempts to solve the flavor puzzle,
including the aforementioned relations, became the addi-
tion of a horizontal symmetry acting on family space in a
nontrivial fashion. The symmetry group which relates
families in a nontrivial way is known as the family or
flavor symmetry group. On the other hand, it was also

noticed that without adding a family symmetry, one can
introduce texture zeros in different positions of the mass
matrices to obtain concise relations between mixing angles
and mass ratios (see Refs. [1,12–16] for recent reviews).
We, as other authors, combine both approaches as a step-
ping stone to find analytical expressions for the mixing
angles as functions of the mass ratios.
The introduction in the SM of a non-Abelian discrete

family symmetry is the simplest way to relate families
nontrivially. The smallest group among these symmetries
is the permutational symmetry of three objects, S3. We
remind the reader that there are basically two types of
models based on the group S3. First, there are those models
which have only one Higgs field which is a doublet under
SUð2ÞL and a singlet under S3 [17–34]. In these models the
S3 flavor symmetry must be broken in order to produce an
acceptable pattern of mixing for fermions. Second, there is
the class of S3-invariant models in which the S3 symmetry
is preserved as an exact but hidden symmetry of the low
energy spectra after the electroweak symmetry breaking
[35–60]. The latter models require the addition of at least
two electroweak doublet Higgs fields, besides the Higgs
field of the SM. Of these three SUð2ÞL doublets, two of
them are assigned to the doublet irreducible representation
(irrep) of S3, and the third one is assigned to the singlet
one. It is also possible to add extra Abelian discrete sym-
metries, Zn, to further reduce the number of parameters.
In the past decade and the first years of the present

decade, the experimental knowledge about the magnitudes
of all nine elements of the Cabibbo-Kobayashi-Maskawa
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(CKM) quark mixing matrix, as well as the Jarlskog
rephasing invariant, have had a remarkable improvement
in precision and quality [61]. At the same time, we have
witnessed a spectacular improvement in the determination
of mixing and squared mass differences in the neutrino
sector [62,63]. At present, it is crucial for the success of a
model of quark and lepton mixing to either agree with the
experimental information with great accuracy or, better, to
predict accurately the observed mixing and mass patterns.

Here, we build various S3 models based on the two
aforementioned types, i.e. a model with the SM Higgs as
an S3 singlet and models with a total of three or four Higgs
SUð2ÞL doublets assigned to different irreducible represen-
tations of S3. We then compare the quark sector of the
models with the most up to date data on quark masses and
mixing. Since S3 models do not offer an explanation of the
value of the quark masses, in order to confront the theoreti-
cal form of the CKMmixing with the experimental data, we
need to perform a �2 fit, where the observables should be
four independent parameters of the CKM matrix, and the
parameters to be adjusted should be the quark mass ratios
and one free parameter for each type of quark (up and
down). The mass ratios are not treated as free parameters,
since we allow their values to vary within the 3� region
given by the best fit to experimental data measurements as
given in the PDG [61,64], and our computation at MZ. We
find a remarkable good quality of the �2 fits for the different
models in the allowed parameter space of each model.

In a follow-up work [65], wewill confront the correspond-
ing masses and mixing of the leptonic sector of each model
with the most up to date experimental data. It is important to
mention that our approach is at low energies, hence making
no assumption of an ultraviolet completion of the theory.
However, some of these scenarios can be embedded in grand
unified theories (see for instance Refs. [66–69]).

The present work is organized as follows. In Secs. II, III,
and IV, we present the basic ingredients of the S3 models
that we confrontwith the experimental data on quarkmasses
and mixing. In Secs. V and VI, we present the form of the
quark mass matrices in the case of one Higgs doublet and in
the cases of three and four Higgs doublets, and relate them
to two texture zeros or nearest neighbor interaction (NNI)
mass matrices. In this way, we are able to derive explicit
analytical expressions for the elements of the CKM mixing
matrix in terms of the quark mass ratios and a few free
parameters. In Sec. VII, we present the prediction of the
CKM matrix for each model. In Sec. VIII, we present a
detailed �2 analysis of the CKM matrix elements and com-
ment on the very good quality of the fit of our models to the
most recent experimental data. We conclude in Sec. IX with
some remarks and an outlook of the present work.

II. S3 AS A FAMILY SYMMETRY GROUP

S3 is the symmetry group of permutations of three
objects, which can be geometrically represented by the

different rotations and reflections that leave invariant an
equilateral triangle. It has six elements, the smallest num-
ber of elements in non-Abelian discrete groups. It has three
irreducible representations: a doublet 2, and two singlets,
1S and 1A, symmetric and antisymmetric, respectively. The
Kronecker products of the irreps are: 1S � 1S ¼ 1S, 1A �
1A ¼ 1S, 1A � 1S ¼ 1A, 1S � 2 ¼ 2, 1A � 2 ¼ 2, and 2 �
2 ¼ 1A � 1S � 2.
The only nontrivial tensor product is that of two

doublets, pT
D ¼ ðpD1; pD2Þ and qT

D ¼ ðqD1; qD2Þ, which
contains two singlets, rS and rA, and one doublet,
rTD ¼ ðrD1; rD2Þ, where
rS ¼ pD1qD1 þ pD2qD2; rA ¼ pD1qD2 � pD2qD1;

rTD ¼ ðrD1; rD2Þ ¼ ðpD1qD2 þ pD2qD1; pD1qD1 � pD2qD2Þ:
The three-dimensional real representation of S3 is not
irreducible, it can be decomposed into the direct sum of
a doublet and a singlet irrep: 3S � 2 � 1S or 3A � 2 � 1A.
So far, the experimental evidence points to the existence

of only three generations of quarks and leptons [70], and
we will work under this assumption. Prior to electroweak
symmetry breaking, the three families of quarks and lep-
tons are undistinguishable, thus they are invariant under the
permutation group of three objects. We take this as a
theoretical suggestion of the possible flavor symmetry
relating the three generations of matter. In the following
section we will discuss first the fermionic matter content
and then the Higgs field content of the different models
presented here.

III. MATTER CONTENT OF S3

The assignment of Dirac fermion families to the irre-
ducible S3 representations is suggested by the observed
mass hierarchy in each fermion sector,

mu:mc:mt � 10�6:10�3:1;

md:ms:mb � 10�4:10�2:1;

me:m�:m� � 10�5:10�2:1:

(1)

Hence, we generically assign the first two families, c f
1;ðL;RÞ

and c f
2;ðL;RÞ, to the doublet representation, 2. The third

family, c f
3;ðL;RÞ, can then be chosen to transform as a

symmetric singlet representation, 1S [60], or as an anti-
symmetric singlet representation, 1A [42,71]. Here we
consider the two possibilities and compare the differences
that arise between them. The fermions in the doublet irrep

are generically denoted by c f
D;ðL;RÞ,

c f
D;ðL;RÞ �

c f
1;ðL;RÞ

c f
2;ðL;RÞ

0@ 1A� 2; (2)

the ones in the singlet irrep by c f
S;ðL;RÞ or c

f
A;ðL;RÞ,
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c f
3;ðL;RÞ � c f

S;ðL;RÞ �1S or c f
3;ðL;RÞ � c f

A;ðL;RÞ �1A; (3)

where 1, 2, and 3 represent the family index of a left- or

right-handed fermionic field, c f
L or c f

R, respectively.
Specifically for quarks we have

c 3;L ¼ ðbL; tLÞ; c 3;R ¼ tR; or c 3;R ¼ bR;

c 1;L

c 2;L

 !
¼ ðuL; dLÞ

ðcL; sLÞ

 !
;

c 1;R

c 2;R

 !
c¼u

¼ uR

cR

 !
;

c 1;R

c 2;R

 !
c¼d

¼ dR

sR

 !
: (4)

In these expressions, ðuL; dLÞ and ðcL; sLÞ are doublets
under SUð2ÞL, while uR, cR, dR, and sR are SUð2ÞL
singlets.

IV. HIGGS FIELD CONTENT

A state compatible with a SM-like Higgs boson has
recently been observed at the LHC [72–76]. We do not
have yet any experimental information about the scalar
sector of the SM at higher energies, thus it is natural to
ponder what are the consequences of having more than one
Higgs doublet in extensions of the SM (without SUSY).
We thus explore here various scenarios with different
numbers of Higgs SUð2ÞL doublets.

There are many possibilities to form S3 invariant scalars
with the fermions in the S3 representations of Eqs. (2) and
(3), and the Higgs fields assigned as

HD � H1

H2

 !
� 2; HS � 1S; HA � 1A: (5)

The cases we consider are the following:
(I) The SM with addition of an S3 family symmetry,

where the SUð2ÞL doublet Higgs field is a singlet
under S3. This model can only explain fermion
masses and mixing angles if the S3 symmetry is
broken [17,20–29].

(II) An S3-invariant extension of the SM with three
Higgs SUð2ÞL doublets, either as HD and HS or as
HD and HA [35–60]. The choice of either the sym-
metric or the antisymmetric singlet will lead to dif-
ferent forms of the mass matrices. Here we consider
only the invariant scalars that lead to forms of the
mass matrices that are able to reproduce the mea-
sured values of the CKMmatrix, namely the Fritzsch
texture with two zeros form [77], and the nearest
neighbor interaction (NNI) one [11,78–81].

(III) An S3-invariant extension of the SM with four
Higgs SUð2ÞL doublets, which are assigned to all
three irreducible representations of S3: HDW , HSW ,
and HAW [40].

In Sec. V we discuss the general features of case I, a more
extensive discussion of this model can be found in
Ref. [29]. In Sec. VI we discuss cases II and III.

V. MODELS WITH ONE HIGGS DOUBLET

Models with S3 flavor symmetry and one Higgs doublet
have been thoroughly studied in the literature [17–34]. In
this case, the Higgs boson of the SM is an SUð2ÞL doublet
and, since it has no flavor, it is in a singlet representation of
S3. Before spontaneous symmetry breaking the quarks
and leptons are massless particles, and the left- and
right-handed spinors transform independently as

c i
LðxÞ ! c i0

LðxÞ ¼ gc i
LðxÞ (6)

and

c i
RðxÞ ! c i0

RðxÞ ¼ ~gc i
RðxÞ; i ¼ u; d; l; �D; (7)

where g 2 S3L and ~g 2 S3R. Thus, the flavor symmetry of
the Yukawa Lagrangian of three families of quarks and
leptons is the group S3L � S3R, whose elements are the
pairs ðg; ~gÞ. However, the charged currents J�� must be

invariant under transformations of the flavor group,
whereby the condition g ¼ ~g must be satisfied. In other
words, the charged currents, J�� , are invariant under flavor
transformations, if all fermionic fields transform with the
same flavor group S3L � S3R and with the same group
element ðg;gÞ. The pair ðg;gÞ is identified with the single

element g 2 S3L and the set of pairs ðg;gÞ is called Sdiag3 .

Hence, after electroweak symmetry breaking, the Yukawa
terms in the Lagrangian and the fermionic mass terms
obtained from the Yukawa couplings with the Higgs field
must be invariant under the action of the flavor group

S
diag
3 � S3L � S3R.

Then, under the action of the symmetry group S
diag
3 the

mass terms in the Lagrangian transform as [17,21,29]

LY ! L0
Y ¼ �c u

LM
0
uc

u
R þ �c d

LM
0
dc

d
R þ �c �D

L M0
�D
c �D

R

þ �c l
LM

0
lc

l
R þ H:c:; (8)

where M0
i ¼ gyMig. Thus, from the invariance of the

Yukawa LagrangianLY under the action of the S
diag
3 group,

the condition M0
i ¼ Mi must be satisfied, i.e. the Yukawa

sector of the standard model is invariant under the family
symmetry S3 if the mass matrices commute with all
elements of the group S3. Thus, in the electroweak basis

the corresponding mass matrices MðWÞ
i3 are invariant with

respect to any permutation of the family (columns) and
flavor (rows) indices and, in consequence, all entries in

MðWÞ
i are equal,

MðWÞ
i3 ¼ miffiffiffi

3
p

1 1 1

1 1 1

1 1 1

0BB@
1CCA

W

: (9)
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The fermionic mass spectrum in the standard model with

an exact S
diag
3 symmetry is obtained by diagonalizingMðWÞ

i3

in Eq. (9). A change of basis, from the electroweak basis to
a symmetry adapted or hierarchical basis, is made by
means of the unitary matrix U that diagonalizes the matrix

MðWÞ
i3 ,

MðHÞ
i3 ¼ UyMðWÞ

i3 U; (10)

where

U ¼ 1ffiffiffi
6

p

ffiffiffi
3

p
1

ffiffiffi
2

p

� ffiffiffi
3

p
1

ffiffiffi
2

p

0 �2
ffiffiffi
2

p

0BB@
1CCA and

MðHÞ
i3 ¼ mi3

0 0 0

0 0 0

0 0 1� �i

0BB@
1CCA

H

:

(11)

Therefore, under an exact S3L � S3R symmetry, the
mass spectrum for both the quark sector and the leptonic
sector has one massive particle and a pair of massless
particles [17].

Since the Higgs field is invariant under flavor trans-
formations, it is naturally assigned to an S3 flavor singlet.
Under the condition of exact invariance of the Yukawa
Lagrangian under S3 flavor transformations, the Higgs
can only couple with the S3-singlet components of the
fermionic fields and, in consequence, it is only the
S3-singlet components of the fermionic fields that acquire
mass. Since the third generation is the heaviest, it is also
natural to assign the fermionic fields in the third generation
to the singlet irrep of S3.

In order to generate masses for all quarks and leptons,
the S3 symmetry should be broken. Realistic Dirac fermion
mass matrices could result from the flavor permutational
symmetry S3L � S3R and its spontaneous or explicit
breaking according to the chain [17,20]:

S3L � S3R 	 Sdiag3 	 Sdiag2 :

The first two generations are then assigned to the doublet
irrep of S3, and the third one to the symmetric singlet one.

In the electroweak basis the masses for the first two
families are generated by introducing the following terms,
which break explicitly the S3 symmetry:

MðWÞ
i2 ¼ mi3

3

�i �i �i

�i �i �i

�i �i �2�i

0BB@
1CCA

W

and

MðWÞ
i1 ¼ mi3ffiffiffi

3
p

Ai1 iAi2 �Ai1 � iAi2

�iAi2 �Ai1 Ai1 þ iAi2

�Ai1 þ iAi2 Ai1 � iAi2 0

0BB@
1CCA

W

:

(12)

In the matrix MðWÞ
i2 , �i and �i are real numbers that

parametrize the most general form of a matrix invariant
under the permutations of the first two columns or rows. In

MðWÞ
i1 , Ai1 and Ai2 are also real parameters, through which it

is possible to construct a doublet complex representation of

Sdiag3 , which allows us to have a CP-violating phase in the

mixing matrix [17]. The term MðWÞ
i2 breaks the permuta-

tional symmetry S3L � S3R down to Sdiag3 and mixes the

singlet and doublet representations of S3, while the term

MðWÞ
i1 transforms as the mixed symmetry term of the dou-

blet complex tensorial representation of the Sdiag3 diagonal

subgroup of S3L � S3R. Hence, once the flavor symmetry is
broken, the mass matrix will be the sum of the three

MðWÞ
i;ð1;2;3Þ, Eqs. (10)–(12), i.e.

MðWÞ
i ¼ MðWÞ

i1 þMðWÞ
i2 þMðWÞ

i3 : (13)

Once the explicit assignment of particles to the irreduc-
ible representations of S3 is made, and the full mass matrix
after the S3 breaking is found, it is convenient to make a
change of basis from the electroweak basis to a symmetry
adapted or hierarchical basis by means of the unitary

matrix that diagonalizes the matrixMðWÞ
i . In the symmetry

adapted (hierarchical) basis, the mass matrix MðHÞ
i takes

the form [17]

MðHÞ
i ¼ mi3

0 Ai 0

A

i Bi Ci

0 Ci Di

0BB@
1CCA

H

; i ¼ u; d; l; �D; (14)

where Ai ¼ jAijei	i , Bi ¼ �4i þ
i, and Di ¼ 1� 
i.
From the strong hierarchy of the masses of the Dirac
fermions, mi3 � mi2 >mi1, we expect 1� 
i to be very
close to unity.

VI. MODELS WITH THREE OR FOUR
HIGGS DOUBLETS

In order to generate masses for the fermions in all
three families without breaking the S3 flavor symmetry
explicitly, the Higgs sector of the theory has to be
extended by adding two or three electroweak Higgs
doublets. Thus, the concept of flavor is extended to the
Higgs sector.
Models with three Higgs doublets and S3 flavor sym-

metry have been studied extensively and received consid-
erable attention recently [35–60]. In particular, some of us
proposed an S3 model which, besides the matter content
of the standard model, has two extra Higgs doublets and
three right-handed neutrinos [45], and which we showed
to be compatible with quark masses and mixing data.
This model has also been very successful in predicting
correctly the neutrino mixing angles [52,54,55,60]. With
this knowledge, it is naturally interesting to make a more
systematic study of all the S3 models with three Higgs
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doublets. Moreover, if we want to use all the irreps at
our disposal it is also interesting to consider four
Higgs doublet models, where we make use of both the
symmetric and antisymmetric singlet irreducible repre-
sentations [40].

A. Four Higgs doublets

To make the analysis as general as possible, we first
write all the possible Yukawa interactions which arise
with the matter and Higgs content of Eqs. (2), (3), and
(5). That is, we consider the case where we have four
Higgs doublets, two of them in the doublet irrep of S3,
one in the symmetric singlet and another one in the
antisymmetric singlet irrep. Thus, this generality also
implies different assignments of the left- and right-handed
components of the third family of fermions to the differ-
ent S3 singlet representations, i.e. to the symmetric singlet
or antisymmetric singlet irreps. The results for the four
Higgs doublet models built this way can be found in
Table I.

1. Four Higgs doublet models with the third family in the
symmetric singlet irrep (cases A and A0 of Table I)
The first general case we will treat here corresponds to

the first and second rows, A and A0 respectively, of Table I,
and has both the left- and right-handed components of the
third fermion family assigned to the symmetric singlet S3
representation, 1S, besides the four Higgs fields occupying
all the four irreducible representations of S3, as explained

before. We denote the third fermion family by c f
S;L and

c f
S;R, and the first two by c f

D;L and c f
D;R, which we recall

transform as the doublet of S3, 2, where we choose the
doublet representation to be a column vector,

c f
D;ðL;RÞ ¼

c f
1;ðL;RÞ

c f
2;ðL;RÞ

0@ 1A: (15)

The most general S3-invariant Yukawa Lagrangian for a
Dirac fermion coupling to four Higgs fields with the above
assignments is given by

�LYf
¼ Yf

1 ð �c f
S;Lc

f
S;RHSÞþ 1ffiffiffi

2
p Yf

2 ð �c f
1;Lc

f
1;Rþ �c f

2;Lc
f
2;RÞHSþ 1

2
Yf
3 ½ð �c f

1;LH2þ �c f
2;LH1Þc f

1;Rþð �c f
1;LH1� �c f

2;LH2Þc f
2;R�

þ 1ffiffiffi
2

p Yf
4 ð �c f

1;Lc
f
2;R� �c f

2;Lc
f
1;RÞHAþ 1ffiffiffi

2
p Yf

5 ð �c f
1;LH1þ �c f

2;LH2Þc f
S;Rþ

1ffiffiffi
2

p Yf
6 ½ �c f

S;LðH1c
f
1;RþH2c

f
2;RÞ�þH:c:;

f¼ d;e; (16)

where Yf
i are complex Yukawa couplings. When writing

the Yukawa Lagrangian, for up quarks or Dirac neutrinos,
the Higgs fields should be replaced by the respective
conjugate Higgs fields, HiW ! i�2H



iW , i ¼ 1, 2.

After electroweak symmetry breaking, the Higgs SUð2ÞL
doublets acquire vacuum expectation values (vev’s), which
we choose to be real so as not to break CP explicitly,

w1 � h0jH1j0i; w2 � h0jH2j0i;
vS � h0jHSj0i; and vA � h0jHAj0i;

(17)

giving masses to all fermions of the SM. The generic
S3-invariant mass matrix for all Dirac fermions is written as

Mf
S3
¼

ffiffiffi
2

p
Yf
2vSþYf

3w2 Yf
3w1þ

ffiffiffi
2

p
Yf
4vA

ffiffiffi
2

p
Yf
5w1

Yf
3w1�

ffiffiffi
2

p
Yf
4vA

ffiffiffi
2

p
Yf
2vS�Yf

3w2

ffiffiffi
2

p
Yf
5w2ffiffiffi

2
p

Yf
6w1

ffiffiffi
2

p
Yf
6w2 2Yf

1vS

0BBB@
1CCCA;
(18)

whose eigenvalues are mf
i , i ¼ 1, 2, 3. We define the

notation

�f
1 �

ffiffiffi
2

p
Yf
2vS; �f

2 �Yf
3w2; �f

3 �2Yf
1vS; �f

4 �Yf
3w1;

�f
5 �

ffiffiffi
2

p
Yf
4vA; �f

6 �
ffiffiffi
2

p
Yf
5w1; �f

7 �
ffiffiffi
2

p
Yf
5w2;

�f
8 �

ffiffiffi
2

p
Yf
6w1; �f

9 �
ffiffiffi
2

p
Yf
6w2; �f

3 �2Yf
1vA; (19)

which will allow us to express the mass matrices in a
concise way, focusing on the number of effective parame-
ters entering into each matrix.
The first column of Table I denotes the labeling we use,

while the third one gives the form of the mass matrices
after the electroweak symmetry breaking. Note that for
these matrices, the elements (1, 1), (1, 3), and (3, 1) are
not different from zero. The fourth column, subcase A,

corresponds to a matrix cMf
Hier, where we have rotated the

matrix to a basis where the entries (1, 3) and (3, 1) vanish

and we have subtracted the element Mf
Hier½1; 1�, which

will be denoted by �f
0 , from the diagonal

Mf
S3

! Mf
Hier � Rð�Þ12Mf

S3
Rð�ÞT12

¼
�f

0 af 0

af
 bf cf

0 cf
 df

0BB@
1CCA

¼ �f
013
3 þ cMf

Hier; (20)

where af, bf, cf, df, and�f
0 are shorthand for the entries in

the rotated mass matrix Mf
S3
. Now, the matrix cMf

Hier has

two texture zeros,
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cMf
Hier ¼

0 af 0

af
 b0f cf

0 cf
 d0f

0BB@
1CCA¼

0 af 0

af
 bf ��f
0 cf

0 cf
 df ��f
0

0BB@
1CCA;

(21)

and eigenvalues denoted as �f
i , i ¼ 1, 2, 3. Then, the physi-

cal massesmf
i are related to the shifted masses�f

i simply by

mf
i ¼ �f

0 þ �f
i : (22)

Both transformations, the shift and the rotation, are
unobservable in the quark mixing sector, as long as we
rotate both matrices, in the u and d sectors, with the same
angle �.1

The vanishing of the entries (1, 3) and (3, 1) in the

rotated mass matrix Mf
Hier is only possible if the rotation

angle, �, and the real expectation values of the Higgs fields

TABLE I. Mass matrices of S3-invariant family models with four Higgs SUð2ÞL doublets which occupy all the S3 irreducible

representations, H A �H S �H D. We have denoted �f
1 � ffiffiffi

2
p

Yf
2vS, �

f
2 � Yf

3w2, �
f
3 � 2Yf

1vS, �
f
4 � Yf

3w1, �
f
5 � ffiffiffi

2
p

Yf
4vA, �

f
6 �ffiffiffi

2
p

Yf
5w1, �

f
7 � ffiffiffi

2
p

Yf
5w2, �

f
8 � ffiffiffi

2
p

Yf
6w1, �

f
9 � ffiffiffi

2
p

Yf
6w2, and �

f
3 � 2Yf

1vA. In all cases it is assumed that the mass eigenvalues follow

a normal ordering in terms of magnitudes. In textures type C and D, Xij denotes the entry ði; jÞ in X, where X is either a type A or B
texture, and �f has to be replaced by �f in X3;3. We have denoted c ¼ cos� and s ¼ sin �. The only choices of S3 assignments that

may produce a viable model are where both left- and right-handed parts share the same assignment, as the first and second case. The
primed matrix elements, A0

ij or B
0
ij, are particular cases of the unprimed ones, Aij or Bij, with � ¼ �=6 or � ¼ �=3, respectively.

4HDM: GSM � S3
Name c f

L c f
R Mass matrix Possible mass textures

A 2, 1S 2, 1S
0BBB@
�f

1 þ�f
2 �f

4 þ�f
5 �f

6

�f
4 ��f

5 �f
1 ��f

2 �f
7

�f
8 �f

9 �f
3

1CCCA
0BBB@

0 �f
2scð3� t2Þ þ�f

5 0

�f
2scð3� t2Þ ��f

5 �2�f
2c

2ð1� 3t2Þ �f
7=c

0 �f

7 =c �f

3 ��f
1 ��f

2c
2ð1� 3t2Þ

1CCCA
A0 0BBB@

0 2ffiffi
3

p �f
2 þ�f

5 0
2ffiffi
3

p �f
2 ��f

5 0 2ffiffi
3

p �f
7

0 2ffiffi
3

p �f
8 �f

3 ��f
1

1CCCA
B 2, 1A 2, 1A

0BBB@
�f

1 þ�f
2 �f

4 þ�f
5 �f

7

�f
4 ��f

5 �f
1 ��f

2 ��f
6

�f
9 ��f

8 �f
3

1CCCA
0BBB@

0 ��f
4c

2ð1� 3t2Þ þ�f
5 0

��f
4c

2ð1� 3t2Þ ��f
5 2�f

4csð3� t2Þ ��f
6=c

0 ��f

6 =c �f

3 ��f
1 þ�f

4scð3� t2Þ

1CCCA
B0 0BBB@

0 �2�f
4 þ�f

5 0

�2�f
4 ��f

5 0 �2�f
6

0 �2�f
8 �f

3 ��f
1

1CCCA
C 2, 1A 2, 1S

0BBB@
�f

1 þ�f
2 �f

4 þ�f
5 �f

6

�f
4 ��f

5 �f
1 ��f

2 �f
7

�f
9 ��f

8 �f
3

1CCCA
0BBB@ 0 A12 0
A21 A22 A23

A32 0 A33ð�f
3 ! �f

3Þ

1CCCA,
0BBB@ 0 B12 B23

B21 B22 0
0 B32 B33ð�f

3 ! �f
3Þ

1CCCA
C0 0BBB@

0 A0
12 0

A0
21 0 A0

23

A0
32 0 A0

33ð�f
3 ! �f

3Þ

1CCCA,
0BBB@

0 B0
12 B0

23

B0
21 0 0

0 B0
32 B0

33ð�f
3 ! �f

3Þ

1CCCA
D 2, 1S 2, 1A

0BBB@
�f

1 þ�f
2 �f

4 þ�f
5 �f

7

�f
4 ��f

5 �f
1 ��f

2 ��f
6

�f
8 �f

9 �f
3

1CCCA
0BBB@ 0 A12 A23

A21 A22 0
0 A32 A33ð�f

3 ! �f
3Þ

1CCCA,
0BBB@ 0 B12 0
B21 B22 B23

B32 0 B33ð�f
3 ! �f

3Þ

1CCCA
D0 0BBB@

0 A0
12 A0

23

A0
21 0 0

0 A0
32 A0

33ð�f
3 ! �f

3Þ

1CCCA,
0BBB@

0 B0
12 0

B0
21 0 B0

23

B0
32 0 B0

33ð�f
3 ! �f

3Þ

1CCCA

1The details of the shift and the rotation are given in Sec. VIC
and in the Appendix.
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in the doublet irrep, w1 and w2, see Eq. (17), are related by
the condition

tan� ¼ w1=w2: (23)

The diagonalizing matrices that enter in the definition of
the quark mixing matrix, VCKM, may be obtained from the

diagonalization of cMf
Hier instead ofM

f
S3
. Since there are no

right-handed currents in these models, cMf
Hier may be con-

strained to be Hermitian without any loss of generality [1].
It is interesting to notice that, in order to reproduce the

nearest neighbor interaction (NNI) mass matrix form
[82,83], it is enough to fix the rotation angle in Eq. (20)
at � ¼ �=6, no Hermiticity of the mass matrix is required.
This is also important since the NNI mass matrix form has
been shown to provide a good description of the mixing
angles in a unified treatment for quarks and leptons
[29,84]. This is the subcase A0 in Table I.

This shows that the requirement of invariance under the S3
flavor symmetry group generates the phenomenologically

successful Fritzsch-like mass matrices with two texture
zeros form, as well as the equally successful NNI form.
These are the cases B and B0 in Table I.

2. Four Higgs doublet models with the third family
in the antisymmetric irrep

Besides the assignment described above, where both the
left- and right-handed components of the third fermion
family are assigned to the symmetric singlet S3 representa-
tion, 1S, we can distinguish three other general cases for the
four Higgs doublet models. These three cases are distin-
guished by the assignment of the left- and right-handed
components of the third fermion family to the singlet
representations, 1S and 1A. The most general S3-invariant
Yukawa Lagrangians for the three cases are as follows.
Third family in the antisymmetric representation

(cases B and B0 in Table I).—For this case, both left- and

right-handed components of the third family, �c f
L and c f

R,
transform as 1A:

�LYf
¼ Yf

1 ð �c f
A;Lc

f
A;RHSÞþ 1ffiffiffi

2
p Yf

2 ð �c f
1;Lc

f
1;R þ �c f

2;Lc
f
2;RÞHS þ 1

2
Yf
3 ½ð �c f

1;LH2 þ �c f
2;LH1Þc f

1;R þð �c f
1;LH1 � �c f

2;LH2Þc f
2;R�

þ 1ffiffiffi
2

p Yf
4 ð �c f

1;Lc
f
2;R � �c f

2;Lc
f
1;RÞHAþ 1ffiffiffi

2
p Yf

5 ð �c f
1;LH2 � �c f

2;LH1Þc f
A;Rþ

1ffiffiffi
2

p Yf
6 ½ �c f

A;LðH1c
f
2;R�H2c

f
1;RÞ�þH:c:;

f¼ d;e: (24)

Third family in mixed singlet irreps: c f
L transforms as 1S and c f

R transforms as 1A (cases C and C0 in Table I).—

�LYf
¼ Yf

1 ð �c f
S;Lc

f
A;RHAÞþ 1ffiffiffi

2
p Yf

2 ð �c f
1;Lc

f
1;Rþ �c f

2;Lc
f
2;RÞHSþ 1

2
Yf
3 ½ð �c f

1;LH2þ �c f
2;LH1Þc f

1;Rþð �c f
1;LH1� �c f

2;LH2Þc f
2;R�

þ 1ffiffiffi
2

p Yf
4 ð �c f

1;Lc
f
2;R� �c f

2;Lc
f
1;RÞHAþ 1ffiffiffi

2
p Yf

5 ð �c f
1;LH2� �c f

2;LH1Þc f
A;Rþ

1ffiffiffi
2

p Yf
6 ½ �c f

S;LðH1c
f
1;RþH2c

f
2;RÞ�þH:c:;

f¼ d;e: (25)

Third family in mixed singlet irreps: c f
L transforms as 1A and c f

R transforms as 1S (cases D and D0 in Table I).—

�LYf
¼ Yf

1 ð �c f
A;Lc

f
S;RHAÞþ 1ffiffiffi

2
p Yf

2 ð �c f
1;Lc

f
1;R þ �c f

2;Lc
f
2;RÞHS þ 1

2
Yf
3 ½ð �c f

1;LH2 þ �c f
2;LH1Þc f

1R þð �c f
1;LH1 � �c f

2;LH2Þc f
2;R�

þ 1ffiffiffi
2

p Yf
4 ð �c f

1;Lc
f
2;R � �c f

2;Lc
f
1;RÞHAþ 1ffiffiffi

2
p Yf

5 ð �c f
1;LH1 þ �c f

2;LH2Þc f
S;Rþ

1ffiffiffi
2

p Yf
6 ½ �c f

A;LðH1c
f
2;R�H2c

f
1;RÞ�þH:c:;

f¼ d;e; (26)

where in the three cases shown here Yf
i are complexYukawa

couplings. The Yukawa Lagrangian, for up quarks or Dirac
neutrinos needs the Higgs fields to be replaced by the
respective conjugate Higgs fields, Hi ! i�2H



i , i ¼ 1, 2.

B. Three Higgs doublets

Following the same procedure outlined for the four
Higgs doublet models, the different versions of the three

Higgs doublet models can be obtained. In these models,
two Higgs fields are in the doublet irrep of S3 and the third
one is either in the symmetric singlet or in the antisym-
metric singlet irrep. Then, both the left and right compo-
nents of the third family can be assigned to either the
symmetric or antisymmetric singlet irrep, or one compo-
nent is assigned to the symmetric and the other to the
antisymmetric singlet irrep. The first two fermionic fami-
lies are always in the doublet irrep. Tables II and III show
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the mass matrices obtained in models with three Higgs
doublets.

The three Higgs doublet models may be obtained
as special cases of the four Higgs doublet ones. For in-
stance, Table II may be easily obtained by considering
vA ¼ 0 in cases A, A0, B, and B0 of Tables I and III by
considering vS ¼ 0 in cases C, C0, D, and D0 of Table I. It
can be seen from these tables that the requirement of
invariance under the S3 flavor symmetry group generates

the phenomenologically successful Fritzsch-like mass
matrices with two texture zeros form and the equally
successful NNI form.
Third Higgs in the antisymmetric singlet HS, and third

fermion family in the symmetric singlet or in the antisym-
metric singlet irrep (cases A, A0, B, and B0 in Table II).—
When the left- and the right-handed parts of the third
fermion family are assigned to different singlet representa-
tions of S3, i.e. one symmetric and the other antisymmetric,

TABLE II. Mass matrices in S3 family models with three Higgs SUð2ÞL doublets: H1 and H2, which occupy the S3 irreducible
representation 2, and HS, which transforms as 1S for the cases when both the left- and right-handed fermion fields are in the same

assignment. The mass matrices shown here follow a normal ordering of their mass eigenvalues ðmf
1 ; m

f
2 ; m

f
3Þ. We have denoted

s ¼ sin �, c ¼ cos� and t ¼ tan �. The third column of this table corresponds to the general case, while the fourth column to a case
where we have rotated the matrix to a basis where the elements (1, 1), (1, 3) and (3, 1) vanish. The primed cases, A0 or B0, are particular
cases of the unprimed ones, A or B, with � ¼ �=6 or � ¼ �=3, respectively.

3HDM: GSM � S3
c f

L c f
R Mass matrix Possible mass textures

A 2, 1S 2, 1S
0B@�f

1 þ�f
2 �f

4 �f
6

�f
4 �f

1 ��f
2 �f

7

�f
8 �f

9 �f
3

1CA
0B@ 0 �f

2scð3� t2Þ 0

�f
2scð3� t2Þ �2�f

2c
2ð1� 3t2Þ �f

7=c

0 �f

7 =c �f

3 ��f
1 ��f

2c
2ð1� 3t2Þ

1CA
A0 0B@ 0 2ffiffi

3
p �f

2 0
2ffiffi
3

p �f
2 0 2ffiffi

3
p �f

7

0 2ffiffi
3

p �f
9 �f

3 ��f
1

1CA
B 2, 1A 2, 1A

0B@�f
1 þ�f

2 �f
4 �f

7

�f
4 �f

1 ��f
2 ��f

6

��f
9 �f

8 �f
3

1CA
0B@ 0 ��f

4c
2ð1� 3t2Þ 0

��f
4c

2ð1� 3t2Þ 2�f
4scð3� t2Þ ��f

6=c

0 ��f

6 =c �f

3 ��f
1 þ j�f

4scð3� t2Þ

1CA
B0 0B@ 0 �2�f

4 0

�2�f
4 0 �2�f

6

0 2�f
8 �f

3 ��f
1

1CA

TABLE III. Mass matrices in S3-invariant family models with three Higgs SUð2ÞL doublets: H1 and H2 occupy the S3 irreducible
representation 2, andHA, transforms as 1A. We consider the cases of having the left and right parts of the fermion fields assigned one to
the symmetric and the other to the antisymmetric single representations of S3, since only these combinations give rise to a nonvanishing
(3, 3) entry in the mass matrix. In all cases it is assumed that the mass eigenvalues follow a normal ordering in terms of magnitudes.
In here, Xij denotes the entry ði; jÞ in X, where X is either a type A or B texture from Table II, and �f has to be replaced by �f in X3;3.

The primed matrix elements, A0
ij or B

0
ij, are particular cases of the unprimed ones, Aij or Bij, with � ¼ �=6 or � ¼ �=3, respectively.

3HDM: GSM � S3
Name c f

L c f
R Mass matrix Possible mass textures

C 2, 1A 2, 1S
0B@ �f

2 �f
4 þ�f

5 �f
6

�f
4 ��f

5 ��f
2 �f

7

��f
9 �f

8 �f
3

1CA
0B@ 0 A12 0

A21 A22 A23

�A32 0 A33ð�f
3 ! �f

3Þ

1CA,
0B@ 0 B12 �B23

B21 B22 0
0 B32 B33ð�f

3 ! �f
3Þ

1CA
C0 0B@ 0 A0

12 0
A0
21 0 A0

23

�A0
32 0 A0

33ð�f
3 ! �f

3Þ

1CA,
0B@ 0 B0

12 �B0
23

B0
21 0 0

0 B0
32 B0

33ð�f
3 ! �f

3Þ

1CA
D 2, 1S 2, 1A

0B@ �f
2 �f

4 þ�f
5 �f

7

�f
4 ��f

5 ��f
2 ��f

6

�f
8 �f

9 �f
3

1CA
0B@ 0 A12 A23

A21 A22 0
0 A32 A33ð�f

3 ! �f
3Þ

1CA,
0B@ 0 B12 0
B21 B22 B23

B32 0 B33ð�f
3 ! �f

3Þ

1CA
D0 0B@ 0 A0

12 A0
23

A0
21 0 0

0 A0
32 A0

33ð�f
3 ! �f

3Þ

1CA,
0B@ 0 B0

12 0
B0
21 0 B0

23

B0
32 0 B0

33ð�f
3 ! �f

3Þ

1CA
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and are coupled to a Higgs field in the singlet symmetric
representation of S3, its Yukawa coupling vanishes. Hence,
this possibility is not feasible for a model of fermionmasses
precisely because the masses of the third fermion family
ought to be the largest ones. Due to this fact if we choose a
Higgs in the singlet symmetric representation of S3, both
left- and right-handed parts of the third family of fermions,

c f
ðL;RÞ, must be chosen to transform the sameway, i.e. either

as the symmetric or as the antisymmetric singlet represen-
tation of S3. We can obtain the form of the mass matrices by
taking the limit ofHA ! 0 in Eqs. (16)–(18) and (20)–(24),
for the cases of either both left- and right-handed parts
of the third fermion family, c f, in the symmetric, or
antisymmetric singlet representation of S3, respectively.

The first line of Table II corresponds to the case where
both the left- and right-handed parts of the third family
are in the symmetric singlet representation of S3, 1S.
The second line corresponds to the case where both the
left- and right-handed parts of the third family are in the
antisymmetric singlet representation of S3, 1A.

Third Higgs in the antisymmetric singlet HA, and third
family in mixed singlet irreps (cases C, C0, D, and D0 in
Table III).—As mentioned before, when the left- and
right-handed parts of the third generation fermion fields
are assigned to mixed singlet irreps of S3, i.e. one to the
symmetric and the other one to the antisymmetric singlet
irrep, the Higgs in the singlet representation of S3 should
be assigned to the antisymmetric singlet of S3 to form a
nonvanishing Yukawa coupling.

The procedure we follow is the same as outlined in the
previous case. The form of the resulting mass matrices is
shown in the third column of Table III. The form that these
matrices take after a transformation to a basis where some
of its elements are zero is shown in the fourth column of the
same Table. The particular cases when the rotation angle is
�=6, denoted as C0 and D0 correspond to the second and
fourth row of Table III.

1. Effective number of parameters

Pakvasa and Sugawara [35] analyzed for the first time
the Higgs potential involving two Higgs fields in the dou-
blet irrep of S3 and a third one in the symmetric singlet
irrep. They found an accidental S02 symmetry at the mini-
mum if one requires w1 ¼ w2, which in turn implies the
following equalities:

�f
2 ¼ �f

4 ; �f
6 ¼ �f

7 ; �f
8 ¼ �f

9 ; (27)

reducing the number of parameters. The corresponding
mass matrices thus reduce to the cases of Table IV, where
we have written down the effective number of free parame-
ters involved in each sector. The form of the matrices of the
fourth columns of Tables II and III is independent of this
assumption. Here, by effective free parameters wemean the
independent real parameters to be adjusted on a�2 analysis.

Hence, the counting is performed by considering that each
matrix has only a single independent phase plus the number
of absolute magnitudes of the complex free parameters.
Comparing the number of effective free parameters with
the number of real positive parameters in the general case,

�f
1 ; �f

2 ; �f
3 ; j�f

7j; � and arg ½�f
7�; (28)

we find they are equal, since in both cases the submatrices
formed by the elements (1, 1), (1, 2), (2, 1), and (2, 2) are
parametrized by only two different parameters. Since these
parameters are physically irrelevant, we conclude that from
the point of view of the quarkmassmatrices, the assumption
w1 ¼ w2 yields the same result as assuming that w1 and w2

are related through Eq. (23). In the cases AðA0Þ and BðB0Þ of
Table II we notice that after reparametrizing the mass
matrices in terms of their eigenvalues, the resulting expres-
sions for the entries in the CKMmixing matrix expressed in
terms of the quarkmasses are the same. Therefore, the quark
mixing is insensitive to whether the assignment of the third
family is done to the symmetric or antisymmetric singlet.
Both cases will lead to the same result.
In the case of four Higgs doublets, all terms in Eqs. (16)

and (24)–(26) should be present. We have identified the
transformations that yield (a) a Hermitian matrix with
vanishing elements (1, 3), (3, 1), and (1, 1), and (b) a
NNI matrix form. Now, taking into account all terms in
Eqs. (20) and (21), all the possible forms of the mass
matrices that we obtain appear in Table I.

C. Diagonalization procedure

We proceed as in Ref. [29], where a general matrix with
two texture zeros, representing mass matrices of the basic
S3 models,

M ¼
0 a 0

a
 b c

0 c
 d

0BB@
1CCA; (29)

was diagonalized. However, the models of cases II and III
have a nonzero entry in the position (1, 1). In order to take

TABLE IV. Form of the mass matrices for the cases of Table II
where we have assumed w1 ¼ w2. This corresponds to the case
where the vacuum of the spontaneous symmetry breaking of the
EW
 S3 theory has an accidental S02 symmetry.

Name Mass matrix form

No. of effective

real free parameters

A
0B@�f

1 þ�f
2 �f

2 �f
6

�f
2 �f

1 ��f
2 �f

6

�f
8 �f

8 �f
3

1CA 6

B
0B@�f

1 þ�f
2 �f

2 �f
6

�f
2 �f

1 ��f
2 ��f

6

��f
8 �f

8 �f
3

1CA 6
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these models to the form of Eq. (29), we just make a simple
shift as follows:

Mf
Hier ¼ �f

013
3 þ cMf
Hier: (30)

As a starting step in the diagonalization of the matrices

Mf
Hier, we write the above shown Hermitian matrix in

polar form in terms of a real symmetric matrix �Mf
Hier

and a diagonal matrix of phases,

P f � diag½1; ei	1f ; eið	1fþ	2fÞ�; (31)

�Mf
Hier � P y

f

cMf
Hier

�3

P f

¼ P y
f

0 Af 0

Af
 Bf Cf

0 Cf
 Df

0BB@
1CCAP f

¼
0 jAfj 0

jAfj Bf jCfj
0 jCfj Df

0BB@
1CCA; (32)

where the phase 	1f is fixed by 	1f ¼ arctan ðj�f
5j=j�f

1jÞ,
and the phase 	2f, remains a real free parameter. Then, as

usual, the mass matrix �Mf
Hier may be brought to a diagonal

form by means of an orthogonal transformation,

�Mf
Hier ¼ Ofdiag½~�f

1 ;�~�f
2 ; 1�OT

f ; (33)

where ~�f
i � �f

i =�
f
3 are the corresponding real eigenvalues

of �Mf
Hier and Of is a real orthogonal matrix. Hence, our

unitary matrix, which takes us from the hierarchical basis

to the basis where the matrix �Mf
Hier is diagonal, is

Uf ¼ OT
fP f: (34)

We follow the procedure of Ref. [29]. Using the three

invariants of the generic real mass matrix �Mf
Hier,

Tr½ �Mf
Hier� ¼ ~�f

1 � ~�f
2 þ 1; Det½ �Mf

Hier� ¼ �~�f
1 ~�

f
2 ;

Tr½ð �Mf
HierÞ2� ¼ ð~�f

1Þ2 þ ð~�f
2Þ2 þ 1; (35)

its parameters, jAfj, Bf, jCfj, and Df may be expressed in

terms of the eigenvalues, ~�f
i ,

jAfj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�f
1 ~�

f
2

Df� ~�f
0

s
;

Bf� ~�0 ¼ 1þ ~�f
1 � ~�f

2 �ðDf� ~�f
0Þ;

jCfj2 ¼ 1�ðDf� ~�f
0Þ

Df� ~�f
0

ðDf� ~�f
0 � ~�f

1ÞðDf� ~�f
0 � ~�f

2Þ;

(36)

wherewe have defined ~�f
0��f

0=�
f
3 . To simplify the notation,

we define the parameter 
f through the following relation:


f � 1� ðDf � ~�0Þ; (37)

which indeed, together with Eq. (36), allows us to write the

mass matrix cMf
S3 in terms of its invariants and just one free

parameter 
f,

�Mf
Hier ¼

0

ffiffiffiffiffiffiffiffiffi
~�f
1
~�f
2

1�
f

r
0ffiffiffiffiffiffiffiffiffi

~�f
1
~�f
2

1�
f

r
~�f
1 � ~�f

2 þ 
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f

1�
f
�f
1�

f
2

r
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f

1�
f
�f
1�

f
2

r
1� 
f

0BBBBBBBBB@

1CCCCCCCCCA
; (38)

in this expression, we have made the following
identifications:2

�f
1 � 1� ~�f

1 � 
f; �f
2 � 1þ ~�f

2 � 
f; (39)

such that 
f is a measure of the splitting of the two small

masses in the first two families in the S3 doublet as a
fraction of the mass of the third family in the S3 singlet.
Therefore, the following hierarchy among the 
0s for the
different kinds of fermions,

1 � 
� > 
l > 
d > 
u; (40)

is to be expected. Note that the form of thematrix in Eq. (38)
is completely analogous to the mass matrix discussed in
Eq. (17) of Ref. [29], just with the replacement �i ! mi.
Therefore the diagonalizing procedure follows exactly as in
Ref. [29], and consequently, the form of the CKM matrix
will be the same, we just need to replace mi by �i and take
into account the appearance of a new phase 	1. We should
bear in mind that �i are shifted masses, so in Eq. (38) there
are three physical invariants involved and two free parame-

ters, 
f and ~�f
0 . The CKM matrix should contain only one

physical phase, the CP violating phase, which means that
if there are two parametric phases, 	1 and 	2, the CP
violating phase will be a combination of both.
In what follows we describe the general procedure to

find the diagonalizing matrices for all the cases considered.
We then proceed to give the specific details for cases I
through III, mentioned in Sec. IV.

1. Case I: A single Higgs field

In this case, we have only one Higgs field transforming
as 1s. There is no Higgs field assigned to the antisymmetric
representation, 1A, which translates into the vanishing of

	1f. Also, in this case there are no shift parameters �f
0 for

f ¼ u, d.

2In order to make a direct comparison with the notation used in
previous publications [17,21,29], a change of labels f $ i and
�f
i $ fi must be done; everything else remains the same.
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2. Case II: Three Higgs fields

In this case, when the left- and right-handed parts of the
fermionic fields of the third family are assigned to the
singlet symmetric representation of S3, there cannot be a
Higgs field transforming as 1A, therefore the phase 	1f

vanishes. However, there are shifts �f
0 , which in principle

are nonvanishing.

3. Case III: Four Higgs fields

In this case we have a fourth Higgs field assigned to the

antisymmetric singlet irrep 1A, which produces the �f
5

parameter in the mass matrices shown in Table I. In cases
A and B of Table I, we find that after reparametrizing the
corresponding mass matrices in terms of the mass eigenval-
ues, the resulting reparametrizedmassmatrices are equal. In
the reparametrized form, the following inequality holds
�Mf

Hier½2; 2�> �Mf
Hier½1; 2� and this inequality implies that

either �f
5 vanishes or the relation w2

1 ¼ 3w2
2 is satisfied.

In this work wewill avoid taking a particular value for the

rotation angle, and in consequence we will assume that �f
5

vanishes. Therefore, the Higgs transforming as the antisym-
metric singlet representation, 1A, does not contribute to the
Yukawa matrix and the phase 	1f does not appear. Hence,

the mass matrix, �Mf
Hier, has only one CP violating phase

	2f and the parameter 
f is now constrained to satisfy

Gfð
f; ~�
f
i Þt2ð3� t2Þ2 þ 4~�f

1 ~�
f
2ð1� 3t2Þ2 ¼ 0; (41)

or

Gfð
f; ~�
f
i Þð1� 3t2Þ2 þ 4 ~�f

1 ~�
f
2t

2ð3� t2Þ2 ¼ 0; (42)

for cases A or B, respectively, where

Gfð
f; ~�
f
i Þ ¼ 
3

f �½1� 2ð~�f
1 � ~�f

2Þ�
2
f

þð~�f
1 � ~�f

2Þð~�f
1 � ~�f

2 � 2Þ
f �ð~�f
1 � ~�f

2Þ2:

VII. FORM OF THE CKM MATRIX

The VCKM matrix is defined as

Vth
CKM ¼ Uy

uLUdL ¼ OT
uP

ðu�dÞOd; (43)

where Pðu�dÞ ¼diag½1;ei	1 ;eið	1þ	2Þ� with 	i�	iu�	id,
and Ou;d are the real orthogonal matrices, Eq. (34), that

diagonalize the real symmetric mass matrix of Eq. (38).
The substitution of the expressions Of

3 in the unitary

matrices of Eq. (43) allows us to express the entries in
the quark mixing matrix V th

CKM as explicit functions of the

quark masses,

V th
ud ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�c ~�s�

u
1�

d
1

D1uD1d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�d

D1uD1d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 
uÞð1� 
dÞ�u

1�
d
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
d�

u
2�

d
2

q
ei	2

�
ei	1 ;

Vth
us ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�c ~�d�

u
1�

d
2

D1uD2d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�s

D1uD2d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 
uÞð1� 
dÞ�u

1�
d
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
d�

u
2�

d
1

q
ei	2

�
ei	1 ;

V th
ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�c ~�d ~�s
d�

u
1

D1uD3d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u

D1uD3d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 
uÞð1� 
dÞ
d�

u
1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u�

u
2�

d
1�

d
2

q
ei	2

�
ei	1 ;

V th
cd ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�s�

u
2�

d
1

D2uD1d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�c ~�d

D2uD1d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 
uÞð1� 
dÞ�u

2�
d
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
d�

u
1�

d
2

q
ei	2

�
ei	1 ;

Vth
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�d�

u
2�

d
2

D2uD2d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�c ~�s

D2uD2d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 
uÞð1� 
dÞ�u

2�
d
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
d�

u
1�

d
1

q
ei	2

�
ei	1 ;

V th
cb ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�d ~�s
d�

u
2

D2uD3d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�c

D2uD3d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 
uÞð1� 
dÞ
d�

u
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u�

u
1�

d
1�

d
2

q
ei	2

�
ei	1 ;

Vth
td ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�c ~�s
u�

d
1

D3uD1d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�d

D3uD1d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð1� 
uÞð1� 
dÞ�d

1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�

u
1�

u
2�

d
2

q
ei	2

�
ei	1 ;

V th
ts ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�c ~�d
u�

d
2

D3uD2d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�s

D3uD2d

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð1� 
uÞð1� 
dÞ�d

2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�

u
1�

u
2�

d
1

q
ei	2

�
ei	1 ;

Vth
tb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�u ~�c ~�d ~�s
u
d

D3uD3d

s
þ
0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�u
1�

u
2�

d
1�

d
2

D3uD3d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
dð1� 
uÞð1� 
dÞ

D3uD3d

s
ei	2

1Aei	1 ;

(44)

3This is completely analogous to the expression of Eq. (25) in Ref. [29], with the replacements ~mi ! ~�i and fi ! �i.
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with

�u;d
1 ¼ 1� ~�u;d �
u;d; �u;d

2 ¼ 1þ ~�c;s �
u;d;

D1ðu;dÞ ¼ ð1�
u;dÞð~�u;d þ ~�c;sÞð1� ~�u;dÞ;
D2ðu;dÞ ¼ ð1�
u;dÞð~�u;d þ ~�c;sÞð1þ ~�c;sÞ;
D3ðu;dÞ ¼ ð1�
u;dÞð1� ~�u;dÞð1þ ~�c;sÞ:

(45)

A. Case I: A single Higgs field

For this case, the form of the CKM matrix corresponds

to that of Eq. (44) with	2 ¼ 0,�f
0 vanishing andm

f
i ¼�f

i .

B. Case II: Three Higgs fields

For the cases A and B in Table II, we can parametrize the
CKM matrix with a nonvanishing phase 	2 ¼ 0, and since

for these cases �f
0 is not zero, we set mf

i ¼ �f
0 þ �f

i .

C. Case III: Four Higgs fields

In this case, we can parametrize the CKM matrix as in
cases A and B of Table I, again with a nonvanishing phase
	2 ¼ 0, following the discussion in Sec. VI C 3. In these

cases �f
0 does not vanish and we set mf

i ¼ �f
0 þ �f

i .

VIII. THE S3 MODELS COMPARED WITH
EXPERIMENTAL DATA

A. Experimental status

Over the past decade, there has been a remarkable
improvement in the precision and quality of the measure-
ments of the elements of the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix, the quark masses, and their uncer-
tainties. At present, any model for quark masses must
provide a detailed analysis of their predictions or have
the ability to reproduce or to accommodate the ever in-
creasing precision of the experimental results. In the fol-
lowing subsections, we present a brief overview of the
experimental status of quark masses and their mixing.
We explain how we confront this information with the
exact analytical expressions we found, given in terms of
quark mass ratios, of the CKM mixing matrix elements.

Then, we comment on the results of the �2 fits for the S3
models presented in this work.
In order to do this analysis, we will use the running

quark masses at the electroweak scale which we fix at the
MZ scale. We obtained the numerical values of the running
quark masses at MZ using the RunDec program [85] and
the most recent PDG values [61], which are presented at
different scales. For comparison, we also quote the results
on values of the quark masses 2010–2011, reported in
Ref. [64] and in the 2011 online version of the PDG. The
2011 and 2012 values of the quark masses can be found in
Table V, where it can be seen that, while most of the central
values of the masses miðMZÞ are compatible with those
cited in Ref. [86], the uncertainties have been greatly
reduced in the last analysis.

B. Fitting procedure

We construct the �2 function as

�2 ¼ ðjVth
udj � jVudjÞ2

�2
Vud

þ ðjV th
usj � jVusjÞ2
�2

Vus

þ ðjV th
ubj � jVubjÞ2

�2
Vub

þ ðJ th
q �J qÞ2
�2

J q

; (46)

where the quantities with superindex ‘‘th’’ are the com-
plete expressions for the CKM elements, as given by the
S3 models, and those without, the experimental quantities
along with their uncertainty �Vij

. We consider the follow-

ing experimental CKM values:

2011: jVudj ¼ 0:97428� 0:00015;

jVusj ¼ 0:2253� 0:007;

jVubj ¼ 0:00347� 0:00014;

J ¼ ð2:91� 0:155Þ 
 10�5;

2012: jVudj ¼ 0:97427� 0:00015;

jVusj ¼ 0:2253� 0:007;

jVubj ¼ 0:00351� 0:00015;

J ¼ ð2:96� 0:18Þ 
 10�5;

(47)

TABLE V. Values of the quark masses as they appear in the online 2011 version of the PDG and in [64], and the updated values of
2012 [61]. The values quoted atMZ were obtained with the program RunDec [85] at four loops in the running of �s. For the 2011 data,
note that with the use of the chiral perturbation relation involving the parameter Q ¼ 23� 2, we obtain muðMZÞ ¼ 0:00130�
0:00047, which is now compatible with the value obtained directly from the PDG and the evolution up to MZ.

2011 values [GeV] 2012 values [GeV] mMS
f ðMZÞ 2011 [GeV] mMS

f ðMZÞ 2012 [GeV]

mt 172:0� 0:6� 0:9 172:85� 0:71� 0:85 171:13� 1:19 171:07� 1:21
mOS

b 4:67þ0:18
�0:06 4:65� 0:03

mb 4:19þ0:18
�0:06 4:18� 0:03 2:84� 0:04 2:85� 0:04

mc 1:29þ0:05
�0:11 1:275� 0:025 0:616� 0:064 0:626� 0:025

ms 0:100þ0:030
�0:020 0:095� 0:005 0:061� 0:015 0:055� 0:0033

md (0.0041, 0.0057) 4:8þ0:7
�0:3 
 10�3 0:00284� 0:00050 0:0028� 0:0005

mu (0.0017, 0.0031) 2:3þ0:7
�0:5 
 10�3 0:0014� 0:00042 0:0013� 0:0005
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which correspond to a unitary CKM matrix in the case of
three generations of quarks. Since unitarity of the CKM
mixing matrix is assumed, there is no need to make the fit
to the entire matrix but only to four observables. The
theoretical expressions of the CKM elements are given in
terms of the mass ratios,fmi, Eq. (39), or the parameters ~�i,
Eq. (22), hence the minimization of the defined �2 is a
function of the parameters fmi, 
u, 
d and cos	1. This
means that, as a result of the minimization, there is a best fit
value for each of those quantities, for which �2 takes the
minimum value. The mass ratios ~mi are not free parame-
ters. The limits we set correspond to their allowed 3�
regions. We also test if there is convergence when using
the 2� regions. In the fitting procedure, we used MINUIT

from ROOT [87] for the numerical minimization. The values
used for the parameters fmi are given in Table VI.

We recall that minimizations with MINUIT rely on setting
a starting value for the parameters to fit with a seed close
enough to the minimum, therefore if the range of variation
of a particular parameter is large, it is difficult to find its
best fit point (BFP). Additionally, to check the consistency
of a minimum, one should remove the limits of the pa-
rameters to fit. Unfortunately, if we perform the fit leaving
the parameters fmi completely free to vary without limits,
the quality of the fits does not really improve, and most
importantly, for these cases it turns out that the BFP offmi is
of order 10�3. We mentioned that the reported values in
2011, by the PDG, of mu and md quoted an uncertainty of
about 30% of the central value, so they were difficult to
fit. The situation in 2012, particularly for ms, changed
since the uncertainty in the lattice determinations of ms

was reduced down to 5%. In contrast, the theoretical
determinations of ms have an uncertainty of almost 10%.
Consequently, in order to assess the impact of lattice and
theoretical determinations, we also make fits using only an
average of the theoretical determinations.

C. Results

We have proceeded with the minimization of the �2 as
follows. We used MINUIT and varied all the parameters ~mi,
within the 2� and 3� ranges given in Tables VI and VII,
and 
u, 
d as free parameters.

1. Case I: A single Higgs field

This case corresponds to the well-known case of broken
S3L � S3R, with one singlet S3 Higgs field, which gives rise

to an effective mass matrix of the form of Eq. (14). Hence,
the CKM matrix we fit is that of Eq. (44) with 	2 ¼ 0 and
~�i ¼ ~mi.
We present three sets of fits, one when 	1 is fixed to

�=2, another when we allow cos	1 to vary in the region
ð�0:5; 0:5Þ and a third one, where we allow cos	1 to vary
in the region (0.5, 1.0). The first set considered here follows
previous fits to the quark mass ratios where 	1 is fixed to
be �=2, since this value was shown to be the preferred one
[17,20]. We noticed, however, that when we allow the
phase 	1 to vary in the region cos	1 2 ð0; 1Þ, the quality
of the fits is better for a larger value of cos	1 than for a
small value of cos	1. Due to this fact we considered the
introduction of the last two sets.
Case when 	1 ¼ �=2 fixed.—We find that for the re-

ported 2012 experimental values of quark masses and mix-
ing, when allowing the mass ratios to vary within their 3�
ranges, for ~mu, ~mc, and ~ms, the �

2 function attains a mini-
mum within the corresponding 3� region of each of the
parameters above. On the other hand, the BFP of ~md lies
within its1� region.The results of thisfit are shown inFigs. 1
and 2 and the values of the BFPs are given in Table VIII.
For comparison, we have also performed the fit with the

experimental results reported in 2011 by the PDG and with
the 2012 results taking into account the theoretical determi-
nations of ~ms, see Table VII. As we can see from the plots in
Figs. 1 and 2 for the former set of data, the �2 function does
not really attain a minimum as a function of ~mu and ~mc,
when they vary within their 3� region. On the other hand,
the BFP of ~md lies within its 3� region, while the BFP of ~ms

within its 2� region. When we take into account the data
from 2012 only with the average of the theoretical determi-
nation of ~ms, we notice that the BFPs of ~mu lie within their
corresponding 3� region, while the BFPs of ~md and ~ms lie
within their corresponding 2� region.
Varying cos	1 in ð�0:5; 0:5Þ.—When allowing the mass

ratios to vary within their 3� ranges, we find that the �2

function does not really reach a minimum as a function of

TABLE VII. Changes in the masses of the lightest quarks
when using the average of the theoretical determinations of
ms, that is, not including lattice determinations. We obtain
msð2 GeVÞ ¼ 0:101� 0:011 GeV.

mMS
f ðMZÞ

2012 values of masses and mass ratios (with ~mth
s )

ms 0:059� 0:0066 fmsðMZÞ 0:0205� 0:0026
md 0:0028� 0:0005 fmdðMZÞ 0:00098� 0:00017
mu 0:0013� 0:0005 fmuðMZÞ 0:0000078� 0:0000030

2013 values of masses and mass ratios (with ~mth
s )

mt 171:8� 1:1
mb 2:85� 0:04
mc 0:63� 0:025 fmcðMZÞ 0:0036� 0:00017
ms 0:059� 0:0066 fmsðMZÞ 0:021� 0:0026
md 0:0028� 0:0005 fmdðMZÞ 0:00097� 0:00017
mu 0:0013� 0:0005 fmuðMZÞ 0:0000077� 0:0000030

TABLE VI. Values of the quark mass ratios, at MZ, in 2011
and 2012.

2011 2012

fmuðMZÞ 0:0000082� 0:0000027 0:000008� 0:0000030fmcðMZÞ 0:0036� 0:0004 0:0037� 0:00017fmdðMZÞ 0:00098� 0:00018 0:00098� 0:00017fmsðMZÞ 0:0205� 0:0056 0:0193� 0:0014
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~mu and ~mc, while it does as a function of ~md and ~ms,
within their corresponding 1� region. The results of this fit
are shown in Figs. 3 and 4, the values of the best fit point
are given in Table VIII. We find that �2 attains a minimum
only as a function of ~md, whose BFP lies within its 1�
region, when taking into account the average of the theo-
retical determination of ~md. When using the 2011 data the
fit shows that the �2 function attains a minimum as a
function of ~mu, ~md and ~ms. For ~mu, its BFP lies within
its 3� region while for ~md and ~ms, their BFPs lie within
their corresponding 2� region.

Varying cos	1 in (0.5, 1.0).—For this fit, when allowing
the mass ratios to vary within their 3� ranges, we find that
the �2 function attains a minimum as a function of all the
mass ratios. For ~mu, ~mc and ~md, the minimum lies within

their 3� range. For ~md the minimum lies within its 1�
range. The results of these fits are shown in Figs. 5 and 6,
the values of the BFPs are given in Table VIII. When
considering the average of the theoretical determination
of ~ms, we find that �

2 attains a minimum only as a function
of ~ms, whose BFP lies within its 1� region. For the data of
2011, �2 attains a minimum for ~mu and ~mc within their
corresponding 3� region, while ~md within its 1� region
and ~ms within its corresponding 2� region.
General comments on the quality of the fits.—From

Figs. 1–4 we can see that the ratio ~mc is not greatly
affected by the change in the value of 	1. However, the
minimum of �2 as a function of ~mc when cos	1 � 0:5
seems to be better behaved as that of a fixed value of 	1

equal to �=2. When we allow ~ms to vary in the range
determined by the uncertainty in the theoretical determi-
nation of ms, we can see that the preferred region for the
fit of ~mc is quite similar to that of 2011. We can also see
that the overall quality of the fit is better for the case of
cos	1 if it is allowed to vary within (0.5, 1). In fact, if we
allow cos	1 to vary within (0, 1), the overall best fit is
practically the same as that of the one when cos	1 is
allowed to vary within (0.5, 1).
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FIG. 1 (color online). Results of the �2 fit as a function of ~mu

and ~ms for the case where the phase 	1 is fixed to �=2. The
reported masses of quarks in 2011 give to the ratios fmu and fms an
uncertainty of about 30% of their central value, therefore they were
difficult to fit. The situation in 2012 has improved, in particular for
the strange quark mass ~ms the lattice determinations reduced its
uncertainty to 5%of its central value. Since this is quite remarkable,
we have also fitted the mass ratios using as limits the values
obtained by considering just the theoretical determination of ~ms,
for which we obtain msð2 GeVÞ ¼ 0:101� 0:011 GeV.
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FIG. 2 (color online). The same as in Fig. 1 for �2 fit as a
function of ~mc and ~md.
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Interpretation of the parameters 
u and 
d.—In this
case, the symmetry breaking parameter Zf, f ¼ u, d,

which measures the mixture of the singlet and the doublet
representations of S3, was defined in Refs. [17,20] as

Zf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMfÞ23
ðMfÞ22

s
; (48)

and it can be related to 
f through a cubic equation,

F
f
ð
f;ZfÞ

¼
3
f�

1

Zfþ1
ð2þ ~mf

2� ~mf
1þð1þ2ð ~mf

2� ~mf
1ÞÞZfÞ
2

f

þ 1

Zfþ1
ðZfð ~mf

2� ~mf
1Þð2þ ~mf

2� ~mf
1Þ

þð1þ ~mf
2Þð1� ~mf

1ÞÞ
f�
Zfð ~mf

2� ~mf
1Þ2

Zfþ1
¼0: (49)

The equation ðZf þ 1ÞF
f
ð
f; ZfÞ ¼ 0 is a linear function

in Zf, hence given 
f there is only one solution for Zf. The

�2 fits that we performed fitted the parameters 
f, thus

fixing unequivocally the values of Zf. Had we chosen to fit

Zf, we would have obtained three possible solutions for 
f.

We find that if Z ¼ Oð10Þ, the three solutions for 
f are

roughly Oð10�4Þ, Oð10�2Þ, and O(1), both for f ¼ u and
for f ¼ d. In Fig. 7 we have plotted one of the solutions,
that is close to Oð10�4Þ, to F
f

ð
f; ZfÞ ¼ 0, for two sets of

data, that of 1999 [17] and the analogous solution for case I
of this study, when 	1 is fixed to �=2. However, for this
last set of data, we have used only the best fit points of the
parameters ~mi in Table VIII, but not the value of 
f.

Instead, once the parameters ~mi are fixed, 
fðZfÞ is com-

puted as the solution of Eq. (49) that vanishes when Zf

vanishes. In the first plot of Fig. 8, we show Zf as a

function of 
f, computed from Eq. (49) for values of 
f

TABLE VIII. Results of the fits for case I, which is the case of a broken S3L � S3R symmetry.
Note that when we restrict the precision of the fitted values, we observe a significant change in
the value of �2. These values have to be divided by the number of degrees of freedom, namely 4.

Parameter Central value �2 Values with restricted precision �2

fmuðMZÞ 1:72991
 10�5 ð1:73� 0:75Þ 
 10�5fmcðMZÞ 3:46
 10�3 ð3:46� 0:43Þ 
 10�3fmdðMZÞ 1:12461
 10�3 ð1:12� 0:007Þ 
 10�3fmsðMZÞ 2:32
 10�2 ð2:32� 0:84Þ 
 10�2


u 6:05040
 10�2 ð6:05� 3:02Þ 
 10�2


d 4:09162
 10�2 ð4:09� 2:59Þ 
 10�2

cos	1 0 [fixed]

3:4
 10�4 7:4
 10�1fmuðMZÞ 1:72960
 10�5 ð1:73� 0:06Þ 
 10�6fmcðMZÞ 3:46008
 10�3 ð3:46� 0:31Þ 
 10�3fmdðMZÞ 9:19505
 10�4 ð9:20� 0:72Þ 
 10�4fmsðMZÞ 2:08735
 10�2 ð2:09� 0:01Þ 
 10�2


u 3:48158
 10�2 ð3:48� 0:83Þ 
 10�2


d 1:99291
 10�2 ð1:99� 0:63Þ 
 10�2

cos	1 �1:42545
 10�2 ð�1:42� 1:7Þ 
 10�2

1:32
 10�5 2:4
 10�2fmuðMZÞ 1:71856
 10�5 ð1:72� 0:78Þ 
 10�6fmcðMZÞ 3:46176
 10�3 ð3:46� 0:26Þ 
 10�3fmdðMZÞ 1:05595
 10�3 ð1:06� 0:40Þ 
 10�3fmsðMZÞ 1:55660
 10�2 ð1:56� 0:72Þ 
 10�2


u 2:50428
 10�2 ð2:50� 6:18Þ 
 10�2


d 4:09101
 10�2 ð4:09� 7:04Þ 
 10�2

cos	1 5:0
 10�1 ð5:0� 3:74Þ 
 10�1

3:4
 10�4 1:6
 10�1

Fit using jVcdj and the 2013 values of the parameters with ~mth
sfmuðMZÞ 7:23874
 10�6 ð0:73� 10:0Þ 
 10�6fmcðMZÞ 3:15910
 10�3 ð3:16� 0:59Þ 
 10�3fmdðMZÞ 1:46945
 10�3 ð1:47� 0:66Þ 
 10�3fmsðMZÞ 2:30273
 10�2 ð2:30� 0:42Þ 
 10�2


u 4:02738
 10�2 ð4:00� 3:01Þ 
 10�2


d 7:14117
 10�2 ð7:14� 3:50Þ 
 10�2

cos	1 5:0
 10�1 ð5:0� 3:57Þ 
 10�1

3:1
 10�1 2:5
 10�1
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close to the values obtained from the fit for case I with 	1

fixed at �=2. The second plot in Fig. 8 shows
ffiffiffiffiffiffi

f

p
as a

function of Zf. In these graphs 
fðZfÞ was chosen as the

solution of F
f
ð
f; ZfÞ ¼ 0 of Oð10�2Þ, in this way we

check that it is indeed this solution the one determined in
the �2 fit.

In Refs. [17,20,21,29,60] the solution to Eq. (49) was
chosen such that 
f could represent a parameter of the

breaking of S3, which would vanish in the limit of vanish-
ing Zf. In the limit Zf ! 0, Eq. (49) has two other

solutions for 
f:


f ¼ 1þ ~mf
2 and 
f ¼ 1� ~mf

1 : (50)

Notice that neither of them satisfies the inequality

1� ~mf
1 > 
f > 0 [60].

2. Cases II and III (three and four Higgs
fields, respectively)

In the cases of three and four Higgs fields, the functional
form of the elements of the CKM matrix expressed as

functions of the quark masses and the parameters ~�f
0 , 
u,

and 
d is the same. The only difference between the

subcases A0 and B0 for the extended model with three
Higgs fields (see Table II) and among the subcases A0
and B0, for the extended model with four Higgs fields
(see Table I) is in the interpretation of the meaning of the
parameters that occur as arguments in the elements of the
CKM matrix in Eq. (43), which corresponds to taking

Eq. (44) with 	1 ¼ 0 and ~�f
i ¼ ~mf

i þ ~�f
0 for ~�f

0 � 0.

Thus, for this case, the relevant parameters to fit are ~�f
i ,

i ¼ 1, 2, 
u, 
d, and 	2, which we denote as pi. Since the

parameters ~�f
i are linear combinations of the mass ratios

~mf
i and the parameters ~�f

0 , we cannot fit ~�
f
0 as part of the

minimization procedure, because then the fit would be
underdetermined due to the linear dependence among its
parameters. However, in order to give an interpretation

to the parameters ~�f
0 , one possibility (i), is to let the

parameters ~�f
i to vary in the region

~mf
i � 3 ~� ~mf

i
� ~�f

i � ~mf
i þ 3� ~mf

i
; (51)

and then check the compatibility of calculating ~�u
0 such

that

~�u
0 ¼ ~�u � ~mu;! ~mc ¼ ~�c ��u

0 ; (52)
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FIG. 4 (color online). The same as in Fig. 2, except that now
cos	1 is allowed to vary in ð�0:5; 0:5Þ.
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FIG. 3 (color online). The same as in Fig. 1, except that now
cos	1 is allowed to vary in ð�0:5; 0:5Þ.
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where ~mu, in the first expression of Eq. (52), should lie
within its experimental 3� region. An analogous procedure
is performed for the down-type quark sector. The values of
~�u and ~�d should correspond to the BFPs of the fit.
Another possibility (ii), is to fit the parameters pi, for a

given value of ~�f
0 � 0, such that

~mi � 3� ~mi
þ ~�f

0 � ~�u � ~mi þ 3� ~mi
þ ~�f

0 ; (53)

with f ¼ u for the up-type quarks and f ¼ d for the down-
type quarks. Note that the difference in the interpretations

of ~�f
0 for the cases above, Eqs. (52) and (53), lies in the fact

that for the case (i) there is no assumption on the value of
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FIG. 5 (color online). The same as in Figs. 1–4, except that
now cos	1 is allowed to vary in the region (0.5, 1.0).
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FIG. 6 (color online). The same as in Figs. 1–4, except that
now cos	1 is allowed to vary in the region (0.5, 1.0).
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FIG. 7 (color online).
ffiffiffiffiffiffi

f

p
, f ¼ u blue (solid) curve, f ¼ d orange (dashed) curve, as a function of Zf, for one of the three solutions

of Eq. (49). The plot on the left corresponds to the plot of 1999 from Ref. [17], while the plot on the right corresponds to taking the
results, except the value of the parameters 
f, of the fit of case I for 	1 ¼ �=2, Table VIII. In this case, we have given as input the

value of Zf and chosen the analogous solution to the 1999 fit for 
f, using Eq. (49). We see that both solutions are compatible, if we

wanted to choose the values of the parameters 
f as a function of Zf.
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FIG. 8 (color online). On the left, Zf as a function of 
f, f ¼ u blue (solid) curve, f ¼ d, orange (dashed) curve. The values
obtained from the fit for the case of 	1 ¼ �=2, for 
u and 
d, 0.0605 and 0.0409 fix respectively particular values of Zf, 112.33 and

17.52. On the left, the parameter
ffiffiffiffiffiffi

f

p
as a function of Zf, f ¼ u blue (solid) curve, f ¼ d, orange (dashed) curve, for the data of 2012

for 	1 ¼ �=2, corresponding to another solution of Eq. (49), different from that of Fig. 7. We have marked the points ð17:52; ffiffiffiffiffiffiffiffiffiffiffiffi
0:049

p Þ
and ð112:33; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0605
p Þ. We can see that they correspond exactly to the solution of Eq. (49), which is plotted here, since they lie along

the line of Fð
f; ZfÞ ¼ 0, and not to the solution of Fig. 7.
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FIG. 9 (color online). �2 as a function of ~�u and ~�c, where
cos	1 is allowed to vary in the region (0.5, 1.0). The rest of the
details are like those of Fig. 1. Additionally we have plotted the
results of the fits using jVcdj instead of J q, and without assum-

ing unitarity conditions. These results are represented by the
black (dark) lines.
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FIG. 10 (color online). �2 as a function of ~�d and ~�s, where
cos	1 is allowed to vary in the region (0.5, 1.0). The rest of the
details are like those of Fig. 1. Additionally we have plotted the
results of the fits using jVcdj instead of J q, and without assum-

ing unitarity conditions. These results are represented by the
black (dark) lines.
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~�f
0 , but then ~�u

0 necessarily has to be less than 6� ~mu
, while

~�d
0 has necessarily to be less than 6� ~md

. On the other hand,

for (ii), in principle, there is no restriction on the value of

the given ~�f
0 parameters. Although 
u and 
d have also a

linear dependence on ~�f
0 , Eq. (37), since the definition

involves another free parameter Df, we can leave 
u and

d to vary as completely free parameters. We performed
two sets of fits, one using the 2012 values of the parameters
~mi of Table VI and the other the values of Table VII,
corresponding to the 2012 values of ~mi when considering
only the theoretical determination of ~ms. We have allowed
cos	2 to vary in the region (0, 1) and we remind the reader
that for this case the phase 	1, in Eq. (44), is equal to 0.
The results of this fit are shown in Figs. 9 and 10.

In case (i), we can then calculate the value of ~�u
0 from

the experimental central value of ~mu, for which we have
then ~�u

0 ¼ �6
 10�6 and consequently, from Eq. (52),
~mc ¼ 3:942
 10�3, where we have used the values of ~�u

quoted in Table IX. Analogously for the d sector, we
have ~�d

0 ¼ ~�d � ~md ¼ 3:8
 10�3, as a consequence

~ms ¼ 2:04
 10�3. Since we have the hierarchies ~mu �
~mc and ~md � ~ms, while nonzero values of ~�

u
0 and ~�d

0 may

be needed in this model to attain a best value of ~mu and ~md,
respectively, concerning ~mc and ~ms, the impact is minimal.

3. Comments on the quality of the fits

The reason why the resulting value of a normalized �2

fit is expected to be close to 1 is because if a set of

parameters (or data) are fitted well enough, each of the

functions composing the �2 should reproduce the corre-

sponding experimental value up to 1 standard deviation.

Whenever the �2 value is so small, as it happens in our

models, and there are no correlations on the experimental

values entering into the definition of the �2 function,

Eq. (46), then such a small value must rely on a sound

explanation.
To clarify the behavior of our fit we begin first by

mentioning that the theoretical expressions in Eq. (44)
are not linearly independent as functions of the parameters
~�i, 
u, 
d and the phases 	1 and 	2. Hence, a small value

TABLE IX. Results of the fits for cases II and III, that is the case of an SM invariant under an
unbroken S3 symmetry. Note that when we restrict the precision of the fitted values, we observe a
significant change in the value of �2. These values have to be divided by the number of degrees
of freedom, namely 4.

Parameter Central value �2 Values with restricted precision �2

Fit using the 2012 values of the parameters ~mif�uðMZÞ 2:08977
 10�6 ð2:09� 0:19Þ 
 10�6f�cðMZÞ 3:93180
 10�3 ð3:93� 0:007Þ 
 10�3f�dðMZÞ 1:35949
 10�3 ð1:36� 0:004Þ 
 10�3f�sðMZÞ 2:08443
 10�2 ð2:08� 0:02Þ 
 10�2


u 3:96726
 10�2 ð3:97� 0:35Þ 
 10�2


d 5:29260
 10�2 ð5:29� 041Þ 
 10�2

cos	2 8:48776
 10�1 ð8:49� 0:22Þ 
 10�1

3:3
 10�4 3:9
 10�1

Fit using the 2012 values of the parameters ~mi (with ~mth
s )f�uðMZÞ 2:17737
 10�6 ð2:18� 0:35Þ 
 10�6f�cðMZÞ 3:94
 10�3 ð3:94� 0:007Þ 
 10�3f�dðMZÞ 1:19392
 10�3 ð1:19� 0:009Þ 
 10�3f�sðMZÞ 1:82432
 10�2 ð1:82� 0:02Þ 
 10�3


u 6:12747
 10�2 ð6:13� 0:41Þ 
 10�2


d 8:36979
 10�2 ð8:37� 0:64Þ 
 10�2

cos	2 9:23028
 10�1 ð9:23� 0:11Þ 
 10�1

3:3
 10�4 7:3
 10�2

Fit using jVcdj and the 2013 values of the parameters with ~mth
sf�uðMZÞ 1:63792
 10�6 ð1:64� 0:16Þ 
 10�6f�cðMZÞ 3:58675
 10�3 ð3:59� 0:78Þ 
 10�3f�dðMZÞ 1:21487
 10�3 ð1:21� 0:88Þ 
 10�3f�sðMZÞ 1:89366
 10�2 ð1:90� 0:81Þ 
 10�3


u 9:98871
 10�2 ð1:00� 0:5Þ 
 10�2


d 5:37158
 10�2 ð5:37� 7:19Þ 
 10�2

cos	2 7:82382
 10�1 ð7:82� 9:35Þ 
 10�1

3:1
 10�2 4
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of �2 in our case is not a simple numerical attempt to look
for an exact solution of a system of equations. On the other
hand, from the definition of the auxiliary functions defined
in Eq. (45), which enter in the theoretical expressions of
Eq. (44), is straightforward to obtain the conditions under
which the Eqs. (44) could indeed represent a solvable
system of equations. These conditions would imply that

u ¼ 
d, �

u
1 ¼ �d

1 ¼ �d
2 ¼ �u

2 and Du
i ¼ Dd

i , 8i. This is
of course not possible, due to the different experimental
values of the mass ratios ~mi. Moreover, for the Eqs. (44) to
represent a system of equations, one would need extra
relations involving the parameters ~�u, ~�d, ~�c, and ~�s.

Note however that some of the parameters �u;d
i are indeed

very similar, due to the conditions ~�i � 1,8i, this indeed
aids to find such a small value of the �2 function.

Second, we have used as a constraint the unitarity of the
CKM matrix. This constraint reduces the errors of the
CKM elements that we have used for the fit and may result
in a nontrivial correlation of the error associated to J q. To

check this, we have varied the error of J q, but found that

the changes in the �2 determination, in all cases they do not
differ on more than 20% of the value of the reported results
in Tables VIII and IX.

If we want to use just the CKM experimental values,
without assuming unitarity conditions, we can use again
the three best measured values of the CKM matrix Vud,
Vus, and Vub, and additionally Vcd. The third row of
the CKM matrix is not accurately measured and, except
for Vtb, there is not any direct information about
such elements. We take then the following, completely
uncorrelated, experimental values:

jVudj ¼ 0:97425� 0:00022; jVusj ¼ 0:2252� 0:0009;

jVubj ¼ 0:00415� 0:00049; jVcdj ¼ 0:230� 0:011:

(54)

Then construct the �2 function

�2 ¼ ðjV th
udj � jVudjÞ2

�2
Vud

þ ðjVth
usj � jVusjÞ2
�2

Vus

þ ðjV th
ubj � jVubjÞ2

�2
Vub

þ ðjV th
cdj � jVcdjÞ2

�2
Vcd

: (55)

We have performed all the sets of fits previously described
(cases I, II, and III) with the above �2 function and found
that for all the sets of fits of Table VIII, the obtained �2 is
close to the value of the last column in that table. As an
example we have added the results for the case of the fit
using 0:5 � cos	1 < 1 at the end of Table VIII, where we
have used only the theoretical determination ofms, to be as
conservative as possible. For cases II and III, Table IX, we
have also added at the end of that table, the results of the fit
using jVcdj and the theoretical determination of ms. These
cases are more unstable than the previous ones, however
they still represent good fits of the data. We have plotted

the results of these fits along with the previous ones in
Figs. 9 and 10. Note that for the fits using jVcdj we have
used the 2013 value of the top mass. For consistency we
have checked the change using the 2012 result, and
confirmed that the change of the fits is negligible.
To conclude, we note that although the value of the

resulting �2, either using J q (assuming unitarity) or jVcdj
(without assuming unitarity conditions), is different for
each of the cases analyzed (cases I, II, and III with different
values of the phases 	1 and 	2), the BFP for all cases are
consistent within a 2� range of the relevant BFP. That is to
say, when one compares the values of the BFP of a particu-
lar parameter (e.g. 
u) between the fits using J q or jVcdj,
both are compatible within the 2� determined by the fits.

IX. CONCLUSIONS

We have studied the quark sector of different S3 models,
either with one, three, or four Higgs electroweak doublets.
We presented the most general S3-invariant Yukawa
Lagrangian, which can describe these models. The struc-
ture of the Lagrangian gives rise to fermion mass matrices
of a generic form with a small number of free parameters,
from which we were able to identify the conditions under
which the two texture zeros and nearest neighbor interac-
tion (NNI) mass matrices are obtained. In all cases we have
provided exact, analytical formulas for the mixing angles
of the CKMmatrix in terms of quark mass ratios and a shift

parameter �f
0 . This line of work had been already devel-

oped in Refs. [29,88], without referring to a particular
model, where it was shown the usefulness of classifying
mass matrix patterns according to their transformation
properties under the group of permutations of three objects,
S3. There, it was also shown that a large class of phenom-
enologically successful mass matrix forms are equivalent
to two texture zeros matrices. The reduction to these forms,
two texture zeros and NNI, and the fact that all CKM
elements can be expressed as analytical relations in terms
of quark mass ratios, allowed us to make a direct compari-
son of the models with the current experimental data. To
this end, we performed a �2 fit of our theoretical expres-
sions for the CKM mixing matrix to the experimentally
determined values of the CKM matrix elements.
In the case of the S3 model with one Higgs electroweak

doublet, which we have called S3-SM, the S3 symmetry has
to be broken in order to give masses to all fermions. The
resulting mass matrix, in a symmetry adapted basis, has a
Fritzsch-like form with two texture zeros. The value of the
normalized �2 of the fit to the CKM elements, using four
elements of the CKMmatrix Eq. (55), both for the analysis
using the central values and for the one with the values
with restricted precision is �10�2, as can be seen from
Table VIII.
In the case with three (S3-3H) or four Higgs electroweak

doublets, the S3 symmetry is not explicitly broken.
In these cases the resulting mass matrices have, either the
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Fritzsch-like form with two texture zeros or the NNI form,
both known to be in good agreement with the phenome-
nology. The functional form of the CKM matrix elements
is the same either with three or four Higgses, and the value
of the normalized �2, using four elements of the CKM
matrix, is 7:75
 10�3 and 1, for the analysis with the
central values and for the one with values with restricted
precision, respectively (see Table IX).

It is worth noting that over the past decade there has
been remarkable progress in reducing the uncertainties in
the measurement of quark masses. Unlike one decade ago,
presently it is no longer good enough to have a model that
reproduces the hierarchy of fermion masses within the
order of magnitude. At present, there are stringent limits
on their values and so one must use statistical methods,
such as a �2 fit, to measure the validity of a given model
to reproduce the observed values for the CKM elements
and the quark masses. The results of our �2 fits show that
the S3 models presented here reproduce with a remarkable
accuracy the values of the CKM elements. The very good
agreement between the S3 flavor symmetry models of
quarks (presented in this work) and leptons [29,60]
mixing, and the experimentally determined values of
the corresponding mixing matrices, V

exp
CKM and V

exp
PMNS,

gives strong support to the idea that fermion masses and
mixing might be related by a flavor permutational
symmetry S3.
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APPENDIX: ROTATION OF THEMASS MATRICES

As we have mentioned in the main body of the text, the

matrix Mf
S3

makes explicit the S3 transformations; how-

ever, in order to diagonalize the mass matrix and extract the
mixing matrix we perform a rotation and a shift as follows:

M f
Hier � Rð�Þf12Mf

S3
Rð�ÞTf12; (A1)

where Mf
Hier, for subcases A and A0 of case III, it is

explicitly given as

Mf
Hier �

�f
1 þ�f

2c
2ð1� 3t2Þ �f

2scð3� t2Þ þ�f
5 0

�f
2scð3� t2Þ ��f

5 �f
1 ��f

2c
2ð1� 3t2Þ �f

7=c

0 �f
9=c �f

3

0B@
1CA; (A2)

while for the B and B0 subcases of case III is given by

Mf
Hier �

�f
1 ��f

4scð3� t2Þ ��f
4c

2ð1� 3t2Þ þ�f
5 0

��f
4c

2ð1� 3t2Þ ��f
5 �f

1 þ�f
4scð3� t2Þ ��f

6=c

0 �f
8=c �f

3

0BBB@
1CCCA; (A3)

where c ¼ cos�, s ¼ sin �, and t ¼ tan�. For subcases A,
A0, B, and B0 of case II we just need to set �5 ¼ 0.
Following Eq. (19) we can then identify that the condition
for (1, 3) and (3, 1) to vanish is

tan� ¼ w1=w2 (A4)

or

tan� ¼ �w2=w1 (A5)

for subcases A and A0 or B and B0, respectively.
The rotation in the Dirac fermion sector is unobservable,

as long as we rotate both matrices, in the u and d or in the l

and �l sectors, by the same angle �. Concerning the
quark sector, the latter statement can be easily verified by

diagonalizing the matrices Mf
S3

and the rotated matrices

Rð�Þf12 Mf
S3
Rð�ÞTf12,

Mf
diag ¼ Vf

LM
f
S3
Vfy
R ;

¼ Vf
LRð�ÞTf12½Rð�Þf12Mf

S3
Rð�ÞTf12�Rð�Þf12Vfy

R :

(A6)

It is then readily seen that the physical observables,
contained in the CKM matrix, remain invariant,
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VCKM ¼ Vu
LRð�ÞTu12Rð�Þd12Vdy

L : (A7)

Therefore, as long as we have the same rotation in both
sectors, we preserve the matrix structure of the S3 symme-
try. Now, we make a shift such that

Mf
Hier ¼ �f

013
3 þ dMf
Hier; (A8)

where dMf
Hier has the form of Eq. (29) and hence we can

proceed as in Ref. [29] to diagonalize the mass matrix,
which is explained in this work in Sec. VI C. The matrix
of Eq. (A2) can be identified with that of Eq. (32) by
assuming that

Yf
4 ¼ ijYf

4 j; Yf
6 ¼ Yf


5 ; (A9)

where the first condition is needed such that the entries (1, 2)
and (2, 1) correspond respectively to the complex conjugate
of each other, and the second, such that the entries (2, 3) and
(3, 2) are also complex conjugate of each other. From
Eqs. (32) and (A2) we can see that the phase	1f is fixed by

tan	1f ¼ j�5j
�f

2scð3� t2Þ ¼
ffiffiffi
2

p jYf
4 jvA

jYf
3 jw2scð3� t2Þ ; (A10)

or

tan	1f ¼ j�5j
��f

4c
2ð1� 3t2Þ ¼ �

ffiffiffi
2

p jYf
4 jvA

jYf
3 jw1c

2ð1� 3t2Þ ;

(A11)

for subcases A and A0 or B and B0, respectively, which can

bewritten in terms of the invariants of thematrix cMHier and
the free parameter 
f, which is the form we present in
Eq. (41).
For subcases A0 and B0 of cases II and III, Tables II and I,

respectively, the form of the matrix can be reproduced just
by assuming a rotation angle of � ¼ �=6 or � ¼ �=3 for
subcase A0 or B0, respectively, and without any necessity of
imposing Hermiticity to the mass matrix.
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[60] F. González Canales, A. Mondragón, and M. Mondragón,

Fortschr. Phys. 61, 546 (2013).
[61] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,

010001 (2012).
[62] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A.

Palazzo, and A.M. Rotunno, Phys. Rev. D 86, 013012
(2012).

[63] D. Forero, M. Tortola, and J. Valle, Phys. Rev. D 86,
073012 (2012).

[64] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[65] A. Mondragón et al. (work in progress).
[66] J. Girrbach, arXiv:1208.5630.

[67] S. F. King and C. Luhn, Rep. Prog. Phys. 76, 056201
(2013).

[68] D. Emmanuel-Costa, C. Simoes, and M. Tortola,
arXiv:1303.5699.
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