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Lattice field theories with a complex action can be studied numerically by allowing a complexified

configuration space to be explored. Here we compare the recently introduced formulation on a Lefschetz

thimble with the result from stochastic quantization (or complex Langevin dynamics) in the case of a

simple model and contrast the distributions being sampled. We also study the role of the residual phase on

the Lefschetz thimble.
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I. INTRODUCTION

Lattice field theories with a complex action or
Boltzmann weight, such as QCD at nonzero baryon
chemical potential, cannot be simulated with algorithms
based on importance sampling, due to the numerical sign
problem [1,2]. Recently a new approach [3–6] has been
introduced which relies on deforming the integration con-
tour of the path integral into the complex plane and per-
forming Monte Carlo simulations on so-called Lefschetz
thimbles [7,8], along which the imaginary part of the action
is constant [9]. In this approach a residual sign problem
remains, but it is allegedly much weaker than the sign
problem in the original formulation.

In this paper, we compare the formulation on Lefschetz
thimbles with another approach in which the complex
plane is explored, namely stochastic quantization or com-
plex Langevin dynamics [13–15] (we refer to Refs. [2,16]
for recent reviews). We carry out this comparison in the
context of a simple model, for which the (real and positive)
probability distribution sampled in the complex Langevin
process has been constructed recently [17]. Moreover, the
problem on the Lefschetz thimble can be analyzed analyti-
cally. This will allow us to contrast the manner in which the
complex plane is explored in both approaches and study
also the role of the residual phase.

In the next section, we briefly describe the formulation
of the Lefschetz thimble, relying heavily on Refs. [3–6]. In
Sec. III we remind the reader of the model studied in
Ref. [17] and summarize the results on the distribution
sampled during the complex Langevin process. We iden-
tify the Lefschetz thimble for this model in Sec. IV and
discuss the weight and its residual phase on the thimble
in some detail. A comparison between the distributions
encountered in the Langevin and Lefschetz formulations is
provided in Sec. V. The final section concludes.

II. A SINGLE LEFSCHETZ THIMBLE

The formulation on Lefschetz thimbles is a generaliza-
tion of the method of steepest descent, in which the inte-
gration contour is deformed in the complex plane in such a
way that the imaginary part of the action is constant. For a

single thimble, the resulting phase can then be taken out of
the functional integral and no longer contributes to the sign
problem. A residual sign problem remains, arising from the
curvature of the thimble, i.e. the change of integration path
from along the real axis to the thimble, but it is expected
that this sign problem is much milder [3–6].
We start by outlining the construction of the Lefschetz

thimble for the simple case of a single thimble J 0 in a
system with one degree of freedom [3–6]. We consider the
partition function

Z ¼
Z 1

�1
dxe�SðxÞ; (2.1)

and observables

hOðxÞi ¼ 1

Z

Z 1

�1
dxe�SðxÞOðxÞ; (2.2)

where the action SðxÞ is complex. Extending the variable
into the complex plane, x ! z ¼ xþ iy, and assuming that
the weight exp ð�SðzÞÞ is holomorphic, we now consider
the case of a single nondegenerate critical point, which is
determined by

@zSðzÞjz¼z0 ¼ 0; @2zSðzÞjz¼z0 � 0: (2.3)

For one degree of freedom, the thimble J 0 is then given by
the requirement that the imaginary part of the action is
constant along the thimble, i.e.

ImSJ 0
� ImSðzÞjz2J 0

¼ const; (2.4)

and that the resulting (one-dimensional) path passes
through the critical point, z0 2 J 0. To be more precise,
the stable thimble J 0 is given by the path determined by

_z ¼ �@zSðzÞ; (2.5)

ending at z0 as the fiducial time t ! 1. Here the dot
denotes differentiation with respect to t and the overline
denotes complex conjugation. In contrast, the unstable
thimble K0 is obtained by reversing the sign of t. The
number of stable and unstable thimbles is equal.
The important result [7] is that observables in the

original formulation (2.2) can now be expressed as
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hOðxÞi ¼ 1

Z0

Z
J 0

dze�ReSðzÞOðzÞ; (2.6)

with the partition function

Z0 ¼
Z
J 0

dze�ReSðzÞ: (2.7)

We note that the (constant) phase exp ð�i ImSJ 0
Þ has

canceled in Eq. (2.6).
The Boltzmann weight due to the action is real along the

thimble. However, there is still a residual phase arising
from the curvature of the thimble. To see this, we parame-
trize the thimble J 0 by the following path in the complex
plane,

J 0: ðxðsÞ; yðsÞÞ; �1< s <1; (2.8)

and write Z
J 0

dz ¼
Z 1

�1
dsJðsÞ; (2.9)

where JðsÞ is the complex Jacobian

JðsÞ ¼ z0ðsÞ ¼ x0ðsÞ þ iy0ðsÞ: (2.10)

Here a prime denotes differentiation with respect to s. The
final expressions are therefore

hOðxÞi ¼ 1

Z0

Z 1

�1
dsJðsÞe�ReSðzðsÞÞOðzðsÞÞ; (2.11)

with the partition function

Z0 ¼
Z 1

�1
dsJðsÞe�ReSðzðsÞÞ: (2.12)

In the case of more than one critical point zk and
associated thimble J k, the sum over thimbles has to be
taken and the expressions are generalized as [3–7]

hOðxÞi ¼ 1

Z

X
k

mk

Z
J k

dze�SðzÞOðzÞ; (2.13)

with the partition function

Z ¼ X
k

mk

Z
J k

dze�SðzÞ: (2.14)

Here the integer coefficients mk are the intersection num-
bers between the original domain of integration and the
unstable thimblesKk. The phases exp ð�i ImSJ k

Þ then no

longer cancel in Eq. (2.13).

III. COMPLEX LANGEVIN DYNAMICS

When stochastic quantization is applied to theories with
a complex action, the complexified configuration space is
explored stochastically due to the complex drift term
appearing in the Langevin equation [13,14]. This approach
can solve the numerical sign problem, even when it
is severe [18], but care has to be taken. A mathematical
justification of the approach can be found in Refs. [19,20].

The application to QCD at nonzero baryon density is in
progress [21–24]. Further discussion and references can be
found in Refs. [2,16].
A widely used toy model to understand the problem of

complex actions and complex Langevin dynamics is the
simple integral [17,25–28]

Z ¼
Z 1

�1
dxe�SðxÞ; S ¼ 1

2
�x2 þ 1

4
�x4; (3.1)

where the parameters in the action are complex valued.
Here we follow Ref. [17] and take � real and positive, so
that the integral exists without deformation, while � is
taken complex. Exact results for expectation values hxni
can be obtained by differentiating the partition function,

Z ¼
ffiffiffiffiffiffi
4�

�

s
e�K�1

4
ð�Þ; (3.2)

with respect to �. Here � ¼ �2=ð8�Þ and Kpð�Þ is the

modified Bessel function of the second kind.
In this approach, one starts from the Langevin equation

for the holomorphic variable z,

_z ¼ �@zSðzÞ þ �; (3.3)

where the dot denotes differentiating with respect to the
Langevin time t and the (Gaussian) noise satisfies

h�ðtÞ�ðt0Þi ¼ 2�ðt� t0Þ: (3.4)

Writing z ¼ xþ iy, the complex Langevin equations then
read

_x ¼ �Re@zSðzÞ þ �; _y ¼ �Im@zSðzÞ; (3.5)

where we specialized to real noise.
Expectation values are obtained by averaging over the

noise. After this averaging, holomorphic observables
evolve according to

hOiPðtÞ ¼
Z

dxdyPðx; y; tÞOðxþ iyÞ; (3.6)

where the distribution Pðx; y; tÞ satisfies the Fokker-Planck
equation (FPE)

_Pðx; y; tÞ ¼ LTPðx; y; tÞ; (3.7)

with the FP operator

LT ¼ @xð@x þ Re@zSðzÞÞ þ @y Im@zSðzÞ: (3.8)

This FPE is notoriously difficult to solve and no generic
solutions are known, even for zero-dimensional integrals as
in the case here. For nontrivial solutions in specific models,
see e.g. Refs. [17,19,28,29]. In Ref. [17], the model under
consideration was analyzed in detail and the FPE was
solved numerically by expanding the distribution in a basis
of Hermite functions, following the approach of Ref. [28].
It was found that a unique stationary solution exists, which
represents the (real and positive) distribution that is effec-
tively sampled during the Langevin evolution. An example
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of this distribution is given in Fig. 1, for � ¼ 1þ i and
� ¼ 1. In Ref. [17] it was also shown that, when A > 0, the
complex Langevin process reproduces the exact results
provided that

B2 < 3A2; � ¼ Aþ iB; (3.9)

and that success and failure can be monitored by verifying
the criteria for correctness [19,20]. In the case of success,
the distribution is strictly zero when jyj> jy�j, where
y� is determined by

y2� ¼ A

2�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

3A2

s 1
A; (3.10)

while it drops exponentially in the x direction. In line with
the mathematical foundation of the approach [19,20], cor-
rect results are then expected.

IV. LEFSCHETZ THIMBLES FOR THE
QUARTIC MODEL

In this section we analyze the Lefschetz thimbles for the
quartic model discussed above and study the role of the
residual phase in reproducing expected results.

To construct the thimbles, we first find the critical points
determined by

@zSðzÞ ¼ ð�þ �z2Þz ¼ 0; (4.1)

@2zSðzÞ ¼ �þ 3�z2 � 0: (4.2)

There are three solutions: the origin and two points in the
complex plane,

z0 ¼ 0; z� ¼ �i
ffiffiffiffiffiffiffiffiffiffi
�=�

p
: (4.3)

Recall that � ¼ Aþ iB is complex. The imaginary part of
the action

ImSðzÞ ¼ 1

2
Bðx2 � y2Þ þ Axyþ �xyðx2 � y2Þ (4.4)

should be constant along a thimble. The constants are
given by

ImSðz0Þ ¼ 0; ImSðz�Þ ¼ �AB

2�
: (4.5)

We first discuss the points in the complex plane, z�.
Solving ImSðzÞ ¼ �AB=ð2�Þ yields three solutions, but
it is easy to see that none of these correspond to a thimble.
There are therefore no thimbles associated with z�.
We proceed to find the thimble associated with the

origin. Solving ImSðzÞ ¼ 0 yields again three solutions,
two of which pass through z ¼ 0. These are the stable and
unstable thimbles J 0 and K0. The stability can be as-
sessed by linearizing the evolution equation (2.5) around
the origin, which yields

_x

_y

 !
¼ � A �B

�B �A

 !
x

y

 !
: (4.6)

The matrix has eigenvalues �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
. Hence one of the

solutions is stable and one is unstable, as it should be.
The explicit expression for the stable thimble J 0 is then

(we use x to parametrize the thimble)

y0ðxÞ ¼ 1

6�x

�
�Bþ e�i� D2

D1

þ ei�D1

�
; (4.7)

with � ¼ �=3 and

D1 ¼
�
BD3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2D2

3 �D3
2

q �
1=3

; (4.8)

D2 ¼ B2 þ 12�x2ðAþ �x2Þ; (4.9)

D3 ¼ B2 þ 18�x2ðA� 2�x2Þ: (4.10)

The unstable thimble K0 is given by the same expression,
but with � ¼ ��=3 (note that both expressions are real).
These thimbles are shown in Fig. 2.
The Boltzmann weight along the thimble is purely real

by construction and given by

wBðxÞ ¼ exp ½�Sðxþ iy0ðxÞÞ�: (4.11)

However, to this the contribution from the complex
Jacobian, see Eq. (2.10), should be added, which reads

JðxÞ ¼ 1þ iy00ðxÞ: (4.12)

The total weight

wðxÞ ¼ JðxÞwBðxÞ (4.13)

is therefore complex; its real and imaginary parts are
shown in Fig. 3. While the real part of the weight is
positive, the imaginary part changes sign.
We can now evaluate expectation values of observables

OnðzÞ ¼ 1

n
zn (4.14)

using Eq. (2.11), where, along the thimble, z ¼ xþ iy0ðxÞ.
In Table I we show the results for n ¼ 2, 4, 6, 8. In order to

FIG. 1 (color online). Distribution Pðx; yÞ in the xy plane
sampled during the complex Langevin process, for � ¼ 1þ i
and � ¼ 1. The distribution is strictly zero for jyj> 0:3029 and
drops exponentially in the x direction [17].
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study the role of the Jacobian and the residual phase, we
give a number of results. First, we include only the real part
of JðxÞ (which equals 1). In the next column we include the
absolute value of JðxÞ, i.e. we ignore the residual phase, and

finally we include the complete contribution. Only in the
latter case, the exact results are reproduced, as expected.
Interestingly, for small n, the first two results lie relatively
close to the exact one. However, for larger n the deviation
increases. We stress that the imaginary part of the weight is
relevant since, even though wBðxÞ is real, the observables
are complex. Also shown are the results from a complex
Langevin simulation taken from Ref. [17], which are seen
to agree with the exact result (within numerical error).
We conclude that when the residual phase is not incor-

porated correctly, exact results are not reproduced. The
way in which this manifests itself may depend on the
observable and is, in this model, not necessarily small.

V. DISTRIBUTIONS FOR LANGEVIN
AND LEFSCHETZ

The complex Langevin process and the Lefschetz
thimble are both formulated in terms of distributions in
the complex plane. In this section we compare the two.
We first note that the distribution sampled in the

Langevin process is a two-dimensional distribution in the
complex plane, which is real and positive, i.e. a proper
distribution. In contrast, the Lefschetz thimble is a one-
dimensional path in the complex plane, on which a com-
plex distribution is constructed. The complexity does not
arise from the original weight but from the curvature of the
thimble. However, as can be gleaned from Figs. 1 and 2, the
distribution Pðx; yÞ and the thimble J 0 are not unrelated.
To demonstrate this, we compare in Fig. 4 the thimble with
the region where the distribution Pðx; yÞ is larger than 0.98
times its local value at the saddle, corresponding to the
‘‘ridge’’ in Fig. 1. We observe that the thimble and the
ridge follow each other closely. For completeness we
mention that within the numerical precision available for
the construction of Pðx; yÞ, the thimble and the line of
saddle points of Pðx; yÞ do not seem to agree exactly.
However, the distribution of the weight between the two

is quite different. Both the real and the imaginary parts of
the weight on the thimble peak at the origin and drop

-2 -1 0 1 2
x

0

0.5

1

w
(x

)

real part of weight
minus imag part of weight

σ = 1+i, λ = 1

FIG. 3 (color online). Real and (minus the) imaginary parts of
the weight along the thimble, including the residual phase, for
� ¼ 1þ i and � ¼ 1.

-2 -1 0 1 2
x

-2

-1

0

1

2

y

stable thimble
unstable thimble

σ = 1+i, λ = 1

FIG. 2 (color online). Stable and unstable thimbles associated
with the origin, for � ¼ 1þ i and � ¼ 1.

TABLE I. Role of the residual phase: real and (minus the) imaginary parts of the observables
hOnðzÞi ¼ hzni=n for various values of n, including the real part of the complex Jacobian, the
absolute value of the Jacobian and the full Jacobian. The next-to-last column is the exact result.
The final column displays the complex Langevin results [17].

n re(Jacobian) abs(Jacobian) Full Jacobian Exact Langevin

2 re 0.207 549 0.201 687 0.214 071 0.214 071 0.2140(2)

�im 0.111 441 0.108 713 0.074 004 9 0.074 004 9 0.0739(1)

4 re 0.091 241 7 0.088 113 3 0.105 962 0.105 962 0.1059(2)

�im 0.096 107 6 0.092 973 9 0.070 033 0.070 033 0.0699(1)

6 re 0.071 200 1 0.068 712 9 0.096 740 9 0.096 740 9 0.0967(3)

�im 0.124 017 0.119 744 0.097 957 7 0.097 957 7 0.0978(2)

8 re 0.069 914 9 0.067 505 8 0.118 881 0.118 881 0.1190(5)

�im 0.206 515 0.199 36 0.174 17 0.174 17 0.1739(6)
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exponentially to zero as x ! �1, see Fig. 3. In contrast,
Pðx; yÞ has two peaks close to the boundary, y ¼ y�, see
Fig. 1. To highlight this difference, we show in Fig. 5 a
comparison between the thimble and the region where
Pðx; yÞ is larger than 0.5 times its absolute maximum.
Interestingly, we have to conclude therefore that the domi-
nant regions contributing to the integral do not coincide, at
least if we put aside the intricacies of complex phases when
comparing distributions.

Finally, to estimate the importance of the residual phase,
we discuss the severity of the sign problem as defined in the
conventional way [1,2], namely by considering the expec-
tation value of the phase factor in the theory in which the
absolute value of the weight is used (the phase-quenched
theory). In a theory with many degrees of freedom and a
severe sign problem, the average phase factor will go to
zero as the thermodynamic limit is taken. In a system with
only one degree of freedom, this will not happen, but

nevertheless it is interesting to compare this quantity in
the original theory with the one found on the Lefschetz
thimble. We write wðxÞ ¼ jwðxÞjei’ and define the average
phase factor in the phase-quenched theory as usual,

hei’ipq ¼
R
dxwðxÞR
dxjwðxÞj ; (5.1)

where for the original formulation we use wðxÞ ¼
exp ð�SðxÞÞ, while along the thimble wðxÞ is given in
Eq. (4.13).
The results for the real and the imaginary parts of the

average phase factor are shown in Figs. 6 and 7 as a
function of B. When B ¼ 0, the action is real and there
is no sign problem, hei’ipq ¼ 1. As B is increased the real

part of the average phase factor is reduced, as expected. As
mentioned above, in a theory with a single degree of free-
dom, the sign problem is not expected to be severe. Indeed,
we observe a mild sign problem, which is comparable in
both formulations. There is therefore no clear indication
that the sign problem due to the residual phase is

0 0.5 1 1.5 2
B

0.7

0.8

0.9

1

re
<

eiφ
>

pq

original formulation
Lefschetz thimble

σ = 1+iB, λ = 1

FIG. 6 (color online). Real part of the average phase factor in
the original formulation and in the formulation on the Lefschetz
thimble, as a function of B, where � ¼ 1þ iB, with � ¼ 1.

0 0.5 1 1.5 2
B

-0.5

-0.4

-0.3

-0.2

-0.1

0

im
<

eiφ
>

pq

original formulation
Lefschetz thimble

σ = 1+iB, λ = 1

FIG. 7 (color online). As in Fig. 6, for the imaginary part of the
average phase factor.

-1 -0.5 0 0.5 1
x

-0.3

-0.15

0

0.15

0.3
y

> 0.98 local saddle point of P(x,y)
thimble

σ = 1+i, λ = 1

FIG. 4 (color online). Comparison between the thimble and the
distribution Pðx; yÞ sampled during the Langevin process: the
bars indicate the region where Pðx; yÞ is larger than 0.98 times
the value of Pðx; yÞ at the local saddle, i.e. the ridge in Fig. 1.

-1.5 -1 -0.5 0 0.5 1 1.5
x

-0.3

-0.15

0

0.15

0.3

y

> 0.5  global max of P(x,y)
thimble

σ = 1+i, λ = 1

FIG. 5 (color online). As in Fig. 4: the bars indicate the region
where Pðx; yÞ is larger than 0.5 times the global maximum of
Pðx; yÞ, i.e. the two peaks in Fig. 1.
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considerably milder than the one in the original formula-
tion, at least in this model and method of assessment.

VI. CONCLUSION

In order to tackle the numerical sign problem in lattice
field theory, both complex Langevin dynamics and the
formulation on Lefschetz thimbles extend the original do-
main of integration into the complex plane. Here we com-
pared these two approaches in the context of a simple
model: interestingly we found that the two distributions
that are effectively being sampled follow each other closely.
This is the main observation of this paper and one may
wonder how general this is. There are however important
differences: during the Langevin process one encounters a
two-dimensional distribution, which is real and positive,
while the Lefschetz thimble is a one-dimensional path in
the complex plane on which a complex distribution is
constructed. The complexity, and hence a residual phase,
does not arise from the original weight but from the curva-
ture of the thimble. Moreover, we found that the way in
which the weight is distributed to be quite different: along
the thimble the maximum of both the real and the imaginary
parts of the weight appears at the origin (the critical point),
while in the Langevin case, the maxima appear away from
the real axis, well inside the complex plane.

As expected, the presence of the residual phase is im-
portant. Only when it is properly included are exact results
reproduced. Here we remark that although the Boltzmann
weight is real along the thimble, both the real and the
imaginary parts of the residual phase are relevant, since
observables along the thimble are complex, even when
their expectation values are real.
Finally, it would be interesting to solve the model dis-

cussed here numerically on the Lefschetz thimble using the
methods developed in Refs. [3–6]. While there is no doubt
that the correct thimble will be recovered, the numerical
construction of the Jacobian and its phase will be a good
test for the Monte Carlo algorithm. Here we note that the
correct inclusion of the residual phase appears to be more
important for observables zn with larger values of n.
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and Nucu Stamatescu for discussion, and Pietro Giudice
and Erhard Seiler for collaboration on Ref. [17]. This work
is supported by STFC, the Wolfson Foundation, the Royal
Society and the Leverhulme Trust.

[1] P. de Forcrand, Proc. Sci., LAT2009 (2009) 010
[arXiv:1005.0539].

[2] G. Aarts, Proc. Sci., LATTICE2012 (2012) 017
[arXiv:1302.3028].

[3] M.Cristoforetti, F.Di Renzo, andL. Scorzato (AuroraScience
Collaboration), Phys. Rev. D 86, 074506 (2012).

[4] M. Cristoforetti, L. Scorzato, and F. Di Renzo, J. Phys.
Conf. Ser. 432, 012025 (2013).

[5] M. Cristoforetti, F. Di Renzo, A. Mukherjee, and L.
Scorzato, Phys. Rev. D 88, 051501 (2013).

[6] A. Mukherjee, M. Cristoforetti, and L. Scorzato, Phys.
Rev. D 88, 051502 (2013).

[7] E. Witten, arXiv:1001.2933.
[8] E. Witten, arXiv:1009.6032.
[9] For related work on the analytic continuation of path

integrals, see e.g. Refs. [10–12].
[10] G. Guralnik and Z. Guralnik, Ann. Phys. (Amsterdam)

325, 2486 (2010).
[11] D. D. Ferrante, G. S. Guralnik, Z. Guralnik, and C.

Pehlevan, arXiv:1301.4233.
[12] G. Basar, G. V. Dunne, and M. Unsal, J. High Energy

Phys. 10 (2013) 041.
[13] G. Parisi, Phys. Lett. 131B, 393 (1983).
[14] J. R. Klauder, in Recent Developments in High-Energy

Physics, edited by H. Mitter and C. B. Lang (Springer-
Verlag, Vienna, 1983), p. 351; J. Phys. A 16, L317 (1983);
Phys. Rev. A 29, 2036 (1984).

[15] P. H. Damgaard and H. Hüffel, Phys. Rep. 152, 227
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