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In a previous article Don Bennett and I looked for, found, and proposed a game in which the standard

model gauge group SðUð2Þ � Uð3ÞÞ gets singled out as the ‘‘winner.’’ This ‘‘game’’ means that the by

Nature chosen gauge group should be just the one that has the maximal value for a quantity, which is a

modification of the ratio of the quadratic Casimir for the adjoint representation and that for a ‘‘smallest’’

faithful representation. Here I propose to extend this ‘‘game’’ to construct a corresponding game between

different potential dimensions for space-time. The idea is to formulate how the same competition as the

one between the potential gauge groups would run out, if restricted to the potential Lorentz or Poincare

groups achievable for different dimensions of space-time d. The remarkable point is that it is the

experimental space-time dimension 4 which wins. So the same function defined over Lie groups seems

to single out both the gauge group and the dimension of space-time in nature. This seems a rather strange

coincidence, unless there really is some similar physical reason behind causing our game-variable (or goal

variable) to be selected to be maximal. It has crudely to do with that the groups preferred are easily

represented on very ‘‘small’’ but yet faithful representations.

DOI: 10.1103/PhysRevD.88.096001 PACS numbers: 11.15.�q, 11.30.Cp

I. INTRODUCTION

The main idea of the present series of articles is to seek
some game that at the same time can select out the gauge
group observed in nature and the dimension of space time.
Let us suppose we should have the standard model group
SðUð2Þ �Uð3ÞÞ in nature, and also the gauge group (what-
ever that means) of the (gravitational) general relativity by
saying that nature has chosen the ‘‘winner’’ in this game.
That is to say we look for a group-characteristic quantity
(‘‘goal quantity’’) which happens to be the largest possible
for both the gauge group of the standard model and a group
associate with the Lorentz transformations (or somehow
with the gauge transformations in general relativity), e.g.,
the Lorentz group. We could then claim that such a goal
quantity specifies both the gauge group for the standard
model and the Lorentz group, thereby meaning the dimen-
sion of space-time. If the quantity is reasonably simple, this
could be an explanation for both the gauge group and the
dimension of space-time. We could then answer: Why do
we have in nature just the standard model group SðUð2Þ �
Uð3ÞÞ and why just 4 space-time dimensions? In the pre-
vious article [1] we sought in this way to invent a game or
rather a ‘‘goal quantity,’’ which were at first the ratio
CA=CF of the quadratic Casimirs for the group in question
for the adjoint representation to the quadratic Casimir of
some ‘‘small’’ but still faithful representation in such a way
that this ratio would take its largest value for the by nature
chosen (gauge) group.

Both ourselves and others earlier have made other
attempts to find arguments pointing out both the gauge

group [2] and the dimension [3–10]. We shall shortly
review earlier works in the appendix.
In Sec. II we shall review the previous work [1].
Actually N. Brene and I had already earlier proposed

another game that essentially pointed also to the standard
model gauge group being the winner [2], but it is the more
recent proposal with the quadratic Casimirs or rather their
ratio CA=CF which we seek to generalize to determine the
dimension of space-time in this article. This concept of the
gauge group for general relativity may be a bit imprecise,
and so I want at first to simplify it a little bit by making a
few ad hoc decisions to extract a group–essentially the
gauge group–of general relativity, even if the definition of
this concept is not completely clear yet.
A first candidate, which is for me rather attractive for the

purpose, is simply the Lorentz group, meaning the group of
Lorentz boosts and rotations.
You could consider the attitude of the present article and

the foregoing one in the series [1] as attempts to extract the
information as discussed in the article [11] contained in
the group structure of the standard model gauge group and
the dimension of space-time. Of course the hope could be
that one would in this way learn about the true theory, that
might be behind the standard model by finding some
regularity (as we may say we do in the present series of
papers).
The reader should consider these different proposals for

a quantity to maximize (¼ use as goal quantity) as rather
closely related versions of a quantity suggested by perhaps
a bit of a vague idea being improved successively. From
our point of view the translational generators in the
Poincare group are a bit difficult and so we seek to treat
them only in an approximate way. One should have in
mind, that the basic idea is: The group selected by nature*hbech@nbi.dk; hbechnbi@gmail.com
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is the one that is counted in a ‘‘normalization determined
from the Lie algebra of the group’’ and can be said to have
a faithful representation (F) the matrices of which move as
little as possible when the group element being represented
moves around in the group.

Let me at least clarify this statement:
As usual we mean by representations linear representa-

tions. Thus we really consider homomorphisms of the
group into a subset of matrices (with matrix multiplication
as the group composition law). The requirement of the
representation being faithful then means that this group
of matrices shall actually be an isomorphic image of the
original group. Now on a system of matrices we have a
natural metric, namely the metric in which the distance
between two matrices A and B is given by the square root
of the trace of the numerical square of the difference

dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððA�BÞðA�BÞþÞ

q
: (1)

To make a comparison of one group and some representa-
tion of it with another group and its representation with
respect to how fast the representation matrices move for a
given motion of the group elements, we need a normaliza-
tion giving us a well-defined metric on the groups, with
respect to that which we can ask for the rate of variation of
the representations. In my short statement I suggested that
this ‘‘normalization should be determined from the Lie
algebra of the group.’’ This means, more precisely, that
one shall consider the adjoint representation, which is in
fact completely given by the Lie algebra, and then use the
same distance concept as we just proposed for the matrix

representation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððA�BÞðA�BÞþÞp

. In this way the
quantity to minimize would be the ratio of the motion-
distance in the representation, e.g., F, and in the Lie
algebra representation, i.e., the adjoint representation.

But that ratio is just for infinitesimal motions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CF=CA

p
.

So instead of talking about what to minimize, if we in-
verted it and claimed we should maximize, we would getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CA=CF

p
to be maximized. Of course the square root does

not matter, and we thus obtain in this way a means to look
at the ratio CA=CF as a measure for the motion of an
element in the group compared to the same element motion
on the representation.

It is not unreasonable to think that a group represented
so that the representation matrix moves less with the group
element is more likely to become a good symmetry for a
theory than one with more variation of the representation
matrix. If one imagines that the potential groups become
good symmetries by accident, then at least it would be less
of an accident required the less the degrees of freedom
moves around under the to the group corresponding sym-
metry (approximately). It is the suggestion of the specula-
tion inspired by our result that it is a matter of it being
easier to get some groups as better symmetries than others;
and those with the biggest CA=CF should be the easiest to

become symmetries by accident. That is indeed the specu-
lation behind the present article as well as the previous one
[1] that symmetries may appear by accident (then perhaps
be strengthened to be exact by some means [7,12]).
But let us stress that you can also look at the present

work and the previous one in the following phenomeno-
logical philosophy:
We wonder, why Nature has chosen just 4 ð¼ 3þ 1Þ

dimensions and why Nature—at the present experimen-
tally accessible scale at least—has chosen just the standard
model group SðUð2Þ �Uð3ÞÞ? Then we speculate that
there might be some quantity characterizing groups, which
measures how well they ‘‘are suited ’’ to be the groups for
Nature. And then we begin to seek that quantity as being
some function defined on the class of abstract groups—i.e.,
giving a number for each abstract (Lie?) group—of course
by proposing for ourselves at least various versions or ideas
for what such a relatively simple function defined on the
abstract Lie groups could be. Then the present works—this
paper and the previous one [1]—represent the present
status of the search: We found that with small variations
the types of such functions representing the spirit of the
little motion of the ‘‘best’’ faithful representation, i.e.,
essentially the largest CA=CF, turned out truly to bring
Nature’s choices to be the winners.
In this sense we may then claim that we have found by

phenomenology that at least the ‘‘direction’’ of a quantity
like CA=CF or light modifications of it is a very good
quantity to make up a ‘‘theory’’ for why we have got the
groups we got.
In the following Sec. II we review the main results of the

CA=CF quantity, which in the previous article we studied
for the various Lie groups in order to discuss that the
standard model group could be made to be favored. In
Sec. III we then extract and concentrate on those groups
that can be Lorentz groups. The main content of both these
sections are actually the tables listing the results of the
quantities proposed to be maximized for the relevant
groups. In Sec. IV we resume and conclude that actually
we may be on the track to have found a common reason or
explanation for the gauge group of the standard model and
for why we have 3þ 1 dimensions.
In the appendix we have put a review of previous attempt

to argue for why we have just 4 dimensions.

II. OUR PREVIOUS NUMBERS

In the previous work by D. Bennett and myself [1] we
essentially collected the ratios (related to the Dynkin index
[13]) CA=CF, where we, for the representation of the group
in question G, selected that representation F, which would
give the largest value for this ratio CA=CF. (In the table we
give in a few cases two proposals for F, but really it is what
one would loosely call the smallest faithful representation).
We shall keep in mind that this ratio is only well defined for
the simple Lie groups; and it is thus only for the simple
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groups we could make a clean table as the one just below.
For semisimple Lie groups it is strictly speaking needed to
specify a replacement quantity, that can be the needed
generalization to semisimple Lie groups. One shall natu-
rally construct a logarithmic average [see formula (40)
or (16) for what we mean by a ‘‘logarithmic average’’]
weighted with the dimensions of the various simple group
factors contained in the semisimple Lie group written as a
product of its simple invariant subgroups. Extending the
generalization even to the inclusion of Uð1Þ factors in the
Lie group gets even a bit more arbitrary, but we did choose
the rule of counting the Uð1Þ factors as if they had CA=CF

equal to unity [which was the case at first but then we
argued for a correction factor derived from the way the
elements in the center of the group are identified (by
division out a subgroup), and the combined result of these
rules became equivalent to the introduction of formally
taking CA=CF ! e2A=e

2
F as described below in item IV in

Sec. II A). The problem with the Uð1Þ’s, the Abelian
groups, is that the adjoint quadratic Casimir CA is just
zero and does not provide a good normalization.
Although we have to declare formally CA=CF to be unity
at first for Uð1Þ, we take the opportunity to—and we think
it is very natural—to include a correction depending not
only on the Lie algebra but also on the group structure in a
way roughly describing that a Uð1Þ representation with a
small ‘‘charge’’ is ‘‘smaller’’ than one with a larger charge
in a very similar way to the way in which a small quadratic
Casimir signals a ‘‘small’’ representation.

Here we give our (essentially Dynkin index) ratios for
the simple Lie groups:

Our ratio of adjoint to ‘‘simplest’’ (or smallest)
quadratic Casimirs CA=CF

CA

CF

��������An

¼ 2ðnþ 1Þ2
nðnþ 2Þ ¼ 2ðnþ 1Þ2

ðnþ 1Þ2 � 1
¼ 2

1� 1
ðnþ1Þ2

; (2)

CA

CF vector

��������Bn

¼ 2n� 1

n
¼ 2� 1

n
; (3)

CA

CF spinor

��������Bn

¼ 2n� 1
2n2þn

8

¼ 16n� 8

nð2nþ 1Þ ; (4)

CA

CF

��������Cn

¼ nþ 1

n=2þ 1=4
¼ 4ðnþ 1Þ

2nþ 1
; (5)

CA

CF vector

��������Dn

¼ 2ðn� 1Þ
n� 1=2

¼ 4ðn� 1Þ
2n� 1

; (6)

CA

CF spinor

��������Dn

¼ 2ðn� 1Þ
2n2�n

8

¼ 16ðn� 1Þ
nð2n� 1Þ ; (7)

CA

CF

��������G2

¼ 4

2
¼ 2; (8)

CA

CF

��������F4

¼ 9

6
¼ 3

2
; (9)

CA

CF

��������E6

¼ 12
26
3

¼ 18

13
; (10)

CA

CF

��������E7

¼ 18
57
4

¼ 72

57
¼ 24

19
; (11)

CA

CF

��������E8

¼ 30

30
¼ 1: (12)

For the calculation of Eqs. (2)–(12) see [14,15].
In Eqs. (2)–(12) we have of course used the conventional

notation for the classification of Lie algebras, wherein
the index n on the capital letter denotes the rank of the
Lie algebra, and:
(i) An is SUðnþ 1Þ.
(ii) Bn is the odd dimension orthogonal group Lie

algebra for SOð2nþ 1Þ or for its covering group
Spinð2nþ 1Þ.

(iii) Cn are the symplectic Lie algebras.
(iv) Dn is the even dimension orthogonal Lie algebra

for SOð2nÞ or its covering group Spinð2nÞ,
(v) while F4, G2, and En for n ¼ 6, 7, 8 are the excep-

tional Lie algebras.
The words spinor or vector following in the index the

letter F which itself denotes the ‘‘small’’ representation,
i.e., most promising for giving a small quadratic Casimir
CF—means that we have used for F respectively the spinor
and vector representation.
It may be reassuring to check that our goal quantity for

the simple groups CA=CF becomes the same for the cases
of isomorphic Lie algebras such as B2 ffi C2 and C3 ffi A3.

A. Development of the gauge group
determination proposal

It may be best to describe the proposal for the quantity to
be maximized for the gauge group by describing how a
phenomenological discussion adjusting small problems
can be guided toward the final rule. Let me review the
work [1] as a successive discussion of larger and larger
classes of groups toward finding a goal quantity that would
make the standard model group win the game of making it
maximal.
However, before that I want to be a bit concrete and

present the typical type of group that we consider a possi-
bility as a gauge group. Indeed we imagine that it can be
written as a cross product of Lie groups with at the end
some subgroup of the center being divided out.
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In [1], we were overall satisfied by considering a Lie
group of the form of a cross product of some Uð1Þ groups
and some simple Lie groups that were finally modified by
dividing out some discrete subgroup of the center. That is
to say we have in mind groups of the form

G ¼ ðUð1Þ �Uð1Þ � � � � �Uð1Þ
� SUð2ÞðsayÞ � � � � . . .�Gmax Þ=D; (13)

where the�-product runs over a number of occurrences of
all the possible simple Lie groups as classified by their
Dynkin diagrams up to the last one for the group G in
question here denoted Gmax . We imagine using the cover-
ing groups for the Lie algebras in question and take only
the compact groups. Finally then the group [16] rather than
Lie algebra structure is achieved by dividing some discrete
subgroup D out of the center of the group achieved by the
cross product without modification. This division out of a
subgroup from the center only has significance for the
group but not for the Lie algebra. The gauge fields in a
gauge field theory a priori only depend on the Lie algebra,
but we, as a very important point in our works, assign a
physical significance to even the Lie group by making use
of the fact that the group structure restricts the representa-
tions that are allowed. Thus one can in a phenomenological
way read off the group structure (and thereby what were
divided out) by studying the representations occurring as
representations for the matter fields. It is, e.g., the empiri-
cal charge quantization rule

y=2þ IW þ “triality”=3 ¼ 0ðmod 1Þ; (14)

where IW is the weak isospin and y the hypercharge, and it
tells that the electric charge Q ¼ T3W þ y=2 is integer
for particles with zero triality, written as ‘‘triality,’’ and
becomes 1=3 modulo unity for triality 1(mod3), while
-1=3ðmod 1Þ for “triality” ¼ 2 (mod 3).

The reader should have in mind that the typical covering
groups as, e.g., SUðNÞ ¼ AN�1 has often a nontrivial cen-
ter with a finite number of elements. For example, SUðNÞ
has a center isomorphic to the group ZN of the integer
numbers counted modulo N. The whole center in the cross
product thus becomes the cross product of the typically
discrete centers for the simple Lie groups crossed further
with the Uð1Þ’s which each of them are all center (since
they are Abelian). For example the center of the cross
product Uð1Þ � SUð2Þ � SUð3Þ that shall be used to pro-
duce the standard model group (and which has the standard
model Lie algebra) is Uð1Þ � Z2 � Z3. We divide the
covering group R� SUð2Þ � SUð3Þ by the discrete sub-
group D of the center of this group generated by the
element [2�, 1(mod2), 1(mod3)]. Hereby one obtains a
factor group which only has as representations a subset of
the representations of the Lie algebra or the covering
group, but still has the representations realized physically
in the Standard Model.

The following successive proposals are then made
for larger and larger subsets of the groups of the type

considered, beginning in I with the simple Lie groups,
then in II the semisimple, etc.:
(I) The ground idea for the goal quantity is the ratio

CA=CF in which the symbols CA and CF are the
quadratic Casimirs for the group in question
for, respectively, the adjoint representation A and
another representation F, which then in the search
for a maximal ratio CA=CF will lead to choosing F
with minimal CF. To avoid F being the trivial rep-
resentation, we shall require F to be faithful.
This simple starting proposal CA=CF for defining a
‘‘goal quantity’’ to seek the maximum is really only
working for simple non-Abelian Lie groups. (For
other Lie groups it will need some improvements
to be a good and well-defined quantity)
In fact the reader shall have in mind that
(1) The ratio CA=CF does not suffer from the nor-

malization problem of the generators represent-
ing the Lie algebra, because we take the ratio so
that scaling the convention for the Lie algebra
basis, if changed, will change the numerator CA

and the denominator CF by the same factor.
(2) However, at first even this ratio CA=CF is only

well defined for a simple Lie group. In the case
of even a still semisimple Lie group there is,
namely, an ambiguity in the normalization of
the basis vectors for the Lie algebra of one of
the simple components relative to another simple
component. So just dividing two Casimirs is not
sufficient to make a normalizaton convention
independent ratio, as it were in the simple Lie
algebra case.

(3) If we do not specify the normalizations of the
basis vectors and thereby their representations,
then we get a notation dependent quantity for
the (quadratic) Casimir operators and thus the
quadratic Casimirs.

(4) If we have Uð1Þ as factors in the�-product, then
we have the obvious trouble with our first pro-
posal CA=CF that the adjoint representation of
Uð1Þ is trivial, or rather the Abelian Lie group
Uð1Þ has no (meaningful) adjoint representation
and thus CA becomes meaningless for Uð1Þ.

(II) Next let us improve the first proposal CA=CF for the
goal quantity by generalizing it in a good way to the
semi-simple Lie groups.
The problem which we first have to solve in extend-
ing in a meaningful way the proposed quantity is to
ignore at first the Uð1Þ groups and restrict ourselves
to semisimple groups to find some way of defining a
quantity like one for the simple Lie group or the
algebra of well-defined quantity CA=CF.
Since for a simple group the ratio CA=CF is well
defined, the obvious idea to make an analogous
expression for a semisimple one, which is just a
�-product of several simple Lie groups S1 � S2 �
� � � Sn, is taking some sort of average over the
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separate simple groups Si of the quantities
CA=CFjSi for the various simple groups. The pro-

posal that we thought was reasonable was to aver-
age logarithmically [see (40) or (16) to get an idea
what ‘‘logarithmic averaging’’ means] and weight-
ing with the dimension of the Lie groups. That
means we proposed to use as the average that should
replace the CA=CF for the simple group in the
semisimple case

“CA=CF replacement for S1 � S2 � � � � � Sn”

(15)

¼ ðCA=CFjS1Þ
dim ðS1ÞP
i
dim ðSiÞ � ðCA=CFjS2Þ

dim ðS2ÞP
i
dim ðSi Þ

� � � � � ðCA=CFjSnÞ
dim ðSnÞP
i
dim ðSiÞ: (16)

It is of course a priori an ad hoc choice to weight
just with the dimensions dim ðSiÞ of the simple
groups Si, but is an extremely natural choice.
However, it is the type of choice we could revise
if we should look for some little adjustment of our
proposal to make it more successful.
You may consider the quadratic Casimir as repre-
senting a metric tensor describing distances in the
representation space for coordinates originating
from the Lie algebra or Lie group. If one would
think of the volume [of dimension dim ðGÞ of
course] for a faithful representation, F, relative to
the adjoint representation volume, it would be

ðCF=CAÞdimðGÞ=2. So you could see our quantity
“CA=CF replacement forS1�S2�����Sn” as being
the dim ðS1 � S2 � � � � � SnÞ=2th root of the vol-
ume ratio of the adjoint representation A, i.e.,
VolðAÞ relative to that of the faithful representation
F, i.e., VolðFÞ,
“CA=CF replacement for S1 � S2 � � � � � Sn”

¼
�
VolðAÞ
VolðFÞ

� 1
dim ðGÞ

: (17)

This simple and nice interpretation supports aes-
thetically the use of the dimensionality of the vari-
ous simple Lie groups being used to weight the
logarithmic average. We can, instead of talking at
first about the quadratic Casimirs, say that we talk
about the volume ratio of the adjoint representation
and the representation F from the start. The ratio of
the volumes of two representations in the natural
metric defined above in (1) is a very simple and
beautiful quantity. We then take the root of (half)
the dimension of the group to make it depend on the
structure of the various simple subgroups rather
than on the total number of them or their dimension

in a too strong way. By using this root choice (17)
we obtain the good feature that you cannot obtain
the large quantity just by taking a group with a high
dimension by taking, for instance, a cross product of
a lot of groups. For single simple groups we also
achieve that our root quantity becomes just the
CA=CF, from which we started. And you can even
see from the series of Eqs. (2)–(12) above that in the
limit of the rank going to infinity, the various series
of infinitely many simple Lie groups have our quan-
tity go nicely to 2.1 In this way we get a very
balanced quantity, favoring at first neither large
nor small dimensions for the group dramatically.
Hereby we think we have proposed a very nice and
beautiful quantity for the semisimple groups.

(III) Next we have the problem with groups having
Uð1Þ factors:
For the Uð1Þ our CA=CF hardly makes any sense,
and so we have to invent a replacement essentially
arbitrarily. In order to do that let us keep in mind
that whenever our quantity CA=CF makes sense, it
is for trivial reasons always bigger than unity.
We could namely always as a special possibility
for the faithful representation F use the adjoint
representation itself, in which case the ratio
CA=CF ¼ CA=CA ¼ 1. So since we shall choose
the representation F so as to maximize the ratio
CA=CF, it must always be larger than or equal to
this possibility value 1.
When we invent a value for the replacement of the
CA=CF for the Abelian group Uð1Þ, we must at
least choose the value larger than or equal to 1 in
order not to violate the trivial lower bound.
Since all representations of an Abelian group are
one-dimensional, there is with respect to dimen-
sion only one representation and thus only one
choice for F. Therefore the first proposal is to
replace CA=CF by the for trivial reasons minimal
value 1. However, truly an Abelian group Uð1Þ has
a series of different representations given by a
‘‘charge’’ e.
In other words we propose to choose:

“CA=CF replacement forUð1Þ” ¼ 1: (18)

It is then the obvious generalization to the groups
being cross products of Uð1Þ’s with a semisimple
group that we shall average this 1 logarithmically

1According to our rule, one shall choose the representation F
to be the faithful representation making CA=CF maximal for the
given group. Whether to choose the spinor or vector possibility
for F according to this rule will shift for the SpinðNÞ � SOðNÞ
groups meaning the Bn andDn at Spinð8Þ � SOð8Þ for which the
spinor and the vector representations are isomorphic. For the
asymptotic case of large ranks n shall one as F use the vector
possibility, and that gives the limit 2.
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with the CA=CF’s for the simple groups weighting
as above with the dimension of the Lie groups.
This means that we have now come to the proposal:

“CA=CF replacement forUð1Þ � � � �
�Uð1Þ � S1 � � � � � Sn” (19)

¼ 1
1

#Uð1Þ0sþ
P

i
dimðSiÞ � � � � � 1

1

#Uð1Þ0sþ
P

i
dimðSiÞ (20)

� ðCA=CFjS1Þ
dim ðS1Þ

#Uð1Þ0sþ
P

i
dim ðSi Þ � � � �

� ðCA=CFjSnÞ
dim ðSnÞ

#Uð1Þ0sþ
P

i
Si (21)

¼ ðCA=CFjS1Þ
dim ðS1Þ

#Uð1Þ0sþ
P

i
dim ðSiÞ � � � �

� ðCA=CFjSnÞ
dim ðSnÞ

#Uð1Þ0sþ
P

i
Si : (22)

Here #Uð1Þ0s means the number of Uð1Þ factors in
the �-product forming the group G under study/
evaluation with respect to the goal quantity. Of
course the full dimension of the Lie group G is just

dim ðGÞ ¼ #Uð1Þ0sþX
i

dimðSiÞ: (23)

At this stage it will not with respect to maxi-
mizing the goal quantity “CA=CF replacement for
Uð1Þ � � � � �Uð1Þ � S1 � � � � � Sn” pay to have
any Uð1Þ’s at all. So we have at this stage in
developing the goal quantity no chance of making
a group that, like the standard model has an invari-
ant Abelian subgroup Uð1Þ, has any chance of
winning the game of maximization.

(IV) Improvement for Abelian and the group structure:
In order to make it at all pay for the maximization
to have at least some factor Uð1Þ like the standard
model happens to have, we must be open for the
possibility of letting a Uð1Þ invariant subgroup
contribute more than just the absolute minimum 1
as a replacement for its meaningless CA=CF. But
the irreducible representations of the Uð1Þ are all
just one-dimensional representations with the
single element in the unitary matrix being just a
phase factor exp ðie�Þ, where � is the phase de-
scribing the element inUð1Þ and e is a ‘‘charge’’ for
the representation in question. It is well known that
the various representations of Uð1Þ are character-
ized by such ‘‘charges’’ e. The quadratic Casimirs
are given as the square of the ‘‘charges’’ CR ! e2R,
where eR is the ‘‘charge’’ for the representation R.
Now let us keep in mind that for our purpose of
studying gauge groups, wemainly have in mind the
charges for various particles, and that when we give
a physical meaning to the gauge group rather than
just to the gauge Lie algebra we do that on the basis
of phenomenology suggested restrictions on the
representations/particles occurring in the model.

We can then ask the questions: What is the lowest
nonzero charge eA say on a particle in accordance
with the restrictions from the group structure, when
this particle has no non-Abelian transformations
(i.e., when it transforms trivially, i.e., not at all
under the other factors in the group)? We can also
ask what is the absolutely (numerically) smallest
‘‘charge’’ eF say on any particle allowed under
the group rule (whatever its couplings to the non-
Abelian Lie groups might be)? The indexes sug-
gested here were chosen to form a ‘‘replacement’’
for the CA=CF for a Uð1Þ being instead of the one
first proposed, now improved to e2A=e

2
F. We can

only obtain this ratio e2A=e
2
F to be different from

unity by having a gauge group obtained by dividing
out a discrete subgroup of the center of the starting
pure cross product. Actually this choice is very
reasonable in as far as the eF charge is the smallest
possible nontrivial charge quite analogous to ours
in the non-Abelian case of the representation F
being the smallest faithful one. So the only
ad hoc choice is to replace the adjoint representa-
tion for the non-Abelian case by the smallest rep-
resentation of the Uð1Þ that does not mix up with
non-Abelian groups. We think this is pretty much
the simplest reasonable replacement.
Choosing this procedure we get to the final
proposal:

“CA=CF replacement forUð1Þð1Þ � � � � �Uð1ÞðmÞ

� S1 � � � � � Sn” ¼ (24)

¼
�
eð1Þ2A

eð1Þ2F

� � � � e
ðmÞ2
A

eðmÞ2
F

� CA

CF

��������
dimðS1Þ

S1

� � � �

� CA

CF

��������
dim ðSnÞ

Sn

� 1

#Uð1Þ0sþ
P

i
dimðSi Þ: (25)

Here of course m ¼ #Uð1Þ0s and the index in the
round brackets on the charges enumerates the vari-
ous Uð1Þ factors in the cross product. It should be
kept in mind that the nontrivial (i.e., not just 1)

ratios
eðiÞ2
A

eðiÞ2F

only come into play when a discrete

subgroup of the center of the cross product has
been divided out. Remember that I in reviewing
the work [2] told that this division out of a discrete
subgroup of the center were in the ‘‘skewness’’
estimation [2] an important ingredient in reducing
the symmetry and thus got favored by asking for
‘‘skewness.’’ So letting this outdivision be favored
in the game thus favors the standard model group,
which has relatively much such outdivision. This is
how we introduced in this last step a favoring of
the ‘‘division out,’’ although we started out with a
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CA=CF ratio which was purely dependent on the
Lie algebra.

B. Standard model group wins

Using Eqs. (2)–(12) inserting it into Eq. (25) we may
now contemplate which group should win the ‘‘game’’ of
obtaining the largest value for the goal quantity (25).

First we see from Eq. (12) that the groups favored
even in the system that were made balanced in such a
way that the ratio CA=CF goes to a constant—actually
2—for very large ranks r ! 1 are the small rank ones:
SUð2Þ ¼ A1 is the winner among the simple group with its
CA=CF ¼ 2

1� 1

ðnþ1Þ2
for An which for n ¼ 1 gives 8=3.

The next among the simplest Lie groups is SOð5Þ ¼
B2 ¼ C2 with CA=CF ¼ 12=5, which is obtained by using
the spinor representation for B2 giving 16n�8

nð2nþ1Þ jn¼2 ¼ 12
5 ,

while the vector representation gives the less competitive
CA=CFjB2 vector ¼ 3=5, and we can check that the isomor-

phic C2 also gives as it should 12=5. First at the third place
we find the Lie group SUð3Þ ¼ A2 with itsCA=CFjA2

¼ 9=4

the groupwewould hope towin over the SOð5Þ, because it is
SUð3Þ and not SOð5Þ which occurs in the standard model.

But now in the competition between the SOð5Þ and the
SUð3Þ comes in some help for SUð3Þ in our final proposal:

(i) Dimension of SUð3Þ is lower than that of SOð5Þ.
Comparing the semisimple groups formed by cross-
ing SUð2Þ with respectively SOð5Þ and SUð3Þ we
obtain the CA=CF ratios when weighted according
to (16) to be

“
CA

CF

replacement”jSUð3Þ�SOð5Þ

¼
�
8

3

�
3=13 �

�
12

5

�
10=13 ¼ 2:459068704 (26)

“
CA

CF

replacement”jSUð3Þ�SUð3Þ

¼
�
8

3

�
3=11 �

�
9

4

�
8=11 ¼ 2:356709384 (27)

The ð125 =94�1Þ�100%¼6:6666667% higher value

for SOð5Þ over SUð3Þ is by the logarithmic dimen-
sional weighting reduced to ð2:4590687042:356709384�1Þ�100%¼
4:343315332%.

(ii) Involving a Uð1Þ and the division out of a central
subgroup.
According to the details of the definition of our
‘‘goal quantity’’ when involving Uð1Þ cross product
factors, we have the possibility of obtaining e2A=e

2
F

to the power of the inverse of the dimension from
(25). As by our definitional choice above, the dif-
ference between the charge eA and eF is that eA
should be represented with only the Uð1Þ charge but
trivial under the non-Abelian groups, while eF can

be chosen for any faithful representation, the ratio
eA=eF can only be bigger than unity by involving a
rule for allowed representations of the group (rather
than just the Lie algebra). That is to say we need to
involve the center of one of the covering groups
of the non-Abelian Lie groups. We can then obtain,
e.g., for SUð3Þ—which has a center isomorphic to
the group of integers modulo 3, i.e., Z3—a division
out of a Z3 and get a ratio of 3 for eA over eF if we
wish. The reader should check that using our for-
mula (25) for the goal quantity and imagining vari-
ous groups obtained by various division-outs of the
center, we can only divide out say Z2 once with only
one Uð1Þ cross product factor if we want to get
the effect of this division out for the ratios eA=eF
obtainable, whereas we can manage to get both
Z2 and Z3 to give rise to effective factors of
the type ðeA=eFÞ2, even with only one Uð1Þ.
With just one Uð1Þ factor we can thus gain a

factor ðe2A=e2FÞ1= dim ðGÞ which gives ð1=32Þ1= dim ðGÞ

for SUð3Þ and ð1=22Þ1= dim ðGÞ for SUð2Þ in the goal
quantity (where dim ðGÞ is the dimension of the full
group). However, once we have already gotten such
a gain from SUð2Þ we cannot gain one more from
SOð5Þ unless we incorporate yet another Uð1Þ. In
this way SUð3Þ gets favored not only by having a Z3

isomorphic center compared to the only Z2 isomor-
phic center of the SOð5Þ covering group Spin(5),
meaning a 32 ¼ 9 factor compared to the 22 ¼ 4
only for SOð5Þ, but the SOð5Þ cannot get its Z2 in
play without one more Uð1Þ. So in reality now
SUð3Þ gets in front by a factor 9 (before one takes
the dim ðGÞ’th root.).
Let us now compare the two groups obtained from
the semisimple ones in (27) by cross multiplying
them with a Uð1Þ and successively dividing appro-
priately a discrete group out of the center:
We calculate the following goal quantities

“CA=CF replacement for ðSUð2Þ � SUð3Þ

�Uð1ÞÞ=Z6” ¼
�
62 �

�
8

3

�
3 �

�
9

4

�
8
� 1
12

(28)

¼ 2:957824511 (29)

“CA=CF replacement for ðSUð2Þ � Spinð5Þ

�Uð1ÞÞ=Z2“ ¼
�
22 �

�
8

3

�
3 �

�
12

5

�
10
� 1
14

(30)

¼ 2:54602555 (31)

Here Spin(5) just stands for the covering group of
SOð5Þ, the numbers for the three involved simple
Lie groups are the CA=CF ratios, respectively 8=3,
9=4, and 12=5 for SUð2Þ, SUð3Þ, and Spin(5) [or just
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think SOð5Þ]. The numbers 36 and 4 come from the
‘‘charge’’ ratio and are essentially the squares of the
number of elements in the divided out subgroup in
the cases here. The final root taking is of course
because of the averaging with the dimension of the
full group—respectively 12 and 14—to finally be
divided out of the logarithm.
It might be nice to have in mind what the signifi-
cance of, e.g., the factor 3 in the ‘‘charge ratio’’
eA=eF due to the SUð3Þ contributes, namely, a factor

9 before the 12th root is taken. Indeed 9
1
12 ¼

1:200936955. This means that obtaining the charge
ratio due to the SUð3Þ rather than there being no
factor with SOð5Þ [ � Spinð5Þ]—not even a new Z2

to divide out when we already have done so using
SUð2Þ—we gain 20% in the goal quantity. The only
4.343315332% advantage of the semi-simple SO(5)
over the SU(3) when combined to SUð2Þ � Spinð5Þ
and SUð2Þ � SUð3Þ, respectively, is thus rather
easily overshadowed by the effect of the eA=eF
from the SU(3), which is of the order of 20% in
the goal quantity.
After the inclusion of the Abelian charge type
of ratio we found that the final advantage of the
standard model group SðUð2Þ�Uð3ÞÞ¼ðUð1Þ�
SUð2Þ�SUð3ÞÞ=Z6 compared to the group with
the SUð3Þ replaced by the competing Spinð5Þ �
SOð5Þ, namely Uð1Þ � SUð2Þ � Spinð5Þ=Z2 is
ð2:9578245112:54602555 � 1Þ � 100% ¼ 16:174188%

C. Some property of our goal quantity

We must have in mind the property of our ‘‘goal quan-
tity’’ due to its logarithmic averaging that taking a repeated
cross product of whatever group with itself necessarily
leads to groups with the same goal quantity as the one
multiplied up. Thus if the standard model group wins, then
at the same time any number of crossings of the standard
model with itself will stand even and share first place with
the standard model alone.

We above essentially had the discussion that lead to the
standard model winning except that we did not sufficiently
carefully compare groups with different numbers of simple
group factors. For instance, the obvious and very serious
competitor to the standard model is simplyUð2Þ ¼ Uð1Þ �
SUð2Þ=Z2, which obtains the goal quantity

“CA=CF replacement for Uð2Þ“ ¼
�
22 �

�
8

3

�
3
�1
4

¼ 2:951151786: (32)

This is truly an exceedingly close run to the standard
model, but the standard model wins over even Uð2Þ on
the fourth cipher. Indeed the advantage of the standard
model group over the so closely competing Uð2Þ (which
would physically be that there were no strong interactions,

but only the Weinberg Salam Glashow model) is by
ð2:9578245112:951151786 � 1Þ � 100% ¼ :2261058% The contribution

from the Abelian invariant subgroup Uð1Þ, namely the
‘‘charge ratio,’’ is so important that we might look for the
winning group by first taking that into account. We may
therefore look for possibilities for the group with simple
group factors with one combination of center groups at a
time. For example, we could among the simple group
combinations with one having Z2 and one having Z3, say
that the SUð2Þ ¼ A1 will be best to use among the ones
with Z2, while SUð3Þ ¼ A2 will be ‘‘best’’ among the ones
with Z3.
We namely notice that for the same center of a Lie group

with a simple Lie algebra different such simple Lie alge-
bras will play the same role with respect to the division out
of the center and the charges for the Abelian group(s).
One may see rather easily that involving the more com-

plicated center groups in the simple Lie algebras shall
hardly pay.
If you seek, as would be best, a Zk center with k being

prime with respect to the other k values, say 2 and 3, we get
up to k ¼ 5 and SUð5Þ already has the high dimension 24
and would largely reduced away almost the effect of even a

factor 52; in fact ð52Þ1=24 ¼ 1:143529836.
Thus we may look at the series and expect that the

winner must be there:

“CA=CF replacement for Uð1Þ” ¼ ð1Þ1 ¼ 1; (33)

“CA=CF replacement for ðUð1Þ � SUð2ÞÞ=Z2”

¼ ð22 � ð8=3Þ3Þ14 (34)

¼ 2:951151786; (35)

“CA=CF replacement for ðUð1Þ � SUð2Þ � SUð3ÞÞ=Z6 ”

¼ ð62 � ð8=3Þ3 � ð9=4Þ8Þ 1
12 (36)

¼ 2:957824511; (37)

“CA=CF replacement for ðUð1Þ � SUð2Þ
� SUð3Þ � SUð5ÞÞ=Z30“ ¼ (38)

ð62 � ð8=3Þ3 � ð9=4Þ8 � ð25=12Þ24Þ 1
36 ¼ 2:341513375:

(39)

We see that in this series of the most promising candi-
dates with given centers of the covering groups for the
simple Lie algebras the standard model lies at the (flat)
maximum.
The reader can check in detail and get help by studying

our earlier work [1], and see that indeed the standard
model wins our game with its value 2.957824511, sharply
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followed by the group Uð2Þ, which achieves 2.951151786
(for its silver medal).

We think it is remarkable that such a relatively simple
proposal for a goal quantity as our slightly ad hoc extended
essentially Dynkin index CA=CF, the precise definition of
which is largely determined from requirements of not
depending too much on the notation choice, leads to just
the gauge group that Nature has chosen. One should think
that there is truly something in it. By this statement that it is
largely fixed by independence of notation, we mean that it
had to be a ratio of quadratic Casimirs, if it shall be given
by quadratic Casimirs at all; otherwise it would depend on
the normalization of the quadratic Casimir, which would
make it much more complicated to define. Our just called
‘‘ad hoc’’ extension to the inclusion of Uð1Þ cross product
factors is really very analogous to the CA=CF, so indeed it
is not such a seriously arbitrary choice.

We even have a speculative physical mechanism behind
it, which might be later replaced by some other version.

III. COMPETITION AMONG LORENTZ GROUPS
ON CA=CF AND THE LIKE

The main new point of the present article is to present
why we have just 3þ 1 (or say just d ¼ 4) space-time
dimensions. This explanation is that treating the Lorentz or
better Poincare group as ‘‘the gauge group for, say, general
relativity’’ and using the small ad hoc procedures to be
suggested in subsection III A, the experimentally realized
d ¼ 4 gets singled out as having the largest ‘‘goal quan-
tity’’ for the ‘‘gauge group.’’ Here this ‘‘goal quantity’’ is
taken to be the same one as the one that singled out—see
Sec. II or Bennett and me [1]—the standard model group
by requiring it to be maximal.

A. Development of goal quantities

We shall, however, slightly develop the goal quantity
used above for getting the standard model gauge group
singled out, because we have to (i) choose which group
should be considered the ‘‘gauge group’’ relevant for gen-
eral relativity on which to apply our previous game, (ii) the
Poincare group which is the best suggestion is for our
purpose slightly unpleasant because it does not have nice
compact representations of finite dimension like, e.g., the
standard model group had.

Indeed we seek to get a statement that the experimental
number of dimensions just maximizes some quantity, that
is a relatively simple function of the group structure of
say the Lorentz group, and which we then call a ‘‘goal
quantity.’’

Let me therefore list some of the first approximation
simplified proposals which we suggest for this goal quan-
tity. But this is for the dimension a two step procedure:
(i) we first use the proposals in our previous article [1] to
give a number—a goal quantity—for any Lie group. (ii) we
have to specify on which group we shall take and use the

procedure of previous work; shall it be the Lorentz group,
its covering group or somehow an attempt with the
Poincare group? Here are four successive proposals:
(i) Just take the Lorentz group and calculate for that

the Dynkin index [13] or rather the quantity which
we already used as goal quantity in the previous
article [1] CA=CF. This gets especially simple for
the (except for dimension d ¼ 2 or smaller) semi-
simple Lorentz groups (simple in the mathematical
sense of not having any invariant nontrivial sub-
group; semisimple: no Abelian invariant subgroup);
since the Lorentz group shall ‘‘have simple Lie
algebra’’ to apply the Dynkin index related ratio
CA=CF without further specifications, though the
global structure of the Lorentz group is not fixed
until we assign it a meaning we really have in
mind. For simple groups we can ignore the minor
corrections invented for the improvement in the
case of an Abelian component present in the
potential gauge group.

(ii) We supplement in a somewhat ad hocway the above
point, i.e., CA=CF by taking its dþ1

d�1 th power. The

idea behind this proposal is that we think of
the Poincare group instead of as under (i) only on
the Lorentz group part, though still in a crude way.
This means we think of a group, which is the
Poincare group, except that for simplicity we ignore
that the translation generators do not commute with
the Lorentz group part. Then we assign in accor-
dance with the ad hoc rule used in [1] the Abelian
sub-Lie-algebra a formal replacement 1 for the
ratio of the quadratic Casimirs CA=Cf: i.e., we put

“CA=CFj”Abelean formal ¼ 1. Next we construct an

‘‘average’’ averaged in a logarithmic way (meaning
that we average the logarithms and then exponen-
tiate again) weighted with the dimension of the Lie
groups over all the dimensions of the Poincare Lie
group. Since the dimension of the Lorentz group for

d dimensional space-time is dðd�1Þ
2 while the

Poincare group has dimension dðd�1Þ
2 þ d ¼ dðdþ1Þ

2

the logarithmic averaging means that we get

exp

�dðd�1Þ
2 ln ðCA=CFÞjLorentz þ ln ð1Þ � d

dðdþ 1Þ=2
�

¼ ðCA=CFÞj
dðd�1Þ

2 =dðdþ1Þ
2

Lorentz ¼ ðCA=CFÞj
d�1
dþ1

Lorentz (40)

That is to say we shall make a certain ad hoc partial
inclusion of the Abelian dimensions in the Poincare
groups.
To be concrete, we here propose to say crudely: Let
the Poincare group have of course d ‘‘Abelian’’
generators or dimensions. Let the dimension of
the Lorentz group be dLor ¼ dðd� 1Þ=2; then the
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total dimension of the Poincare group is dPoi ¼ dþ
dLor ¼ dðdþ 1Þ=2. If we crudely followed the idea
of weighting proposed in the previous article [1] as
if the d ‘‘Abelian’’ generators were just simple cross
product factors—and not as they really are: not
quite usual by not commuting with the Lorentz
generators—then since we formally are from this
previous article suggested to use the as if number 1
for the Abelian groups, we should use the quantity

ðCA=CFÞj
dLor
dPoi

Lor ¼ ðCA=CFÞj
d�1
dþ1

Lor (41)

as the goal quantity.
(iii) We could improve the above proposals for goal

quantities (i) or (ii) by including into the quadratic
Casimir CA for the adjoint representation the con-
tributions from the translation generating genera-
tors, so as to define a quadratic Casimir for the
whole Poincare group. This would mean that in
order to calculate our goal quantity, we would do
as above but

Replace : CA ! CA þ CV; (42)

where CV is the vector representation quadratic
Casimir, meaning the representation under which
the translation generators transform under the
Lorentz group. Since in the below equations we
denoted ‘‘no fermions’’ have taken the ‘‘small rep-
resentation’’ F to be this vector representation V,
this replacement means that we replace the goal
quantity ratio CA=CF like this:

ðSÞOðdÞ; “no spinors”: (43)

CA=CF ¼ CA=CV ! ðCA þ CVÞ=CF

¼ CA=CF þ 1 (44)

SpinðdÞ; “with spinors”: (45)

CA=CF ! ðCA þ CVÞ=CF (46)

¼ CA=CF þ ðCA=CVÞ�1ðCA=CFÞ (47)

¼ ð1þ ðCA=CFÞj�1
no spinorsÞCA=CF: (48)

Let me stress though that this proposal is not quite
‘‘fair’’ in as far as it is based on the Poincare group,
while the representations considered are not faith-
ful with respect to the whole Poincare group, but
only with respect to the Lorentz group.

(iv) To make the above proposal a bit more ‘‘fair’’ we
should at least say: Since we considered a repre-
sentation which was only faithful with respect to
the Lorentz subgroup of the Poincare group we

should at least correct the quadratic Casimir—
expected crudely to be ‘‘proportional’’ to the num-
ber of dimensions of the (Lie)group—by a factor
dþ1
d�1 being the ratio of the dimension of the Poincare

(Lie)group, dþ dðd� 1Þ=2 to that of actually
faithfully represented Lorentz group dðd� 1Þ=2.
That is to say we should, before forming the ratio
of the improved CA meaning CA þ CV (as calcu-
lated under (iii) to CF, replace this CF by dþ1

d�1 � CF,

i.e., we perform the replacement:

CF ! CF � dðd� 1Þ=2þ d

dðd� 2Þ=2 ¼ CF � dþ 1

d� 1
: (49)

Inserted into ðCA þ CVÞ=CF from (iii), we obtain
for the more ‘‘fair’’ approximate ‘‘goal quantity’’

“ goal quantity”jno spinor ¼ ðCA=CF þ 1Þ � d� 1

dþ 1
(50)

“goal quantity”jw: spinor ¼ ð1þ ðCA=CFÞj�1
no spinorÞ

� CA=CF � d� 1

dþ 1
(51)

This proposal (iv) should then at least be crudely
balanced with respect to how many dimensions that
are represented faithfully.

B. Calculation of goal quantities

Let us now begin listing the values of these ‘‘goal
quantities’’ for the Lorentz groups for the various numbers
d which the dimension of space-time might take on.
In the first table we give the ‘‘goal quantity’’ and the in

order to go crudely towards the Poincare group ‘‘goal
quantity.’’

C. Discussion of Table I

Motivated either by the fact that we have spinor
transforming particles in nature—namely the fermions—
or because the goal numbers for the spinor groups are the
biggest anyway (most competitive), we should think of
the Lorentz group as the spinor group and therefore in
the above table read the Spin(d) entrances rather than the
ðSÞOðdÞ-entrances:
Concentrating on the SpinðdÞ-entrances we then find that

with the proposal (i) of Sec. III A the dimensions d ¼ 3 and
d ¼ 4 stand even with the same goal number 8=3 ¼
2:6667. But note that at least the experimental dimension
4 already is in the sample of the ‘‘winners’’ with the simple
choice of (i), meaning that we only consider the genuine
Lorentz group while totally ignoring the Abelian part of the
Poincare group.
Next when we go to the slightly more complicated

version of a goal quantity, namely (ii), we get the separa-
tion between also d ¼ 3 and d ¼ 4, and it is the d ¼ 4
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dimension that ‘‘wins,’’ because we get for d ¼ 3 only
1.6330, while we for d ¼ 4 we obtain 1.8013. Thus in
this approximate treatment of the Abelian part also being
included the ‘‘little’’ difference between the two schemes
(i) and (ii) leads to giving the d ¼ 4 case—the experimen-
tal case—the little push forward making the experimental
dimension d ¼ 4 be the only winner.

We see from the Table II, for simplicity made only for
the most competitive case of ‘‘with spinor’’ in the termi-
nology the foregoing table, that with column (iii) goal
numbers actually it is d ¼ 3 rather than the experimental
dimension d ¼ 4 that ‘‘wins.’’ That is to say that the
number in the fifth column–called the (iii)-quantity or
max c)–in the Table II takes the largest value for the

TABLE I. We evaluate for different dimensions d of the Minkowski space-time—for simplicity here replaced by the Euclideanized d
dimensional space-time, but that makes no difference for our calculation here—the first two goal quantities proposed, (i) and (ii) in
Sec. III Awritten in, respectively, 5th and 7th columns. Because of the ambiguity of the global structure of the Lorentz group, the group
in d dimension may be either O(d) [essentially SO(d) if we do not include parity] or Spinor(d) if we use the covering group. Therefore,
we have for each value of the dimension d two items corresponding to these two global extensions of the Lie algebra of the Lorentz
group, and they are denoted by ‘‘no spinors’’ and ‘‘with spinors,’’ respectively.

Dimension Lorentz group Spinor or not Rank Ratio CA=CF max a)
dLor
dPoi ðCA=CFÞ

dLor
dPoi max b)

d ¼ 1 discrete 0 � � � 0 indefinite 00

d ¼ 2a ðSÞOð2Þ ¼ Uð1Þ no spinor 1 -(formally 1) 1=3 -(formally 1)

U(1) with spinor 1 -(formally 2) 1=3 -(formally 21=3 ¼ 1:26)
d ¼ 3 (S)O(3) no spinor 1 1 1=2 1

Spinð3Þ ¼ SUð2Þ with spinor 1 8=3 ¼ 2:6667 1=2
ffiffiffiffiffiffiffiffi
8=3

p ¼ 1:632993162
d ¼ 4 (S)O(4) no spinor 2 4=3 ¼ 1:3333 3=5 ð4=3Þ3=5 ¼ 1:188401639

Spinð4Þ¼SUð2Þ�SUð2Þ with spin 2 8=3 ¼ 2:6667 3=5 ð8=3Þ3=5 ¼ 1:801280051
d ¼ 5 (S)O(5) no spinor 2 3=2 ¼ 1:5 2=3 ð3=2Þ2=3 ¼ 1:310370697

Spin(5) with spinor 2 12=5 ¼ 2:4 2=3 ð12=5Þ2=3 ¼ 1:792561899
d ¼ 6 (S)O(6) no spinor 3 8=5 ¼ 1:6 5=7 ð8=5Þ5=7 ¼ 1:398942897

Spinð6Þ ¼ SUð4Þ with spinor 3 32=15 ¼ 2:1333 5=7 ð32=15Þ5=7 ¼ 1:718074304
d ¼ 7 (S)O(7) no spinor 3 13=7 ¼ 1:8571 3=4 ð13=7Þ3=4 ¼ 1:590867407

Spin(7) with spinor 3 40=21 ¼ 1:9048 3=4 ð40=21Þ3=4 ¼ 1:621363987
d ¼ 8 (S)O(8) no spinor 4 12=7 ¼ 1:7143 7=9 ð12=7Þ7=9 ¼ 1:520774129

Spin(8) with spinor 4 12=7 ¼ 1:7143 7=9 ð12=7Þ7=9 ¼ 1:520774129
d ¼ 9 (S)O(9) no spinor 4 7=4 ¼ 1:75 4=5 ð7=4Þ4=5 ¼ 1:564697681

Spin(9) with spinor 4 14=9 ¼ 1:5556 4=5 ð14=9Þ4=5 ¼ 1:423994858
d ¼ 10 (S)O(10) no spinor 5 16=9 ¼ 1:7778 9=11 ð16=9Þ9=11 ¼ 1:601198613

Spin(10) with spinor 5 64=45 ¼ 1:4222 9=11 ð64=45Þ9=11 ¼ 1:33399805
d ¼ 11 (S)O(11) no spinor 5 9=5 ¼ 1:8 5=6 ð9=5Þ5=6 ¼ 1:632026054

Spin(11) with spinor 5 72=55 ¼ 1:3091 5=6 ð72=55Þ5=6 ¼ 1:251626758
d ¼ 12 (S)O(12) no spinor 6 44=23 ¼ 1:9130 11=13 ð44=23Þ11=13 ¼ 1:731340775

Spin(12) with spinor 6 40=33 ¼ 1:2121 11=13 ð40=33Þ11=13 ¼ 1:176773318
d ¼ 13 (S)O(13) no spinor 6 25=13 ¼ 1:9231 6=7 ð25=13Þ6=71:75156277

Spin(13) with spinor 6 44=39 ¼ 1:1282 6=7 ð44=39Þ6=7 ¼ 1:108929813
d ¼ 14 (S)O(14) no spinor 7 24=13 ¼ 1:8461 13=15 ð24=13Þ13=15 ¼ 1:701239682

Spin(14) with spinor 7 104=105 ¼ 0:9905 13=15 ð104=105Þ13=15¼0:991740772
d odd (S)O(d) no spinor n¼ðd�1Þ=2 2�1=n¼2�2ðd�1Þ d�1

dþ1 ð2� 1
d�1Þ

d�1
dþ1

Spin(d) with spinor n¼ðd�1Þ=2 8ð2n�1Þ
nð2nþ1Þ ¼ 16ðd�2Þ

dðd�1Þ
d�1
dþ1 ð16ðd�2Þ

dðd�1Þ Þ
d�1
dþ1

d even (S)O(d) no spin n ¼ d=2 4ðn�1Þ
2n�1 ¼ 2ðd�2Þ

d�1
d�1
dþ1 ð2ðd�1Þ

d�1 Þd�1
dþ1

Spin(d) with spinor n ¼ d=2 16ðd�2Þ
dðd�1Þ

d�1
dþ1 ð16ðd�2Þ

dðd�1Þ Þ
d�1
dþ1

d ! 1 no spinor c ! 1 ! 2 ! 1 ! 2
with spinor ! 1 ! 0 ! 1 ! 0

aThe case d ¼ 2 is special because the Lorentz group is Abelian Uð1Þ for d ¼ 2, and we must apply the formal extension definition
CA=CF ¼ 1 for Uð1Þ from our previous work [1], and even include an extra factor connected with dividing out a subgroup of the
center, or even better say that the formal quadratic Casimir shall behave like the charge squared for the Uð1Þ.
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dimension being d ¼ 3. That would have meant that if
these numbers were used our prediction would have been
that space-time should have three dimension and thus not
agreed with experiment. However, this series of numbers
(iii) or c is not truly ‘‘fair’’ in as far as one has effectively
used only the Lorentz group in the denominator CF but at
least crudely the full Poincare group in the numerator
CA þ CV . Thus in order to avoid a simple wrong expected
variation of a quadratic Casimir with the dimensionality of
the Lie group, we should at least correct the denominator
CF by multiplying it by the ratio of the dimension of
the Poincare Lie group over that of the Lorentz Lie group,
ðdþ 1Þ=ðd� 1Þ. When we make this ‘‘fairness correc-
tion’’ at least crudely getting no obvious wrong Lie-
group-dimension-dependent factor in, then the dimension
d ¼ 4 becomes (again) the winner. In fact we get for d ¼ 4
(the experimental dimension) the goal quantity in column
(iv) equal to 14=5 ¼ 2:8 while accidentally the two
neighboring dimensions d ¼ 3 and d ¼ 5 both get instead
8=3 ¼ 2:66667, which is less.

Notice that it is a rather smoothly peaked curve with the
peak near the experimental dimension 4, so that the latter
becomes the winner among integers, but it is only by a tiny
bit it wins. That is to be expected from the smoothness of
the variation of the goal number with the dimension d. This
smallness of the excess making the d ¼ 4 be the winner
of course makes the uncertainty bigger and my ‘‘crude’’

corrections rather than exactly calculating some well-
defined quantity is thus not so convincing. The accuracy
may be good enough and the simplicity of the proposed
goal quantities sufficient to make it at least highly sugges-
tive, that the coincidence of the winning dimension and the
experimental one means that we are on the right track.

IV. CONCLUSION

We have found that a couple of very reasonable speci-
fications of what the extension of our previous [1] quantity
should be to be maximized to obtain the standard model
gauge group leads to that the maximization of the gener-
alized quantity gives as the ‘‘winner’’ the dimension d ¼ 4
as is empirically the dimension. That is to say we have
found a possible explanation for why we have just 4
(meaning 3þ 1) dimensions of space-time.
In fact we have extended the main idea of claiming the

maximization of essentially the (to the Dynkin index re-
lated) group dependent quantity CA=CF (with CA and CF

being the quadratic Casimirs for, respectively, the adjoint
representation CA and for that (essentially) faithful repre-
sentation F chosen so as to maximize the ratio CA=CF.) to
lead to the experimentally realized group (the standard
model group). It should be admitted that the victory of
exactly the standard model group was dependent on
our slightly ad hoc treatment of the Abelian invariant

TABLE II. We have put the goal numbers for the third proposal (iii) in which I (in a bit more detail) seek to make an analogon to the
number used in Ref. [1] in which we studied the gauge group of the standard model. The purpose of (iii) is to approximate using the
Poincare group a bit more detailed, but still not by making a true representation of the Poincare group. That is, it is still not truly
the Poincare group that we represent faithfully, but only the Lorentz group, or here in the table only the covering group SpinðdÞ of the
Lorentz group. However, I include in the column marked ‘‘c., max c)’’ in the quadratic Casimir CA of the Lorentz group an extra term
coming from the structure constants describing the noncommutativity of the Lorentz group generators with the translation generators
CV so as to replace CA in the starting expression of ours CA=CF by CA þ CV . In the column marked ‘‘d., max d) ’’ we correct the ratio
to be more ‘‘fair’’ by counting at least that because of the truly faithfully represented part of the Poincare group in the representations
that I use has only dimension dðd� 1Þ=2 (it is namely only the Lorentz group). The full Poincare group—which was already used
(iii) but also in (iv) with the improved CA being CA þ CV—is dðd� 1Þ=2þ d ¼ dðdþ 1Þ=2. The correction is crudely made by the
dimension ratio dim ðLorentzÞ= dim ðPoincareÞ ¼ ðd� 1Þ=ðdþ 1Þ given in the next to last column.

Dimension

Lorentz group

(covering group)

Ratio CA=CF for

spinor

Ratio CA=CV as ‘‘no

spinor’’

(iii)-quantity

max c)
d�1
dþ1

(iv)-quantity

max d)

2a U(1) -(formally 2) -(formally 1) 4 1=3 4=3 ¼ 1:33

3 spin(3) 8
3 ¼ 2:6667 1 16

3 ¼ 5:3333 2
4 ¼ :5 8

3 ¼ 2:6667

4 Spinð4Þ¼SUð2Þ�SUð2Þ 8
3 ¼ 2:6667 4

3
14
3 ¼ 4:6667 3

5 ¼ :6 14
5 ¼ 2:8

5 Spin(5) 12
5 ¼ 2:4 3

2 ¼ 1:5 4 4
6 ¼ :667 8

3 ¼ 2:6667

6 Spin(6) 32
15

8
5 ¼ 1:6 52

15 ¼ 3:4667 5
7 ¼ :714 52

21 ¼ 2:4762

d odd Spin(d) 8ð2n�1Þ
nð2nþ1Þ ¼ 16ðd�2Þ

dðd�1Þ 2�1=n¼2�2=ðd�1Þ 8ð3d�5Þ
dðd�1Þ

d�1
dþ1

8ð3d�5Þ
dðdþ1Þ

d even SpinðdÞ 16ðd�2Þ
dðd�1Þ

4ðn�1Þ
2n�1 ¼ 2d�4

d�1
8ð3d�5Þ
dðd�1Þ

d�1
dþ1

8ð3d�5Þ
dðdþ1Þ

d odd ! 1 Spin(d) � 16=d ! 2 � 24=d ! 1 � 24=d ! 0
d even ! 1 Spin(d) � 16=d ! 2 � 24=d ! 1 � 24=d ! 0

aThe case d ¼ 2 is only getting its CA=CF rather formally by seeking to roughly use the rules of our previous article [1] because the
Lorentz group is Abelian.
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subgroup—i.e., the Uð1Þ—needed because of the ratio
CA=CF being rather meaningless a priori for an Abelian
group. We must also admit that in Ref. [1] we snuck in a
dependence on the group rather than only Lie algebra by
considering the volume of the group which depends on the
identification of center elements, properties being revealed
phenomenologically via the representations of the gauge
group (except for the case of d ¼ 2 this detail is though not
relevant for the Lorentz group and thus the dimension). In
the review II we saw that the standard model group came
out as the group with the highest goal quantity. This should
be considered a very remarkable victory for our type of
scheme because there are a lot of groups which a priori
could have been the gauge group relevant for nature.

By extension, we consider the Lorentz group or even the
Poincare group instead of the gauge group of our previous
work Ref. [1] or Sec. II. Then of course our quantity
CA=CF or slight modifications/‘‘improvements’’ of it—
enumerated (a), (b), (c), (d)—will depend on the dimension
d of space- time. The dimension d gives of course a differ-
ent Lorentz group for each value of d. We then inserted this
d-dependent Lorentz group instead of the gauge group
which was studied in last paper [1]. The various modifica-
tions, (a), (b), (c), (d), shall be considered attempts to use
the Poincare group instead of the Lorentz group, but rather
than truly doing that, make some approximate treatment as
if crudely using the Poincare group.

The results of the search for the dimension having
the largest ‘‘goal-quantity,’’ using various proposals
for the exact form such as (i) meaning CF=CF simply,
are the following:

(a) The simple quantity CA=CF for the Lorentz group
with the same formal assignment for the Abelian
group as used in [1], here making d ¼ 2 noncompe-
titive(but at least having a score formally), leads to
d ¼ 3 and d ¼ 4 standing even, both scoring the
same number CA=CF ¼ 8=3.

(b) Making a crude correction to consider instead the

quantity ðCA=CFÞðd�1Þ=ðdþ1Þ leads to the experimen-
tal dimension of space-time d ¼ 4 getting the largest
score. The meaning of this slight modification of (a)
is that we make an attempt to take the group to
replace the gauge group in our previous paper [1] to
be the Poincare group rather than the Lorentz group.
We, however, only make a crude attempt in that
direction. Since the Poincare group has the trans-
lation subgroups, which are by themselves Abelian,
we naturally tend to use the formal version—just like
in Ref. [1]—to assign a factor 1 to the Abelian
groups. Then we average in the logarithm our goal
numbers for the various factors into which the group
falls weighting with the dimension in the Lie algebra.
The inclusion of the Poincare group is not done in a
fully correct way though in as far as we only consider
the faithful representations of the Lorentz group and

only extend a bit speculatively to weight as if we had
the Poincare group.

(c) Still thinking of crudely using the Poincare group
rather than the Lorentz group, we proposed to still
take a representation F only of the Lorentz group,
but evaluating the quadratic Casimir for the Poincare
group, although that sounds not quite ‘‘fair.’’ The
quadratic Casimir we used here under (c) for ‘‘the
Poincare group’’ were taken to CA þ CV , where V
denotes the vector representation and thus CV its
quadratic Casimir. In this ‘‘unfair’’ game the dimen-
sion for space-time d ¼ 3 ¼ 2þ 1 got the highest
score. So our hoped for victory of the experimental
dimension failed in this ‘‘unfair’’ proposal. But
since I stress the ‘‘unfairness’’ of this proposal, we
should not take this proposal seriously.

(d) This last proposal in the present article is a crude
attempt to at least correct for the fact that the ratio of
the dimensions of the Poincare and the Lorentz Lie
groups is space-time dimension d dependent. That is
to say, we argue that the quadratic Casimir CF for
the representation F of the Lorentz group should at
least be scaled so as to correspond to a representa-
tion of the Poincare group by being multiplied by
the ratio of the Lie group dimensions of the Poincare
group relative to that of the Lorentz group,
dðd�1Þ=2þd
dðd�1Þ=2 ¼ dþ1

d�1 . That is to say we perform the

crude correction of replacing

CF ! CF � dþ 1

d� 1
: (52)

Since the quantity CF occurs in the denominator of
the quantity ðCF þ CVÞ=CF maximized under (c) of
course this quantity is scaled the opposite way, and
the goal quantity in this proposal (d) is taken as

“goal quantity d:” ¼ ðCA þ CVÞðd� 1Þ
CFðdþ 1Þ : (53)

Now the result becomes that the experimental di-
mension d ¼ 4 has the largest value for the goal
quantity d., in as far as it gets

ðCA þ CVÞðd� 1Þ
CFðdþ 1Þ

��������d¼4
¼ 14

5
¼ 2:8; (54)

while by accident the two neighboring space-time
dimensions 3 and 5 score only 8

3 ¼ 2:6667. So

indeed the experimental space-time dimension 4
won the most developed suggestion (d).

This means that apart from the ‘‘unfair’’ proposal (c),
all the four proposals here have the space-time dimension
d ¼ 4 realized in nature obtain a largest ‘‘goal quantity’’
among the winners! In (a) d ¼ 3 and d ¼ 4 share the
winner place, but in the two other ‘‘fair’’ proposals (b)
and (d) it is indeed space-time dimension d ¼ 4, the
experimental one, that gives the highest ‘‘goal quantity.’’
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Taking this result seriously, and not as being just acci-
dental coincidence or a result of inventive construction, it
must tell us about the reason for that the dimension became
just d ¼ 4. We must look for what is the spirit behind the
proposals above, so as to obtain an answer to ‘‘Why did we
get just d ¼ 4 space-time dimensions?’’ This ‘‘spirit’’
behind these proposals is set up to select the experimental
dimension d ¼ 4. It turns out to be that the group—e.g., the
Poincare or Lorentz group or the gauge group—should be
representable in a way where the matrices or other objects
on which the group is represented are relatively slowly
varying under the group.

We may, if taking this ‘‘slowness’’ of the motion of the
representative in the representation with the group element
seriously, seek to invent a model behind the 4-dimensional
space-time and the standard model gauge group that could
explain that slowness. One possible such explanation could
be that the fundamental physics model or theory is truly
‘‘random’’ and that without the symmetries we seek to
explain. Then ‘‘by accident’’ there appears approximately
some symmetries, and we here hope for some Lorentz
invariance symmetry. Now we dream that there may be
some way in which such an approximate symmetry can
automatically become exact in practice. We, Førster,
Ninomiya and me [7] (see also Damgaard et al. [12]),
have actually argued that gauge symmetry with electro-
dynamics (and Yang Mills theory) as an example can occur
in a whole phase in practice giving precisely the massless
photon in that phase. Thus we can speculate (for symme-
tries that can somehow be considered gauge symmetry, as
can the Lorentz symmetry in general relativity) that such
symmetries appear in practice as exact provided that they
are there approximately at first [17,18]. But now the crux of
the matter is that if a symmetry is represented by slowly
moving matrices, for example, then one must expect that
statistically it would be easier to get the symmetry approxi-
mately by accident. If it were such that the fundamental
theory could be considered random and only obtaining
some symmetries by accident—at first approximately, but
perhaps made exact by some mechanism [7,12,17,18]—
then we could consider the practically random Lagrange or
action as taking random values for regions of some (small)
size in the value space for the representation of the group
which gives the transformation properties of the fields or
degrees of freedom under the group in question. Now when
a group is represented by a representation, which in some
sense is the represented matrix or field, and these fields or
matrices move slowly for an appropriately normalized
motion of the group element represented, then one can
vary the group element a lot before one varies the repre-
sentation field much. But this means that one needs less
good luck to get an accidental symmetry the slower the
representation moves, because the displacement inside the
group (itself) corresponding to one of the (small) size
regions (over which we assume essential constancy of the

action) becomes bigger the slower the representation
motion rate.
The crucial point should be that one would, with the in

some sense random action, have a better chance to obtain
by accident a certain symmetry, when this symmetry is
represented on the fields or degrees of freedom by a
‘‘slowly moving representation,’’so such a symmetry
would more often occur by accident, if one thinks this
random action way.
So when our various ‘‘goal quantities’’ favor the experi-

mentally found gauge group and the dimension of space-
time, it means that the groups realized in Nature are the
ones that have the optimal chance to come out of a random
action model. This is because these goal quantities that are
large means that the representation motion is slow.
So the message from the gauge group and the dimension

is that such a random action philosophy is one possible
mechanism behind the choice by nature of the gauge
groups and dimension.
The idea that there have been a lot of random attempts

of groups to be tested off is reminiscent of the idea of
a gaugeglass [19], which means the action is random
quenched randomly locally, but that the gauge group is
given from the start; however, the spirit is similar.
A priori one should speculate about possible other

physical machineries that could explain that precisely our
type of ‘‘goal quantities’’ should point to a realized gauge
group and dimension of space-time; but at first it seems
that the random action type of model allowing symmetries
of the type with highest goal quantities is a good idea and
very likely something like that could be the reason behind
Natures choice of the gauge group (of the standard model)
and of the dimension.
In any case we have found a surprisingly simple

principle—the maximization of our rather closely related
‘‘goal quantities’’—leading to both the gauge group of the
standard model and the dimension of space-time being 4.
Let me stress that the present work and that of

Ref. [1]—finding a goal quantity leading to the realized
groups—is an attempt to ask in a phenomenological way
whether there is some signal in the details of the presently
by phenomenology supported theory that successively can
give us hint(s) about the more fundamental theory behind
the presently working standard model with its gauge group
SðUð2Þ �Uð3ÞÞ and the seeming dimension 4.
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APPENDIX

1. Why the standard model group

The first question attacked by the present series of
articles, namely this and the previous work [1] is ‘‘Why
did Nature choose just the standard model group SðUð2Þ �
Uð3ÞÞ, it could seemingly have chosen among a lot of Lie
groups?’’ Historically this standard model group has
appeared as pieces arising from different types of interac-
tions, one Uð1Þ-subgroup came from electromagnetic in-
teractions, built in a complicated way into what as a group
stands as Uð2Þ (namely SUð2Þ �Uð1Þ Lie-algebra-wise)
and contains also the weak nuclear forces. Finally the QCD
describing strong interaction connected to the SUð3Þ part
of the standard gauge group were added. The standard
model is, so to speak, by phenomenology found piece-
wise: sub-algebra for sub-algebra. It is first, afterwards,
or at least by inclusion of further possible pieces of the
gauge group that speculations of grand unification models
of various types have appeared.

The specification of some appropriate grand unified
theory (GUT) model [20], say as the simplest and most
promising SUð5Þ, together with some breaking scheme,
makes up an explanation for the standard model gauge
Lie algebra and also easily for the gauge group—which
we take to be implemented as a restriction on which
representations are allowed, so that we can indeed claim
a by phenomenology accessible element of knowledge—
being the one realized in Nature. Truly a major part of the
success of the GUT SUð5Þmodel is that the representations
of the SUð5Þ gauge group are automatically representations
of the subgroup of the SUð5Þ with the Lie algebra of the
standard model, and this subgroup is just the SðUð2Þ �
Uð3ÞÞ, so that the GUT SUð5Þ precisely can explain the
same restrictions on the allowed representations as can the
Lie group SðUð2Þ �Uð3ÞÞ. If we can explain this group
structure and not only the Lie algebra structure of the
standard model group, then we would have less need for
grand unification, because it would mean obtaining similar
predictions for the representations of say quarks and lep-
tons under the gauge group. It is simply so that SðUð2Þ �
Uð3ÞÞ � SUð5Þ while, e.g., the group Uð1Þ � SUð2Þ �
SUð3Þ is not a subgroup of SUð5Þ. Therefore the restric-
tions on the representation from SUð5Þ interpreted as con-
taining the standard model after some breaking leads to the
restrictions of the subgroup SðUð2Þ �Uð3ÞÞ. Other grand
unified groups that have success typically contain SUð5Þ
as a subgroup and thus can reproduce the same represen-
tation restrictions corresponding to the standard model
group SðUð2Þ �Uð3ÞÞ. Especially we can mention the
SOð10Þ-group, which comes out of [21]. In principle a
different model behind the standard model is the flipped
SUð5Þ [22].

Often super string theories would go through some of
these grand unification type models, but one can also

construct models going to the standard model without
going via the unifying groups.
I think one can say that the possibilities are so many that

one should admit that it is only if you somehow have
already gotten to know the grand unified group, that there
is much predictive power as to what group we get in
practice. Otherwise the resulting group could be so many
different possible ones that there is not much predictive
power in these models.
So only if one has a prediction of the unified group in a

model should we consider the standard model group
explained by grand unification.
In this respect the unification of spin and charge model

of Norma Mankoc Borstnik et al. [21] is better by leading
to SOðNÞ groups just from the spirit of it. To get just
SOð10Þ as is needed for getting the standard model the
dimension 13þ 1 should be put in, and so after all the
prediction of the standard model does not come quite
without seemingly ad hoc numbers being put in. We think
of the number 14 for the space-time dimension.
The type of explanation for the standard model group,

which we were after in the present series of works is rather
to seek to characterize the group by properties defined for
the abstract Lie group, and then postulate some number-
valued group characterization, which we should guess so
cleverly that it will specify just the wanted standard model
group, to be arranged to be maximal by Nature.
One attempt of this type was our work, Niels Brene et al.

[2] in which we define a concept of ‘‘skewness’’ in a
quantitative way, so that one obtains a number for each
Lie group [we never got the idea completely developed to
specify how many Uð1Þ invariant subgroups there should
be, but I think we essentially get there being just one Uð1Þ
factor]. If we assumed (to help the project a bit) that we
should only consider the possible gauge groups with just
one Uð1Þ-factor and construct a measure for the degree of
symmetry as the logarithm of the number of outer auto-
morphisms o divided by the rank of the Lie algebra r

“ symmetry” ¼ ln ðoÞ
r

; (A1)

we get the standard model group to have the minimal value
of this quantity ‘‘symmetry.’’ In this sense the standard
model group is among the most ‘‘skew’’ in the sense of
being the least symmetric.
The subject of the present series of papers [1] and the

present article is a different approach of the same character
as the just mentioned ‘‘skewness’’ characterization of the
standard model group. However, our present attempt to
characterize the gauge group is by a different quantity from
the ‘‘symmetry’’ quantity; it is a new attempt. It must,
however, be admitted that there appears one overlapping
element in the two different quantities to be extremized:
some of the potential outer automorphisms that are to be
counted in o can be gotten away with by dividing out of the

DIMENSION FOUR WINS THE SAME GAME AS THE . . . PHYSICAL REVIEW D 88, 096001 (2013)

096001-15



group a subgroup of the center. Actually such a division out
of a subgroup of the center seems to be a rather character-
istic property of the standard model group so that it is quite
helpful if a quantity to determine the standard model group
has a strong dependence on the appearance of an effect of
such a division out of a subgroup of the center, so as to
favor a gauge group with a lot of division out of the center.
This division out is not relevant in the very first version of
our present proposal, namely the ratio CA=CF of the qua-
dratic Casimir of the adjoint representation A, denoted CA

to the quadratic Casimir of that faithful representation F
having the smallest quadratic Casimir CF. However, when
we began to help the construction of our quantity by
specifying the details concerning the Abelian Uð1Þ com-
ponents in the Lie group for which our quadratic Casimir
ratio is not a priori well defined, we managed to—one
could almost sa y—’’sneak in’’ the division out, so that we
by the details of defining what to do when we have Uð1Þ
factors get the groups with a complicated division out of
the center get favored to win the game and become the
gauge group chosen by nature.

In this way our present proposal for what nature has
chosen to maximize and our older proposal of maximizing
‘‘skewness’’ are not completely different because they
have an overlap by both favoring the complicate division
out of the center. But apart from that they look superficially
very different. Thus our present proposal is quite new
after all.

I shall review the successive small improvements in
finding partly phenomenologically our final suggestion
for the quantity or the game that should specify the gauge
group to be chosen in Sec. II below.

2. History of explaining 3 þ 1 ¼ 4 dimensions

As said previously, the main purpose of the present
article is to use the idea from our earlier article [1] to
explain why Nature should have chosen just 4 (meaning
3þ 1) space-time dimensions. We explain in this article a
new, relative to earlier attempts way to explain why we
shall just have four dimensions:

One of the earlier attempts is my own [6] starting the
idea of ‘‘random dynamics’’ by pointing out that in a non-
Lorentz invariant theory—being a quantum field theory in
which neither rotational nor boost invariance is present,
but only translational invariance—one finds generically
that assuming an appropriate Fermi surface an effective
Lorentz invariance with 3þ 1 dimensions appears auto-
matically In this sense I claimed to derive under very
general assumptions—as almost unavoidable—the appear-
ance of both Lorentz and thereby rotational invariance and
of just the right number of dimensions, 4 ¼ 3þ 1. The
success of this dimension-post-diction [6] was for me the
introduction to a long series of works seeking to derive
from almost nothing or from a random theory—not obey-
ing many of the usual principles—which I gave the name

‘‘random dynamics’’ [6–10], many of the known physical
laws. Really we may consider the present work as an
alternative attempt to derive the dimension of space-time,
much in a random dynamics way, in as far as we ended up
suggesting the philosophy that it would be most likely to
get just the experimental dimension by accident. (If suc-
cessful then of course the present work would be a second
derivation of 3þ 1 dimensions in random dynamics).
Also Max Tegmark has derived 3þ 1 dimensions from a

similar random dynamics-like philosophy of ‘‘all mathe-
matics being realized’’[3]. Max Tegmark considers the
differential equations for the time development of fields
so as to guarantee equations with predictivity, as well as the
stability of atoms. From his arguments, his figure shows
that the field equation would be elliptic and thus unpre-
dictable for d ¼ 1, too simple for d ¼ 2 and d ¼ 3, and
unstable meaning unstable atoms say for d ¼ 5 or more.
The latter point goes back to Ehrenfest in 1917 [4], who
argued that neither atoms nor planetary systems could be
stable in more than four space-time dimensions.
Also known is the story that in, say, two spatial dimen-

sions (corresponding to 3 ¼ 2þ 1 space-time dimensions)
an animal, such as ourselves, having an intestinal channel
would fall apart into two pieces. Thus by an anthropic
principle, 3 ¼ 2þ 1 should not be possible if we are to exist.
According to a review of anthropic questions by

Gordon Kane [5]:
‘‘One aspect of our universe we want to understand is the

fact that we live in three space dimensions. There is an
anthropic explanation. It was realized about a century ago
[4] that planetary orbits are not stable in four or more space
dimensions, so planets would not orbit a sun long enough for
life to originate. For the same reason atoms are not stable in
four or more space dimensions. And in two or one space
dimensions there can be neither blood flow nor large num-
bers of neuron connections. Thus interesting life can only
exist in three dimensions. Alternatively, it may be that we
can derive the fact that we live in three dimensions, because
the unique ground state of the relevant string theory turns
out to have three large dimensions (plus perhaps some small
ones we are not normally aware of). Or string theory may
have many states with three space dimensions, and all of
them may give universes that contain life.’’
Further one has considered the renormalizability of

quantum field theories not being possible for higher than
4 dimensions, except for the scalar �3 coupling theory,
which is not good [23].
In theories, which like string theories or Norma Mankoc

Borstnik’s model [21] are Kaluza-Klein-like, the question
of understanding the effective dimension for long distances
being 3 space plus 1 time dimension would a priori mean
an understanding of why precisely there is that number of
extra dimensions being somehow ‘‘compactified’’ that just
three space dimensions survive as essentially flat and
extended. In super-string theory the consistency requires
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fundamentally 9þ 1 dimensions of space-time. If one
takes it that it is needed that the compact space described
by the extra dimensions appearing as dimensions must be a
Calabi Yau space, then since the latter has 6 dimensions
the observed or flat dimensions must make up ð9þ 1Þ �
ð6þ 0Þ ¼ 3þ 1. So the combination of the superstring
with the requirement of using Calabi-Yau compactification
do indeed explain why we have just the experimental
number of dimensions [24,25].

In [26] you find:
‘‘Now to make contact with our 4-dimensional world we

need to compactify the 10-dimensional superstring theory

on a 6-dimensional compact manifold. Needless to say, the
Kaluza Klein picture described above becomes a bit more
complicated. One way could simply be to put the extra 6
dimensions on 6 circles, which is just a 6-dimensional
Torus. As it turns out this would preserve too much super-
symmetry. It is believed that some supersymmetry exists in
our 4-dimensional world at an energy scale above 1 TeV
(this is the focus of much of the current and future research
at the highest energy accelerators around the world!). To
preserve the minimal amount of supersymmetry, N ¼ 1 in
4 dimensions, we need to compactify on a special kind of
6-manifold called a Calabi-Yau manifold.’’
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