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We present a general class of unbiased improved estimators for physical observables in lattice gauge

theory computations which significantly reduces statistical errors at modest computational cost. The idea

can be easily adapted to other branches of physics and computational science that employ Monte Carlo

methods. The error reduction techniques, referred to as covariant approximation averaging, utilize

approximations which are covariant under lattice symmetry transformations. We observe cost reductions

from the new method compared to the traditional one, for fixed statistical error, of 16 times for the nucleon

mass at M� � 330 MeV (domain-wall quark) and 2.6–20 times for the hadronic vacuum polarization at

M� � 315 MeV (Asqtad quark). These cost reductions should improve with decreasing quark mass and

increasing lattice sizes.
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As nonperturbative computations using lattice gauge
theory are applied to a wider range of physically interesting
observables, it is increasingly important to find numerical
strategies that provide precise results. In Monte Carlo
simulations our reach to important physics is still often
limited by statistical uncertainties. Examples include had-
ronic contributions to the muon’s anomalous magnetic
moment [1], nucleon form factors and structure functions
[2], including nucleon electric dipole moments [3–6], had-
ron matrix elements relevant to flavor physics (e.g., K !
�� amplitudes) [7], and multihadron state physics [8], to
name only a few. In addition, there are many examples of
Monte Carlo simulation applied to condensed matter phys-
ics [9,10], many-body systems [11,12] and cold gases [13].

As a generalization of low-mode averaging (LMA)
[14,15], we present a class of unbiased statistical error
reduction techniques, utilizing approximations that are
covariant under lattice symmetry transformations. LMA
has worked well in cases where low eigenmodes of the
Dirac operator dominate [16]: low energy constants in the
" regime [14,17–20], pseudoscalar meson masses, decay
constants [21–23], and so on. With a modest increase in
computational cost, the generalized method can reduce
statistical errors by an order of magnitude, or more, even
in cases where LMA fails.

Unlike LMA, we account for all modes of the Dirac
operator, averaging over (most of) the lattice volume,
with modest additional computational cost. The all-to-all
methods [24,25] implement this stochastically for the
higher modes, while treating the low modes exactly. For
expectation values invariant under translations, statistics
effectively increase by averaging over the whole lattice.

The all-to-all method is advantageous when the stochastic
noise introduced in the target observable is comparable to,
or smaller than, the gauge field fluctuations of the en-
semble [26], which typically holds only for many random
source vectors per measurement. The error reduction tech-
niques presented here, which do not rely on stochastic
noise, are potentially more effective, provided an inexpen-
sive approximation can be found for the desired
observable.
In lattice gauge theory simulations, an ensemble of

gauge field configurations fU1; . . . ; UNconf
g is generated

randomly, according to the Boltzmann weight e�S½U�,
where S½U� is the lattice-regularized action. The expecta-
tion value of a primary, covariant observable O,

hOi ¼ 1

Nconf

XNconf

i¼1

O½Ui� þO

�
1ffiffiffiffiffiffiffiffiffiffiffi
Nconf

p
�
; (1)

is estimated as the ensemble average, over a large number
of configurations, Nconf �Oð100–1000Þ. Here, we primar-
ily consider observables made of fermion propagators
SF½U� computed on the background gauge configurationU.
By exploiting lattice symmetry transformations g 2 G,

which transform as U ! Ug, a general class of variance
reduction techniques is introduced. First, we construct an

approximationOðappxÞ toOwhich must fulfill the following
conditions.

appx-1 OðappxÞ should fluctuate closely with O,

r�CorrðO;OðappxÞÞ¼ h�O�OðappxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�OÞ2ihð�OðappxÞÞ2i

p �1, and hð�OÞ2i�
hð�OðappxÞÞ2i , where �X ¼ X � hXi.
appx-2 The cost to computeOðappxÞ is smaller than forO,

costðOðappxÞÞ � costðOÞ.
appx-3 hOðappxÞi is covariant under a lattice symmetry

transformation, g 2 G, hOðappxÞ½Ug�i ¼ hOðappxÞ;g½U�i
(in the examples below, a stronger condition
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holds: OðappxÞ is covariant on each configuration, rather

than on average, OðappxÞ½Ug� ¼ OðappxÞ;g½U�).
Note that OðappxÞ and OðappxÞ;g refer to the approximations
before and after applying a symmetry transformation g.

Using O and OðappxÞ one can define an improved
observable

OðimpÞ ¼ OðrestÞ þOðappxÞ
G ;

OðrestÞ ¼ O�OðappxÞ; OðappxÞ
G ¼ 1

NG

X
g2G

OðappxÞ;g;
(2)

where an average over NG symmetry transformations in G
is taken.

For appx-1, the statistical error of hOðimpÞi is

errðimpÞ � err

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ þ 1

NG

s
; (3)

which can be made smaller than the original (err) by a

judicious choice ofOðappxÞ. The fluctuation fromOðrestÞ, the
first term in (3), is suppressed due to r�1, while the
second term is reduced by 1=NG without too much addi-
tional cost as required by appx-2 (correlations among O,

OðappxÞ, and OðappxÞ;g have been ignored, which is a good
approximation for noisy observables or large volume). Due
to covariance, appx-3, it is easy to prove that the ensemble

averages of (primary observables) OðappxÞ, OðappxÞ;g,
and OðappxÞ

G are all equal, so the improved estimator (2) is

unbiased, hOðimpÞi ¼ hOi.
The idea of exploiting covariance [14,15] to improve

statistical errors has a wider range of applicability than
LMA, so in general we call it covariant approximation
averaging (CAA). Several comments on CAA follow.

From Eq. (3) the accuracy of the approximation OðappxÞ �
O (appx-1) should be precise enough so that the statistical

error fromOðrestÞ is below, say, one-half of the desired final
precision. Too accurate an approximation wastes resour-

ces. In OðimpÞ, most of the statistical fluctuation is carried

by OðappxÞ, which is reduced by averaging over NGð� 1Þ
measurements with smaller cost (appx-2). Balance be-
tween these opposing parts of the method allows CAA to
reduce statistical errors significantly while keeping the
computational cost low.
In the framework of CAA the best choice of approxi-

mation depends on the target observables and lattice pa-
rameters such as quark mass and volume. In principle, any
set of lattice symmetries, G, can be used in CAA. We limit
ourselves to the case of translation symmetries in the
following examples.
The first example is LMA. In LMA eigensystems of the

Hermitian Dirac operator are obtained for the part of the
spectrum closest to zero,

DHvi ¼ �ivi; ði ¼ 1; 2; . . . ; NeigÞ; (4)

0< j�1j � j�2j � 	 	 	 � j�Neig
j ¼ �cut; (5)

which is then used to construct, through spectral decom-
position, the low-mode approximation of the fermion
propagator,

SLMðx; yÞ ¼
XNtot

i¼0

viðxÞfLMð�iÞvy
i ðyÞ; (6)

fLMð�Þ ¼ 1

�
�ð�cut � j�jÞ: (7)

Ntot is the total dimension of the Dirac matrix. The recipe
for LMA in terms of the CAAmaster equation (2) is shown
in the left column of Table I. Although LMA is particularly
good for observables dominated by low modes, such as

TABLE I. LMA and AMA algorithms.

LMA algorithm AMA algorithm

1: Compute low modes vi of DH 1: If �cut � 0, Neig > 0,
compute low mode vi of DH

2: Set source b and G-invariant initial guess x0

3: Compute exact S and O½S� precisely (use deflated CG if vi exists)

4: Repeat for SLM in (6)

and OðappxÞ ¼ O½SLM�
4: Repeat for SAM in (8)

and OðappxÞ ¼ O½SAM� using
deflated CG (if �cut � 0)

5: OðrestÞ ¼ O½S� �O½SLM� 5: OðrestÞ ¼ O½S� �O½SAM�
6: Set shifted source bg and G-invariant initial guess xg0

7: Average OðappxÞ;g ¼ O½SLM�
over g 2 G to get OðappxÞ

G

7: Average OðappxÞ;g ¼ O½SAM�
over g 2 G to get OðappxÞ

G

8: OðimpÞ ¼ OðrestÞ þOðappxÞ
G
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the single pion state for lighter fermion masses, LMA does
not work so well for heavier hadrons or when the quark
mass is heavier [21,23] (see also [27] for the dependence
on parity of states and (non-)Hermiticity of Dirac opera-
tors). This is due to the truncation of the sum in (6), i.e.,
fLMð�Þ ¼ 0 for j�j> �cut.

One could improve the above by constructing a poly-
nomial for 1=� and using it to obtain a better (all-mode)
approximation of the propagator above �cut:

SAMðx; yÞ ¼
XNtot

i¼0

viðxÞfAMð�iÞvy
i ðyÞ; (8)

fAMð�Þ ¼
(
1
� j�j � �cut

Pnð�Þ j�j> �cut

(9)

where Pnð�Þ � 1=� is a polynomial of degree n. From (8)
and (9), one computes the approximate propagator using
PnðDHÞ in the subspace orthogonal to the eigenvectors
below �cut,

SAM ¼ XNeig

i¼1

vi

1

�i

vy
i þ PnðDHÞ

�
1�XNeig

i¼1

viv
y
i

�
; (10)

with Neig the number of low modes. In analogy to LMA,

we refer to the above as all-mode averaging (AMA). A
recipe similar to LMA is shown in the right column of
Table I.

As emphasized in [14] approximate eigenvectors can be
used in LMA (and AMA) to reduce the cost of this part of
the calculation. We have not done that, as we find that the
cost of computing them exactly is not too burdensome and
is partly recouped in the deflation of the Dirac operator.

Among many different ways [28–30] to obtain Pnð�Þ,
one of the easiest is to use the polynomial implicitly
generated by an iterative linear solver such as a conjugate
gradient (CG). For example (8) can be implemented as a
CG solution using the low-mode approximation applied to
the source vector b (the coefficients of Pn depend on b) as
the starting vector SLMb, which is nothing but a deflated
CG with iteration number set to the degree of the poly-
nomial, n. One can either fix n (number of iterations) or the
stopping criterion for the residual vector in the CG algo-
rithm. Either satisfies the covariance condition (appx-3).1

This particular construction of PnðDHÞ is called the trun-
cated solver method (TSM) [26]. The difference with
AMA is that TSM is applied in [26] to a random source,
and the unbiased result is guaranteed by stochasticity while

AMA relies on covariance, so it does not need the random
source.
In [23] low modes are utilized with Z3 noise to compute

many-to-all hadron correlation functions for variance re-
duction. One may also chooseNeig ¼ 0, �cut ¼ 0 in (9), i.e.

not to use eigenvectors at all. This may be effective for
heavier quark masses, but for lighter quarks one needs a
larger degree polynomial for an accurate approximation
and Neig > 0 is likely more cost effective.

The approximation used must always be unbiased by
construction. However, one can (and should) check that
the particular implementation of the approximation

OðappxÞ½Ug� ¼ OðappxÞ;g½U� in the code is unbiased by
computing the approximation explicitly on a transformed
gauge field configuration and comparing the result to
the original to see that they are equivalent to numerical
precision.
To compare the LMA and AMA methods, we use the

2þ 1 flavor domain-wall fermion (DWF) ensemble gen-
erated by the RBC/UKQCD Collaboration [31] with lattice
size 243 
 64, extra dimension size Ls ¼ 16, and Iwasaki
gauge action (� ¼ 2:13, or a�1 ¼ 1:73 GeV). The low
modes of the Hermitian DWF Dirac operator are obtained
using a 4D-even-odd-preconditioned, shifted Lanczos al-
gorithm [16] with accuracy kðDH � �iÞvik=kvik< 10�12.
The eigenmodes are used for LMA as in Eqs. (6) and (7), to
deflate the CG, and to evaluate the low-mode parts of both

O andOðappxÞ, and similarly for AMA as in Eqs. (8) and (9).
In this paper we compute 180 low modes for light quark
mass m ¼ 0:01 and 400 low modes for m ¼ 0:005.
We adopt translational symmetry on the lattice as

G and take NG propagator source locations, starting
from the origin, separated by 12 lattice units in space and
16 in time, and the total set of translation numbers
NG ¼ 23 
 4 ¼ 32. For AMA, the stopping condition
of the ‘‘sloppy CG’’ for our approximation is kDHx� bk=
kbk< 3
 10�3 while it is 10�8 in [2]. Note that when
using an even-odd-preconditioned Dirac operator, LMA
and AMA guarantee unbiased estimators for translations
by an even number of sites (appx-3). We have explicitly
checked this in our calculations.
Table II lists the relative statistical errors for various

hadronic two-point correlation functions computed using
LMA, AMA, and the original CG method, for m ¼ 0:005.
All were obtained with the same Gaussian smeared sources
and point (Gaussian) sinks for the pseudoscalar and vector
(nucleon) used in [2]. At short distances (t ¼ 4), there is no
improvement between the original and LMA cases, except
in the pseudoscalar (PS) channel. This is because the
contribution of higher modes is still important in the
short-distance region. Although for LMA NG could be
taken as large as the lattice size with modest cost, we set
NG ¼ 32 since larger NG is not effective due to correla-
tions between nearby gauge fields in our examples. On the
other hand, AMA dramatically reduces the errors (more

1It can be imagined in some extreme (and unlikely) case that
fixing the stopping condition for the iterative solver may induce
a biased approximation due to roundoff error, when changing the
order of arithmetic, for instance. Though such an effect is
probably negligible, it can easily be eliminated by fixing the
number of iterations in the iterative solver, instead. We thank
Martin Lüscher for pointing this out.
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than 4–6 times) for all channels (and different momenta)
and for all distances. In this example the variance reduction
by AMA comes almost entirely from the second term

in Eq. (3) since r ¼ CorrðO;OðappxÞÞ is very close to 1
(r > 0:9999 for m ¼ 0:005), even though the residual

stopping criterion used for OðappxÞ is loose (3
 10�3).
For LMA at short distances r ’ 0:9 so the error from

OðrestÞ is significant. We also confirm that for the PS
channel both LMA and AMA yield improvement, with
r > 0:997 even in the short distance region, as suggested
previously for LMA using overlap fermions [22,23]. For
m ¼ 0:01 r is somewhat smaller (r > 0:99), so the contri-

bution fromOðrestÞ is more significant. Only 180 lowmodes
were used for m ¼ 0:01.

Figure 1 shows the nucleon effective mass using LMA
and AMA for the data in Table II and III compares these to
an earlier high statistics study of nucleon structure func-
tions [2]. The right-most panel in Fig. 1 shows significant
improvement of the effective mass plateau for AMA.
Using the same fitting range, the precision of the nucleon
mass attained with AMA is smaller by more than a factor
of 1.5 compared to the high statistics study [2] where 3728

and 1424 measurements were made for m ¼ 0:005 and
0.01, respectively. The improved statistics makes it easier
to choose the fit range based on �2, as seen in Fig. 1. LMA
for nucleon masses was examined in [21].
Most of the cost of AMA comes from the low-mode and

sloppy CG parts of the approximation OðappxÞ, and the
larger NG, the lesser the relative cost of the former.
Deflating the Dirac operator significantly reduces the cost

of computing OðrestÞ: The cost of m ¼ 0:01 and 0.005
propagators in Ref. [2] is reduced by factors of about 0.5
and 0.1, respectively, if deflation is used. However, this
strongly depends on the stopping criteria and number of
low modes. The various costs for AMA in our examples are
broken down in Table IV and compared to the high statis-
tics study [2]. In the example using Gaussian sinks, AMA
is roughly 16 and 5 times less expensive for roughly the
same statistical error, form ¼ 0:005 and 0.01, respectively.
LMA is significantly less effective, 3.6 and 2.3 times less
expensive. As NG increases, AMA improves statistics with
relatively little extra cost. For instance, for NG ¼ 64 AMA
costs an additional 114, in units of the original propagator.
The advantage of AMA clearly grows with increasing
lattice size and decreasing quark mass. The cost of calcu-
lating the correlation functions in this example is negli-
gible, but this may not be the case for more complicated
observables. Although disk space and CPU time for eigen-
vector I=O can be non-negligible, we ignore these, as the
costs strongly depend on the implementation details [e.g.,
we could (de)compress eigenvectors] and the features of
the I=O systems used.
Another impressive example of AMA is shown in Fig. 2,

which depicts the hadronic vacuum polarization (HVP)
from [32] and using AMA for roughly the same amount
of computational resource (20 configurations, 1400 low
modes with accuracy kðDH � �iÞvik=kvik< 10�10,NG ¼
708, and sloppy CG stopping residual criterion 10�4 com-
pared to 10�8 in [32]). The pion mass is m� ¼ 315 MeV
and lattice size 483 
 144. The HVP contribution to the
muon’s anomalous magnetic moment is sensitive to the
lowQ2 region [1], so constraining the HVP in this region is
crucial to precisely extract the anomaly. In this test case
(which was not optimized), to achieve the same errors on
the HVP in the range 0–1 GeV2 as the original calculation
required about 2.6–20 times less computer time.

TABLE III. Nucleon masses (GeV) using LMA, AMA and
from data from a high statistics study [2]. See Table IV for
costs. Here, gauss is for Gaussian and pt is for point sinks.

OðimpÞ, NG ¼ 32 O
m Sink Fit range LMA AMA High stat.

0.005 pt 8–12 1.1391(145) 1.1413(61) 1.1561(104)

0.005 gauss 6–12 1.1305(143) 1.1420(58) 1.1481(100)

0.01 pt 9–15 1.2446(164) 1.2363(59) 1.2101(89)

0.01 gauss 7–15 1.2240(148) 1.2268(60) 1.2169(93)

TABLE II. Correlation function relative statistical error for
Nconf ¼ 109 (separated by 40 trajectories) and NG ¼ 32.
Nucleon (N), pseudoscalar (PS), and vector (V) channels are
given, and m ¼ 0:005. Gaussian smeared sink is used for the
nucleon; others are point sinks. Gaussian smeared source is used
for all channels.

Hadron t Original (%) LMA (%) AMA (%)

N 4 6.9 5.0 1.5

8 9.2 3.2 1.9

12 23 4.8 3.5

PS 4 4.5 0.98 0.86

12 4.9 0.91 0.86

28 5.0 1.3 1.3

V 4 3.9 2.9 0.6

8 5.2 2.1 1.1

12 12 3.4 2.3
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FIG. 1 (color online). Nucleon effective mass using LMA
(middle panel) and AMA (right panel). m ¼ 0:005. The left
panel shows the unimproved calculation. See Table II for
parameters. Colored bands denote fit mass and range. Gaussian
source.
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Interestingly, LMA actually increases the error in this case
by about 2–3 times because the low modes do not saturate
the Ward-Takahashi identity. The stopping criterion for

OðappxÞ cannot be too low for the same reason, though our
choice may have been too conservative. The costs are
summarized in Table IV. We note that in this case the
cost of constructing the low-mode part of the propagator

is roughly equivalent to the sloppy CG cost, and that here
again the contraction costs are negligible.
In this paper a new class of unbiased error reduction

techniques is introduced, using approximations that are
covariant under lattice symmetries. This is a generalization
of low-mode averaging, which reduces the statistical error
for observables that are not dominated by low modes.
We have shown through several numerical examples that
all-mode averaging is a powerful example of CAA, per-
forming better than LMA, and it works well even in cases
where LMA fails. In the examples given here, AMA re-
duced the cost by factors up to �20, over conventional
computations, and these factors will only increase for
larger lattice sizes and smaller quark masses. The method
has great potential for investigations of difficult but im-
portant physics problems where statistical fluctuations still
dominate the total uncertainty, like the nucleon electric
dipole moment or hadronic contributions to the muon
anomalous magnetic moment. Since CAA works without
introducing any statistical bias (so long as condition appx-3
holds), there are many possibilities that also satisfy appx-1

and appx-2: One can construct OðappxÞ using different
lattice fermions and parameters [mass, Ls (for DWF),

boundary conditions and so on]. hOðappxÞ
G i can be measured

on a larger number of gauge configurations, which is
potentially advantageous for observables dominated by
gauge noise such as disconnected diagrams. One may
also consider other types of approximations such as the
hopping parameter expansion used in [26], or approxima-
tions at the level of hadronic Green’s functions.

TABLE IV. Computational cost. The unit of cost is one quark propagator without deflated CG, per configuration. NG ¼ 32 for
nucleon masses and 708 for HVP. The last column gives the cost to achieve the same error for each method, normalized to [2] (nucleon
mass mN) and [32] (HVP) and scaled by the errors in Table III. HVP scaled costs are maximum and minimum in the range Q2 ¼
0–1 GeV2. For m ¼ 0:005, in [2], nonrelativistic spinors were used, which means the scaled costs in this case were increased by 2.

The cost of OðappxÞ
G for AMA is split to show the sloppy CG and low-mode costs separately.

Nconf Nmeas LM O OðappxÞ
G Total Scaled Cost

mN m ¼ 0:005, 400 LM gauss pt

AMA 110 1 213 18 91þ 23 350 0.063 0.065

LMA 110 1 213 18 23 254 0.279 0.265

Ref. [2] without deflated CG 932 4 	 	 	 3728 	 	 	 3728a 1 1

Ref. [2] with deflated CG 932 4 213 610 	 	 	 823 1 1

m ¼ 0:01, 180 LM

AMA 158 1 297 74 300þ 22 693 0.203 0.214

LMA 158 1 297 74 22 393 0.699 0.937

Ref. [2] without deflated CG 356 4 	 	 	 1424 	 	 	 1424 1 1

Ref. [2] with deflated CG 356 4 297 667 	 	 	 964 1 1

HVP m ¼ 0:0036, 1400 LM max min

AMA 20 1 96 11 504þ 420 1031 0.387 0.050

LMA 20 1 96 11 420 527 10.3 3.56

Ref. [32] 292 2 	 	 	 584 	 	 	 584 1 1

aIn [2] a doubled source was used to reduce this cost by two.
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FIG. 2 (color online). Hadronic vacuum polarization from [32]
(squares) and using AMA (circles). AMA achieves the same
statistical error as the original calculation in the range 0–1 GeV2

for about 2.6–20 times less computer time. See Table IV for
details.
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