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Spectral properties of the Wilson-Dirac operator and random matrix theory
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Random matrix theory has been successfully applied to lattice quantum chromodynamics. In particular,
a great deal of progress has been made on the understanding, numerically as well as analytically, of the
spectral properties of the Wilson-Dirac operator. In this paper, we study the infrared spectrum of the
Wilson-Dirac operator via random matrix theory including the three leading order a® correction terms
that appear in the corresponding chiral Lagrangian. A derivation of the joint probability density of the
eigenvalues is presented. This result is used to calculate the density of the complex eigenvalues, the
density of the real eigenvalues, and the distribution of the chiralities over the real eigenvalues. A detailed
discussion of these quantities shows how each low-energy constant affects the spectrum. Especially we
consider the limit of small and large (which is almost the mean field limit) lattice spacing. Comparisons
with Monte Carlo simulations of the random matrix theory show a perfect agreement with the analytical
predictions. Furthermore we present some quantities which can be easily used for comparison of lattice

data and the analytical results.
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I. INTRODUCTION

The drastically increasing computational power as well
as algorithmic improvements over the last decades provide
us with deep insights in nonperturbative effects of quantum
chromodynamics (QCD). However, the artefacts of the
discretization, i.e. a finite lattice spacing, are not yet com-
pletely under control. In particular, in the past few years a
large numerical [1-7] and analytical [8-14] effort was
undertaken to determine the low-energy constants of the
terms in the chiral Lagrangian that describe the discretiza-
tion errors. It is well known that new phase structures arise
such as the Aoki phase [15] and the Sharpe-Singleton
scenario [16]. A direct analytical understanding of lattice
QCD seems to be out of reach. Fortunately, as was already
realized two decades ago, the low lying spectrum of the
continuum QCD Dirac operator can be described in terms
of random matrix theories (RMTs) [17,18].

Recently, RMTs were formulated to describe discretiza-
tion effects for staggered [19] as well as Wilson [9,10]
fermions. Although these RMTs are more complicated
than the chiral random matrix theory formulated in
[17,18], in the case of Wilson fermions a complete
analytical solution of the RMT has been achieved
[9-11,13,20-23]. Since the Wilson RMT shares the global
symmetries of the Wilson-Dirac operator it will be equiva-
lent to the corresponding (partially quenched) chiral
Lagrangian in the microscopic domain (also known as
the € domain) [24-29].
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Quite recently, there has been a breakthrough in deriving
eigenvalue statistics of the infrared spectrum of the
Hermitian [20] as well as the non-Hermitian [21-23]
Wilson-Dirac operator. These results explain [13] why
the Sharpe-Singleton scenario is only observed for the
case of dynamical fermions [1,5,30-36] and not in the
quenched theory [37,38] while the Aoki phase has been
seen in both cases. First comparisons of the analytical
predictions with lattice data show a promising agreement
[4,6,7]. Good fits of the low-energy constants are expected
for the distributions of individual eigenvalues [9,10,39].

Up to now, mostly the effects of Wy [10,20,23], and quite
recently also of W [12,13,40], on the Dirac spectrum were
studied in detail. In this article, we will discuss the effect of
all three low-energy constants. Thereby we start from the
Wilson RMT for the non-Hermitian Wilson-Dirac operator
proposed in Ref. [9]. In Sec. II we recall this random matrix
theory and its properties. Furthermore we derive the joint
probability density of the eigenvalues which so far was
only stated without proof in Refs. [13,22]. We also discuss
the approach to the continuum limit in terms of the Dirac
spectrum.

In Sec. III, we derive the level densities of Dyy starting
from the joint probability density. Note that due to its y;
Hermiticity Dy, has complex eigenvalues as well as exactly
real eigenvalues. Moreover, the real modes split into those
corresponding to eigenvectors with positive and negative
chirality. In Sec. IV, we discuss the spectrum of the
quenched non-Hermitian Wilson-Dirac operator in the
microscopic limit in detail. In particular the asymptotics
at small and large lattice spacing is studied. The latter limit
is equal to a mean field limit for some quantities which can
be trivially read off.
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In Sec. V we summarize our results. In particular we
present easily measurable quantities which can be used for
fitting the three low-energy constants W7/ and the chiral
condensate . Detailed derivations are given in several
appendices. The joint probability density is derived in
Appendix A. Some useful integral identities are given in
Appendix B and in Appendix C we perform the micro-
scopic limit of the graded partition function that enters in
the distribution of the chiralities over the real eigenvalues
of Dy. Finally, some asymptotic results are derived in
Appendix D.

II. WILSON RANDOM MATRIX THEORY AND
ITS JOINT PROBABILITY DENSITY

In Sec. I A we introduce the random matrix theory for
the infrared spectrum of the Wilson-Dirac operator and
recall its most important properties. Its joint probability
density is given in Sec. II B, and the continuum limit is
derived in Sec. II C.

A. The random matrix ensemble

We consider the random matrix ensemble [9,10]

A w
Dy = (1)

distributed by the probability density

n [ﬂ2+(i1+1/)2]/2 n \n(n+v)
PO = (53) (-2)

n+v 2
+ M
n

- L(trAz + trB?) — ntrwwt
2 2
a

- a2 5
Xexp| — X My

X exp

Xexp| p,trA + uy trB]. (2)

The Hermitian matrices A and B break chiral symmetry
and their dimensions are n X n and (n + v) X (n + v),
respectively, where v is the index of the Dirac operator.
Both w, and w; are one-dimensional real variables. The
chiral RMT describing continuum QCD [17] is given by
the ensemble (1) with A and B replaced by zero. The N;
flavor RMT partition function is defined by

Z§,(m) = [ DIDyIP(Dy)det(Dy, + m).  (3)

Without loss of generality we can assume v = 0 since
the results are symmetric under v — —v together with
My < M.

The Gaussian integrals over the two variables w, and u,
yield the two low-energy constants Wg and W5 [9,10].
The reason is that the integrated probability density
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generates the terms (trA + trB)? and (trA — trB)?> which
correspond to the squares of traces in the chiral Lagrangian
[24-27]. In the microscopic domain the corresponding
partition function for N; fermionic flavors is then given by

“4)

Z5, (i) = fU( Au(v) exp[¥ wn(U + U*')]

Xexp | —@VWgtr?(U + U*')]

Xexp| —@VW; (U — U_l)]

X exp

—a*VWetr(U? + U‘z)]det”U 5)

with the physical quark masses i = diag(iy, ..., iity,),
the space-time volume V, the physical lattice spacing a,
and the chiral condensate 3. The low-energy constant Wy
is generated by the term trA% + trB? in Eq. (2) and is
a priori positive. We include the lattice spacing a in
the standard deviation of A and B, cf. Eq. (2), out of
convenience for deriving the joint probability density.
We employ the sign convention of Refs. [9,10] for the
low-energy constants.

The microscopic limit (n — o) is performed in Sec. I1I.
In this limit the rescaled lattice spacing a3 = na®/2 =
@>VWyg, the rescaled parameters 7y = a*(u, + u;) and
A7 = a*(u, — wy), and the rescaled eigenvalues Z =
2nZ = diag(2nz,, ..., 2nzy,+,) of Dy are kept fixed for
n — oo. The mass s and axial mass ):7 are distributed
with respect to Gaussians with variance 842 = —8a*VWj
and 843 = —8a>V W, respectively. Note the minus sign in
front of W /7. As was shown in Ref. [13] the opposite sign
is inconsistent with the symmetries of the Wilson-Dirac
operator. The notation is slightly different from what is
used in the literature to get rid of the imaginary unit in dg
and d;.

The joint probability density p(Z) of the eigenvalues
Z = diag(zy, . . ., Zon+») Of Dy can be defined by

1= [ o FOWPDWIDY)
= [ . r@p@dz ©)
where f is an arbitrary U(n, n + ») invariant function.

The random matrix Dy is 7ys=diag(l,,—1,,)
Hermitian, i.e.

DY, = ysDwys. (7
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Hence, the eigenvalues z come in complex conjugate
pairs or are exactly real. The matrix Dy has v generic
real modes and 2(n — [) additional real eigenvalues
(0 = I = n). The index / decreases by one when a complex
conjugate pair enters the real axis.

B. The joint probability density of Dy,

Let D; be Dy if it can be quasidiagonalized by
a noncompact unitary rotation U € U(n, n + v), ie
UysU t = Vs, tO

xx 010 O

X | y2 0O
=UZU'=U Ul ®

0 —Y2| X2 0

0 0] 0 x5
where the real diagonal matrices x; = dlag(x(l) .. .,xf:l D>
= dlag(x(z) .. (2)) V, = dlag(y(z) .. ,ygz)), and
= dlag(x(g) ...,xf?l,,_,) have the dimension n — [, [, [,

and n + v — [, respectively. The matrices x; and x3 com-
prise all real eigenvalues of D; corresponding to the right-
handed and left-handed modes, respectively. We refer to an
eigenvector ¢ of Dy, as right-handed if the chirality is
positive definite, i.e.

Wlysly) >0, (€))

and as left-handed if the chirality is negative definite. The
eigenvectors corresponding to complex eigenvalues have
vanishing chirality. The complex conjugate pairs are
(20 = Xy + 1y, 25 = X, — 1y;). Note that it is not possible
to diagonalize Dy with a U(n, n + v) transformation with
complex conjugate eigenvalues. Moreover we emphasize
that almost all ys-Hermitian matrices can be brought to the
form (8) excluding a set of measure zero.

The quasidiagonalization D; = UZ,U"! determines U
up to a U?*7~/(1) X O/(1, 1) transformation while the set
of eigenvalues Z; can be permuted in [!(n —1)!(n+ v —1)!2!
different ways. The factor 2’ is due to the complex
conjugation of each single complex pair. The Jacobian
of the transformation to eigenvalues and the coset
G; = U(n, n + v)/[UZ7~1(1) X O/(1, 1)] is given by

|A2n+v(zl)|2J (10)

where the Vandermonde determinant is defined as
A2n+V(Z) = l_[ (Zi - Z/)
1=i<j=2n+v

= (=102 det[2]7 ] 2y jmgne,e (11)

The functional I[f] in Eq. (6) is a sum over n + 1
integrations on disjoint sets, i.e.
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1
1= Z2’(n D\(n+ v — 1)

X fRM(MXO f(Zz)[ [@, P(UZlU‘l)d,uG[(U)]

X |Agui,(Z)12d[Z)], (12)

where we have normalized the terms with respect to the
number of possible permutations of the eigenvalues in Z;.
Thus we have for the joint probability density over all
sectors of eigenvalues

p(2)d1Z] - i P(Z)d(Z)]

o = |A21’l+1/ Zl)l d[Zl]
z.‘21(11 —D(n+v—1I)

x [ PUZU Ndue (U).  (13)
G,

Here p;(Z;) is the joint probability density for a fixed
number of complex conjugate eigenvalue pairs, namely /.
The integration over U is nontrivial and will be worked out
in detail in Appendix A.

In a more mathematical language the normalization
factor in Eq. (13) can be understood as follows. If the
permutation group of N elements is denoted by S(V) while
the group describing the reflection y — —y is Z,, the factor
2l(n — D!'(n + v — 1)! is the volume of the finite sub-
group S(n =) XS()XS(n+v—1)xX27Z, of Unn+v)
which correctly normalizes each summand. Originally we
had to divide U(n,n+ v) by the set U¥*"*7I(1) X
O/(1,1) X S(n — 1) X S(I) X S(n + v — I) X Z, because
it is the maximal subgroup whose image of the adjoint
mapping commutes with Z;. The reasoning is as follows.
Let 2[Z,] = {UZ,U '\U € U(n, n + v)} be the orbit of Z,
and 3.[z]=1{Z € 32[z][2,Z])- = 2,Z, - Z,Z, = 0}
a subset of this orbit. Then all orderings in each of the
three sets of eigenvalues x, (25, z5), and x3 as well as
the reflections yﬁ-z) — —yﬁ-z) are in X.[Z;]. This subset
3.[Z;] C 2[Z,;] can be represented by the finite group
S(n — 1) X S(I) X S(n + v — [) X Z). This group is called
the Weyl group in group theory. The Lie group
Ut 7=1(1) X OX(1, 1) acts on X.[Z,] as the identity since
it commutes with Z;,. The group U?**”~!(1) represents
2n + v — [ complex phases along the diagonal commut-
ing with the set which consists of Z; with a fixed /. Each
noncompact orthogonal group O(1, 1) reflects the invari-
ance of a single complex conjugate eigenvalue pair under a
hyperbolic transformation which is equal to a Lorentz-
transformation in a (1 + 1)-dimensional space-time.

There are two ways to deal with the invariance under
U2 =l(1) X O!(1,1) X S(n = ) X S()) X S(n + v — 1) X Z,
in an integral such that we correctly weigh all points. We
have either to divide U(n, n + ») by the whole subgroup or

094502-3



KIEBURG, VERBAARSCHOT, AND ZAFEIROPOULOS

we integrate over a larger coset and reweight the measure
by the volume of the subgroups not excluded. The order-
ing enforced by S(n — 1) X S(I) X S(n + v — 1) X Z} is
difficult to handle in calculations. Therefore, we have
decided for a reweighting of the integration measure
by 1/[(n — D'(n + v — [)!1'2']. However the Lie group
U2tr=l(1) X O/(1, 1), in particular the hyperbolic sub-
groups, has to be excluded since its volume is infinite.

In this section as well as in Appendix A, we use the non-
normalized Haar measures induced by the pseudometric

trdD%, = trdA? + trdB? — 2 trdWdWw1. (14)

Therefore the measures for Dy, and Z; are

n n+tv
j=1 1=i<j=n j=1
1=i<j=n+v
X [T (-2)dReW;dImW;, (15)

1=i=n
1=j=n+v

J

n—l
d(z,] =[] dx\"
=1

! n+v—I
2dxPdy? T a.  (16)
J =1 j=1

The Haar measure dug, for the coset G, is also induced by
d[ D] and results from the pseudometric, i.e.

4

—nlnTv— _l’l_V2 i a
p2)dIZ]=c(1+a?) "0 a e"p[ 4(1+a?)

wr—m)Z]AmV(zmet
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trdD¥, = wrdZ? + u[U~'dU, Z,]*. (17)

The reason for this unconventional definition is the
non-normalizability of the measure dug, because G is
noncompact for / > 0. Hence the normalization resulting
from definition (17) seems to be the most natural one, and
it helps in keeping track of the normalizations.

In Appendix A we solve the coset integral (13). The first
step is to linearize the quadratic terms in UZ,U~! by
introducing auxiliary Gaussian integrals over additional
matrices which is along the idea presented in Ref. [20].
In this way we split the integrand in a part invariant under
U(n,n + v) and a noninvariant part resulting from an
external source. The group integrals appearing in these
calculations are reminiscent of the Itsykson-Zuber integral.
However they are over noncompact groups and, thus, much
more involved than in Ref. [20]. Because of the U(n) X
U(n + ») invariance of the probability density of Dy, the
joint eigenvalue distribution is a symmetric function
of n eigenvalues which we label by “r” and n + v
eigenvalues labeled by ““1”’. The s Hermiticity imposes
reality constraints on the eigenvalues resulting in Dirac
delta functions in the joint probability density. Similar
to the usual Itzykson-Zuber integral, the symmetric func-
tion of the eigenvalues turns out to be particularly simple
(see Appendix A)

(l)} 1=i=n

J 1=j=n+v

{20!, 2 )axdy )y
(e S0Py} e

(18)

The last ¥ rows become zero in the continuum limit resulting in v exact zero modes (see subsection II C). At finite a they
can be interpreted as broadened ‘“‘zero modes.” The functions in the determinant are given by

82(21, 22) = &,(x1, X2)8(y1)6(y2) + gc(21)8(x; — x2)8(y; + o), (19)

n a*(u,+ pm)\2 n
gr(x1,x5) = exp[——(xl ) _%> +z(x1 —Xz)z]

4a?

X [sign(xl —X) — erf|:

n a2 a2
%(xl —X) — \’m(ﬂr - Ml):|:|, (20)

, n a’(u, + 2
gc(z) = —2usign(y) exp [ - ﬁ<x - w) —ny? ] (21)
a 2n
n a® up\2

gilx) = exp[—z—az(x— . 1) ] (22)
We employ the error function “‘erf”” and the function “sign’” which yields the sign of the argument. The constant is equal to

+v
= (et a(SOTY By s T T @3)

c n j=0 j=0

and is essentially the volume of the coset [U(n) X U(n + v)]/[S(n) X S(n + v)].
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The two-point weight g, consists of two parts. The first
term, g,, represents a pair of real modes where one eigen-
value corresponds to a right-handed eigenvector and the
other one to a left-handed one. The second term, g, enforces
that a complex eigenvalue comes with its complex conjugate
only. The function g; is purely Gaussian. As we will see in
the next subsection, in the small ¢ limit this will result in a
distribution of the former zero modes that is broadened to
the Gaussian unitary ensemble (GUE) [4,6,7,10,20,23].
|

pi(Z)d[Z,] =

(—1)n=Dle(1 + g2)~ntr=1/2g=n=r’ 1y + 1)

PHYSICAL REVIEW D 88, 094502 (2013)

For Ny dynamical quarks with quark mass m the joint
probability density is simply given by [13]

Nt 2n+v

[1T11 G+ mpp@). (24)

=1 k=1

p(Nf)(Z) =

The expansion in g, yields the joint probability density
for a fixed number of complex conjugate pairs,

m—=—DW(n+v—1)!

{g,(x\", (3))dx(l)dx(3)} I=izn—1

1=j=n+v-1

X det

{0 e ) ax} =

4
Xp [ - ﬁ (r — M1)2]A2n+y(z)

l
[1.axPay?. (25)

J=1

1<,<n+u i

The factorials in the prefactor are the combinatorial
factor which results from the expansion of the deter-
minant in co-factors with / columns and [/ rows less.
Note that they correspond to the coset of finite groups,
[S(n) X S(n+ v)]/[S(n— 1) X S(1) X S(n + v — 1)], which
naturally occurs when diagonalizing Dy, in a fixed sector;
see the discussion after Eq. (13).

C. The continuum limit

In this section, we take the continuum limit of the joint
probability density p, i.e. a — O at fixed z, u;, and w,. In
this limit the probability density (2) of Dy trivially
becomes the one of chiral RMT which is equivalent to
|

|
continuum QCD in the € regime [17]. We expect that this
is also the case for the joint probability density.

The small a limit of the two-point weight (19) is
given by

a<l . a’m 5
82(21, 22) = —2usign(y;) TCXP[—WJ(S(XO

X 8(x2)8(y1 + y2). (26)

The function g, vanishes due to the error function
which cancels with the sign function. The expansion of
the determinant (18) yields (n + »)!/»! terms which are all
the same. Thus, we have

n

. _np(m+ ) m\".. - .
im p2)d12] = o2 (T i, =1 98,0 [ i)
| L

z n
X exp[—ny3ldy; l_[ exp [ - ﬁxf:ldxj. 27)

Thereby we have already evaluated the Dirac delta functions. The real part of the complex eigenvalues z( /b , 1 =j=mn,
and the imaginary part of z(), n+ 1= j=n+ v, vanish and they become the variables *u1y;, | = j < n, and X, 1=
J = v, respectively. Note that the random variables x scale with a while y is of order 1. Therefore the distribution of the two
sets of eigenvalues factorizes into a product that can be identified as the joint probability density of a ¥ X v dimensional
GUE on the scale of a and the chiral unitary ensemble on the scale 1,

Li_r%p(z)d[z] 5 )V/2< )2/21—[ A2(x)nexp[ ]dx

nh n’+wvn n—

2(+,2 2r+1
X— ]1'!) G V), TALO )1‘[2®(yj)y lexp[—ny}ldy;, (28)

|
one. We can choose to exclude an eigenvalue of z® or one

of the z"’s. When we exclude z(lr) we have to expand the

determinant (18) with respect to the first row. All resulting
(r)

where O is the Heaviside distribution.

III. FROM THE JOINT PROBABILITY DENSITY

TO THE LEVEL DENSITIES terms are the same and consist of a term for which z;

™ is real. We thus

The level density is obtained by integrating the joint
probability density (18) over all eigenvalues of Dy except

is complex and a term for which z;
have [23]
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[roT] iz = P30 + 5 pc). 9)

z; #:z(lr)
When excluding z(ll) and expanding the determinant (18)
with respect to the first column we notice that the first n
terms are the same while the remaining » terms have to be
treated separately. Again the spectral density is the sum of
the density of the real modes, which are left-handed in this
case, and the density of the complex modes [23]

[ @ T diz) = peD360) + 3o G0

0}
Zj ¥z,

The level densities p, and p; are the densities of the real
right- and left-handed modes, respectively. Interestingly
the level density of the complex modes appears symmet-
rically in both equations. The reason is the vanishing
chirality of eigenvectors corresponding to the complex
eigenvalues.

Let us consider the case when excluding zr. The

Vandermonde determinant without a factor (z(r) — le)) X

nk 2(Z(r) ))(Z(l) )) l-ln+v (r) _ ﬁ‘l))(z(ll) _ 51)) and
the cofactor from expanding the ﬁrst row of the determi-
nant is equal to the joint probability density with one pair
(z9, z®) less. The z() integral over this distribution
together with the factor [['_,(z\" — r))(z(l) (r)) X
l_[””(z(r) (1))( M _ zﬁ-l)) can be identified as the parti-
tion function with two additional flavors. We thus find

pe0) = [ gl ) = )Z 1 ' m)dY, ()

n—1,v

pe(2) * g.(2)z — 2)Zy 15 (2, 2% my). (32)
The fermionic partition function is given by
Zn 42 (21, 20, my)

= fdet (Dw — 21154 —2) det (Dy — 2515, 4,-2)

Ni
X [T(Dw + myla,1,—2) P(Dy)d[Dy] (33)
k=1

where Dy is given as in Eq. (1) only that n is replaced by
n — 1. In the microscopic limit this is simply a unitary
matrix integral which can be easily numerically evaluated.
Note that the integral over the variables u,; which
introduces the low-energy constants Wy /; can already be
performed at this step.

Considering the exclusion of z(ll) we have to expand the
determinant in the joint probability density with respect to
the first column resulting in a much more complicated
expression

PHYSICAL REVIEW D 88, 094502 (2013)

() % n f dIZ)(x — Dol DZ (6, 2)

n+v—1
+a5(y)Z(—l)””< j_p )x'”gl(x)

j' r]dnggKX)Aylﬂxb~- Xy p)

X A,,_,,H(x, Xpyoeor Xy p)

Xy—p) (34)

with a certain constant a which we will specify in the
microscopic limit. The global proportionality constant is
up to a factor n the same as the one in Egs. (31) and (32).
Again g,(z, z,) is the sum of a term comprising the density
of the complex eigenvalues and a term giving the real
eigenvalue density. For the complex eigenvalue density

we find the same expression as obtained by integration

over z(l )

For v = 1, the density of the real eigenvalues simplifies
to

Py = n [ o (x

+ ag (0Zy (x) (35)

n,p
X ZN,-:ypr(x’ Xlyeno

T x)gr(xr’ x)ZnN;:I’zl (xrr X)

since there is no integration in the term proportional to «,
cf. Eq. (34). The distribution of chirality over the real
modes is the difference

py(x) = pi(x) — pi(x), (36)

resulting in
Pl = agiWZi, 0+ [ ave = (e,
+ g, (x, X)) Zy 1 (!, x), 37)

where we used that the two-flavor partition function is
symmetric in x and x’. For u, = w;, the last two terms
cancel resulting in a very simple expression for p , (x). Note
that the integral over the second term always vanishes such
that it does not contribute to the normalization of the
distribution of chirality over the real modes

[dxp)((x) =y (38)
which is 1 for » = 1. For v = 2 we find
axgi(0)Zy'_(x) — aln + 1)g;(x)

X [j; dx'x'(x — x')g,(x")Z", Nf_ 5 (%, x)

p)((x)|1/=2 -~

+ n[oo dx'(x" — x)(g,(x, x)
+g,(x, ¥)Zy 15 (!, x). (39)
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In the microscopic limit the two-flavor partition functions
can be replaced by a unitary matrix integral which still can
be easily numerically evaluated including the integrals
over g and /i7.

For large values of » the expression of the distribution of
chirality over the real modes obtained from expanding the
determinant gets increasingly complicated. However, there
is an alternative expression in terms of a supersymmetric
partition function [23,41],

. d det (Dy — (x + J)15,4,)
P (x) o lim Im —
e—=0  dJ | j=0J det(Dyw — x1,,,, — 187ys)
X P(Dyw)d[Dy] (40)

In the ensuing sections we will use this expression to
calculate the microscopic limit of the distribution of
chirality over the real modes.

A. Microscopic limit of the eigenvalue densities

The goal of this section is to derive the microscopic limit
of p;, p,, and p. including those terms involving nonzero
values of W and W5 in the chiral Lagrangian. We only give
results for the quenched case. It is straightforward to
include dynamical quarks but this will be worked out in a
forthcoming publication. The result for the distribution of
chirality over the real modes with dynamical quarks for
We = W5 = 0 was already given in [41], and an explicit
expression for the density of the complex eigenvalues in
the presence of dynamical quarks and nonzero values Wg,
W,, and Wg was derived in [13].

The microscopic limit of the spectral densities is
obtained from the microscopic limit of the partition func-
tions and the functions appearing in the joint probability
density. We remind the reader that the microscopic parame-
ters which are kept fixed for V — oo, are defined by

ai = —aVW,, @3 = —aVWw,,
a% = na*/2 = a*VWwsg, e = a*(w, + p), (4D
/i7 = az(lur — ,u,l), X = 2nx.

The microscopic limit of the probability density of rizg and
A is given by

) A2
7~ &Xp [ - mi’z - —Zz
167a4d7 16a; 1645

pliig, A7) = ] “2)

and the functions that appear in the joint probability density
simplify to

gr()a jely m6’ A7)

[ @+ - 2m6)2]
=exp| — BTy E—
32a3

~

X I:sign(fc o eﬁ[%]} (43)
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(& — 16)?
842

g .(2) = —usign(y) eXp[— ] (44)

(% — g + X7)2:|

45
1643 43)

§.1(d) = CXPI:_

The microscopic limit of the spectral densities obtained in
Egs. (31), (32), and (40) is given by

1 o “
(X)) = ——— dimedA,d%x p(Hig, A7) (X — &
P() 32\/5—7;518 ’[R} 647 P( 6 7)( )

X 8%, &', g, A7)Z5 (& + ring, &' + i, As, dig),

(46)

. 1y O U
(2) = —F=— digd A7 p(itg, A7)8.(2, 2%, m
Pc ) 32\/2—77_&8 R 6 7p( 6 7)g ( 6)

X ZY (2 + th, £ + ritg, Ay, ), (47)

1 A N
p &) = —limImfdmédA7p(rh6, A7)
a7 e—0

X Gy (& + fig, Ay + 18, Gg). (48)

The resolvent G, follows from the graded partition
function

Gl/l()AC + i’h@ )’\\7 + lE, &8)

d £ 2 9 ~ { A
= ﬁzly/l(x + meg, X+ mg, )l7 + 18, a8)|x/:;{
tim - [ 1 P(Dy)d[Dy]
= 1m — T .
=2n ) " Dy = 2081y, —1eys "

(49)

The two-flavor partition function is up to a constant
defined by

Z;/O(Zl + Mme, 2o + me, )\7, (1)

o« fdet (211244 —2 — Dw) det (21,4, — Dyw)

X P(Dy)d[Dy]. (50)

The microscopic limit of the two-flavor partition function
follows from the chiral Lagrangian (5). In the diagonal repre-
sentation of the unitary 2 X 2 matrix, it can be simplified by
means of an Itzykson-Zuber integral and is given by

094502-7



KIEBURG, VERBAARSCHOT, AND ZAFEIROPOULOS

PHYSICAL REVIEW D 88, 094502 (2013)

A A £ A 1 . w < : .
25081 2, Ay, ) = 5 fd¢ld¢251n2((¢l = ¢2)/2)e" @1 exp[id;(sin @y + sin @) — 4a5(cos ¢y + cos?,)]

o EXP [2)cos @ + 2, cos o] — exp[Z,cos @) + 2, cos ¢, ]

(cos @1 — cos @,)(2) — Z,)

The normalization is chosen such that we find the
well-known result [42],

73,021, 22, Ay = 0,45 = 0)

o, @D1L(2) — 2l (2)]L,(2)
- 22 _ 22
174

. (52)

at vanishing lattice spacing, where [, is the modified
Bessel function of the first kind.

The microscopic limit of the graded partition function
follows from the chiral Lagrangian [9] which can be writ-
ten as an integral over a (1/1) X (1/1) supermatrix [41]

e? 7t
U= , ¥ ER, o €[0,27], (53)
n ¥

with n and %" two independent Grassmann variables, see
Refs. [43-47] for the supersymmetry method in random
matrix theory. Let the normalization of the integration over
the Grassmann variables be

Ed £ 1
fn‘ndndn” =5 (54)
o

Then the graded partition function is

Z’{/l(fl, 22, )l7 may 28 &8)

ide'? « Y A -
=f Cpe de®dndn*Sdet”Uexp[—az Str(U? + U2)]

X exp[i%StrZA(U -U - (8 * %)Str(U + U_l)],

(55)

where Z = diag(2,, 2,) and the normalization adjusted by
the continuum limit [48,49]

Zy, (21 20, Ay = 0,85 = 0)
= 21K, 1 (2)1,(2) — 21,11(2)K,(2)).  (56)

The function K, is the modified Bessel function of the
second kind.

There are various ways to calculate the integral (55).
One possibility is a brute force evaluation of the
Grassmann integrals as in [9,40]. Then the Gaussian inte-
grals over 715 and X7 can be performed analytically leaving
us with a nonsingular two-dimensional integral. A second
possibility would be to rewrite the integrals as in [41].
Then we end up with a two-dimensional singular integral
(see Appendix C) which can be evaluated numerically
with some effort. The third way to evaluate the integral
is a variation of the method in [41] and results in a
one-dimensional integral and a sum over Bessel functions
that can be easily numerically evaluated (see Sec. IV C).

(D

[
IV. THE EIGENVALUE DENSITIES
AND THEIR PROPERTIES

To illustrate the effect of nonzero dg and a; we first discuss
the case dg = 0. For the general case, with dg also nonzero,
we will discuss the density of the additional real eigenvalues,
the density of the complex eigenvalues, and finally the distri-
bution of chirality over the real eigenvalues of Dy,.

A. Spectrum of Dy, for ag = 0

The low-energy constants dg and d- are introduced through
the addition of the Gaussian stochastic variables 7izg + A;7y5
to Dy ,—¢ resulting in the massive Dirac operator

D = Dyl,—o + (A + ig)1 + Ayys. (57)

For ag = 0 the Dirac operator Dy |, is anti-Hermitian, and
the eigenvalues of Dy (A4, 1iig) = D — i are given by

2, =g * l\/)\%\, — A, (58)

where 1Ay is an eigenvalue of Dy|,—y. The density of the
eigenvalues of D is obtained after integrating over the
Gaussian distribution of 7 and X7.

As can be seen from Eq. (58), in case dg = dg = 0 and
a, # 0, the eigenvalues of D are either purely imaginary or
purely real depending on whether A is smaller or larger than
Aw, respectively. Paired imaginary eigenvalues penetrate
the real axis only through the origin when varying ):7, see
Fig. 1. Introducing a nonzero Wg, broadens the spectrum by
a Gaussian parallel to the real axis but nothing crucial
happens because rizg is just an additive constant to the
eigenvalues, cf. Fig. 1.

In the continuum the low lying spectral density of the
quenched Dirac operator is given by [17]

R . N i PN . .

peoml®) = 8 18(3) + =L (U36) = I (M1 O) |

= 6(®)[vo(9) + pnz(D)] (59)

The function J, is the Bessel function of the first kind. The

level density pyz describes the density of the generic
nonzero eigenvalues only.

For nonzero Wg/; the distribution of the zero modes

represented by the Dirac delta functions in Eq. (59) is
broadened by a Gaussian, i.e.

R "Notice that in this subsection the terms proportional to 77 and
A5 are explicitly included in the Dirac operator rather than in the
probability distribution as in the earlier sections. Moreover the
operators D and Dy, are already multiplied with 2V such that we
consider the dimensionless, rescaled spectrum of the Dirac
operator.
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“ Im Im
B
X
<
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B H
X
< A ~
X 4 dg 4 ar

FIG. 1 (color online).

Schematic plots of the effects of W, (left) and of W; (right). The low-energy constant W, broadens the

spectrum parallel to the real axis according to a Gaussian with width 4G, = 44/—VWga?, but does not change the continuum spectrum
in a significant way. When W is switched on and W = O the purely imaginary eigenvalues invade the real axis through the origin and

only the real (green crosses along the real axis) are broadened by a Gaussian with width 44, = 44— VW,

(ay=0) S P —

Py dyg =0) = ———————=eXp| ——35 7 |

' Jiem@z + a2) 16(a5 + a3)
(60)

Complex modes have vanishing chirality and do not
contribute to the distribution of chirality over the real
modes. Additional pairs of real modes also do not contribute
to p .. The reason is the symmetric integration of ):7 over the
real axis. The eigenvalues remain the same under the
change )17 — —X7; see Eq. (58). However the correspond-
ing eigenvectors interchange the sign of the chirality which
can be seen by the symmetry relation

Dy (A, fig) = —ysDw(— Ay, —iiig)ys. (61)

Thus the normalized eigenfunctions (¢ .|.)=1)
corresponding to the eigenvalues Z., i.e.

Dy (Ag, el o) = 2:1p4), (62)
also fulfills the identity

Dy(—As, —tig)yslp sy = —2.yslps).  (63)

Since the quark mass 7iz¢ enters with unity we have also

Dw(—As, i) ysl o) = 2= yslp o). (64)

The wave functions 7s| ) share the same chirality with
| +). Moreover | ,) and | _) have opposite chirality
because the pair of eigenvalues Z. is assumed to be real
and their difference |2, — Z_| nonzero. This can be seen by

the eigenvalue equations
|

o exp[—%%/(1642
pZ=3%+1i9 a3 =0) = pL—%7/(164y)] [RZ pnz(Aw) exp[—

167T|&6&7|
_ exp[—#2/(1642)]

o0 |)A’|PNZ()‘W)CMW

Dy (A, tiig = 0)ih ) = r\/i% — Ay,

(Y |Dw(= Ay, g = 0) = (ysDw(— Ay, titg = 0)ysip .|

= Ty A2~ A3 (el (65)

In the second equation we used the s Hermiticity of
Dy . We multiply the first equation with (¢ .| and the
second with |¢.) and employ the normalization of the
eigenmodes such that we find

(Y- Dy (= Ay, g = O p) = T4/ — A3,

We subtract the second line from the first and use the
identity Dw(/\7, ﬁ’l6 = 0) - Dw(_/\7, ﬁl6 = 0) = 2)\7 Y5, ie.

Aralyslpa) = =22 - A3, (67)

which indeed shows the opposite chirality of |, ) and
| ). Thus |¢,) and 7ys|f_) have opposite sign of
chirality but their corresponding eigenvalues are the
same. Therefore the average of their chiralities at a specific
eigenvalue vanishes.

The density of the complex eigenvalues can be obtained
by integrating over those Ay fulfilling the condition
[Aw| > |A;|. After averaging over rig and A, we find

32
7

1642

]a( X3, — A2 = 15DO Ayl — 1A DdAydA,

4raga| I3l A3, —

exp I:A%V 5 ] (68)

1642

The original continuum result is smoothened by a distribution with a Gaussian tail. The oscillations in the microscopic
spectral density dampen due to a nonzero W similar to the effect of a nonzero value Wy; cf. Ref. [23]. We also expect a loss
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of the height of the first eigenvalue distributions around the origin. Pairs of eigenvalues are moving from the imaginary axis
into the real axis and thus lowering their probability density on the imaginary axis. The density p. for nonzero dg will be

discussed in full detail in Sec. IV B 2.

The density of the additional real modes can be obtained by integrating the continuum distribution, pynz over

[Aw| < |A;| analogous to the complex case. We find

1 Ir: A2 " . .
BWyg=0=—— A -6 _ 7]5 A2 — 2% — g — £DO(A,] — [Aw)dAwd A, di
pli Wy =0) = g [ pnewexe] =g, = % Jo/TG = X = big — DO ~ IAwDdAd iz

gl difgd A Ay +mg (g + X)?
:[ |76l dinigd Ay PNZ(/\W)GXPI:_ \;\;6A2’"6_(m§ AZX) :I (69)
R? 87T|a6a7|,/A%v + 12 as 6dg

The number of additional real modes given by the integral
of p,(£) over % only depends on a5, as it should be since i
is just an additive constant to the eigenvalues. Moreover p,
will inherit the oscillatory behavior of pyz although most
of it will be damped by the Gaussian cutoff. The mixture of
this effect with the effect of a nonzero Wy is highly
nontrivial, but we expect that, at small lattice spacings,
we can separate both contributions. For a sufficiently small
value of dg the behavior of p.(%) for £ — 0 is given by
p.(X) = &|%] + - - - with ¢ > 0 for vanishing W and, thus,
p.(®) = ¢y + ;%% + - -+ with ¢, ¢; > 0 for nonzero W.
Hence, we will see a soft repulsion of the additional
real eigenvalues from the origin which still allows real
eigenvalues to be zero.

The discussion of the real modes for nonzero dg as well
is given in Sec. IVB 1.

B. Eigenvalue densities for nonzero values
of Ws, W,, and Wy

In this subsection all three low-energy constants are
nonzero. As in the previous subsection, we will consider

the density of the real eigenvalues of Dyy, the density of the
complex eigenvalues of Dy, and the distribution of the
chiralities over the real eigenvalues of Dy, The expres-
sions for these distributions were already given in Sec. III,
but in this section we further simplify them and calculate
the asymptotic expressions for large and small values of a.

1. Density of the additional real modes

The quenched eigenvalue density of the additional real
modes is given by Eq. (46). The Gaussian average over the
variables s and A; can be worked out analytically. The
result is given by (see Appendix B for integrals that were
used to obtain this result)

k(%, @1, @2) = exp[4aZ(cos @ — cos ¢;)> — 443 (sin @; + sin ¢,)?]

A

X

2
X exp [4&§<cos 0 — @) - 4&§<cos 0y —
8

N f|:8(&§ + a3) cos ¢ — 842 cos ¢, — 8143 sin ¢ — 8143 sin ¢, — fcj|:|
er )

. 1 o[ — @2
- deyd 2[7]
pe(%) = /[0,277]2 ¢1de,sin >
X ew(gp]+gp2) Ig()e’ @1, §D2) - Ig(je: P2, €01) (70)
COS @, — COS @
with
|
b )2] |:erf|:fc — 8(a2 + a2) cos ¢ + 842 cos g02i|
QA2
84 8(a3 + 242)
(71)
a3)

V163 + az +

The effect of each low-energy constant on p, is shown in Fig. 2.
At small lattice spacing, @ << 1, the density p, has support on the scale of 4. In particular it is given by derivatives of a

specific function, i.e.

a<11 0% 1

621/

A\ A 1 —
pr(®) = Z((m)2 otfory (v — Dy +1)!

where

) | k(% 1), 12) — k(& 1, f1)’ 72)
f,=t,=0

arrtary*! L, — 1t

094502-10



SPECTRAL PROPERTIES OF THE WILSON-DIRAC ... PHYSICAL REVIEW D 88, 094502 (2013)
er or

—a6=0.1, 4;=0.7, 43=0.1
----- a6=0.1, 7=0.7, ag=0.1, MC| (0.0002}
—a6=0.1, 2;=0.1, a3=0.7 — 46=0.1, 3;=0.1, a3=0.1
----- 46=0.1, 47=0.1, 43=0.7, MC —  46=0.7, 47=0.1, a43=0.1

-------- S —a6=0.7, 37=0.7, a5=0.7
i SO o 46=0.7, 87=0.7, 43=0.7, MC

0.02}+

g 0.0001}
0.01H g

5 10 1 2 3

FIG. 2 (color online). The density of additional real modes is shown for various parameters dg/7/3. The analytical results
(solid curves) agree with the Monte Carlo simulations of the random matrix theory (histogram [MC] with bin size 0.5 and with
different ensemble and matrix sizes such that statistics are about 1%—-5%) for v = 1. We plot only the positive real axis since p, is
symmetric. Notice that the height of the two curves for @; = ag = 0.1 (right) are 2 orders smaller than the height of the other curves (left)

and because of bad statistics we have not performed simulations for this case. Notice the soft repulsion of the additional real modes from
the origin at large d; = /—VW;a as discussed in the introductory section. The parameter dq = /—V Wgad smoothens the distribution.

A~ )’é 2 )'e 2
k(% 1, t,) = ex [&2t—t2+&2t+z2+&2<t——) —&2<t——)]
( 1) P 6( 1 2) 7( 1 2) s\ 71 4&§ gl 2 4&%;
y |:er f[;e — 42 + a1, + 4&%12} ) erf|:4(ag + a2 + adr, — 42 — adt, — x]] o)

J8(@2 + 2a2) V163 + a2 + a3)
A2v+1.

The error functions guarantee a Gaussian tail on the scale of a. Furthermore, the height of the density is of order a
Hence, additional real modes are strongly suppressed for » > 0 and the important contributions only result from v = 0.
This behavior becomes clearer for the expression of the average number of the additional real modes. This quantity directly
follows from the result (71),

S 27 dD 1 — exp[—(4a2 + 8a2)sin 21 [(442 — 842)sin 2D
Ny = 2[ p(R)d5 = f 4P os[20®] exp [ —(4dg a7)s.1n2 1Ip[(4ag az)sin * @]
o o 4w sin“®
N i l”z/” (pyn_ @n = 2)1(a3 — 2a2)% (a3 + 242" o
S 5 2%71T0(n — v)I'(n + v)I(n — 2j + 1)(j)*’
|
where the symbol |n/2] denotes the largest integer smaller (7 \/T
than or equal to n/2. E(x) = j; 1 = x*sin“gde. (76)

The average number of the real modes does not depend
on the low-energy constant Wy = —a2/(a>V) because this
constant induces overall fluctuations of the Dirac spectrum
parallel to the X axis.

The asymptotics of N4y at small and large lattice
spacing is given by

In Ref. [23] this result was derived for dg = d; = 0. Notice
that for large lattice spacings the number of additional real
modes increases linearly with & and is independent of ».
The average number of additional real modes can be
used to fix the low-energy constants from lattice simula-
tions. For » = 0, a sufficient number of eigenvalues [50]
/2l 52 _ > A2N2j( A2 A\ p—2j+1 can be generated to keep the statistical error small. For
(a 23?7) (a8—1.-2a7). s—xa**2, a<1, v=0and v=1 the average number of additional real
2471w =25 +2)(j)

Jj=0 modes is given by
Naga =
42 42 _na<l o, . R 5
646317 Eff1- 28 ) «a, a1 NZL S 2(a3 + 283) = 2Vad (Wy — 2Wy), (77
T 245
_a<l, . R 1, . .
(75) N;}(ﬁl = (a% + Za%)2 + E(aé - Za%)z

See Appendix D 1 for a derivation. The function E is the — 2 d4[(W8 —2W,)? + 1(W8 + 2W7)2]' (78)
elliptic integral of the second kind, i.e 2
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Naga Naga
10¢

sy

—a,=4
4 G,=4,MC Ir
—a,=2

v 2!7: 2, MC
—a,=1
®a;=1,MC
4,205 0.01¢
® a;=0.5,MC
—a;=0.25

® a;=0.25MC
7&7: 0.125 10—4,
* a;= 0.125, MC
—a,=0

0.1+

0.01t

1 1 1
8 4 2

FIG. 3 (color online). Log-log plots of N,yq as a function of @g = /VWgda? for » = 0 (left) and » = 2 (right). The analytical results
(solid curves) are compared to Monte Carlo simulations of RMT (symbols; ensemble and matrix size varies such that the statical error
is about 1%—5%). Notice that W, has no effect on N,4q. The saturation around zero is due to a nonzero value of @, = /—VW,a>.
For a; = 0 (lowest curves) the average number of additional real modes behaves like &g””; see Ref. [23].
These simple relations can be used to fit lattice data at small lattice spacing. In Fig. 3 we illustrate the behavior of N 44 by a
log-log plot.

The density p, takes a much simpler form at large lattice spacing. Then, the integrals can be evaluated by a saddle point
approximation resulting in the expression (see Appendix D 2)

1 oo 2 22 2 2 4+ 32
e rere f dx cosh <x—;xz)Ko<x—A2))‘z exXp [_ x,\z - %], &8 = O,
a1 | 87 a7d6 Jo 8ag 3245 3245 16ag
p:(R) = (79)
0@®ai — 1) |., P £ B £ 0
—— 55 1/a a5 —55— a .
20m¥2a3 7% T (8a3) — £ ’

Notice that we have square root singularities at the two edges of the support if both d; # 0 and ag # 0; cf. Fig. 4. So the
effect of the low-energy constant W5 is different than what we would have expected naively.

2. Density of the complex eigenvalues

The expression for the density of the complex eigenvalues given in Eq. (47) can be simplified by performing the integral
of #iig and A5 resulting in

p(2) = dqoldsozsinz[w] cos[v(¢; + ¢y)]sinc[H(cos ¢; — cos ¢,)]

191 f
22m)32 a3 + 242 I 02T

” £ \2 £\2
X exp| —4ag||cos @ — 342 + [ cos ¢, — 30 ]
8 8

AD AD £ \2
X exp [ﬂ (cos @, + cos @, — i) — 443(sin @ + sin ¢2)2]. (80)
a2 + 242 423

The function sinc(x) = sinx/x is the sinus cardinalis. This result reduces to the expressions obtained in Ref. [23] for
&6 = &7 = 0.

To compare to numerical simulations it is useful to consider the projection of the complex modes onto the imaginary
axis. The result for the projected eigenvalue density can be simplified to

po) = [ peli + )

191 oo~ e o
= ot J o derdeasin?] £ Jincls(cos ¢ — cos ea)]eos [vigr + 2]

X exp[—2a2(cos ¢ — cos ¢,)* — 4a3(sin @| + sin ¢,)?]. (81)
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Qr —_— &7=8, &8=10
003} | @=8,as=10,v=0,MC
...... &7:87 218:10, Vzl, MC
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...... a;=12, ag=10, v=1, MC
0.01¢
|
B |
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FIG. 4 (color online). At large lattice spacing the density of
additional real modes develops square root singularities at the
boundaries. The analytical results at @ — oo (solid curves) are
compared to Monte Carlo simulations at nonzero, but large
lattice spacing (histogram [MC], with bin size 50, aqz =
v—VWga*> =0.01 and n =2000 for an ensemble of 1000
matrices). Due to the finite matrix size and the finite lattice
spacing, p, has a tail which drops off much faster than the size of
the support. The low-energy constant dg = 4/VWgd? is chosen
equal to 10. Therefore the boundary is at X = 800 which is
confirmed by the Monte Carlo simulations. The dependence on
We and v is completely lost.

Again this function is independent of W as was the case for
N,q- The reason is that the Gaussian broadening with
respect to the mass 714 is absorbed by the integral over the
real axis. At small lattice spacing p., approaches the con-
tinuum result pyz given in Eq. (59) (see Fig. 5). Therefore
it is still a good quantity to determine the chiral condensate
3, from lattice simulations. In Fig. 5, we compare the
projected spectral density (solid curves) with numerical

A

a<l1 9l 32

pe(2) = exp [ B YP Ry
202m)2 a3 + 242 8(a5 +24g)

¢ ]pNZ()A’)-

X

I
exp [ Yz ~D
J87(@ +2a2) 8(a5 +245)

PHYSICAL REVIEW D 88, 094502 (2013)

—a,=0.1, 45=0.1

e i17=0.1, 85=0.1, MC

——ay=1, ag=0.1

miy=1, ag=0.1, MC
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,,,,,, 7=0.1, ag=1, MC
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15 Y
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FIG. 5 (color online). Comparison of the analytical result
(solid curves) and Monte Carlo simulations of the random matrix
theory (histogram [MC] with bin size equal to 0.4 and varying
ensemble size and matrix size such that the statistical error
is about 1%-5%) for the density of the complex eigenvalues
projected onto the imaginary axis. The index of the Wilson-Dirac
operator is v = 1 for all curves. Notice that G = +/— VWsd does
not affect this density. The comparison of d; = dg = 0.1 with
the continuum result (black, thick curve) shows that p., is still a
good quantity to extract the chiral condensate 2, at small lattice
spacing.

results from an ensemble of random matrices (histograms).
The spectral density at a couple of lattice spacings away
from the origin can be used to determine the chiral conden-
sate according to the Banks-Casher formula.

At small lattice spacing, p. factorizes into a Gaussian
distribution of the real part of the eigenvalues and of the
level density of the continuum limit,

[ e -
] f[ - dsoldsozsmz[%]COS[V(% + @2)Jsinc[9(cos 1 — cos ¢,)]

(82)

Therefore the support of p. along the real axis is on the scale a while it is of order 1 along the imaginary axis. It also follows
from perturbation theory in the non-Hermitian part of the Dirac operator that the first order correction
to the continuum result is a Gaussian broadening perpendicular to the imaginary axis. The width of the Gaussian
can be used to determine the combination &% + 2a; = Va*(Wg — 2W,) from fitting the results to lattice simulations.
Since most of the eigenvalues of Dy occur in complex conjugate pairs at small lattice spacing, it is expected to have a
relatively small statistical error in this limit. A further reduction of the statistical error can be achieved by integrating the
spectral density over § up to the Thouless energy (see Ref. [51] for a definition of the Thouless energy in QCD).
The behavior drastically changes in the limit of large lattice spacing. Then the density reads (see Appendix D 3)

Oz — 1) | I3l (842 — &2 A
tomaz " | e V@ar - —2ayape | BT
pc(2) = 5 84ag 8 7778 ®3)
|91 [ £2 $? ] ( 3
A BN R S © , o
167 |agay| exp 16a2  3222]° 32&%) as
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There is no dependence on v, and in the case of dg > 0, the result does not depend on d¢ as well and becomes a strip of
width 1643 along the imaginary axis. To have any structure, the imaginary part of the eigenvalues has to be of order a. In

the mean field limit, where |9|/4/843 > 1, p, is equal to 1/(16743) on a strip of width 1643. Hence, the low-energy

constants W7, do not alter the mean field limit of p.; cf. Ref. [23]. This was already observed in Ref. [13].

The effect of d¢ is an overall Gaussian fluctuation perpendicular to the strip of the eigenvalues, and for ag = 0, when
there is no strip, only the Gaussian fluctuations remain. The second case of Eq. (83) can also be obtained from Eq. (68)
since for large 9, pnz is equal to 1/7.

C. The distribution of chirality over the real eigenvalues

The distribution of chirality over the real eigenvalues given in Eq. (48) is an expression in terms of the graded partition

function Z} /1 and the partition function of two fermionic flavors, Z} 100 which is evaluated in Appendix C. Including the integrals

over ri1g and )17 we obtain from Eq. (C7)

L =92+ (50 8P

1)” dsd
0 = o f o [ s o e

(167)3/242 28

42 A2 8¥ D(sy + A 2 — A2\v2 n -
+ 26 (5 — 15,)? — Zz] (51 + A7) (Sl A;) Z;’ﬂ(\/s% — st + a = o)
16ag 16a51| (v — DI(s; — A7)” S% + A7

Zg/o(\/s% — A, z\/s% + A% a= 0)

[(s3 — A)(s3 + AD)]"7?

— sign(A7) Q1451 — Isi)(s? + 53) (84)

We recognize the two terms that were obtained in Egs. (37) and (39) from the expansion in the first column of the
determinant in the joint probability density.

Equation (84) is a complicated expression which is quite difficult to numerically evaluate. However, it is possible
to derive an alternative expression in terms of an integral over the supersymmetric coset manifold U € GI(1/1)/U(1/1).
We start from the equality

o A2 A _ « . . -
[ooexpl:—?;%—%Str(U+U 1)]d)t7=4\/?a7exp[—a%Str2(U+U H]

- A2l .
=exp[4&%(SdetU+SdetU‘l—2)][ exp[— 7! 7Str(U—U‘l)iId/‘w

162 2
i . IO /\A% l)\7
= Z Ij(S&%)Sdethe_8“7f epr:—16A2— Str(U—U~ 1)]d/\7, (85)
j=—00 —® az
I
based on an identity for the G1(1/1)/U(1/1) graded unitary . exp(—8a%) & . .
matrices, py(X) = T&/ D I1;-,(843) — I4,(843))
g8 =l
Str’(U+ U"') =8 —4(SdetU + SdetU™ ) , )
X — 22+ (s, +
+ StrZ(U _ U_l), (86) [R2 CXP[ 16A2 ((Sl X) (Sz lx) )
and the expansion of the generating function for the ag + a7 (s, — 1s )2] (=ls;)78Y=V(sy)
modified Bessel functions of the first kind, /;, 1643 ! 2 G-
1 00 ) ; A ds1d82
exp [x(t + ;)] = Z 1;2x)t. (87) X Z{/1(|S1|, 1530 = O)H' (83)

jzfoo

This allows us to absorb s and )(7 by a shift of the Notice that the j =0 term does not contribute to the
eigenvalues of the auxiliary supermatrix ¢ introduced to  distribution of chirality over the real modes because of
linearize the terms quadratic in U. The integral over U  the symmetry of the modified Bessel function I, = I_,.
can now be identified as a graded 1/1 partition function at ~ The derivatives of the Dirac delta function originate from
a = 0 and we obtain the result the Im[1/(s; — 1€)/] term.
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FIG. 6 (color online).  The analytical result (solid curves) for p
is compared to Monte Carlo simulations of RMT (histogram [MC]
with bin size 0.6 and varying ensemble and matrix size such that
the statistical error is about 1%-5%) for v = 1. We plotted only
the positive real axis since the distribution is symmetric around the
origin. At small dg = +/VW;ga? the distributions for (dg, ;) =
(W=VWea? J—VW,a?) = (1,0.1), (0.1, 1) are almost the same
Gaussian as the analytical result predicts. At large dg the maxi-
mum reflects the predicted square root singularity which starts to
build up. We have not included the case dg/7/5 = 0.1 since it
exceeds the other curves by a factor of 10 to 100.

The representation (88) is effectively a one-
dimensional integral due to the Dirac delta-function.
Please notice that Eq. (88) reduces to Eq. (60) for
ag = 0. Two plots, Fig. 6 (v = 1) and Fig. 7 (v = 2),
illustrate the effect of each low-energy constant dg/7/3 on
the distribution p .

Ox

— 26=0.1, 47=0.1, 45=0.1

rrrrr a6=0.1, 47=0.1, 43=0.1, MC
—6=0.1, 47=0.1, 33=0.5

- l16=0.1, 47=0.1, 33=0.5, MC
—a6=0.1, 47=0.5, 43=0.1

- 26=0.1, 7=0.5, 43=0.1, MC
—26=0.5, 47=0.1, 45=0.1

- 6=0.5, 47=0.1, 43=0.1, MC
—46=0.5, i7=0.5, 45=0.5

- 26=0.5, 47=0.5, 43=0.5, MC
— a6=0, 37=0, 43=0.1

— 26=0, 37=0, 33=0.5

2.5 5 7.5

FIG. 7 (color online). We compare the analytical result of p,
(solid curves) with Monte Carlo simulations of RMT (histogram
[MC] with bin size 0.6 and with varying ensemble and matrix
size such that the statistical error is about 1%—5%) for v = 2.
Again we only plotted the positive real-axis because p, is
symmetric in the quenched theory. Two curves with W¢,; =0
and Wg = 0.1, 0.5 (highest, purple and thick, black curve) are
added to emphasize that the two peaks (p, has to be reflected at
the origin) can be strongly suppressed by nonzero Wg/; although
they are only of the same order as Wy. Recall that the two peaks
are relics of a 2 X 2 GUE which is formed by Wj.
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For d; = 0 and v = 1 one can derive a more compact
result in a straightforward way starting from the expression
(37). In this case the two-point weight for two real
eigenvalues g,(x, x,) is antisymmetric in its two arguments;
see Eq. (20). Then the integral in Eq. (37) involving Z} , is
absent. Employing the representation of the one-flavor par-
tition function as a unitary integral, see Eq. (5), we perform
the integral over rfig. Thus, p,(%)|,—; can be expressed as

R (2 +8a3sin6)?
PX(X)|V=1 f [ﬁ]
167(a2 + a2) dy + dg

(89)

Let us come back to the general result (88). At small
lattice spacing, 0 < a < 1, the distribution p, as well as

the integration variables s, /, are of order 4. Since / j(S&%) o

&%j , the leading order term is given by j = v in the sum
over j. Thus we have

wa<l 1
P, (%) = szexp[ 16A2((S1 — 2?2+ (5o +18)?)

+a7( s )2](_|S1|)V5(V1)(S1)
ead ' (v —1)!
ds,d
X 2051, 15534 = 0) 102 (90)
Sl_lS2

In the small & limit we can replace Zl/l(sl, 155,44 = 0) —
(1s5/]s11)”. The result becomes a polynomial in £> times a
Gaussian of width \/32(&§ + a% + a3). Notice that the

polynomial is not the one of a GUE anymore as in the
case of ag = a; = 0[10]. For v = 1, p  is a pure Gaussian,

1 22
1( )a<<l exp[_ X ]
22 1 A2 A0 |
J16m(@a3+a2+a3) 16(ag + ag +a7)

and for » = 2 it is given by

:2(2) al 1
\/1677(&2 + a2
8 6

+ a3)}

A2
ag )%2]
/\2 + /\2

dg + a3)

92)

x| ag +2(ag + a3) +
[8 (6 7) 8(&%"‘
522

16(a2 + a2 + a%)]

X exp[

At small lattice spacing, p, only depends on the combina-
tions a3 and (a2 + a3). Therefore it is in principle possible
to determine the two following combinations of low-energy
constants, Wg and W + Wy, by fitting p , to lattice results.
For example the second moment (variance) of p, given by
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1 [ ;
= f p ()52ds "= 8(vad
V J—-

= 8Vat(vWy — Wy — W5),

+ ak + a3)
v >0,

93)

at small lattice spacing can be used to fit the combinations
vWg — Wg — W5, The statistical error in this quantity scales
with the inverse square root of the number of configurations
with the index v. The ensemble of configurations generated
in Ref. [7] yields a statistical error of about 2%—3%. The
statistics can be drastically increased by performing a fit of
the variance of py toa linear function in the index v;
cf. Eq. (93). The slope is then determined by Wy and the
offset by W + W5 yielding two important quantities.

In Appendix D 4 we calculate p, in the limit of large
lattice spacing. Then the distribution of chirality over the
real eigenvalues has a support on the scale of a>. The
function p, reads

v 0843 - |;e|)

—5 ag >0,
p (&) "Ea

v £ —0

V1672 + a3) exp[ 16(ag + Az)] '

94)

Interestingly, the low-energy constants W, have no effect
on the behavior of p, in this limit if dg # 0 which is
completely different in comparison to p, and p.. The
square root singularities at the boundary of the support
are unexpected and were already mentioned in Ref. [23].

V. CONCLUSIONS

Starting from RMT for the Wilson-Dirac operator, we
have derived the microscopic limit of the spectral density
and the distribution of the chiralities over the Dirac spec-
trum. We have focused on the quenched theory, but all
arguments can be simply extended to dynamical Wilson
fermions. Wilson RMT is equivalent to the € limit of the
Wilson chiral Lagrangian and describes the Wilson QCD
partition function and Dirac spectra in this limit. The
starting point of our analytical calculations is the joint
probability density of the random matrix ensemble for
the non-Hermitian Wilson-Dirac operator Dy,. This den-
sity was first obtained in Ref. [23], but a detailed derivation
is given in this paper; see Appendix A.

More importantly, we studied in detail the effect of the
three low-energy constants, W /7,3, on the quenched micro-
scopic level density of the complex eigenvalues, the addi-
tional real eigenvalues, and the distribution of chirality over
the real eigenvalues. In terms of the effect on the spectrum of
Dy, the low-energy constants Wg and W; are structurally
different from Wyg. The first two can be interpreted in terms
of “collective” fluctuations of the eigenvalues, whereas a

PHYSICAL REVIEW D 88, 094502 (2013)

nonzero Wy induces stochastic interactions between all
modes, particularly those with different chiralities.
Therefore, the effect of a nonzero Wg and W5 at Wy = 0 is
just a Gaussian broadening of the Dirac spectrum on the scale
of @. When a>VW;g >> 1 the interactions between the modes
result in a strip of Dirac eigenvalues in the complex plane
with real part inside the interval [—8V Wga?, 8V Wga?]. The
structure along the imaginary axis is on the scale a. As was
already discussed in Ref. [13], in the mean field limit, the
lattice spacing @V and the eigenvalues V7 fixed, this struc-
ture becomes a boxlike strip with hard edges at the boundary
of the support and with height 1/(167VWga?).

We also discussed the limit of small lattice spacing, i.e. the
limit |VWs/;/5l@* < 1. In practice, this limit is already
reached when [V Wg 7| @*> = 0.1. Such values can be indeed
achieved via clover improvement as discussed in Ref. [7]. In
the small & limit we have identified several quantities that are
suitable to fit the four low-energy constants, W7/ and X, to
lattice simulations and our analytical results.

Several promising quantities (applicable only at small
lattice spacing) are the following.

(i) According to the Banks-Casher formula we have

a1 T
A= SV (95)
for the average spacing A of the imaginary part of
the eigenvalues several eigenvalue spacings from the
origin.

(i) The average number of the additional real modes for

v=0:

0 a<<l

N2 2Var(Wy — 2W5). (96)

(iii)) The width of the Gaussian shaped strip of complex
eigenvalues:

2 4
T 2RV (Wy — 2W), 97)
A a2
(iv) The variance of the distribution of chirality over the
real eigenvalues:

< )pX a<<l 8
A2

These quantities are easily accessible in lattice simulations.
We believe they will lead to an improvement of the fits
performed in Refs. [4,6,7]. Note that p ¥ is close to the
density of the real eigenvalues in the limit of small lattice
spacing (again we mean by this |VWg/;/5la = 0.1 and
smaller). This statement is not true in the limit of large
lattice spacing where the density of the additional real
modes dominates the density of the real eigenvalues.

The relations (95)—(98) are an over-determined set for
the low-energy constants We/7/3 and 32 and are only
consistent if we have relations between these quantities.
This can be seen by writing the relations as

v&2(uW8 We—W,), »>0. (98)
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The first three relations are linearly dependent, but none of
the other triplets are. We thus have the consistency relation

@yt o2

AL (100)

There are more relations like Egs. (95)—(98) which can be
derived from our analytical results. The only assumption is
a sufficiently small lattice spacing.

The value of Wy follows immediately from the » depen-
dence of (¥?) oy If there are additional real modes, it cannot

be that W5 and W; are both equal to zero. In Ref. [7] it was
found Wg = 0 (with clover improvement) and results were
fitted as a function of W with W; = 0. Our prediction is
that the number of additional real modes is zero and it
would be interesting if the authors of Ref. [7] could
confirm that.

The nontrivial effect of W; on the quenched spectrum
was a surprise for us. In Ref. [13] it was argued that W,
does not affect the phase structure of the Dirac spectrum.
Indeed, we found that the complex eigenvalue density only
shows a weak dependence on W5, and actually becomes W5
independent in the small >V limit. Such a dependence on
W5 can be found in the large @V limit but vanishes again
in the thermodynamic limit. Since in the thermodynamic
limit the number of real eigenvalues is suppressed as 1/+/V
with respect to the number of complex eigenvalues, W5
will not affect the phase structure of the partition function.
However, a nonzero value of W5 significantly changes the
density of the real eigenvalues. In particular, in the large a
limit, we find a square root singularity at the boundary of
the support of the additional real eigenvalues if W; # 0,
while it is a uniform density for W, = 0; see Ref. [23].
Nevertheless, we expect in the case of dynamical fermions
that the discussion of Ref. [13] also applies to the real
spectrum of Dyy.
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APPENDIX A: DERIVATION OF THE JOINT
PROBABILITY DENSITY

In this appendix, we derive the joint probability density
in three steps. In Appendix A 1, following the derivation
for the joint probability density of the Hermitian Dirac
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operator [20], we introduce an auxiliary Gaussian integral
such that we obtain a Harish-Chandra-Itzykson-Zuber-like
integral that mixes two different types of variables. In
Appendix A 2 this problem is reduced to a Harish-
Chandra-Itzykson-Zuber-like integral considered in a
bigger framework. We derive an educated guess which
fulfills a set of differential equations and a boundary value
problem. The asymptotics of the integral for large argu-
ments serves as the boundary. In Appendix A 2 b we
perform a stationary phase approximation which already
yields the full solution implying that the semiclassical
approach is exact and the Duistermaat-Heckman localiza-
tion theorem [52] applies. In the last step we plug the
result of Appendix A 2 into the original problem, see
Appendix A 2 c, and integrate over the remaining variables
to arrive at the result for the joint probability density given
in the main text.

1. Introducing auxiliary Gaussian integrals

We consider the functional I[f], see Eq. (12), with an
integrable test-function f invariant under U(n, n + v). The
idea is to rewrite the exponent of the probability density
P(Dy) as the sum of a U(n, n + v) invariant term TrD%,
and a symmetry breaking term which is linear in Dy,. This
is achieved by introducing two Gaussian distributed
Hermitian matrices S, and §; with dimensions n X n and
(n + v) X (n + v), respectively, i.e.

N n(n+v)
1] = @i + & *ﬂ2*<n+v>'<— i)

2T
2

a 2 n+
Xexp _? ,u,r+

n

“12)] [ apairow

X [d[Sr, S ]exp I:g trD3, + 1 trDy,diag(S,, Sl):l
2

a
2n(1 + a?)

+ tr(S; + 1M1Hn+y)2)]-

X exp[— (tr(S, + 1u,1,)?

(AD)

The matrix diag(S,, S;) is a block-diagonal matrix with S,
and §; on the diagonal blocks. The measure for S, is

n n+v
S, $i1=T]ds% [] 2dReS)dims? [T ds")
j=1 1=i<j=n i=1

< 1

I=i<j=n+v

2dReS}d Ims!). (A2)

Then the noncompact unitary matrix diagonalizing Dy
only appears quadratically in the exponent. Notice that
we have to integrate first over the Hermitian matrices S,/
and have to be careful when interchanging integrals with
integrals over Dy. Obviously the integrations over the
eigenvalues of Dy are divergent without performing
the S,/ integrals first and cannot be interchanged with
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these integrals. Also the coset integrals over G; =
U(n, n + v)/[U2"771(1) X O/(1, 1)], cf. Eq. (12), are not
absolutely convergent. However we can understand
them in a weak way and, below, we will find Dirac delta
functions resulting from the noncompact integrals.

C i 1
n!(n+v)! 1:021(” —D\(n+v—1)!
a2

2m(1+d2)

1f1=

X exp[ trz? —

and the normalization constant

C _( )n(n”)”  2m) expl—a’p?/2n]
27 =0 J1QmVT+ a2

" Q) exp[—a?u}/2n]

=0 JIQ@VI1 + a?)PH!

See Sec. II B for a discussion of the prefactors in the sum.

X

(A4)

2. The Harish-Chandra-Itzykson-Zuber integral over
the noncompact coset G,

In the next step we calculate the integral
I1,(Z,s) = [ expttrtUZ, U 'sldug, (U).  (A5)
G

with s = diag(s,, s1). For [ = 0 this integral was derived in
Ref. [53].

We calculate this integral by determining a complete
set of functions and expanding the integral for asymp-
totically large s in this set. In this limit it can be
calculated by a stationary phase approximation. It turns
out that this integral, as is the case with the usual Harish-
Chandra-Itzykson-Zuber integral, is semiclassically
exact.

a. Noncompact Harish-Chandra-Itzykson-Zuber integral

Let us consider the noncompact integral

1(2,27)) = [@ exptrtUZ,U~'Z) Jdug,(U)  (A6)
1

in a bigger framework where Z), is a quasidiagonal matrix
with [/ complex conjugate eigenvalue pairs. The integral
is invariant under the Weyl group S(n — 1) X S(I)X
Sn+v—-10)X le in Z;. To make the integral well defined
we have to assume that [ = I’ otherwise the integral is
divergent since the noncompact subgroup O ~/(1, 1) C G,
commutes with Z},.

The integral (A6) should be contrasted with the
well-known compact Harish-Chandra-Itzykson-Zuber
integral [54,55]
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D, =UZU™!' and
(r)'_ (r))

Diagonalizing the matrices
Sen = Vr/lsr/l\//l with s, =diag(s,

dlag(s(l) S)H) we can absorb the integrals over V,

and V| in the U € G integral. Then we end up with the
integral

and s =

]  dZlA (2P j s 1A DA, (5)£(2)
Rv+2(n ’)XCI 2n+

(tr(sr + llu‘rﬂn)2 + tr(sl + lulﬂn+v)2)]f exp[ltrUZlU*ldiag(sr, sl)]dlu’G,(U) (A3)
G

Jeom(x, X') = f

UQR2n+v)
(_27”)1/(1/71)/2
CA,WA,K)

with Weyl group S(2n + »). Moreover the compact case is
symmetric when interchanging X with X’. This symmetry
is broken in Z; and Z, due to the coset G;,.

For a ys-Hermitian matrix V with eigenvalues Z;, we
can rewrite the integral (A6) as

1(2,7)) = 1,V,Z)

explittUXU ™' X"]d py(n 1) (U)

det[exp (1xix))]i<;j=,» (A7)

=f exp[ttrUVU™'Z) Jdug,(U).  (A8)
G,

This trivially satisfies the Sekigushi-like differential
equation [56,57]

d
det (Wkl +uly, V)IZ(V’ z)

= det (1Z) + uly,1,)I,(V,Z)) forallu € C. (A9)

This equation is written in terms of the independent matrix
elements of V and, hence, is independent of the fact to
which sector / the matrix V can be quasidiagonalized.

We would like to rewrite Eq. (A9) in terms of derivatives
with respect to the eigenvalues [58]. Because of the coef-
ficients that enter after applying the chain rule when
changing coordinates, the derivatives do not commute
and a direct evaluation of the determinant is cumbersome.
Therefore we will calculate 1,(Z;, Z),) in an indirect
way. We will do this by constructing a complete set of
S(n =D XS() XS(n+ v —1)XZ, symmetric func-
tions in the space of the {Z;} with the {Z} as quantum
numbers which have to be S(n— ') XS(I') XS(n+v—1') X
75 symmetric. Then we expand I,(Z, Z),) in this set of
functions and determine the coefficients for asymptotic
large {Z,} where the integral can be evaluated by a
stationary phase approximation.

To determine the complete set of functions, we start
from the usual Harish-Chandra-Itzykson-Zuber integral
over the compact group U(2n + »). This integral is well
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known and satisfies the Sekigushi-like differential equation
[56,57] with

1 d
——— det + ul A X)Jeom(x, X'
A2n+V(X) € ( X u 2n+v> 2n+v( ) ( )

= det i X' + uly,,,)T"X, X) (A10)
in terms of the (2n+ v) real eigenvalues X =
diag(xy, ..., x5,,4+,) With

F 2n+v )
det (ﬁ + un%y) =T] (a_xj + u) (A11)

j=1

The expansion in powers of u gives the complete set of
2n + v independent Casimir operators on the Cartan sub-
space of U(2n + »), so that the Sekigushi equation deter-
mines a complete set of functions I,(Z,, Z,) up to the Weyl
group. Since the noncompact group U(n + v, n) shares the
same complexified Lie algebra as U(2n + v) the Casimir
operators are the same, i.e. the corresponding operator for
U(n + v, n) to the one in Eq. (A10) is

1 J
Dz,(u) mdet( + u]12n+V)A2n+V(Zl) (A12)
n+v
with
9 n—lI 9 n+v—I d
det(—-i—u]l ,,)= (—+u> (—+u)
aZl ant ]1:11 ax;l) j=1 axf)
I
d d
X < + u)( —+ u)
lell 6252) 825-2)

(A13)

In the compact case, the Sekigushi-like equation (A10)
follows from Eq. (A9) by transforming the equation in
terms of the eigenvalues and eigenvectors of V =
UXU™!'; see Ref. [57]. The only difference in the non-
compact case is that the parameters of U as well as some
of the eigenvalues x become complex, but the algebraic
manipulations to obtain the Sekigushi-like differential
equation in terms of eigenvalues remain the same. Let f
be an integrable test function on the Cartan-subset
R #7=2' % C'. Then the noncompact integral (A6) sat-
isfies the weak Sekigushi-like equation
Dzl(u)

dlZ,1f(Z))1(2,, Z))

Rz(n—/’)wxqjl’

= dZ,1f(Z})det(iZ), + uly,1,)1(Z,,Z)),

R2=1+v s ol

(Al14)

and solutions of this equation yield a complete set
of functions for the noncompact case as well. The
only difference is the corresponding Weyl group. The
completeness can be seen because we can generate any
polynomial of order k € N, (the non-negative integers)
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in Z, symmetric under S(n—1') XS(I') XS(n+ v —1') X
Z}5 via the differential operator [T, Dz, (u)). Since those
polynomials are dense in the space of S(n — I') X S(I') X
S(n + v —I') X Z invariant functions, it immediately
follows that if a function is in the kernel of DZ,(“) for all
u it is zero, i.e.

D, WF(Z)=0 Yu€C® F(Z)=0. (Al5)

Therefore if we found a solution for Eq. (A14) for an
arbitrary test-function f we found I,(Z;, Z}) up to the
normalization which can be fixed in the large trZ ,Z;r limit.

Some important remarks about Eq. (A14) are in order.
The Vandermonde determinant A,,,, ,(Z;) enters in a trivial
way in the operator Dy (u) and the remaining operator has
plane waves as eigenfunctions which indeed build a com-
plete set of functions. Thus a good ansatz of I,(Z;, Z}) is

l (2)

Yj
(Zl) n

2
()leS

;lzl/]r

1/(2,7,) = iz}

A211-%—1/

X exp[etrll ,Z, 11 (A16)

where the coefficients ¢/ )(Zg,) have to be determined. The

factors yﬁz) /I y.(f)l guarantee the invariance under complex
conjugation of each complex eigenvalue pair of Z;. We sum
over the permutation group w and II, is its standard
representation in terms of (2n + v) X (2n + v) matrices.
The S(n — ) X S(I) X S(n + v — 1) X Z) invariance in Z,
andthe S(mn — I') XS XSn+v—-10) X le/ invariance
in Z), carry over to the coefficients P (Z},). Hence, we can
reduce all coefficients to coefficients independent of w,

l (2)
A2n+v(zl) l_[ (2)|
X Z

weS(n—l)><S(I)><S(n+u—1)><Z[

102, 7)) =

51gnwc(”)(Z,, )

U
w’ES(n—ﬂ)xsu/)xs(wy—ﬂ)xz;

X explitrZ,,Z), ] (A7)
where we employ the abbreviation
Z, =1,ZI," and Z, =1,Z,I1 ' (Al8)

The sign of elements in the group Z, generating the com-
plex conjugation of single complex conjugated pairs is
always +1. Moreover, any element in the permutation
group S(/) is an even permutation since it interchanges a
complex conjugate pair with another one and, thus, always
yields a positive sign. Hence the sign of the permutation w
is the product of the sign of the permutations in S(n — [)
and in S(n + v — ).

Solving the weak Sekigushi-like equation (A14) for the
general case [ # [’ is quite complicated but as we will show
below for [ = I the ansatz

094502-19



KIEBURG, VERBAARSCHOT, AND ZAFEIROPOULOS
1/(2,Z)
(_27Tl)(2n+v)(2n+ v—1)/2
A2n+V(Zl)A2n+ V(Z?)

(2),,1(2) 010
/!
X perm[m (exp [21 Rez Z ]

(1)

det[exp (1x; x/(l))]lsi,an—l

+ exp[2 Rezgz)*z;(z)])]

1=i,j=<I
x det [exp (1xx/ )] < jmpt i (A19)
ie. (Z,,,) % [Ty ¥/ /Y{D/ B2 (Z,,). does the

job. Note that we have again the symmetry when inter-
changing Z; with Z] since both matrices are in the Cartan
subspace corresponding to G;. The constant can be fixed
by a stationary phase approximation when taking
terZ;r — 00, The function “perm” is the permanent which
is defined analogously to the determinant but
without the sign function in the sum over the permutations.
It arises because the Vandermonde determinants are even
under the interchange of a complex pair with another
one, i.e. it is the S(I) invariance of the corresponding
Weyl group. It can be explicitly shown that the ansatz
(A19) satisfies the completeness relation in the space
of functions on R?*2("=) x C! invariant under S(n — 1) X
S() X S(n + v — 1) X Z, and with the measure
|A2n+1/(ZI)|2d[Z]]’ ie.

vau(n—ﬂx@I IZ(ZI’ Z;)II(ZH’ Zl)lAZnJrv(Zl)'Zd[Zl]
1

oc
A2n+ V(Z;)A2n+v(zll)
/(2) //(2)

Xperm[ |y/(z) //(2)| &(

det [8(x;(l) - x;/(l))]lsi,an—l

@1 =1y

X 5(x§(2) — x']-'(z))]
: 1=ij=I

X det[8(Y = X< s v (A20)
Therefore, for given I’ = [ and Z), the ansatz (A19) for
1,Z,,Z)) is the unique solution of the Sekiguchi-like
equation (Al4). One has only to show that the global
prefactor is correct; see A 2 b.

What happens in the general case [ # I'? The ansatz
(A17) can only fulfill the Sekigushi-like differential
equation (Al14) if we assume that the coefficient

c(zl, ) restricts the matrix Z, to a matrix in the sector
with / complex conjugate eigenvalue pairs (notice that Z;
has the representation given in Eq. (8)). This is only
possible on the boundary of the Cartan subsets R2" =)+ x
C! and R2n=0*v % C' ie. the coefficient has to be
proportional to Dirac delta functions
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o'(n=1+j)  To'()) (A21)

1=l
C(”/)(Z;/w/) o« l—[ ) x/(l) x/(S)

=1
The reason for this originates in the fact that not all com-
plex pairs of Z; can couple with a complex eigenvalue pair
in Z, and, hence, trZ;,,Z}, , does not depend on the combi-

nations x’“,) x'(é) Therefore we would miss it in
(n—=1+) )

the determinant det (Z), + u1,,,,) generated by the differ-
ential operator Dy, (u). To cure this we have to understand

1,2,z ) as a distribution where the Dirac delta functions
set these missing terms to zero. In A 2 b we show that the
promising ansatz

(2) I /(2)

]
l_[ (2) | l_[ 1(2) |

signw w’

o
A2n+ V(ZI)A2n+V(Z
X >

weg(n—nx§(1)x§<n+u—1)xzé
w,Eg(n7[’)><§(l/)><§(n+V7/’)><Zﬂ

102, 7)) =

1=
3
X exp (1trZ;,Z} ) n (X'% +jy xl(’zj))

% 5(x/(1) /(3) )

on-1+) ~ Xa'() (A22)

is indeed the correct result.

Note that the ansatz (A22) agrees with the solution
(A19) for the case I = [I'. Furthermore one can easily verify
that it also solves the weak Sekiguchi-like differential
equation (Al14). Indeed, the ansatz is trivially invariant
under the two Weyl groups S(n—1[) XS(/) XS(n+v—1) X
Zh and S(n — I') X S(I') X S(n + v — I') X Z4 due to the
sum. The global prefactor 1/A,,,(Z)) reflects the singu-
larities when an eigenvalue in x'() agrees with one in x'®
as well as a complex eigenvalue pair in x'® degenerates
with another eigenvalue in Z),, namely then Z, commutes
with some noncompact subgroups in (;. Hereby the
eigenvalues which have to degenerate via the Dirac delta
functions are excluded.

In the next section we calculate the global coefficients in
Eq. (A22). For this we consider the stationary phase
approximation which fixes this coefficient.

b. The stationary phase approximation of 1,(Z,, Z;,)

Let us introduce a scalar parameter ¢ as a small pa-
rameter in the integral I,(17'Z, Z},) as a bookkeeping
device for the expansion around the saddle points.
Taking ¢t — O the group integral (A6) can be evaluated
by a stationary phase approximation. The saddle point
equation is given by

trdUU ' [UZ,U~

AR (A23)

If [ # [’ this equation cannot be satisfied in all directions.
The reason is that the quasidiagonal matrix Zj, will never
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commute with a ys-Hermitian matrix with exactly [ # I’
complex conjugate eigenvalue pairs since UZ,U ™! can be
at most quasidiagonalized by U(n, n + v) and generically
[Z), Z),]- # 0. This means that we can only expand the
sub-Lie-algebra o/~/(1/1) to the linear order while the
remaining massive modes are expanded to the second
order. The extrema are given by

where the permutations are

MMeSH—-D)X[SO/[SI)XSU—-I)]]XS(n+v—1),
e[S —1)/S(n— 1] xS

X[S(n+v—1/S(n+v—0D]x2Z", (A25)
and a block-diagonal matrix
ﬂnfl 0 0 0 0 0
0 |exp[s®]| 0| 0 0 0
®— 0 0 1] 0 0 0
0 0 0|1, 0 0 (A26)
0 0 |00 |exp[—®]| 0
0 0 010 0 ﬂn+ufl
where the diagonal matrix of angles is @ =
diag(¢y, ..., ¢;—y) € [0, w]~". The matrix ® describes

the set U*~"(1) (I — I unit circles in the complex plane)
which commutes with Z), and is a subgroup of G,. Note
that other rotations commuting with Z), are already di-
vided out in ;. The matrix of phases already comprises
the complex conjugation of the complex eigenvalues rep-
resented by the finite group Z4"; choosing ¢; = /2
switches the sign of the imaginary part y}. However we
have to introduce the complex conjugation for those
complex conjugated pairs in Z), which couple with pairs
in Z;; cf. the group Z" in IT'.
The expansion of U reads

U= H/cp(nz,,ﬂ — tH, — \iH, + %H%)H. (A27)

We employ the notation (Al8) for the action of
wES(m—DXS(HXS(n+v—1)XZ" and 0’ €S(n—1) X
S(I)XS(n+v—1)XZ" on the matrices Z,, and Z) s
respectively. Note that the matrix ® commutes with Z), ,
for any o’ and, hence, only yields an overall prefactor
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ar'="". The matrix H, spans the Lie algebra o'~/(1, 1) and
is embedded as

Hy = with h = diag (hy, ..., h_y) € RV

[an} O‘O (en)

ololo|o|o]e

0
0
o]
0
0
0

olololo]o]e
olololeo|=]o
ololo|olao]e

(A28)

The matrix H, is in the tangent space of the coset
G,/[U" (1) x O (1, 1)]=U(n, n+ »)/[U =2+ (1)x
O'(1,1) X U'=’(1,1)] and has the form

Hy | Ho |Ha Ha | By | B

—H{,|| Hyy |Has Has | Hos | Hog
7HL 7H2T$ H33 H34 H35 HS()'
Hi, | Hi, |HI, Hy | His | Hy

H]TB H; H;S _H«‘ls H55 H56

Hy

. (A29)

5

il | iy |y | - | Hes

where Hy, Hy,, Hss, and Hgg are anti-Hermitian matrices
without diagonal elements since they are divided out in the
coset G3; or are lost to ®. The two matrices H3; and H,, are
anti-Hermitian matrices whose diagonal elements are the
same with opposite sign which is also because of the
subgroup we divide out in ;. The matrices Hy,, H3,
Hiy, His, His, Hys, Hyy, Hys, His, Hig, Hys, Hye, and
Hsg are arbitrary complex matrices. Since we have to
remove the degrees of freedom already included in H,
and in the subgroups quotient out in (3; the matrix Hys is
a complex matrix with all /—/ diagonal elements
removed and Hs, is a complex matrix whose diagonal
entries are real. The sizes of the blocks of H; and H,
correspond to the sizes shown in the diagonal matrix of
phases ®; see Eq. (A26). The double lines in the matrix
(A29) shall show the decomposition of Z; in its real and
complex eigenvalues whereas the single lines represent the
decomposition for Z.

The exponent in the coset integral (A6) takes the form
wUZ,U~'Z, = uZ,,Z

llw/

— 112y, Z),,]H,

1
3 lZi B (2} o) (A30)

The measure for H; and H, is the induced Haar measure,
i.e.
t{U'dU, Z,, > = u[®Tdd, 7,, 1> + 2 ul[dH,, Z,,]>

+ ttr[de, le]% (A31)

which gives
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dug(U) = (2rt»entr=V2g H, Jd[ ]d[H,]

/ll

— (- 1)n(n+1/)() l—[ L dodh,

x [2tdRe(H,),;d Im(H,);;.

]l

(A32)

The product over the two indices i and j is over all
independent matrix elements of H,.

We emphasize again that the integrand in I,(r~'Z;, Z))
does not depend on ® making this integration trivial and
yielding the prefactor 7/~". The integral over H, yields

(—2m) ="

PHYSICAL REVIEW D 88, 094502 (2013)

the [ — I’ Dirac delta functions mentioned in Eq. (A21), i.e.
it yields

(277.)1 v l_[ 5(2))(2)

w(})

/(1)

1(3)
on-11p) ~ Xai(n))

_ /(1) _ 13
s O 1)) X))

2
j=1 |y£0()J)|

Notice that the other term in the expansion of the Dirac
delta function does not contribute because of the order of
the integrations [59].

The integrals over H, are simple Gaussian integrals
resulting in the main result of this section,

(A33)

(—2m)2n+n@n+r=1/2 y5,2) /4 y;(z)

-1 1\ —
1(t7'2, 7)) =

X >
wES(n—[)><§(/)><§(n+y—/)><l’2
m'eg(n—z’)xg(ﬂ)x§<n+y—l’)ng

The overall coefficient ¢ in Eq. (A22) can be easily read
off. Thereby the numerator of the first factor results from
the integral over H, and is related to the [ — [’ Dirac delta
functions. The denominator is the volume of the finite
group S(n— ) XSU)XSU-1I)XSn+v—1)xZ
which we extend to summing over the full Weyl groups
for Z, and Z),. We recall that the sum over permutations in
S(I) and S() describe the interchange of complex pairs
which are even permutations because we interchange both
zx and z; with another pair. The numerator of the term with
the Vandermonde determinants essentially results from the
Gaussian integrals and always appears independent of how
many complex pairs Z; and Z), have. The factors of !
appear as prefactors of Z; and can be omitted again since
they have done their job as bookkeeping device.

Let us summarize what we have found. Comparing the
result (A34) with the Z; dependence of the ansatz J(Z,, Z))

(_277.1)(2n+v)(2n+1/—1)/2 (_277.1)1

(n=DWn+v =D B2 ) (ZDA2+1(5) ey

Il(er S) =

D= Dl + v = D12 Ay (1 Z) A0, (Z) [ 4 7]

signa)w’exp( rZ,, 2}, ,)

>

XS()XS(n+v—1) j

l_[ | /(2)|

=1
= (1) (3)

/! /!
l_[ (x w'(n—1+))

—x /(J))5(x/(1)

1(3) )
o' (n—1+))

— X, (A34)

given in Eq. (A22), we observe that they are exactly the
same. This implies that the asymptotic large Z,; result for
the integral (A6) is actually equal to the exact result. We
conclude that the noncompact Harish-Chandra-Itzykson-
Zuber integral is semiclassically exact and seems to fulfill
the conditions of the Duistermaat-Heckman theorem [52].
Let us consider two particular cases. For [ = I’ we sum
over all permutations in S(/) which yields the permanent
in Eq. (A20), whereas the sum over permutations in
S(n + v — 1) and S(n — ) gives determinants and, thus,
agrees. The special case n = 0 yields the original Harish-
Chandra-Itzykson-Zuber integral [54,55]; see Eq. (A7).

¢. The joint probability density
We explicitly write out Z; and apply Eq. (A34) for Z), =
s. Then, we find for our original noncompact group integral

1 O )

sign(w w’) l_[exp (ix w'()Swl)

w€ES(n)XS(n+v)

ntv—I 1 (2)

) ’(J) s _ (x)
X l_[ eXp (lx I(])S(u(l"'j))l_[l ®) w(n l+j) Sw(l))a(sw(n—l+j)

(J)l

Now we are ready to integrate over s.

+ s(l)

(2) (S(r) w(})))

) exp (12,5, S 14

w(})

(A3)5)

We plug Eq. (A35) into the integral (A3). The sum over the permutations can be absorbed by the integral due to

relabeling resulting in
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n+v)2n+v— 2
( 2771)(2 +v)2n+ D/2+1 L yj Az(sr) n+1/(sl)

1] = cz e ——— ch d[zz]Az,,H(z*)ﬂzz)l'l| i ). s s] =

2 n+v—I
(D)2 4 g0 @ R 2] [ G2y, B _ 0 2]
X 24 + +
l‘lexp[ P ) 5o e | T e 0P sl = e ICLRN
2
| L U Pty
j=1
xexp n(?) = 6P P) + 20 L(s@ ; lm)z]. (A36)
J T a + e\ 2

The quotient of the Vandermonde determinants is

el
Ao 804, _ (/2 est-102 gy {sff)—st it |. (A37)
A2n+v(s)

Y™ s,
This determinant also appears in the supersymmetry method of RMT [57,60] and is a square root of a Berezinian
(the supersymmetric analogue of the Jacobian).

Expanding the determinant (A37) in the first / columns not all terms will survive. Only those terms which cancel the

prefactor of the Dirac delta functions do not vanish. The integration over diag(ss)_ I+ s, s(ll), R (l)) yields

( 27Tl)(2n+v)(2n+v l)/2+l( l)n(n 1)/2+v(v—1)/2+(n+1)1 .
=C dlZ,;]A Z)f(Z dls.,
Z 2= D+ v 1)} wazwxcz 282 (2D ’)[ww Lv ]
{ 1
®_ O [ iz a?
S s i (1)y2 (1) (r) (r) 2
X det t( I+j71=i ! lj[leXPI: (x )? Tox;s; 2n(1+az)(sj +ipm,) ]
{(51 )l 1} I=i=y !
I=j=n+v—1
ntv—I - o0 a2 ) i 77(1 +a2) y(2) a2 )
X ]l:[l exp[ ()C ) +lx SH—J_QJ’L(]"FCI) I+J+l”‘1) :Il:[ | 5,2)|exp|:4n(1+a2)(ﬂr_ﬂl) ]
xexp| = 5P nOP 4P e+ ) | (A38)

The other exponential functions as well as the remaining integrations over s, and s; can be pulled into the determinant. The
integrals in the » bottom rows yield harmonic oscillator wave function. These can be reordered into monomials times a
Gaussian. This results in

11f1=

( 27Tl)(2n+v)(2n+v l)/2+l( l)n(n 1)/2+v(v—1)/2+(n+I)I (2#)1}/21”(1}_1)/2(”(1 +a2))y2/2

2in — DW(n+ v — D) a?

{G(x(l) (3))} I=i=n—1

I=j=nt+v-1
X dlZ]A,+,(Z))f(Z,) det .
j‘RV‘FZ(N*“CI [ l] nt ( l)f( l) {(x§3))l_l exp[ 2 2 (x(3))2 + M x(3)]} 1=i=v

I=j=n+v—I

! 2y 2 2
1+a) Y a 3 . e . o
l:[v | ;z)l exp [4n(1 ) (e — pr) —(x ) n(y )? + X; (u, + ,u,l):l (A39)

What remains is to simplify the function
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((l) (3))—f ds.ds;

PHYSICAL REVIEW D 88, 094502 (2013)

exp [xt , + 2P ]

sy —sp +an(l + az)(xg.l) — x?))/az

(s, )+ (s + wl)Z)]. (A40)

n az
X exp[— Z—az((xgl))2 + (")) - EYS)

We use the difference x(l) P as a regularization of the integral. This works because genemcally this dlfference is not

equal to zero. Then we can express the denominator as an exponential function. Let 8 = X )) /1x; (W _ )I be the
sign of this difference. The integral (A40) can be written as

GG, 1) = exp [xmﬂr Py —

Xfwdtf dsrdslexp[—
0 R

a2
>< —
exp[ 2n(l + a
—2min(l + a?) )
a

= —zﬁexp[x M

0

an(l + a?)
1| Ee—
a

1
X exp 5 6+ 5 + ) +

I’l(l + Clz) (1) (3) a2
X erfc|:"4a2|xi - X |— 8 m(ﬂr — ) |

Plugging this result into Eq. (A39) we get the joint proba-
bility density for a fixed number of real eigenvalues given
in Eq. (25). Moreover one can perform the sum over / to
find the joint probability density of all eigenvalues given in
Eq. (18).

APPENDIX B: TWO USEFUL
INTEGRAL IDENTITIES

In this appendix we evaluate two integrals that have been
used to simplify the expression for p, and p..

1. Convolution of a Gaussian
with an error function

Let Rey? > —1. We consider the integral

I(a,y) = fR exp[—(x + a)?lerf(yx)dx.  (Bl)

The solution can be obtained by constructing an initial
value problem. Since the Gaussian is symmetric and the
error function antisymmetric around the origin we have

100, y) = 0. (B2)

n(l + a?) D —
1

Py (P ) |

xf)lt +18(s, — sl)t]

612

zﬂ&+wf+m+wfﬂ

n
= (R ) |

o0 n(l + a? n(l +a
X [ exp[—%ﬂ + <B(,u —u) — (T)ngl) - x?l)t]dl

M em g Gy T () By
3 Bexp[ W(xi +xj) +Z(xi x; )]

a2

4}1(1 n az) (/-Lr - IU’I)Z:I

(A41)

|
The derivative is

d,1(a, y) = fR erf(yx)d, exp[—(x + a)?]dx

= —% /R exp[—(x + @)? — y?x*]dx

2 2.2
:——y eXp[_—Za ]
-+ 1

Yo

Integrating the derivative from O to a we find the desired
result

(B3)

[R exp[—(x + a)?lerf(yx)dx = \/_erf(m)

(B4)

This integral is needed to simplify the term (43).

Another integral identity which is used for the derivation
of the level density of the real eigenvalues with positive
chirality is given by
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[RZ exp (—axf — apx3 + Bi1x; + Brxy)
+ 6
X erf(u + e)dxldx2
Y
1 2 2
- meeli )
a1a2 4 al a2

2 erf( ayyBi + ayy8B, + 2a ayy%€e ) (B5)
Wajary (ajay? + a18% + ay)

This identity is a direct consequence of the identity (B4).
The constants «; (with Rea; > 0), B;, v # 0, 5, and € are
arbitrary.

2. Convolution of a Gaussian with a sinus cardinalis

The second integral enters in the simplification of the
asymptotic behavior of p.. It is the convolution integral

I(a,y) = [R dxexp[—(x + a)?Jsinc(yx). (B6)

lim Im
&—0

[ det (DW - 2]/(2n)ﬂ2n+1/)
det

(Dyw — %,/(2n) 13,4, F 187Y5)
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To evaluate this integral we introduce an auxiliary integral
to obtain a Fourier transform of a Gaussian, i.e.

I(a,y) Z%'[OydiffRdxexp[—(xwL a)?Jcos(yx). (B7)

First we integrate over x and then over ¥ to obtain an
expression in terms of error functions,

Ha, y) = 7;’ exp (—a?)Re erf@ + 1a>. (BS)

APPENDIX C: THE Z7,-PARTITION FUNCTION

In this appendix we evaluate the partition function Z} /1
which enters in the expression for the distribution of the
chiralities over the real eigenvalues of Dy,. The derivation
below is along the lines given in Ref. [41].

We employ the parametrization (53) to evaluate

P(Dy)d[Dy]

> . de'¢ 9 * ~2 2 -2
= —hrr(l)Im > de’dndn* Sdet”Uexp[—ag Str(U* + U™ )]
e Tl
A
X exp[i%Strdiag(ﬁz — i, 2y — ) (U —U"") — <s + %)Str(U + U*l)]. (C1)

We employ the same trick as in Ref. [41] to linearize the exponent in U and U~ ' by introducing an auxiliary Gaussian

integral over a supermatrix, i.e.

exp[—a3 Suw(U? + U ?)] = fd[a’] exp[— 62 Stro? + % Stro(U — U‘l)] (C2)
ag
with
g a
o= [ T ] and  d[o] = doydoydn,dn’. (C3)
ny 10,

After plugging Eq. (C2) in Eq. (C1) we diagonalize o = Vdiag(s, s,)V' and integrate over V € U(1/1). We obtain

lim Im det(Dw — 21/(2n)15,+,)

P(Dy,)d[D
0 det (Dy — %,/(2n)14,+, F 1875) (Dw)d[Dy]

11 G — )l dsids, (s; — /i7 *ie s, + )AL7 *1e\v/2
= —— (& — %)lim Im Sl -~

167rag &—0 Sp — W \s; t Ay Fie s, — Ay e

. eXp[_ 1642

(s — &y + 101g)> — (sp + 18, — lrh6)2)i|Z;’/l<\/s% — (A, T 1e)?, lJS% + (A, Tie)ta = 0), (CH

which expresses the partition function at nonzero lattice spacing in terms of an integral over the partition function with one
bosonic and one fermionic flavor at zero lattice spacing (56).

The resolvent G, is given by the derivative with respect to Z;; see Eq. (49). To obtain a nonzero result we necessarily
have to differentiate the prefactor (Z; — %,). The distribution of the chiralities of the real eigenvalues of Dy, follows from
the imaginary part of the resolvent. The Efetov-Wegner term [61,62] appearing after diagonalizing o is the normalization
Z’l’/l(l, 1) = 1 and vanishes when taking the imaginary part.
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Two terms contribute to the imaginary part of the resolvent. First, the imaginary part of

1 —1)r! .
L im Im[ - ] _ D 8P (s; + Ay) (C5)
me—=0  L(s; + Ay —18)” (v —1)!

is the vth derivative of the Dirac delta function. Second, when |s;| < I)At7|, the imaginary part arising from the logarithmic
contribution of K,(z), i.e.

1 (o]
K,(z) = (=1)"*"'I,(z)logz + 7 Z a7, (C6)
=0

also contributes to the imaginary part of the resolvent. The Bessel functions of the imaginary part of Z7 /l(xl, Xy, 4 =0)
combine into the two-flavor partition function z; /O(xl, X, & = 0). Adding both contributions we arrive at the result

- det (Dyw — z11p,+,)
lim Im

P(Dw)d| D
e—0 det(DW - X2ﬂ2n+y + l8')/5) ( W) [ W]

n>1 1
= ——(%; — %) Imlim
Tomag &1~ ) Imlim, f

dsds N A 1 . . . R
2 (s, + A7) (s + /\7)VeXP|:_—A2 ((sy — Xy + hg)* — (s + 12 — zm6)2)]
S; — 18 16a;g

6(7/*1)(5‘1 + )’;7) S% — AA% V/ZZV JSZ _ ):2 lJSZ + ):2& _ 0
= Dl — A\ + 23} An(Ver T A AR

Zé’/()(\/s% — )At%, lJS% + )A\%;fz = 0)

[(s7 = AD(s3 + A2

— sign(A1)O(|A;] = |s;(s? + 53 (C7)

yielding Eq. (84).

APPENDIX D: DERIVATIONS OF THE ASYMPTOTIC RESULTS GIVEN IN SEC. IV

The derivation of asymptotic limits of the spectral density can be quite nontrivial because of cancellations of the leading
contributions so that a naive saddle point approximation cannot be used. In the subsections below, we derive asymptotic
expressions for the average number of additional real modes (Appendix D 1), the level density of the right-handed modes
(Appendix D 2), and the level density of the complex modes (Appendix D 3). In Appendix D 4 we consider the distribution
of chirality over the real modes.

1. The average number of additional real modes

The limit of small lattice spacing is obvious and will not be discussed here. At large lattice spacing we rewrite Eq. (74) as

ddd 1 — exp[—8(a3sin2p + 2a2cos 2 @)sin 2@
Nadd=] 2¢ cos[20D] exp[ (agsm.ga2 ascos*¢g)sin ]. D1
0277 8 sin2®

Since a7 /g are large we expand the angle ® around the origin, in particular

o= o <1 (D2)

222 2202
\/agsm @ + 2a5c08 ¢

Note that we have two equivalent saddle points at 0 and at 7. We thus have

N _[ dé®de 1 — exp[—86D?]
add Rx[027] 477 SP?

The integral over 6P is equal to /3277, and the integral over ¢ is the elliptic integral of the second kind. Hence we obtain
the result (75).

Vadsin2e + 2a3cos 2¢. (D3)
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2. The density of the additional real modes

We have two different cases for the behavior of p, at large lattice spacing. To derive the large a asymptotics in the case

a% = 0 we rewrite Eq. (70) as a group integral, i.e.

1 A

dA,dx
2152774, a2 + 222 J® v@
i+
8

pr(ﬁ) =

A2 A2

X exp[—&%tr(U +U ! -

du(U)det”U exp [ —

11> + 508
272) ai+2a]

A2 ] , . F—2+2A0\ | .
— || sign(¥ — %) —erf] —— | [(¥ — %)
1647 [ ( 3222

-
tr2<U+ vt -% Af]lz)]
8618

X /\
X exp[ trdlag(l -HNU+UH+= tr(U U- l) . (D4)
For 42 = 0 Eq. (D4) simplifies to
0;(R) =—— d/\7dx[ du(U)det ”Uexp[— 2| [sign(x — &) — sign(¥ — & + 2A9)](x — %)
256maqa4 JR2 1645
~ + A 2 A
X exp[— *x i) +2 trd1ag(1 -NU+UhH+= tr(U U- 1):I
64zl | 4
1 - o) .
- f dx(@(x) f —0(—¥) f )dA7 f dp(U)det "Uz
32ma;a¢ JR —0 -5 U(2)
2 GE+R? YA -# -
X - - - r(U—-U"") | D5
exp |: 1642 1642 T ) (D5)

For the second equality we substituted ¥ — 2% + X and
replaced the sign functions by the integration domains of

):7. Moreover we used the fact that the group integral only

depends on /A3 — #2.

The saddle point equation of the U integral in Eq. (D5)

gives four saddle points,
U= *il,, and U = *idiag(l, —1). (D6)

The saddle points which are proportional to unity are
algebraically suppressed while the contribution of the other
two saddle points is the same. We thus find

Pr()_mf dxj dA7

After substituting A; — % cosh @ the integral over ¥ yields
the first case of Eq. (79).

For ag # 0 we again start with Eq. (70). The integra-
tion over the two error functions, see Eq. (71), makes it
difficult to evaluate the result directly, particularly when
a, # 0. As long as a5 is finite, the second error function
does not yield anything apart from giving a Gaussian
cutoff to the integral. The imaginary part of the argument
of the second error function shows strong oscillations
resulting in cancellations. These oscillations also impede
a numerical evaluation of the integrals for large lattice
spacing.

Let ag = 0 to begin with. A nonzero value of dg can be
introduced later by a convolution with a Gaussian in X. To
obtain the correct contribution from the first term we
consider a slight modification of p,,

XX A +
X cosh( x)exp[ zz - %] (D7)
8a2 1645 16ag
|
- kX, @1, ;) — k(X, ¢y,
I(X, @) = / d%d%mz[&ol ¢z]e,y<¢l+¢2) X, o1, 02) = kX, @2, 1) D8)
(0,27 2 COS @y — COS @]
with
k(X, @1, @3) = exp [4a3(cos @ — X)* — 4ad(cos ¢, — X)? — 443(sin ¢ + sin ¢,)?]
X [erf[/8ag(X — cos ¢,)] + erf[2aga(cos ¢; — X)]]. (D9)
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The variable X plays the role of £/(843). The error function with the constant @ replaces the second error function in
Eq. (71) and is of order one in the limit @ — oo. It regularizes the integral and its contribution will be removed at the end.
However it has to fulfill some constraints to guarantee the existence of the saddle points

o oV € {+arccos X} with X €[—1,1] (D10)
Nevertheless these saddle oints are independent of «. The saddle point @(0) = go(zo) is algebraically suppressed in
comparison to gol = —goz due to the sin? factor in the measure. Expanding about the saddle points yields

o1 — |Xx]) dée,dde,
ag rR2O¢p; + 8¢,

+exp (63 — Bgol)(erf(\/—&cpz) —erf(adp,))] (D11)

I(X, a) x

2
exp[—%72(3¢1 + 5@2)2][6Xp(5¢1 — 8@3)(erf(v28¢)) — erf(ade)))

with
X
N =a

In the next step we change the coordinates to center-of-mass-relative coordinates, i.e. ® = d¢; + 69, and
Ap = 8¢, — 8¢,, and find

I(X, ) = 6d _ XD dbdie exp[—Z—Zyz(X)®2][exp (¢A¢)<erf(w) - erf(% (@ + Ago)))

y(X) = (D12)

ag R P V2
+ exp(—@Aga)(erf(q)_—\/iAgD) — erf(% (d - Ago)))]. (D13)

We perform an integration by parts in A¢ yielding Gaussian integrals in A ¢ which evaluate to

I(X, o) = WI&;SU(D /Rg exp[ Az yz(X)<D2][exp<— %2) — exp(— ! —;2&2 <I>2>:|. (D14)

The 1/®? term can be exponentiated by introducing an auxiliary integral and the resulting Gaussian over ® can be
performed. We obtain

— 2 + 2
I(X, a) < O(1 — |X]) dt ®(1 2|X|) \/A2 2(X)+ \/a7y2(X)+1 e az|. (Dl15)
(1+a?)/a? /Az 2(X) +&2t ag 2 o?

The contribution of the artificial term depending on « can be readily read off, but it fixes the integral only up to an additive
constant. This constant can be determined by integrating the result over X which has to agree with the large & limit of N,4;
cf. Eq. (75). It turns out that this constant is equal to zero. The overall constant is also obtained by comparing to N,4q.

The convolution with the Gaussian distribution generating a4 does not give something new in the limit of large lattice
spacing. The width of this Gaussian scales with @ while the density p, has support on @2, so that it becomes a Dirac delta
function in the large d limit.

3. The density of the complex eigenvalues

Let ag >0 and a > 1. Then we perform a saddle point approximation of Eq. (80) in the integration variables ¢ ;.
The saddle points are given by

o = — o = + arccos <8x2) with % € [—8aZ 8az] (D16)
dag
We have also the saddle points ga(o) = ga(zo) if a; = 0. However they are algebraically suppressed due to the Haar measure.

Notice the two saddle points in Eq. (D16) yield the same contribution. After the integration over the massive modes
about the saddle point we find the first case of Eq. (83). In the calculation we used the convolution integral derived in
Appendix B 2.
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Let us now look at the case with dg = 0. Then we have

()“21 131 ep[ ]/d)\ exp[ XZ]
amy[16ma2\[16ma3 1645 ' 1647
X f[oz . dgoldgpzsinz[%] cos[v(@, + @,)]sinc[$(cos ¢, — cos @,)]exp[iA;(sin ¢, + sin@,)].  (D17)

The integrals over the angles can be rewritten as a group integral over U(2),

[ ) de,dg,sin [¢1 ; ¢2j| vilerte2)gine[§(cos @, — cos @,)]exp [1A;(sin @ + sin ¢@5)]
[0,27]
1 .
= 27 du(U)det U exp I:E tr(AU — A"‘UT)], (D18)
u(2)

with A = diag(A, +19, A7 — 19). This integral only depends on the quantity \/)At% + $? because the angle of the combined
complex variable A + 1 can be absorbed into U, i.e.

"2_'_)';2

1 A
f du(U)det " U exp [— tr(AU — A*UT)] = f du(U)det”Uexp | Y22 (U — UY) |. (D19)
uE) 2 uQE) 2

The variable j as well as the integration variable /i7 are of the order a. Therefore we can perform a saddle point
approximation and end up with

NS 191
p(2) =
’77“167&%/1677’\

resulting in the second case of Eq. (83).

] f a4, 2L A7/(16&%)]’ D20)

+"2

4. The distribution of chirality over the real eigenvalues
In this appendix we derive the large a limit of p, (%) for dg > 0 given in Eq. (94). The case ds = 0 reduces p (%) to the
result (60) and will not be discussed in this section. We set dg/7 = 0 to begin with and introduce them later on.

The best way to obtain the asymptotics for large lattice spacing is to start with Eq. (C1) with rizg = X7 =g = 0. The
integral does not need a regularization since the dg term guarantees the convergence. We also omit the sign in front of the
linear trace terms in the Lagrangian because we can change U — —U.

In the first step we substitute 7 — ¢'¢n and n* — ¢?n*. Then the measure is dpd¥dndn* and the parametrization of U

is given by
9 * * ok -9
0 1 1+ 0
v=|°¢ T v = K . D21)
0 e* n 1 -7 1—1n"n 0 e

There are two saddle points in the variables ¥ and ¢, i.e.

pho— (ﬂ)z oo = — 2Lyl (Z_‘)2 (D22)
82 842 842 842

with L = *1. Moreover, the variables Z;, £, have to be in the interval [— 8a8, 8&2] or else the contributions will be

exponentially suppressed. We have no second saddle point for the variable ¢ since the real part of the exponential has to be

positive definite. Other saddle points which can be reached by shifting ¢ and ¥ by 2711 independently are forbidden since

they are not accessible in the limit @5 — oo. Notice that the saddle point solutions (D22) are phases, i.e. [e%| = |e'#0| = 1.
In the second step we expand the integration variables
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oY 15¢
eﬁ — 6190(1 + ), ey = €l¢’0<1 + 7) (D23)
(842)2 — 2 V(®a3)? — 2

All terms in front of the exponential as well as of the Grassmann variables are replaced by the saddle point solutions i, and
@g. The resulting Gaussian integrals over the variables 69 and 6 ¢ yield

Imfd,u,(U)Sdet”Uexp[—&% Str(U — U 1)? + ! Strdiag(fcz, DU —UY]

w3 Rl el [_)%%—2%]
LEE y(8a3) — 23y/(8a3) — 2

X [dndn*(l — n*n)” exp[—2a%(e” + e7'#0) (e + e'*0)n*n]. (D24)

After the integration over the Grassmann variables we have two terms, one is of order one, and the other one of order &%
which exceeds the first term for ag >> 1. Hence we end up with

Im[d,u(U)Sdet”Uepr:—&% Str(U — U1 + % Strdiag(&,, 2,)(U — U_l)]

—1%, + 4/(843%)? — i2
Z m 2 +4/(8ag 2
LE{=1} \/(861% — xz\/(&iz)z — 23\~ + L‘/(Sdg 2z

2
s ey ) Z N2 82 _ 22
() 4 GR) e - ) ) et (D25)
8618 8a8 Sag 16618

Notice that both saddle points, L € {*1}, give a contribution for independent variables %, and £,. To obtain the
resolvent we differentiate this expression with respect to Z; and put Z; = x; afterwards. The first term between the large
brackets and the second term for L = —1 are quadratic in Z; — %, and do not contribute to the resolvent. For L = +1
we obtain

e

O(8ag — I2,])

2&§‘/64a8 - x2

This limit yields the square root singularity. The normalization of p, to v yields an overall normalization constant of
283 /.
The effect of dg is introduced by the integral

Ima; |; —s, ’[d,u(U)Sdet”Uexp[—&% Str(U — U ")? + % Strdiag(%,, 2,)(U — U‘l)] o (D26)

T 1 n2 7 O(8a — |2 — i)
6 £ - ma:dﬁi=A—fex[— f] 8 dr
406\/—_f [ %:Ip)(( 6)' 6=0 6 4a6\/—7; R p 64 J(8a2)2 (x — m6)2 6

1 ™ 4ag x\2
=— - +—] |de. D27
4&6773/2ﬁ) eXp[ 2 (Cow 8&%) ] ¢ ©27)
In the large a limit this evaluates to
1 2 O(8az — |x — 7 O8az — |z
I R R RoD_ gzt 000 1D, (D28)
4a6ﬁ R 16616 T 64&4§ _ X\_Z

(833 — (2 = 1)’

which is exactly the same Heaviside distribution with the square root smgularltles in the interval [ —8a3, 843] of Eq. (D26).
The introduction of d; follows from Eq. (88). We have to replace a2 — a2 + a3 and sum the result over the index j with the
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prefactor exp (—8a32)[/ j_,,(8&%) —1 j_,,(S&%)]. The intermediate result (D28) is independent of 4, and linear in the index; in
the sum this index is j. The sum over j can be performed according to

D J1;-,(8a3) — I;4,(843)) = wexp (843)
Jj=1

resulting in the asymptotic result (94).
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