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We explore the phase space spanned by the temperature and the chemical potential for four-flavor lattice

QCD using the Wilson-clover quark action. In order to determine the order of the phase transition, we apply

finite-size scaling analyses to gluonic and quark observables, including plaquette, Polyakov loop, and quark

number density, and examine their susceptibility, skewness, kurtosis, and Challa-Landau-Binder cumulant.

Simulations were carried out on lattices of a temporal size fixed at Nt ¼ 4 and spatial sizes chosen from 63

up to 103. Configurations were generated using the phase-reweighting approach, while the value of the

phase of the quark determinant was carefully monitored. The �-parameter reweighting technique is

employed to precisely locate the point of the phase transition. Among various approximation schemes for

calculating the ratio of quark determinants needed for� reweighting, we found the Taylor expansion of the

logarithm of the quark determinant to be the most reliable. Our finite-size analyses show that the transition

is first order at ð�; �;�=TÞ ¼ ð1:58; 0:1385; 0:584� 0:008Þ, where ðm�=m�; T=m�Þ ¼ ð0:822; 0:154Þ.
It weakens considerably at ð�; �; �=TÞ ¼ ð1:60; 0:1371; 0:821 � 0:008Þ, where ðm�=m�; T=m�Þ ¼
ð0:839; 0:150Þ, and a crossover rather than a first-order phase transition cannot be ruled out.

DOI: 10.1103/PhysRevD.88.094508 PACS numbers: 12.38.Gc

I. INTRODUCTION

The four-flavor QCD is a good testing ground for finite
temperature and chemical potential analyses before study-
ing the physically more relevant case of the three-flavor
theory. In fact, since the four-flavor theory can be described
with the staggered fermion formalism without rooting, new
ideas to explore QCD with finite density have first been
tried out in this theory [1–3].

More fundamentally, the phase diagram of the
four-flavor theory is expected to have a structure well
suited for exploratory studies at finite density. With
massless quarks, as shown in Fig. 1(a), a continuous line
of first-order phase transitions connects the temperature
and chemical potential axes. When the quark mass, mq, is

increased, the first-order phase transition at zero density
turns into a crossover beyond some value of mq [4–8],

while the transition at zero temperature and finite density
remains first order as shown in Fig. 1(b). Consequently the
first-order line up to some value of the chemical potential
also turns into a crossover. Hence a critical end point is
expected at a finite chemical potential, which is reminis-
cent of the situation for the three-flavor theory with the
physical spectrum of up, down, and strange quarks. It is
empirically known [9,10] in the zero-density case that the
first-order phase transition persists up to a relatively large
quark mass in the four-flavor theory. Therefore, one should
be able to probe the region of the transition line with a
reasonable computational cost and learn much about the
physical characteristics of the transition before tackling a
more difficult three-flavor theory.

A powerful method for resolving the nature of phase
transition is the finite-size scaling analysis. While this
method has been extensively exploited in lattice QCD
studies at finite temperatures, the situation appears quite
different at nonzero baryon density. This is partly due to
the fact that in the phase-reweighting procedure for
numerical simulations at nonzero density, the averaged
phase-reweighting factor is expected to decrease expo-
nentially as the lattice volume increases, leading to a loss
of control of statistical averages of observables. In addi-
tion, the calculation of the quark determinant necessary for
evaluating the phase is computationally very expensive.
We note, however, that the former problem does not

necessarily preclude finite-size scaling analyses as long as
the reweighting factor stays reasonably away from zero over
the range of lattice volumes needed for the analysis. This is a
dynamical question, and as we have shown in Ref. [11], the
averaged phase-reweighting factor becomes larger for larger
temporal lattice sizes. Concerning the latter, the reduction of
the quark determinant [12–14] and the recent development
of computing technology including high-speed general-
purpose computing on graphics processing units have sig-
nificantly extended the range of lattice sizes for which the
determinant is calculable in practice. In this paper we there-
fore make a serious attempt at finite- size scaling analyses
for nonzero-density QCD.
The Kentucky group [15] studied the phase structure of

the four-flavor theory using the canonical approach employ-
ing the Wilson-clover quark action. They observed an
S-shaped structure in the chemical potential versus quark

PHYSICAL REVIEW D 88, 094508 (2013)

1550-7998=2013=88(9)=094508(23) 094508-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.094508


number plot, which they took to be an indication of a
first-order phase transition. The study was only on a single
lattice volume of 63 � 4 and with relatively low statistics,
however, so this may not be taken as a conclusive state-
ment. From the point of view of universality, it is important
to check the phase structure by using different approaches.
Accordingly, we also employed the Wilson-clover quark
action, but adopted the grand canonical approach and
performed a finite-size scaling study to learn how we can
quantitatively resolve the order of the transition.

The rest of the paper is organized as follows. We
briefly discuss the phase-reweighting method and para-
meter reweighting for � in Secs. II and III, respectively.
Simulation parameters are summarized in Sec. IV.
After defining the observables we measure in Sec. V,
we present our finite-size scaling analysis using suscepti-
bility, skewness, kurtosis, and the Challa-Landau-Binder
cumulant for a variety of gluonic and quark observables
in Sec. VI. By combining with results of zero-density
simulation, we describe a sketch of the global phase
diagram in Sec. VII. In the last section, we present our
concluding remarks. In Appendix A we summarize an
analysis of volume scaling of higher moments by using
a double Gaussian distribution model, and in Appendix B
some details of � reweighting for observables that
explicitly depend on � are given.

Throughout this paper we consider a four-dimensional
Euclidean lattice of a size specified by Nx � Ny � Nz �
Nt. The boundary condition is periodic in the spatial
directions, while in the temporal direction, it is periodic
(antiperiodic) for gluon (quark) fields. Some preliminary
results given in this paper were already reported at the
Lattice 2012 Conference [16].

II. PHASE REWEIGHTING

Physics of QCD for finite quark chemical potential �
can be studied by the grand canonical partition function.
Assuming that the Nf quark flavors are degenerate, i.e., all
quarks have the same mass and chemical potential, the
partition function is given by

ZQCDð�Þ ¼
Z
½dU�e�SG detDð�ÞNf ; (1)

¼
Z
½dU� exp ð�SQCDÞ; (2)

SQCD ¼ SG � Nf ln detDð�Þ: (3)

We adopt the Wilson-clover quark action with the Wilson-
Dirac matrix,

Dð�Þ ¼ �x;y � �
X4
�¼1

½e�a��;4ð1� ��ÞUðx; �Þ�xþ�̂;y

þ e��a��;4ð1þ ��ÞUðy; �Þy�x��̂;y�
þ �csw�x;yF��ðxÞ	��; (4)

with � the chemical potential, a the lattice spacing, and
F��ðxÞ the standard clover term. We employ the Iwasaki

gauge action [17]

SG ¼ �
X
x

�
c0

X
�<�

�
1� 1

3
ReW1�1

�� ðxÞ
�

þ c1
X
�;�

�
1� 1

3
ReW1�2

�� ðxÞ
��
; (5)

with c1 ¼ �0:331, c0 ¼ 1� 8c1 ¼ 3:648, and the gauge
invariant loops are given by

W1�1
�� ðxÞ ¼ tr½Uðx; �ÞUðxþ �̂; �ÞUðxþ �̂; �ÞyUðx; �Þy�;

(6)

W1�2
�� ðxÞ ¼ tr½Uðx; �ÞUðxþ �̂; �ÞUðxþ �̂

þ �̂; �ÞUðxþ 2�̂; �ÞyUðxþ �̂; �ÞyUðx; �Þy�:
(7)

Since the quark determinant with � � 0 is complex,
one cannot apply the standard Monte Carlo simulation.
Defining the phase of the quark determinant with

FIG. 1 (color online). Phase diagram on the ð�; TÞ plane expected for four-flavor QCD for (a) massless quarks and (b) heavy quarks.
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detDð�Þ � j detDð�Þjei
ð�Þ; (8)

one can rewrite the expectation value of an observableO as

hOi ¼ hOeiNf
ijj
heiNf
ijj

; (9)

where the phase-included and the phase-quenched
ensemble averages are given by

hOi ¼
R½dU�e�SGðdetDÞNfO½U�R½dU�e�SGðdetDÞNf

; (10)

hOijj ¼
R½dU�e�SG j detDjNfO½U�R½dU�e�SG j detDjNf

: (11)

This defines the phase-reweighting method, which allows
evaluation of observables as long as the averaged phase-
reweighting factor heiNf
ijj stays nonzero. In general, this

factor vanishes exponentially with the space-time lattice
volume, leading to the sign problem. In practice, however,
the numerical magnitude of the averaged phase-reweighting
factor is dynamically determined. Hence, viability of the
phase-reweighting method can only be determined by actual
simulations. Furthermore, we have shown in Ref. [11] that
the averaged phase-reweighting factor increases for larger
temporal lattice sizes, with other parameters fixed in
the heavy quark mass region. Therefore, we expect that the
phase-reweighting method provides information on the
phase structure over the practically useful parameter region.

Another practical issue of the phase-reweightingmethod is
how to compute the phase factor which requires a computa-
tionally expensive calculation of the determinant. In order to
avoid introduction of systematic errors, we perform an exact
calculation of the quark determinant by adopting the reduc-
tion technique of Ref. [12]. After reduction in the temporal
direction, the quark determinant can be expressed as

detDð�Þ ¼ A0Wð�=TÞ
¼ A0 det ½1�H0 � e�=THþ � e��=TH��; (12)

where the definition ofA0,H�, andH0 are given in Ref. [11].
After numerically building H� and H0, which are dense
matrices of order 12NxNyNz, the determinant in Eq. (12)

can be computed by using the LU decomposition. We also
perform a reduction in the spinor space. In total, the number
of floating point operations for calculating the determinant is
reduced by about a factor of two compared to the nonreduced
case. In our simulations we exploit general-purpose comput-
ing on graphics processing units to carry out the determinant
calculation in the reduced form.

III. � REWEIGHTING

In finite-size scaling analyses we often need to calculate
the position of extrema of moments of observables. Since
they are usually not located at the points of simulation,

reweighting methods as originally proposed in Ref. [18]
are very useful. In our case, we want to evaluate physical
quantities at a chemical potential �0 from phase-quenched
configurations generated at a value � � �0. For this
purpose, we can use the identity

hOð�0Þi�0 ¼
hOð�0Þ detDð�0ÞNf

detDð�ÞNf e
iNf
ð�Þijj�

hdetDð�0ÞNf
detDð�ÞNf e

iNf
ð�Þijj�
; (13)

where the phase-quenched average at � in the right-hand
side is defined in Eq. (11).
A practical question here is how to evaluate the ratio of

quark determinants. Due to its huge computational cost, we
have to avoid a direct computation of the full determinant
at each reweighted value of the chemical potential. Instead,
we exploit an approximation to the determinant and
introduce three expansion schemes: winding expansion,
Taylor expansion of the determinant, and Taylor expansion
of the logarithm of the determinant. In a study of the
canonical approach, the expansion of the logarithm of
the determinant in terms of the winding number was tested
in Ref. [19]. The Taylor expansion of the logarithm of
the determinant was used in Ref. [20] for a study of �
reweighting from zero density.
As shown in Eq. (12), the � dependence of the deter-

minant is factorized, and A0 does not appear in the ratio of
the determinants,

detDð�0ÞNf

detDð�ÞNf
¼ Wð�0=TÞNf

Wð�=TÞNf
: (14)

In the following we consider only Wð�=TÞ.
The winding expansion [12] is an expansion of

logWð�=TÞ in terms of fugacity exp�=T;

Wð�=TÞ ¼ exp

�
�V

X
q2Z

vðqÞeq�=T

�
; (15)

where the lattice spatial volume V is factored out in the
argument. In an actual implementation, one has to truncate
the expansion at some order q ¼ qtrunc. The approximated
form of the ratio is given by

detDð�0ÞNf

detDð�ÞNf
! exp

�
�NfV

Xqtrunc
q¼1

2Re½vðqÞ�fcosh ðq�0=TÞ

� cosh ðq�=TÞg � iNfV
Xqtrunc
q¼1

2Im½vðqÞ�

� fsinh ðq�0=TÞ � sinh ðq�=TÞg
�
: (16)

The second line is considered as an additional phase

difference between two fermion determinants. The vðqÞ’s
are constructed fromH0 andH� in Eq. (12). In practice we
choose qtrunc ¼ 10.
In order to define Taylor expansions, we introduce two

types of derivatives, Qn defined by
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Qn ¼ 1

WNf

@nWNf

@ð�=TÞn (17)

and Wn by

@n lnWNf

@ð�=TÞn ¼ NfWn: (18)

These two derivatives can be related to each other as
moments and their cumulants. Up to n ¼ 1, 2, 3, 4, the
relations take the form

Q1 ¼ NfW1; (19a)

Q2 ¼ NfW2 þ ðNfW1Þ2; (19b)

Q3 ¼ NfW3 þ 3ðNfW2ÞðNfW1Þ þ ðNfW1Þ3; (19c)

Q4 ¼ NfW4 þ 4ðNfW3ÞðNfW1Þ þ 3ðNfW2Þ2
þ 6ðNfW2ÞðNfW1Þ2 þ ðNfW1Þ4; (19d)

and the explicit form of Wn’s are given by

W1 ¼ tr½B�; (20a)

W2 ¼ �tr½B2� þ tr½C�; (20b)

W3 ¼ 2tr½B3� � 3tr½BC� þ tr½B�; (20c)

W4 ¼ �6tr½B4� þ 12tr½B2C� � 4tr½B2�
� 3tr½C2� þ tr½C�; (20d)

B ¼ K�1 @K

@ð�=TÞ ; (20e)

C ¼ K�1 @2K

@ð�=TÞ2 ; (20f)

Kð�=TÞ ¼ 1�H0 �Hþe�=T �H�e��=T: (20g)

By using H0 and H�, one can calculate Wn and Qn.
The Taylor expansion of the ratio of determinants is

given by

detDð�0ÞNf

detDð�ÞNf
¼ 1þ X1

n¼1

ð�0=T ��=TÞn
n!

Qn: (21)

Note that the Qn are evaluated at �. In our actual
implementation, we truncate the sum at n ¼ 4.

The Taylor expansion of the logarithm of the
determinant ratio is given by

detDð�0ÞNf

detDð�ÞNf
¼ exp

�X1
n¼1

ð�0=T ��=TÞn
n!

NfWn

�
: (22)

The difference of the phase at � and �0 is given by


ð�0Þ ¼ 
ð�Þ þ X1
n¼1

ð�0=T ��=TÞn
n!

ImWn: (23)

Practically, we truncate the sum at n ¼ 4.
Since the determinant is a product of eigenvalues of

the Wilson-Dirac matrix whose number grows propor-
tional to lattice volume, we expect the Taylor expansion
of the logarithm of the determinant ratio to be better
behaved toward larger volume than the expansion of the

determinant ratio itself. We verify this explicitly in
Sec. VIA in our numerical simulations.
For observables that explicitly depend on �, e.g., quark

number density and related quantities, the observables
themselves also have to be evaluated at reweighted values
of �. In this study Taylor expansion is used for such
observables and the details are given in Appendix B.

IV. SIMULATION PARAMETERS

In our simulations, we used the clover coefficient csw
calculated from the formula

csw ¼ 1þ 0:113ð6=�Þ þ 0:0209ð6=�Þ2 þ 0:0047ð6=�Þ3:
(24)

It was nonperturbatively determined for the case of Nf ¼ 3
[21]. Nevertheless, we chose it for the present exploratory
study of the Nf ¼ 4 case. This choice also facilitates a

TABLE I. Simulation parameters and statistics at � ¼ 1:58
and � ¼ 0:1385.

NxNyNz a� Acceptance Trajectories

63 0.02 0.94 20000

0.04 0.94 20000

0.06 0.94 20000

0.08 0.94 20000

0.10 0.94 50000

0.12 0.94 50000

0.13 0.94 50000

0.14 0.94 50000

0.15 0.94 50000

0.16 0.94 50000

0.18 0.95 50000

0.20 0.95 20000

0.22 0.95 20000

0.24 0.95 20000

0.26 0.95 20000

0.28 0.95 20000

0.30 0.95 20000

668 0.13 0.93 50000

0.14 0.93 50000

0.15 0.93 50000

0.16 0.93 50000

688 0.13 0.92 50000

0.14 0.92 130000

0.15 0.92 130000

0.16 0.92 50000

83 0.13 0.91 275000

0.14 0.91 275000

0.15 0.91 275000

0.16 0.91 50000

103 0.13 0.87 50000

0.14 0.87 347800

0.15 0.87 342800

0.16 0.87 113900
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comparison with the work of the Kentucky group [15] who
adopted the same csw.
We performed nonzero-density simulations as well as

zero-density ones. For the nonzero-density case, we chose
two sets of parameters: ð�; �Þ ¼ ð1:58; 0:1385Þ and (1.60,
0.1371). The second set is exactly the same as that of the
Kentucky group [15]. The spatial volume and the chemical
potential are summarized in Table I for ð�; �Þ ¼
ð1:58; 0:1385Þ and in Table II for (1.60, 0.1371). We chose
five spatial volumes, 63, 62 � 8, 6� 82, 83 and 103 for
finite- size scaling analyses, while fixing the temporal size
to Nt ¼ 4. Our control parameter for the quark number is
the chemical potential, and our ensembles cover a range of
a� ¼ 0:02� 0:35. The onset of the charged pion conden-
sate is expected at a�cðT ¼ 0Þ ¼ am�=2. According to
the hadron spectrum results summarized in Table III, we
estimate a�c � 0:65, and hence we do not need to worry
about it in our parameter region.
For zero-density simulations, we chose two sets of

parameters, ð�; �Þ ¼ ð1:60; 0:1380Þ and (1.618, 0.1371),
and the spatial volume was varied from 63 to 123, while
Nt ¼ 4 was fixed for both sets. Simulation parameters are
summarized in Table IV.
We used the BQCD code [22] which implements the

HMC algorithm and several techniques. We used the
multi-time-scale technique [23] with a ratio of step sizes
of d�g:d�d:d�f ¼ 1:2:4, where d�g, d�d, and d�f are step

sizes for gauge force, logarithm of determinant for clover
term, and pseudofermion force, respectively. The Omelyan
integrator [24] was adopted in our simulation. In order to
generate a probability distribution containing the phase-
quenched quark determinant, we used the finite isospin
chemical potential �u ¼ ��d. Two independent pseudo-
fermions were employed to incorporate Nf ¼ 4 dynamical
quarks. We set the trajectory length to unity and fixed
the step size d�f ¼ 1=20, with which the HMC accep-

tance rate stayed around 90% for all parameter sets. For
each parameter set, 20,000–1,200, 000 trajectories were
accumulated. The acceptance rate and the number of

TABLE III. Hadron spectrum for Nf ¼ 4 QCD.

� NxNyNz � Nt � am� am� amN

1.580 123 � 24 0.1380 1.3666(16) 1.6550(26) 2.6529(39)

1.580 123 � 24 0.1385 1.3317(16) 1.6197(23) 2.5745(46)

1.580 123 � 24 0.1390 1.2896(16) 1.5830(23) 2.5108(29)

1.600 123 � 24 0.1371 1.3958(15) 1.6639(25) 2.6473(36)

1.600 123 � 24 0.1380 1.3275(10) 1.6097(19) 2.5790(42)

1.600 123 � 24 0.1390 1.2392(15) 1.5340(26) 2.4170(20)

1.618 123 � 24 0.1371 1.3497(19) 1.6166(27) 2.5521(21)

1.618 123 � 24 0.1380 1.2686(17) 1.5465(31) 2.4810(61)

1.618 123 � 24 0.1390 1.1511(16) 1.4240(24) 2.2651(42)

TABLE II. Simulation parameters and statistics at � ¼ 1:60
and � ¼ 0:1371.

NxNyNz a� Acceptance Trajectories

63 0.10 0.95 20000

0.15 0.95 80000

0.16 0.95 80000

0.17 0.95 80000

0.18 0.95 80000

0.19 0.95 80000

0.20 0.95 160000

0.205 0.95 160000

0.21 0.95 160000

0.215 0.95 80000

0.22 0.95 80000

0.23 0.95 80000

0.24 0.96 40000

0.25 0.95 40000

0.30 0.96 20000

0.35 0.96 20000

668 0.205 0.94 320000

688 0.205 0.93 900000

83 0.10 0.93 20000

0.15 0.92 100000

0.16 0.92 100000

0.17 0.92 100000

0.18 0.92 100000

0.19 0.92 500000

0.20 0.92 900000

0.205 0.92 1200000

0.21 0.92 900000

0.215 0.92 500000

0.22 0.93 500000

0.23 0.93 100000

0.24 0.93 100000

0.25 0.93 100000

0.30 0.93 20000

0.35 0.93 20000
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trajectories were compiled in Tables I and II. The ingre-
dients of the determinant in Eq. (20) were measured at
every ten trajectories. We employed jackknife analyses
with varying bin sizes and chose the maximum estimated
statistical error to be quoted in this paper.

V. DEFINITION OF PHYSICAL QUANTITIES

A. Moments and cumulants

Let X be the space-time average of a local observable.
In general, noncentral moments �n, n ¼ 1; 2; 3; . . . and
cumulants �n of X can be defined by the QCD partition
function in the presence of source term ZQCDð�Þ ¼
hexp ð�XÞi according to

�n ¼ 1

ZQCDð�Þ
@nZQCDð�Þ

@�n

���������¼0
(25)

and

�n ¼
@n logZQCDð�Þ

@�n

���������¼0
: (26)

If the parameter � is contained in the action, one can take
the derivative without introducing the source term. This
applies to the gluon action density for which� can be taken
as the inverse gauge coupling � and the quark number
density for which � ¼ �=T, apart from some coefficient
proportional to volume.

The quantities of the most interest for our finite-size
scaling analyses are susceptibility 
X, skewness SX, and
kurtosis KX defined, respectively, by


X ¼ V�2; (27)

SX ¼ �3

�3=2
2

; (28)

KX ¼ �4

�2
2

: (29)

We also analyze the Challa-Landau-Binder (CLB)
cumulant [25,26]) defined in terms of noncentral moments
according to

UX ¼ 1� �4

3�2
2

: (30)

Divergence of the susceptibility peak height with
volume is a well-known indicator of the nature of the
transition. Both the peak of the susceptibility and
the zero of the skewness SX ¼ 0 can be interpreted as
the location of the transition point. Infinite volume limit
of kurtosis at the transition point determined by the peak
position of the susceptibility or the zero of the skewness
provides a diagnosis on the nature of transition as
follows:
(1) limV!1KX ¼ �2: first order,
(2) �2< limV!1KX < 0: second order with the value

determined by the universality class,
(3) limV!1KX ¼ 0: crossover.

Infinite volume limit of the minimum value of the CLB
cumulant is as follows:
(1) limV!1UX � 2=3: first or second order,
(2) limV!1UX ¼ 2=3: crossover.

The reasoning for the first-order phase transition case is
given in Appendix A, where the limit value of the CLB
cumulant is given in terms of the expectation value of X in
the two phases. Of course we do not a priori know these
values which are dictated by dynamics. Therefore, the
limit value of the CLB cumulant is not sufficient to
distinguish between a first- and a second-order transition.
The difference may become clear by looking at the vol-
ume scaling. For instance, if the volume scaling is given
by an integer power V, then the transition is considered as
first order.

B. Plaquette, gluon action density, and Polyakov loop

The plaquette average is given by

P ¼ 1

18VNt

X
x;1��<��4

ReW1�1
�� ; (31)

where the individual plaquette W1�1
�� is defined in Eq. (6)

and V denotes the spatial lattice volume V ¼ NxNyNz. The

gauge action density is defined as

G ¼ 1

6VNt

X
x

�
c0

X
1��<��4

�
1� 1

3
ReW1�1

�� ðxÞ
�

þ c1
X

1��;��4

�
1� 1

3
ReW1�2

�� ðxÞ
��
; (32)

and the Polyakov loop is defined by

L ¼ 1

3V

X
x

tr

�YNt

x4¼1

Uðx; x4; � ¼ 4Þ
�
: (33)

TABLE IV. Simulation parameters and statistics at a� ¼ 0.

� � NxNyNz Acceptance Trajectories

1.600 0.1380 63 0.95 40000

668 0.94 40000

688 0.93 40000

83 0.92 40000

103 0.89 40000

123 0.86 20000

1.618 0.1371 63 0.96 20000

668 0.95 40000

688 0.94 40000

83 0.93 40000

103 0.91 40000

123 0.88 20000

JIN, KURAMASHI, NAKAMURA, TAKEDA, AND UKAWA PHYSICAL REVIEW D 88, 094508 (2013)

094508-6



For the three gluonic quantities defined above, writing
X ¼ P, G, or L, the cumulants1 are explicitly given by


X ¼ VNthðX � hXiÞ2iSX ¼ hðX � hXiÞ3i
hðX� hXiÞ2i3=2 (34)

¼ hX3i � 3hX2ihXi þ 2hXi3
ðhX2i � hXi2Þ3=2 ; (35)

KX ¼ hðX � hXiÞ4i
hðX � hXiÞ2i2 � 3

¼ hX4i � 4hX3ihXi � 3hX2i2 þ 12hX2ihXi2 � 6hXi4
ðhX2i � hXi2Þ2 :

(36)

Note that we include a factor Nt in the susceptibility by
convention.

C. Fuzzy Polyakov loop

The quantity vðqÞ defined in the winding expansion of the
determinant in Eq. (15) is a sum of gauge loops winding
around the time direction q times. In this sense they define

a fuzzy Polyakov loop. For example, vð1Þ turns out to be a
normal Polyakov loop in the static limit up to an overall
normalization,

vð1Þ ¼�!0�ð2�ÞNt2 � 3L; (37)

where L is the Polyakov loop in Eq. (33).

In Fig. 2(a), we show the correlation between �vð1Þ and
6ð2�ÞNtL. The real part, as well as the imaginary part,
shows a strong correlation in the parameter space where

we investigate; albeit, the deviation from the static limit is
significant.

As is seen from Eq. (15), the imaginary part of vðqÞ
contributes to the phase of the determinant. Therefore, a
correlation between the phase and the imaginary part of the
Polyakov loop is also expected. It is indeed confirmed in
Fig. 2(b), where the phase is exactly computed from
Wð�=TÞ 2 C in Eq. (12) up to 2� periodicity. Such a
correlation was observed in Ref. [27] in the heavy mass
region for the staggered quark action.
If the power of fugacity is promoted to an independent

parameter for each q 2 Z,

eq�=T ! �ðqÞ; (38)

then vðqÞ can be considered as the first derivative of the
promoted partition function ZQCD in terms of the new

parameter,

hvðqÞi ¼ � 1

NfV

@ lnZQCD

@�ðqÞ

���������ðqÞ¼exp ðq�=TÞ
; (39)

with

ZQCDð::; �ð1Þ; �ð2Þ; �ð3Þ; . . .Þ
¼

Z
½dU� exp f�SG½U� þ Nf lnA0 � NfV

X
q2Z

�ðqÞvðqÞg:

(40)

In the end, we impose �ðqÞ ¼ eq�=T for all q 2 Z to restore
the original theory. Singularities of the theory may be
captured by this quantity. Therefore, we analyze higher

cumulants of vðqÞ defined by taking higher derivatives of
lnZQCD. In practice, we exclusively analyze the cumulants

of vð1Þ.
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FIG. 2 (color online). (a) Correlation between the the fuzzy Polyakov loop �vð1Þ and Polyakov loop L, multiplied with 6ð2�ÞNt on
1000 phase-quenched configurations. Red (group of points located in the upper-right) and blue (lower-left corner) point, respectively,
represent the real and imaginary parts. The dotted black line shows the static limit for the fuzzy Polyakov loop given in Eq. (37).
(b) Correlation between the phase of determinant and the imaginary part of the Polyakov loop. The simulation parameters are as
follows: 83 � 4, � ¼ 1:60, � ¼ 0:1371 and a� ¼ 0:205.

1For the Polyakov loop susceptibility, we define 
L ¼
VhðL� hLiÞ2i without a factor Nt.
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D. Quark number

The quark number density normalized by T3 is given by

nq

T3
¼ 1

VT3

@ lnZQCD

@ð�=TÞ ¼ hQ1i
VT3

: (41)

Following the general definition adopted in Sec. VA, the
other higher moments are given by


q

T2
¼ 1

VT3
ðlnZQCDÞð2Þ ¼ hQ2i � hQ1i2

VT3
; (42)

Sq ¼
ðlnZQCDÞð3Þ

ððlnZQCDÞð2ÞÞ3=2
¼ hQ3i � 3hQ2ihQ1i þ 2hQ1i3

ðhQ2i � hQ1i2Þ3=2
;

(43)

Kq¼
ðlnZQCDÞð4Þ

ððlnZQCDÞð2ÞÞ2

¼hQ4i�4hQ3ihQ1i�3hQ2i2þ12hQ2ihQ1i2�6hQ1i4
ðhQ2i�hQ1i2Þ2

;

(44)

where ðnÞ means the nth derivative @n=@ð�=TÞn,
Qnðn ¼ 1; 2; 3; 4Þ are given in Eq. (19), and the CLB
cumulant takes the form

Uq ¼ 1� hQ4i
3hQ2i2

: (45)

VI. SIMULATION RESULTS

We now discuss simulation results for the expectation
value, susceptibility, and higher cumulants. In the figures,
we only plot their real part since their imaginary part
vanishes due to symmetry.

A. Numerical evaluation of � reweighting

In Fig. 3, we compare the three expansion schemes
introduced in Sec. III, taking the susceptibility of the
plaquette for illustration. The starting value is a� ¼
0:14, and the results of � reweighting are shown by the
one standard deviation error bands. The simulation pa-
rameters are given in the figure. The performance of �
reweighting can be measured by comparison of the bands
with actual measurements away from a� ¼ 0:14 plotted
by filled circles. Comparing the results for 83 � 4 lattice in
(a) and for 103 � 4 lattice in (b), we see that the winding
expansion works better for larger volume. The Taylor
expansion develops a fake transition around a� ¼ 0:128
on 83 � 4 lattice and around a� ¼ 0:133 on 103 � 4
lattice, respectively. The applicable range of� reweighting
for this expansion becomes smaller for larger volumes. In
contrast to the two expansions, the Taylor expansion of the
logarithm is working well for both lattice sizes, and the
applicable range is quite wide compared with the other
expansion schemes.
A possible explanation of this behavior is as follows. As

is seen from Eq. (20), the coefficients of Taylor expansion
of the logarithm Wn are made of single trace whose mag-
nitude would be proportional to the reduced space, namely
the spatial lattice size Wn / V. Since this holds for all
n ¼ 1; 2; 3; 4; . . . , the magnitude of Wn would not increase
for larger n. Such a tendency is observed in hWnijj, as shown
in Fig. 4. On the other hand, the coefficients of Taylor
expansion Qn are made from a product of Wn. Hence, the
dominant volume scaling is expected to be Qn / Vn, and
this tendency is seen in Fig. 4. In this way, we conclude that
the Taylor expansion of the logarithm of the determinant is
the best among our choices. This expansion scheme is used
in the following �-reweighting results.
Lastly, we compare � reweighting from ensembles at

three original values of � given by a� ¼ 0:02 and 0.14
and 0.30 in Fig. 5. The statistics for each ensemble are
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FIG. 3 (color online). Comparison of three expansion schemes of � reweighting for the susceptibility of the plaquette. Winding
expansion: blue band; Taylor expansion: red band; Taylor expansion of the logarithm of the determinant:green band. Black symbols
are direct simulation data. The original � value is a� ¼ 0:14. (a) 83 � 4, (b) 103 � 4.
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roughly the same order. We observe that the data re-
weighted from a� ¼ 0:14 show an excellent agreement
with the actual simulation data plotted by filled circles over
a wide range from a� ¼ 0:02 to 0.30. Also the estimated
errors do not change much over this region. On the other
hand, the reweighting from a� ¼ 0:02 and 0.30 do not
work well away from the original value. This may mean
that not only the truncation error of the expansion but
also the overlap issue is very important. The configura-
tions generated at a� ¼ 0:14 are sampled from both the

low-density phase and the high-density phase. Therefore,
the distribution of the plaquette has large overlaps with
both phases. On the other hand, the configurations gener-
ated at a� ¼ 0:02 are mainly sampled from the low-
density phase, and hence the overlap with the high-density
phase region is very small. An opposite situation holds for
the configurations generated at a� ¼ 0:30.

B. Phase-reweighting factor

In Fig. 6 we show the phase-quenched average of the
phase-reweighting factor as a function of a� at � ¼ 1:58
and 1.60. The �-reweighting one standard deviation error
bands from a� ¼ 0:14 at � ¼ 1:58 and from a� ¼ 0:205
at � ¼ 1:60 are also shown. For larger volumes, the re-
weighting factor tends closer to zero, such that the sign
problem becomes more serious as expected. However,
since the phase-reweighting factor remains nonvanishing
beyond statistical errors, the sign problem is under control
for the lattice volumes and the parameter sets used in the
present simulations.
An interesting observation is that there is a local

minimum around a� ¼ 0:14 (a� ¼ 0:2) for � ¼ 1:58
(� ¼ 1:60). This is related to a change in the partition
function, which usually appears as a consequence of a
phase transition. It will be apparent when we discuss the
behavior of the pressure in Sec. VI J.

C. Comparison between QCD and
phase-quenched QCD

Figure 7 compares the average value of the plaquette and
the quark number density calculated with and without the
phase of the quark determinant at � ¼ 1:60 on a 83 � 4
lattice. Apart from a small difference resembling a shift in
a� in the region of rapidly increasing plaquette, the effect
of inclusion of the phase is quite small in the figure for
large values of a�. Such a trend is observed also for higher
moments and other physical quantities. Similar observa-
tion has been reported in Ref. [28] in Nf ¼ 2 QCD by the
phase-reweighting method. In Ref. [29] it was argued that
such a phenomenon should hold at the parameter points
outside of the charged pion condensation phase in the large
Nc limit.

D. Comparision with the Kentucky group

The Kentucky group [15] carried out a canonical simu-
lation at � ¼ 1:60 and � ¼ 0:1371 on a 63 � 4 lattice
employing the same gluon and quark actions as in the
present study. In their work, the quark or baryon chemical
potential �q ¼ �B=3 is measured at fixed quark or baryon

number nq ¼ 3nB, and they constructed an S shape in their

baryon number versus baryon chemical potential plot. In
our grand canonical simulation, on the other hand, the
input is the chemical potential and the output is the quark
number. We numerically compare the two approaches in
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FIG. 4 (color online). Phase-quenched average of coefficients
Qn andWn as a function of n. Qn are for the Taylor expansion of
the determinant and Wn for the Taylor expansion of the loga-
rithm of the determinant. The spatial volume is changed from 63

to 103, while the temporal lattice size is fixed to Nt ¼ 4. Error
bars are too small to see at this scale.
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FIG. 5 (color online). Comparison of the susceptibility of the
plaquette calculated from � reweighting and from direct simu-
lation. Black symbols show results from direct simulations.
Colored regions show one standard deviation bands of
�-reweighted results. Three different ensembles are used for
� reweighting, and their respective simulation points, a�, are
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Fig. 8 for the same parameter set; filled symbols in (a) with
vertical error bars are the canonical results from Fig. 7
(bottom) in Ref. [15], whereas open symbols in (b) with
horizontal error bars are our grand canonical results.

Outside the transition region, say nB � 4 and nB 	 10,
results from the two approaches agree with each other.
However, the two approaches show completely different
behavior around the transition region. Graphically
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speaking in Fig. 8, while the canonical results can be made
to produce an S shape presumed from a first-order transi-
tion, the grand canonical results are expected to show a
smooth behavior and examination of higher cumulants
such as susceptibility is required for an indication of a
transition. The results of cumulant analyses, however,
suggest a numerical difference: the Maxwell construction
of the canonical results implies �B=T � 2:2 at the tran-
sition, whereas the peak of quark number susceptibility
from grand canonical results in this study takes place at
�B=T � 2:5. In principle, the two approaches should lead
to similar results if the infinite volume limit is taken
carefully.

E. Susceptibility

The susceptibility of the plaquette 
P and quark
number density 
q=T

2 are shown in Fig. 9. We plot not

only the actual simulation data with error bars but also the
one standard deviation�-reweighting band. We observe a
clear volume dependence at � ¼ 1:58; the peak grows
rapidly for larger volume. At � ¼ 1:60 the peak still
grows with volume but the rate is much milder. The
susceptibilities for gauge action density, Polyakov, and
fuzzy Polyakov loop also show similar tendency.
Therefore, it is likely that there is a phase transition at
� ¼ 1:58, while the situation at � ¼ 1:60 requires further
quantitative analyses.

We plot in Fig. 10 the volume dependence of the peak
height of 
P for (a) � ¼ 1:58 and (b) � ¼ 1:60. The peak
position and the maximum value of 
P are determined by
the � reweighting. The result for � ¼ 1:58 shows a clear
linear volume dependence, while that for � ¼ 1:60 is
rather weak.
To draw a quantitative conclusion, we first try a fitting of

data with the functional form


max
P ¼ aVb þ c; (46)

where a, b, and c are fitting parameters. It turns out that for
� ¼ 1:58, the exponent b is consistent with 1 with a
reasonable error bar and reduced 
2. On the other hand,
the fit for � ¼ 1:60 is very unstable and it is difficult to
obtain a meaningful exponent. In the following, we assume
a volume dependence with integer powers of V of the form


max
P ¼ 
�1V þ 
0 þ 
1=V (47)

and consider the following three cases:
S1 setting 
1 ¼ 0
S2 setting 
�1 ¼ 0
S3 no constraint.

The results of the fits are summarized in Table V for
� ¼ 1:58 and in Table VI for � ¼ 1:60 for all susceptibil-
ities we consider. In the bottom panels (c) and (d) in
Fig. 10, the volume-scaling behavior for all physical quan-
tities is shown together with the fitting form S3.
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Let us first look at Table V. For all five observables, the
fitting form S1 exhibits a reasonable reduced 
2, and the
coefficient 
�1 is well determined and nonzero with less
than a percent error. This situation holds even if one adds a
1=V term (fitting form S3), with the parameters 
�1 and 
0

keeping values consistent with those from the fitting form S1.
In sharp contrast, dropping the term linear in V (fitting form
S2) leads to an unacceptably large reduced 
2. We conclude
that there is a first order phase transition at � ¼ 1:58.

At � ¼ 1:60 in Table VI, the fitting form S1 also
provides a reasonable fit for all observables with a nonzero

�1 at a 10% error level. However, the fitting form S2
without the term linear in volume also yields fits of similar
quality. While a large negative coefficient 
1 of the 1=V
term in the latter fit does not seem natural, we are not able
to exclude such a possibility on other grounds. With
present data alone, it is difficult to draw a clear distinction
between a weak but first-order phase transition and a cross-
over at � ¼ 1:60. Data for a larger spatial lattice volume,
e.g., 103, will help, but it seems very hard to accumulate
enough statistics; the average of the fermion phase is
already rather small for our largest spatial volume of 83

(see Fig. 6).

F. Skewness

The skewness of the plaquette and quark number density
are shown in Fig. 11. The zero of the skewness yields an
estimate of the transition point, and the slope at the zero is
expected to negatively increase with volume. The latter
feature is apparent in Fig. 11. The zeros estimated by �
reweighting are consistent with the peak position of
the susceptibility for each observable and volume. We
find the volume dependence of the position of zero to be
less than 10%.

G. Kurtosis

The results of the kurtosis of the plaquette and quark
number density are plotted in Fig. 12. We observe a dip that
becomes sharper for larger volumes. We also find that the
peak position of the susceptibility and the position of the
minimum of the kurtosis are consistent with each other for
all physical quantities and each volume. These features
are as expected from a simple double Gaussian model
discussed in Appendix A.
Figure 13 shows volume scaling of the minimum of

kurtosis for all observables. At � ¼ 1:58, the minimum
decreases for larger volumes. Infinite volume extrapolations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 200  400  600  800  1000

63 668 688 83 103

pe
ak

 o
f χ

P

V

β=1.58

χ-1V+χ0
χ0+χ1/V

χ-1V+χ0+χ1/V
 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100  200  300  400  500  600

63 668 688 83

pe
ak

 o
f χ

P

V

β=1.60

χ-1V+χ0
χ0+χ1/V

χ-1V+χ0+χ1/V

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 200  400  600  800  1000

63 668 688 83 103

pe
ak

 o
f χ

V

β=1.58

plaquette x1
gauge action /9

polyakov loop /2
fuzzy polyakov loop x25

quark number /80

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100  200  300  400  500  600

63 668 688 83

pe
ak

 o
f χ

V

β=1.60

plaquette x1
gauge action /9

polyakov loop /2.2
fuzzy polyakov loop x30

quark number /130

FIG. 10 (color online). Upper panels show volume scaling of the peak value of 
P for (a) � ¼ 1:58 and (b) 1.60 together with three
types of fits. Lower panels show volume scaling plots for all observables, together with the fitting form S3 defined in the text. Vertical
scales are adjusted.

JIN, KURAMASHI, NAKAMURA, TAKEDA, AND UKAWA PHYSICAL REVIEW D 88, 094508 (2013)

094508-12



assuming polynomials in 1=V, however, do not yield values
close to �2 expected for a first-order phase transition. For
� ¼ 1:60, the minimum shows only weak volume depen-
dence and even increases slightly for larger volumes.

Since kurtosis is composed of the fourth-order cumu-
lants, statistical errors are significantly larger compared to
the second-order cumulants (compare Figs. 9 and 12).
Furthermore, the curvature at the minimum is expected
to increase quadratically in V. Unless data at the original
value is precise, � reweighting may find a hard time
estimating the bottom of a sharp valley. We feel that these
features make kurtosis a rather difficult quantity. We will
need much more detailed analysis with larger statistics

and/or finer points of simulations to draw definitive
information from kurtosis.

H. CLB cumulant

In Fig. 14, we show the CLB cumulant for the plaquette
UP, quark number densityUq, and Polyakov loopUL. Both

UP and UL show a unique minimum in the region we
investigate. The volume dependence of the minimum po-
sition is rather large for UL, while it is small for UP. The
results for gauge action density and fuzzy Polyakov loop
show similar trends to that of the plaquette and Polyakov
loop, respectively. In contrast, Uq exhibits a broad mini-

mum even for relatively large volumes, and there is an

TABLE V. Fitted values of parameters and 
2=d:o:f: in the volume-scaling form of suscep-
tibility in Eq. (47) for � ¼ 1:58. Values without errors are fixed during the fit.

Observable Fitting form 
�1 
0 
1 
2=d:o:f:

Plaquette S1 0.001318(53) 0.195(19) 0 0.853

S2 0 1.130(22) �147:1ð6:4Þ 31.5

S3 0.00130(14) 0.206(99) �2ð16Þ 1.27

Gauge action S1 0.01106(44) 1.65(16) 0 0.878

S2 0 9.49(19) �1231ð53Þ 31.4

S3 0.0110(11) 1.72(82) �10ð138Þ 1.31

Polyakov loop S1 0.002111(94) 0.353(33) 0 0.648

S2 0 1.816(38) �224ð11Þ 17.8

S3 0.00199(28) 0.44(19) �14ð31Þ 0.866

Fuzzy Polyakov loop S1 0.0000400(14) 0.00466(48) 0 0.997

S2 0 0.03258(59) �4:29ð16Þ 30.3

S3 0.0000370(39) 0.0069(28) �0:36ð44Þ 1.18

Quark number S1 0.0399(19) 15.74(74) 0 0.488

S2 0 45.04(75) �4785ð241Þ 23.5

S3 0.0384(46) 17.0(3.5) �216ð600Þ 0.668

TABLE VI. Fitted values of parameters and 
2=d:o:f: in the volume scaling form of suscep-
tibility for � ¼ 1:60.

Observable Fitting form 
�1 
0 
1 
2=d:o:f:

Plaquette S1 0.000362(39) 0.235(13) 0 0.497

S2 0 0.472(14) �35:8ð3:9Þ 1.02

S3 0.00022(15) 0.332(99) �15ð15Þ 0.00052

Gauge action S1 0.00302(33) 1.97(11) 0 0.546

S2 0 3.95(12) �299ð33Þ 0.924

S3 0.0017(13) 2.83(82) �132ð127Þ 7:32� 10�7

Polyakov loop S1 0.000555(72) 0.486(25) 0 1.03

S2 0 0.855(25) �56:4ð7:3Þ 1.07

S3 0.00029(28) 0.67(18) �28ð28Þ 1.08

Fuzzy Polyakov loop S1 0.00001028(95) 0.00624(32) 0 0.714

S2 0 0.01303(33) �1:034ð96Þ 1.47

S3 0.0000062(36) 0.0090(24) �0:43ð37Þ 0.0651

Quark number S1 0.0222(23) 26.63(79) 0 2.12

S2 0 41.49(81) �2286ð235Þ 0.801

S3 0.0067(89) 37.1(5.9) �1625ð909Þ 1.03
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additional minimum generated far away from the transition
region for large volumes. Since the CLB cumulant is
defined in terms of noncentral moments, it may depend
more on the detailed form of observable distributions than
those defined in terms of central moments and their ratios.
In any case, we need more understanding on the behavior
of Uq, and we choose not to perform the volume-scaling

analysis for Uq in the following.

In order to extract the infinite volume limit, we perform
fitting with the form

Umin
P ¼ u0ð1� u1=V þ u2=V

2Þ (48)

and consider the following three cases:
C1 assuming u2 ¼ 0
C2 assuming u0 ¼ 2=3
C3 no constraint.

The results for fit parameters are summarized in Tables VII
and VIII for � ¼ 1:58 and 1.60, respectively. In Fig. 15,
the top panels shows the volume dependence of the mini-
mum value of the CLB cumulant for the plaquette, together

with the curves of the three fits. The bottoms panels
summarize the minimum values for all observables we
consider and the fit curves from the fitting form C3.
We find the results of fits to be essentially the same in

character to those for the susceptibilities. At � ¼ 1:58,
data are well described by either the fitting form C1 or
C3, with consistent values of the fit parameters. In par-
ticular, u0 clearly deviates away from 2=3. On the other
hand, the fitting form C2 with u0 fixed at 2=3 has an
unacceptably large 
2. Thus a crossover is strongly ex-
cluded. At � ¼ 1:60, the fitting forms C1 and C2 are
equally reasonable. It is difficult to distinguish between a
first-order phase transition and a crossover from present
data alone.

I. Transition point

The transition point can be determined by the peak of the
susceptibility or the zero of the skewness for each volume.
The transition point in the infinite volume may then be
obtained by a volume extrapolation with a fitting form

TABLE VII. Values of fit parameters of volume scaling form for CLB cumulant in Eq. (48) at
� ¼ 1:58. Values without error means that the corresponding parameter is fixed.

Observable Fitting form u0 u1 u2 
2=d:o:f:

Plaquette C1 0.664614(82) 0.462(44) 0 1.02

C2 2=3 2.640(52) 342(15) 31.7

C3 0.66463(21) 0.48(23) 4(38) 1.53

Gauge action C1 0.664901(74) 0.398(40) 0 0.742

C2 2=3 2.258(46) 291(13) 26.3

C3 0.66492(20) 0.42(22) 4(35) 1.11

Polyakov loop C1 0.499(12) 100.3(6.6) 0 1.39

C2 2=3 255.6(7.4) 0:296ð22Þ � 105 10

C3 0.511(30) 116(37) 0:30ð71Þ � 104 2

Fuzzy Polyakov loop C1 0.435(16) 153.5(8.3) 0 2

C2 2=3 353(10) 0:403ð29Þ � 105 12.1

C3 0.455(38) 182(47) 0:61ð99Þ � 104 2.83

TABLE VIII. Values of fit parameters of volume scaling form for CLB cumulant at � ¼ 1:60.

Observable Fitting form u0 u1 u2 
2=d:o:f:

Plaquette C1 0.666118(60) 0.545(30) 0 0.453

C2 2=3 1.083(32) 81.2(8.9) 1.05

C3 0.66633(23) 0.76(23) 33(35) 0.00105

Gauge action C1 0.666175(54) 0.478(27) 0 0.573

C2 2=3 0.961(29) 73.0(8) 0.869

C3 0.66639(21) 0.69(20) 33(31) 1:02� 10�5

Polyakov loop C1 0.6621(91) 91.3(3.7) 0 0.551

C2 2=3 95.4(4.8) 0:08ð15Þ � 104 0.545

C3 0.666(34) 95(30) 0:06ð54Þ � 104 1.09

Fuzzy Polyakov loop C1 0.656(11) 117.2(4) 0 0.164

C2 2=3 125.5(5.6) 0:15ð17Þ � 104 0.234

C3 0.651(39) 112(34) �0:10ð65Þ � 104 0.306
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a�tðVÞ ¼ a�tðV ¼ 1Þ þ A=V; (49)

where a�tðV ¼ 1Þ and A are fitting parameters. The vol-
ume dependence of the transition point determined from the
susceptibility for five observables, and the volume extrapo-
lation using Eq. (49), are shown in Fig. 16. The largest three
volumes are used for the fits, namely V ¼ 688, 83, 103 for
� ¼ 1:58 and V ¼ 668, 688, 83 for � ¼ 1:60. The transi-
tion points determined from several observables are differ-
ent from each other at finite volumes. However, after taking
the infinite volume limit, they coincide with each other
within the estimated errors. The transition point determined
by the zero of skewness gives the same value within error at
each finite volume, and the final value and the size of error
are similar to those calculated from susceptibilities. For
future reference we quote the transition point determined
from the susceptibility of the plaquette

a�tðV ¼ 1Þ ¼
�
0:1459ð20Þ for � ¼ 1:58;
0:2053ð21Þ for � ¼ 1:60:

(50)

J. Pressure

For the grand canonical ensemble approach, the pressure
is given by the corresponding partition function,

pQCDð�Þ ¼ T

V
lnZQCDð�Þ: (51)

The ratio of two partition functions is thus directly related
to their difference in pressure. The averaged phase-
reweighting factor, which is the ratio of full QCD partition
function and phase-quenched partition function, can be
expressed as the difference in pressure,

hcos ð4
Þijj ¼ exp

�
V

T
ðpQCDð�Þ � pQCDjj ð�ÞÞ

�

¼ exp

�
V

T
�pð�Þ

�
� 1: (52)

Conversely, the pressure difference between full QCD
and phase-quenched is given by T=V ln hcos ð4
Þijj and is

shown in Fig. 17(a). This can be compared with Fig. 6,
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where the dip in the phase-reweighting factor manifests
itself as the dip in the pressure difference. In order to better
understand the local minimum, we compare the pressure
from full QCD and phase-quenched directly by plotting
them together in Fig. 17(b). In this figure, we show the
value of each pressure at chemical potential, �, relative to
the value at � ¼ 0. These are computed by numerically
integrating the quark number density [Eq. (41)],

pð�Þ � pð0Þ ¼ T

V

Z �

0
d�0 @ lnZð�0Þ

@�0 ; (53)

¼
Z �

0
d�0nqð�0Þ: (54)

We can see, in Fig. 17, that there is a change of slope in full
QCD that appears at a relatively smaller chemical potential
than the change of slope in phase-quenched QCD. This
produces the dip.

The slope in figures of pressure versus chemical poten-
tial is quark number density as given in Eq. (54). The rapid
increase of slope here is the same as a rapid increase of
quark number density, which is an expected behavior for a
phase transition. Figure 18 shows results of relative pres-
sure in full QCD from our simulations. Compared to our
moment analysis, at � ¼ 1:58, where the first-order phase
transition is suggested, the slope around the transition point
(a� � 0:146) changes more rapidly with larger volumes,
and it is likely to develop a discontinuity in the first
derivative of pressure in the infinite volume limit, which
is a classical signal of a first-order phase transition. On the
other hand, at � ¼ 1:60 with the volumes we have simu-
lated, the change is less sharp, which is consistent with
results from other moments, namely a crossover.
Finally, after understanding the meaning of the first

derivative of pressure, the dip in Fig. 17(a) can be ex-
plained in the following way. It appears when the first
derivative of pressure in full QCD changes more rapidly
than that in phase-quenched. When the phase-quenched
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system is away from a transition while the full QCD system
undergoes a transition, such a dip becomes sharper. The dip
becomes a downward wedge—a discontinuity in slope—in
the thermodynamic limit, when a first-order transition
occurs.

VII. GLOBAL PICTURE OF PHASE DIARGRAM

We may ask what the present results can tell us about
the phase diagram depicted in Fig. 1. To answer this we
made additional simulations at a� ¼ 0 with � ¼ 0:1380
and 0.1371, while varying � to search for transition

points. Figures 19(a) and 19(b) show the susceptibility

and the CLB cumulant of the gauge action density along

with the �-reweighting results (See [30] for technical

details). At the transition point where susceptibilities

peak, shown in Figs. 19(c)–19(f), the volume scaling

of susceptibilities and CLB cumulants indicates a clear

first-order phase transition at � ¼ 0:1380 and a much

weaker transition at � ¼ 0:1371. Similar to finite den-

sity, linear fits to plaquette susceptibility peaks as a

function of the inverse volume extrapolate transition

points at

ð�; �; a�Þ ¼
� ð1:59997ð11Þ; 0:1380; 0Þ strong first-order phase transition ðopen squareÞ;
ð1:61848ð12Þ; 0:1371; 0Þ very weak first-order ðopen diamondÞ: (55)

The phase diagram, Fig. 20, shows the zero-density transition line, which linearly connects the two transition points,
along with the transition points at finite densities determined in Eq. (50),

ð�; �; a�Þ ¼
� ð1:58; 0:1385; 0:1459ð20ÞÞ strong first-order phase transition ðfilled squareÞ;
ð1:60; 0:1371; 0:2053ð21ÞÞ very weak first-order=crossover ðfilled diamondÞ: (56)

At zero density, along the transition line, continuity sug-
gests that a strong first-order transition at stronger cou-
plings (lower-right corner of the figure) weakens toward
weaker couplings (upper-left corner). To understand the
phase diagram related to finite densities in terms of physi-
cal observables, we calculate m�=m� from Table III, and
linearly interpolate lines of constant m�=m�. We pick
specifically m�=m� ¼ 0:822 and 0.839, evaluated at the
transition points at finite densities, and show these two
lines in the figure as green and magenta lines, respectively.
A crossing point of such a constant m�=m� line and the
zero-density transition line (black) gives us an estimate of
the location of the zero-density thermal transition at the
value ofm�=m�, which in turn tells us the relative strength
of the transition there.

In Fig. 20, at the intersection of the black and green
lines, which has a stronger coupling than our simulated
point (open square) at zero density, we expect a strong first-
order transition, which continues to a� ¼ 0:1459ð20Þ
(filled square) for the system with m�=m� ¼ 0:822ð2Þ
along the green line. Therefore, the phase diagram for
m�=m� ¼ 0:822ð2Þ looks like Fig. 1(a).
On the other hand, for the system with a slightly larger

pi-rho ratio m�=m� ¼ 0:839ð2Þ, we have argued that it has
either a weak first-order transition or a quick crossover at
a� ¼ 0:2053ð21Þ (filled diamond). Extending toward the
zero-density (black) line, the system appears at much
weaker coupling than our simulated weak transition point
(open diamond) and is likely to have an even weaker
transition or a quick crossover. The phase diagram for

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

p Q
C

D
(µ

)-
P

Q
C

D
(0

)

aµ

β=1.58

63

83

103

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24

p Q
C

D
(µ

)-
P

Q
C

D
(0

)

aµ

β=1.60
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FIG. 19 (color online). The top figures are the suscepbility and the CLB cumulant of the gauge action density together with
�-reweighting 1 	 band. The left figures are for � ¼ 0:1380, while the right figures are for � ¼ 0:1371. The middle and the bottom
figures show the volume scaling of susceptibility and the CLB cumulant at the transition point, respectively, for the plaquette, the
gauge action density, and the Polyakov loop. In the bottom figures, the CLB cumulant of the Polyakov loop is not shown because its
minimum is quite far from the simulation point. The curves show the fitting forms S3 and C3, defined in the Sec. VI.
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m�=m� ¼ 0:839ð2Þ is, therefore, possibly consistent with

Fig. 1(b).

VIII. CONCLUDING REMARKS

Taken together, the results of our finite-size scaling
analyses show that there is a first-order phase transition
at � ¼ 1:58, � ¼ 0:1385, and a� ¼ 0:1459ð20Þ. On
the other hand, for the Kentucky group’s parameter set
� ¼ 1:60, � ¼ 0:1371, our range of lattice sizes from 63

to 83 is not large enough to draw a clear conclusion
about the nature of the transition, although we have
confirmed that the transition point a�t � 0:2053ð21Þ is
very close to that determined by their canonical
approach.

Together with additional zero-density simulations, we
come to the conclusion that for m�=m� ¼ 0:822ð2Þ the

phase diagram looks like Fig. 1(a). On the other hand,
m�=m� ¼ 0:839ð2Þ indicates that the transition is either a

weak first- order or a crossover, and there is a possibility
that the phase diagram looks like the small density region
of Fig. 1(b).
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APPENDIX A: VOLUME SCALING OF HIGHER
MOMENTS IN A DOUBLE GAUSSIAN MODEL

In this appendix, we summarize a phenomenological
distribution argument originally due to Ref. [26]. Close
to a first-order transition point, the distribution of an
observable X can be approximately described by a double
Gaussian form given by

PðXÞ ¼ aþ

ffiffiffiffiffiffiffiffiffiffiffiffi
V

2�cþ

s
e
�ðX�xþÞ2

2cþ=V þ a�

ffiffiffiffiffiffiffiffiffiffiffiffi
V

2�c�

s
e�

ðX�x�Þ2
2c�=V : (A1)

This distribution is normalized,Z 1

�1
PðXÞdX ¼ 1; (A2)

provided aþ þ a� ¼ 1. Any observable fðXÞ of X can be
calculated as

hfðXÞi ¼
Z 1

�1
dXfðXÞPðXÞ: (A3)

Let t be the parameter controlling the phase transition,
e.g., temperature, and let aþ ¼ a� ¼ 1=2 or t ¼ 0 be the
transition point at infinite volume. The infinite volume
free-energy density has two branches that cross at t ¼ 0
and switches the minimum. Normalizing the scale of t, one
can write

a� ¼ e�Vt

eVt þ e�Vt : (A4)

Simple but tedious calculation leads to the following
expressions for the susceptibility, skewness, kurtosis, and
the CLB cumulant:


X ¼ VhðX � hXiÞ2i
¼ Vaþa�ðxþ � x�Þ2 þ ðaþcþ þ a�c�Þ; (A5)

SX ¼ hðX � hXiÞ3i
hðX � hXiÞ2i3=2 ¼ �aþ � a�ffiffiffiffiffiffiffiffiffiffiffiffi

aþa�
p þOðV�1Þ; (A6)

KX ¼ hðX � hXiÞ4i
hðX� hXiÞ2i2 � 3 ¼ �2þ 1� 4aþa�

aþa�
þOðV�1Þ;

(A7)

UX ¼ 1� 1

3

hX4i
hX2i2 ¼

2

3
� aþa�ðx2þ � x2�Þ2

3ðaþx2þ þ a�x2�Þ2
þOðV�1Þ:

(A8)

Another simple calculation of derivative with respect to t
leads to

d
X

dt
¼ �bðaþ � a�Þðxþ � x�Þ2V2 þ bðcþ � c�ÞV;

(A9)
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FIG. 20 (color online). The phase diagram in the bare
parameter space. The black line is the transition line at zero
density.
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dSX
dt

¼ � b

2ðaþa�Þ3=2
V þOðV0Þ; (A10)

dKX

dt
¼ �b

aþ � a�
ðaþa�Þ2

V þOðV0Þ; (A11)

dUX

dt
¼ b

3

ðaþx2þ � a�x2�Þ
ðaþx2þ þ a�x2�Þ3

ðx2þ � x2�Þ2V þOðV0Þ;

(A12)

with b ¼ 2=ðeVt þ e�VtÞ.
From the above equations, we read that the peak of

susceptibility, zero of skewness, and minimum of kurtosis
take place at the same value t ¼ 0 up to corrections
of OðV�2Þ. Expanding the skewness and kurtosis in the
leading orders of V around t ¼ 0 with Vt 
 1, we find

SX ¼ �2VtþOðV0Þ; (A13)

KX ¼ �2þ 4V2t2 þOðV1Þ: (A14)

Therefore, in the leading order, the slope of skewness
increases linearly, and the curvature of kurtosis quadrati-
cally, with volume.

The CLB cumulant exhibits a subtlety. The minimum
position deviates from t ¼ 0 by OðV�1Þ,

tCLBmin ¼ 1

2V
ln
x2�
x2þ

þOðV�2Þ: (A15)

The infinite volume values at this minimum and at t ¼ 0
differ,

UXjt¼tCLBmin
¼ 2

3
� ðx2þ � x2�Þ2

12x2þx2�
þOðV�1Þ; (A16)

UXjt¼0 ¼ 2

3
� ðx2þ � x2�Þ2

3ðx2þ þ x2�Þ2
þOðV�1Þ: (A17)

It may seem paradoxical that limV!1tCLBmin ¼ 0, while
limV!1UXjt¼tCLBmin

� UXjt¼0. This is because, at the mini-

mum of the CLB cumulant, limV!1
aþ
a�

¼ x2�
x2þ
, which is

away from unity where the phase transition occurs even
in the infinite volume limit.

APPENDIX B: REMARK ON � REWEIGHTING
FOR QUARK NUMBER–RELATED QUANTITIES

Note that the observables, like plaquette value, gauge
action, Polyakov loop, and fuzzy Polyakov loop, are inde-
pendent of �, while the quark number density has an
explicit � dependence. Therefore, we have to identify a
difference in the observable,

Oð�0Þ ¼ Oð�Þ þ �Oð�0; �Þ: (B1)

Before identifying the difference, first let us note the quark
number–related quantities. Actually, they can be expressed
by usingQn in Eq. (19) as follows. In order to construct the
quark number–related observable at �0, we have to know
Qnð�0Þ. For that purpose, we have to know Wnð�0=TÞ as
seen from Eq. (19),

Wnð�0=TÞ ¼ Wnð�=TÞ þ �Wnð�0=T;�=TÞ: (B2)

There are two ways to approximate �Wnð�0=TÞ, namely,
the winding expansion and the Taylor expansion. In the
following we show only the latter, and it is given by

Wnð�0=TÞ ¼ X1
m¼0

ð�0=T ��=TÞm
m!

@mWnð�=TÞ
@ð�=TÞm

¼ X1
m¼0

ð�0=T ��=TÞm
m!

Wnþmð�=TÞ; (B3)

where we have used a relation

@mWn

@ð�=TÞm ¼ Wnþm: (B4)

We truncate the expansion up to m ¼ 3 and their explicit
forms for n ¼ 1, 2, 3, 4 are given by

W1ð�0=TÞ¼W1þð�0=T��=TÞW2þð�0=T��=TÞ2
2

W3

þð�0=T��=TÞ3
3!

W4; (B5)

W2ð�0=TÞ¼W2þð�0=T��=TÞW3þð�0=T��=TÞ2
2

W4

þð�0=T��=TÞ3
3!

W5; (B6)

W3ð�0=TÞ¼W3þð�0=T��=TÞW4þð�0=T��=TÞ2
2

W5

þð�0=T��=TÞ3
3!

W6; (B7)

W4ð�0=TÞ¼W4þð�0=T��=TÞW5þð�0=T��=TÞ2
2

W6

þð�0=T��=TÞ3
3!

W7: (B8)

We approximate W5 ¼ W7 ¼ tr½B� and W6 ¼ tr½C�. The
error of this approximation is suppressed by ð��=TÞn=n!,
and is relatively unnoticeable compared to the statistical
error.
In this way, we obtain the difference �Wnð�0=T;�=TÞ,

and then from this one can construct the difference of any
quark number–related observable.
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