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We show that the usual linear analysis of quark-gluon plasma Weibel instabilities based on the

Maxwell–Boltzmann equation may be reproduced in a purely hydrodynamic model. The latter is derived

by the entropy production variational method from a transport equation including collisions and can

describe highly nonequilibrium flow. We find that, as expected, collisions slow down the growth of Weibel

instabilities. Finally, we discuss the strong momentum anisotropy limit.
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I. INTRODUCTION

The hot and dense fireball of nuclear matter created in
heavy ion collisions at the Relativistic Heavy Ion Collider
and the Large Hadron Collider behaves as an almost per-
fect fluid, with a viscosity-to-entropy ratio not far from the
lower bound�=s ¼ 1=ð4�Þ derived from the anti-de Sitter/
conformal field theory correspondence [1]. This implies
that, in spite of the rapid longitudinal expansion, which
limits the effectiveness of particle collision in equilibrating
the system, the fireball isotropizes extremely fast with
characteristic times & 1 fm=c.

Mrówczyński was the first to show that there exists
an instability to chromomagnetic fluctuations in the quark-
gluon plasma (QGP) for wave vectors tranverse to the
chromomagnetic field [2,3] (see also Refs. [4–6]). These
are the analog of theWeibel instabilities in a electromagnetic
(EM) plasma [7] and occur if the one-particle distribution is
anisotropic inmomentum space (see also Refs. [8–10]). This
type of distribution function is relevant in heavy ion colli-
sions because the longitudinal expansion of the fireball
causes the system to becomemuch colder in the longitudinal
direction than in the transverse ones, implying hp2

Li � hp2
Ti

in the local rest frame, where pL;T is the particle momentum

in the longitudinal and transverse direction.
The transverse instabilities are found to have a strong

impact on the fireball’s evolution due to the largemomentum
anisotropy present at early times, speeding up the isotropiza-
tion and equilibration process. Basically, the instability
causes the soft sector of the magnetic field to become rapidly
amplified, which leads to large-angle scattering of hard
particles, thus leading to faster isotropization and thermal-
ization. Therefore, the thermalization process in the QGP is
not controlled solely by particle collisions, but the role of
collective effects (such asWeibel instabilities) must be taken
into account as well.

The chromo-Weibel instability has been extensively
studied [2–6,11–24], both analytically in linear response

and numerically in the fully nonlinear case, either within
the hard-thermal loop framework or directly from the non-
linear Vlasov equations for anisotropic plasmas (which go
beyond the hard-thermal loop approximation; see, e.g.,
Ref. [25] and references therein). One of the most impor-
tant results that comes out from these studies is that the
nonlinear gauge self-interactions slow down the growth
rate of theWeibel instability, an effect that could be studied
with a suitable generalization to the non-Abelian case of
the formalism presented in this work.
More directly connected to our study is the work by

Schenke and coworkers [11], in which the authors
study stable and unstable modes as obtained from the
Boltzmann–Vlasov equation for non-Abelian fields (but in
the effective Abelian approximation) with a Bhatnagar–
Gross–Krook collision operator. We shall compare our
results to those of Ref. [11] along the way.
The usual kinetic theory approach to study plasma

instabilities combines a collisionless transport equation
for a one-particle distribution function with the Maxwell
equations for the EM field; see, e.g., Refs. [26,27]. In the
background, the distribution function is position indepen-
dent, and the Maxwell field vanishes (see, however,
Ref. [12], where initial fluctuations of the currents are taken
into account). The linearized equations are a simple trans-
port equation for the perturbation of the distribution function
with a source which depends on the linearized Maxwell
field. This equation may be solved exactly, leading to an
integrodifferential equation for the Maxwell field. Since
the background is homogeneous, the perturbations may be
Fourier analyzed, whereby a dispersion relation follows.
In this paper we show that the ordinary analysis of QGP

instabilities based on the Maxwell–Boltzmann equation
may be reproduced in a purely (viscous) hydrodynamic
model. To our knowledge, this is the first attempt of this
kind that deals with a relativistic plasma and includes the
effect of collisions. Manuel andMrówczyński have derived
ideal hydrodynamiclike equations that are applicable to
short-time scale color phenomena in the QGP and applied
them to study the collective modes in a two-stream system
[28]. An alternative set of hydrodynamic equations for a
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non-Abelian plasma is derived in Ref. [29]. Using the
chromohydrodynamic formalism developed in Ref. [28],
Mannarelli and Manuel investigated jet-induced stream
instabilities in Ref. [30] and compared the results with
those obtained with kinetic theory in Ref. [31]. Based on
a particular closure and neglecting collisions, Basu has
studied the Weibel instabilities in a nonrelativistic plasma
within a hydrodynamic model and has been able to repro-
duce, in the strong anisotropy limit, the results from kinetic
theory [32].

For simplicity, we shall restrict ourselves to the insta-
bility of a homogeneous configuration of an EM plasma
(i.e., the background EM field and the background one-
particle distribution function are independent of spatial
coordinates). We shall reproduce the kinetic theory
analysis with a hydrodynamical effective theory derived
from kinetic theory by use of the so-called entropy pro-
duction variational method (EPVM)—see Refs. [33,34]
for a detailed account of this method and Refs. [35,36]
for its connection to nonequilibrium statistical mechan-
ics. We note that similar approaches to the EPVM
have been applied to diverse transport phenomena in
Refs. [37–41].

As indicated above, we shall deal with anAbelian plasma.
The extension to a non-Abelian plasma is left for the future,
but it is worth mentioning that the developments presented
here are relevant to the non-Abelian case under the Abelian
dominance approximation valid for weak gauge fields
A � ph, where A and ph are the vector potential amplitude
and the characteristic momentum of hard particles (see, e.g.,
Refs. [11,12,22]).

This paper is organized as follows. In Sec. II we give a
brief overview of the kinetic theory and hydrodynamics
of a charged fluid and describe the closure obtained
from the EPVM that we use to go from kinetic theory
to the hydrodynamic effective theory on which our de-
velopments are based. In Sec. III we analyze the Weibel
instability as obtained from the effective theory, study
the dependence of its growth rate on the collision time,
and compare our results to those obtained from kinetic
theory. Finally, in Sec. IV we present our conclusions and
outlook.

II. THEORETICAL SETUP

A. Kinetic theory and hydrodynamics of a charged fluid

Let us begin by briefly reviewing the kinetic theory and
hydrodynamics of a charged fluid.

The fluid has two conserved quantities, the energy-
momentum tensor T�� and current J�. They obey conser-
vation laws and the Maxwell equations

T��
;� ¼ F��J� J�;� ¼ 0 F��

;� ¼ J�; (1)

where F�� is the strength tensor

F�� ¼

0 E1 E2 E3

�E1 0 B3 �B2

�E2 �B3 0 B1

�E3 B2 �B1 0

0
BBBBB@

1
CCCCCA: (2)

For an ideal fluid (which is not the case studied here),
we would have

T�� ¼ ð�þ pÞu�u� þ pg�� J� ¼ qu�; (3)

where � is the energy density, p is the pressure, and q is the
charge density.
In the kinetic theory description, the transport equation

reads

p�

�
@�f� eF��

@f

@p�

�
¼ �1

�
signðp0ÞIcol; (4)

where f ¼ fðx�; p�; tÞ is the one-particle distribution
function, e and p� are the particles’ charges and momenta,
Icol is the collision operator, and � is the collision time.
We shall specify Icol later on. The current is

J� ¼ e
Z

Dpp�f; (5)

and the energy-momentum tensor is

T�� ¼
Z

Dpp�p�f; (6)

where the measure is given by

Dp ¼ 2d4p�ðp2Þ
ð2�Þ3 ¼ d4p

ð2�Þ3p ð�ðp0 � pÞ þ �ðp0 þ pÞÞ;

(7)

For simplicity we assume massless particles. To enforce
the conservation laws, we require

Z
Dp signðp0ÞIcol ¼

Z
Dp signðp0Þp�Icol ¼ 0: (8)

We parametrize the distribution function as follows:

f ¼ fBð1þ ZÞ; (9)

with Z ¼ 0 at equilibrium. fB is the background solution.
Following Weibel [7], we assume fB is independent of
spatial coordinates. Later on we shall specify fB, but at
the moment we leave this choice open.
Our developments will be based on the EPVM, so we

shall make use of the expression giving the entropy pro-
duction. We assume a simple Boltzmann-type relative
entropy flux [42–44]

S� ¼ �
Z

Dp ðsignðp0ÞÞp�

�
f ln

�
f

fB

�
� ðf� fBÞ

�
; (10)

so we get the relative (with respect to fB) entropy
production
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S�;� ¼ 1

�

Z
Dp Icol ln ð1þ ZÞ: (11)

To continue we must make an ansatz regarding the
collision operator. We shall assume a linear collision
term of the form

IcolðpÞ ¼
Z

Dp0K½p; p0�Zðp0Þ; (12)

where K is a symmetric operator. The idea behind Eq. (12)
is that the antisymmetric part of the kernel of the linear
collision operator does not affect the entropy production to
lowest order. Retaining only the symmetric kernel in the
linear collision term, we focus on the part of the dynamics
which is directly related to the relaxation of the system
toward homogeneity, since this relaxation entails an
entropy increase. The conservation laws then mean that
signðp0Þ and signðp0Þp� are homogeneous solutions. This
suggests writing

IcolðpÞ ¼ FðpÞfBðpÞfZðpÞ � signðp0Þ½A½Z� þ p�B�½Z�g�;
(13)

where F is some even function of pi (i ¼ 1, 2, 3), and the
quantities A½Z� and B�½Z� are functionals of Z introduced

to enforce the constraints, namely,

Z
DpðAþB�p

�ÞFfB ¼
Z
Dpsignðp0ÞFfBZ

Z
Dpp�ðAþB�p

�ÞFfB ¼
Z
Dpsignðp0Þp�FfBZ:

(14)

We shall not need the explicit expressions for A½Z� and
B�½Z�, but they can be calculated following Ref. [29]. For

the moment, we need not specify the function FðpÞ, but we
note that F ¼ p corresponds to Anderson–Witting’s ansatz
for the collision term [45,46], which we shall use in
Sec. III B.

B. Closure from the EPVM

To go from kinetic theory to a fluid description, we need
to express Z (the deviation from equilibrium) in terms
of hydrodynamic variables, i.e., to provide a closure. The
most well-known approaches are the Chapman–Enskog
expansion and Grad’s quadratic ansatz. As mentioned in
the introduction, in this paper we will use the closure that is
obtained from the EPVM (a review can be found in
Ref. [33]). We will now briefly review this formalism,
focusing on the derivation of the hydrodynamic effective
theory that will serve as our basis. A detailed account of
this derivation can be found in Refs. [29,47]; see also
Refs. [48,49] for concrete applications to heavy ion
collisions.

Traditional fluid dynamics derived from kinetic theory
by the Chapman–Enskog expansion or Grad’s ansatz has

two important limitations. First, it relies on an expansion in
gradients of hydrodynamic variables, which necessarily
implies that the system is sufficiently close to equilibrium
so that these gradients are small. In turn, this means that the
system is also very close to being isotropic in momentum
space. Second, it breaks down at large shear viscosity �.
The formalism obtained from the EPVM does not suffer
from these drawbacks and can successfully track the
evolution as given by kinetic theory even for highly non-
equilibrium flow. By direct comparison to solutions to
Boltzmann’s equation, we have shown in Ref. [48] that
for the boost-invariant one-dimensional expansion of
matter created in heavy ion collisions the model obtained
from the EPVM can reproduce the kinetic theory results,
even for highly nonequilibrium situations and/or large
values of the shear viscosity of the QGP. Instead, it
is well known that the full Israel–Stewart formalism
[50–52] (based on Grad’s ansatz) fails in these cases be-
cause the pressure becomes negative due to the large values
of the shear tensor (see, e.g., Ref. [53]).
If deviations from equilibrium are small, the EPVM

closure reduces to Grad’s quadratic ansatz [47]. The effec-
tive theory includes nonhydrodynamic variables in addi-
tion to the usual hydrodynamic ones (we shall call them
�	
 and �	 in what follows). These variables model the
backreaction of f—which may describe a highly nonequi-
librium situation—on the hydrodynamic modes which re-
lax much more slowly. In other words, on time scales short
with respect to �, the fluid relaxes to a steady nonequilib-
rium state characterized by a nonvanishing viscous energy
momentum tensor; the relaxation to true equilibrium is a
much slower process.
In the EPVM, �	
 and �	 are identified with the

Lagrange multipliers of the variational problem for which
the solution gives the f that extremizes the entropy pro-
duction given fixed values of T�� and J�. Physically, one
can think of the EPVM as selecting the dynamics of these
nonhydrodynamic variables in such a way as to extremize
the production of entropy during the evolution of the
system [33,34,47].
The EPVM leads, to first order in Lagrange multipliers,

to the equation (see Refs. [29,47] for details)

2Icol½Z� ¼ �fB½�	
p	p
 þ �	p
	�: (15)

Consistency requires

Z
DpfBsignðp0Þ½�	
p	p
 þ �	p

	� ¼ 0

Z
DpfBsignðp0Þp�½�	
p	p
 þ �	p

	� ¼ 0:

(16)

We now get

Z ¼ �

2F
½�	
p	p
 þ �	p

	� þ Zhom; (17)

where
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Zhom ¼ signðp0Þ½�þ �	p
	�: (18)

Inserting this into the linearized transport equation,
we get

p�

�
fB@�

�
�

2F
½�	
p	p
 þ �	p

	� þ signðp0Þ½�þ �	p
	�
�

� eF��

@fB
@p�

�

¼ �1

2
signðp0ÞfB½�	
p	p
 þ �	p

	�: (19)

The idea is to get equations for �	
, �	,�	, and� by taking
moments of this equation [29,54,55]. We shall do this at
linear order in the next section.

III. WEIBEL INSTABILITY

To focus on the physics of unstable modes, we
assume fB ¼ fð ~pÞ
ðp0Þ, where f is even but anisotropic
(as in Weibel’s seminal paper [7]). More concretely,
f ¼ Cð�; bÞf�bðpÞ, where

f�b ¼ e��pe�b2p2
z (20)

as advocated in Ref. [8]. Cð�; bÞ is a normalization factor
to be fixed later on, and b2 is a measure of the momentum
anisotropy of the background configuration.

Note that considering the collisionless transport equa-
tion in the usual approach corresponds to the � ! 1 limit.
In the absense of a Maxwell field, in this limit only terms
containing derivatives of the hydrodynamic fields remain
in the equations of motion. In other words, any space-time
independent configuration of fields�,��, ��, and ��� will
be a solution of the hydrodynamic equations, provided the
EM current vanishes (since we want to avoid having a
background EM field). To achieve this, we assume that
there is a compensating static background. On the other
hand, it makes no sense to linearize in � (this rules out the
possibility of using the closure provided by Grad’s ansatz
or the Chapmann–Enskog expansion). For this reason,
we shall not write down the full equations of motion but
derive the linearized equations directly from kinetic theory
instead.

To be even more concrete and to simplify matters, we
seek solutions with (a ¼ 1, 2) �00 ¼ �ab ¼ �0a ¼ �03 ¼
�33 ¼ 0, �	 ¼ � ¼ 0, �0 ¼ �3 ¼ 0. We further assume a
plane wave solution propagating in the z direction; namely,
the space-time dependence of all factors is of the form
exp fiðkz�!tÞg. The consistency conditions hold, and the
transport equation becomes

if�bðkp3 �!pÞ
�
�

F
�b3p

bp3 þ �bp
b

�
� ep�F��

@f�b
@p�

¼ �f�b�b3p
bp3: (21)

Observe that the normalization drops out.

To compute the moments of this equation, observe that

Z
Dpp�F��

@f�b
@p�

¼0

Z
Dpp	p

�F��

@f�b
@p�

¼�
Z
Dpp�F�	f�b

Z
Dpp	p�p

�F��

@f�b
@p�

¼�
Z
Dpp�

�½F�	p�þF��p	�f�b: (22)

We introduce the notation

hAi ¼
Z d3p

ð2�Þ3pf�bA: (23)

The nontrivial first order moments of the kinetic equation
are

ik��b3

�
1

F
papbp2

3

�
� i!�bhppapbiþeF0ahpi¼ 0

F03hpi¼ 0: (24)

The nontrivial second order moments are

ik��b3

�
1

F
ppapbp2

3

�
� i!�bhp2papbi þ e½Fb0hpapbi

þ F0ahp2i� ¼ 0

ik�bhpapbp2
3i � i!��b3

�
1

F
ppapbp2

3

�

þ e½F3ahp2
3i þ Fb3hpapbi� ¼ ��b3hpapbp2

3i: (25)

We shall only use the second of these equations. Finally the
current is

J� ¼ eCð�; bÞ
�
p�

�
�

F
�b3p

bp3 þ �bp
b

��
: (26)

The only nonzero component of the current is

Ja ¼ eCð�; bÞ�bhpapbi (27)

So, the nontrivial Maxwell equations are

i!Fa0 þ ikFa3 ¼ Ja ¼ eCð�; bÞ�bhpap
bi (28)

and

�i!Fa3 � ikFa0 ¼ 0: (29)

To write the final forms of the equations, we observe that

hpapbAðp; p3Þi ¼ 1

2
�abhðp2 � p2

3ÞAðp; p3Þi: (30)

Let us call

hpi ¼ n

C

1

2
Chðp2 � p2

3Þi ¼ px

hp2 � 3p2
3i ¼

2

C
ðpx � pzÞ

(31)
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and

hpðp2 � p2
3Þi ¼ A3 hðp2 � p2

3Þp2
3i ¼ A4�

1

F
ðp2 � p2

3Þp2
3

�
¼ A4F

�
1

F
pðp2 � p2

3Þp2
3

�
¼ A5F:

(32)

Therefore,

! k iepx 0

k ! 0 0

�i2e n
C 0 !A3 �k�A4F

0 2ie
C ðpx � pzÞ �kA4 iA4 þ!�A5F

0
BBBBB@

1
CCCCCA

�

Fa0

Fa3

�a

�a3

0
BBBBB@

1
CCCCCA ¼ 0: (33)

If k ¼ 0, the dispersion relation is

½iA4 þ!�A5F�!
�
A3!

2 � 2e2
n

C
px

�
¼ 0: (34)

Thus, we identify the plasma frequency

!2
p ¼ 2e2n

CA3

px: (35)

In general, the dispersion relation is

½iA4 þ!�A5F�A3!½!2 � k2 �!2
p�

� k2�A4F

�
A4ð!2 � k2Þ þ 2e2px

C
ðpx � pzÞ

�
¼ 0:

(36)

Let us call

k2st ¼ 2e2px

CA4

ðpx � pzÞ: (37)

Note that kst is a measure of the anisotropy of the back-
ground distribution function fB.

Defining

�0 ¼ A4

A5F

(38)

	 ¼ A4FA4

A3A5F

(39)

and putting

! ¼ i
; (40)

the dispersion relation becomes

P½
� ¼ 
4 þ �0
�

3 þ fk2 þ!2

p þ 	k2g
2

þ �0
�
½k2 þ!2

p�
� 	k2fk2st � k2g ¼ 0: (41)

It is clear that P½
� increases with 
 when 
 is real and
positive. Therefore, for 0< k2 < k2st there is one (and only
one) real positive root. This root corresponds to the Weibel
instability, on which we focus in what follows.

A. Collision time dependence

To investigate how the growth rate of the Weibel
instability depends on �, observe that if 
ð�Þ denotes the
root for a given �, then

P0½
ð�Þ� d

d�

� �0
�2

P2½
ð�Þ� ¼ 0; (42)

where

P2½
� ¼ 
½
3 þ k2 þ!2
p�: (43)

Since P0 and P2 are positive for positive 
, we must have
d
=d� � 0. Also write

P½
� ¼ P1½
� þ �0
�
P2½
� (44)

P1½
� ¼ 
4 þ fk2 þ!2
p þ 	k2g
2 � 	k2fk2st � k2g ¼ 0:

(45)

Then we must have

P1½
ð�Þ� � 0; (46)

which implies 
ð�Þ � 
max , where


2
max ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	k2fk2st � k2g þ fk2 þ!2

p þ 	k2g2
q

� fk2 þ!2
p þ 	k2g

�
: (47)

Since 
2
max ¼ 0 both for k2 ¼ 0 and k2 ¼ k2st, it must have

a maximum in k. The maximum is achieved when

ð1þ 	Þ
2
max � 	k2st þ 2	k2 ¼ 0: (48)

We have 
ð�Þ ! 
max for � ! 1, which corresponds to
the collisionless limit usually assumed to study the Weibel
instability. This means that, as expected on physical
grounds, collisions slow down the growth of the unstable
mode. The particles with momentum orthogonal to the
magnetic field, which are responsible for the Weibel in-
stability, can scatter with other particles and avoid getting
trapped in the background magnetic field, so a smaller
current and therefore a smaller induced magnetic field
are generated. This has been verified directly from kinetic
theory with a Bhatnagar-Gross-Krook collision term [11].
For � ! 0, corresponding to the ideal fluid limit, we get

instead
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ð�Þ ¼ �

�0

	k2

k2 þ!2
p

ðk2st � k2Þ: (49)

In this regime, the maximum growth rate is achieved at

k2 ¼ !2
p

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2st

!2
p

vuut � 1

3
5 (50)

and takes the value


ð�Þ ¼ �

�0
	!2

p

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2st

!2
p

vuut � 1

3
52

: (51)

This shows that the instability disappears for all practical
purposes when � is small enough because there is a maxi-
mum time scale over which the theory makes sense given
by the time scale on which the background solution relaxes
to equilibrium. This feature is also present in the kinetic
theory approach of Ref. [11].

B. Anisotropy dependence

We wish to discuss now how the instability growth rate
depends on the parameters � and b. To obtain analytic
results, we shall restrict our discussion to the strong
anisotropy limit b ! 1. We use the Anderson–Witting
collision term [45,46], which corresponds to F ¼ p.

Let us define

h1i ¼
Z d3p

ð2�Þ3 p
�1e��pe�bp2

z

¼ 1

ð2�Þ2
Z 1

0
pdp

Z �

0
sin
 d
e��pe�b2p2cos 2
: (52)

The idea is that all the necessary expectation values may
be obtained as derivatives of h1i according to the rule

hpAðp2
zÞBi ¼ ð�1ÞAþB @AþB

@�A@ðb2ÞB h1i: (53)

Note, however, that for the Anderson–Witting collision
term [45,46], A4F cannot be obtained this way but rather
from the solution to the equation

� @

@�
A4F ¼ A4: (54)

Call q ¼ b=�

h1i ¼ 1

2�2�2

Z 1

0
t dt

Z 1

0
dx e�te�q2t2x2 : (55)

Following Ref. [56], we define the error function

�½z� ¼ erf½z� ¼ 2ffiffiffiffi
�

p
Z z

0
dt e�t2 ; (56)

so we get

h1i ¼ 1

4�3=2�b

�
1��

�
1

2q

��
e1=4q

2
: (57)

Note that no approximation regarding the value of b has
been done to get Eq. (57).
In the strong anisotropy limit b ! 1, Eq. (57) reduces to

h1i1 ¼ 1

4�3=2�ðb2Þ1=2 : (58)

In this regime we obtain (in all cases to leading order
in b�1)

hpi ¼ n

C
¼ 1

4�3=2

1

�2b

hp2i ¼ 2px

C
¼ 1

4�3=2

2

�3b

hp3i ¼ A3 ¼ 1

4�3=2

6

�4b

hp2p2
zi ¼ A4 ¼ A5F ¼ 1

4�3=2

1

�3b3

hpp2
zi ¼ A4F ¼ 1

4�3=2

1

2�2b3
:

(59)

We wish to consider configurations with different
anisotropy parameter � ¼ b2=�2 but the same � and
particle density n ¼ n0. Thus, we define

C ¼ n0
hpi ¼ 4�3=2n0�

2b: (60)

In this case

!2
p ¼ 1

3
e2n0�; (61)

and �0 ¼ 1. The quantity k2st is unbounded,

k2st ¼ 2ðn0�3Þ b
2

�4
: (62)

Instead 	 goes to zero,

	 ¼ �2

12b2
: (63)

Note that the product 	k2st ¼ n0�=6 remains bounded. If �
is small [but not so small as to make the Weibel instability
dissappear—see the discussion after Eq. (51)], we have
from Eq. (49) that


ð�Þ ¼ �½	k2st� k2

k2 þ w2
p

: (64)

The behavior of 
 with increasing k that we obtain agrees
well with the kinetic theory results of Ref. [11] (see Fig. 11
of that reference). The growth rate increases with increas-
ing k as given by Eq. (64), and for large k it saturates at
�½	k2st�.
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IV. CONCLUSIONS

We have studied the Weibel instability within the frame-
work of a hydrodynamic effective theory derived by the
entropy production variational method from the relativistic
Maxwell–Boltzmann equation. This method provides a
fluid closure that yields an effective theory capable of
describing highly nonequilibrium flows.

We have found that the usual linear analysis of QGP
Weibel instabilities based on the Maxwell–Boltzmann
equation may be reproduced in this particular hydrody-
namic model. We have analyzed the dependence of the
growth rate of the Weibel instability on the collision
time and found that, as expected, the effect of collisions
is to slow down the growth of the magnetic field’s ampli-
tude. We have also shown that if the collision time is
too short, corresponding to a nearly perfect fluid, the
Weibel instability dissapears. Our results agree with
those obtained from kinetic theory with a BGK collision
term [11].

We believe that this study opens up the possibility of
investigating the effect of nonlinear self-interactions of the
gauge fields on the chromo-Weibel instability relevant to
QGP dynamics, within a framework that is simpler than the
kinetic theory of non-Abelian plasmas including particle
collisions. This may be useful to investigate some issues
which are hard to attack from kinetic theory, such as the
backreaction of Weibel instabilities on the dynamics of the
rapidly expanding QGP [16–18,22]. To this end, we must
rely on the extension to non-Abelian plasmas of the effec-
tive hydrodynamic formalism presented here, which we
carried out in Ref. [29], and study the development of
the chromo-Weibel instability in this setting. Work is in
progress along this line.
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[3] S. Mrówczyński, Phys. Rev. C 49, 2191 (1994).
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