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We calculate second and fourth order quark number susceptibilities for 2þ 1 flavor QCD in the high

temperature region. In our study, we use two improved staggered fermion formulations, namely, the highly

improved staggered quark formulation and the so-called p4 formulation, as well as several lattice

spacings. Second order quark number susceptibilities are calculated using both improved staggered

fermion formulations, and we show that in the continuum limit the two formulations give consistent

results. The fourth order quark number susceptibilities are studied only using the p4 formulation and at

nonzero lattice spacings. We compare our results on quark number susceptibilities with recent weak

coupling calculations and find that these agree reasonably well with the lattice calculations within the

estimated uncertainties.
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I. INTRODUCTION

At high temperatures, strongly interacting matter under-
goes a deconfinement transition to a new state, where
thermodynamics can be described in terms of quark and
gluonic degrees of freedom. Studying the properties of this
new state of matter is the subject of a large effort in lattice
QCD, see Refs. [1,2]. This is in part due to the fact that
nonperturbative effects could be important even at very
high temperatures due to infrared problems [3]. Therefore,
it is important to clarify using lattice QCD calculations
at what temperatures the deconfined medium can be
described as weakly interacting quark-gluon gas. This is
especially important in light of the recent experimental
findings showing that the matter created in ultrarelativistic
heavy ion collisions behaves like a strongly coupled
liquid [4].

Fluctuations of conserved charges are known to be
sensitive probes of deconfinement and suitable for testing
the weakly (or strongly) interacting nature of the decon-
fined medium. They are defined as the derivatives of the
pressure with respect to the corresponding chemical poten-
tials. Fluctuations of conserved charges are expected to be
exponentially small in the low temperature region where
the conserved charges are carried by massive hadrons.
However, they are not suppressed at high temperatures,
where the dominant degrees of freedom are light quarks.
Therefore, fluctuations of conserved charges are good
probes of deconfinement.

In 2þ 1 flavor QCD, there are three chemical potentials
corresponding to baryon number, electric charge, and
strangeness, or equivalently to u, d, and s quark chemical
potentials. Since at high temperatures the dominant
degrees of freedom are quarks and gluons, the quark

number basis provides a natural way to study the fluctua-
tions. In this paper, we study second and fourth order quark
number fluctuations, also known as quark number suscep-
tibilities, defined as

�q
2n ¼

@2nðp=T4Þ
@ð�q=TÞ2n

���������q¼0
; q ¼ u; d; s; n ¼ 1; 2: (1)

Though in our calculations the u and d quark masses are
degenerate, the corresponding chemical potential is always
assumed to be different, i.e., we consider single flavor
susceptibilities. Often in weak coupling calculations the
chemical potential for different degenerate quark flavors is
considered to be the same. In this case, one effectively
calculates the baryon number susceptibilities (up to nor-
malization factors) that are different from the single flavor
quark number susceptibilities defined in Eq. (1). In this
paper, we are interested in the high temperature behavior of
the quark number susceptibilities and comparison of the
lattice results with weak coupling calculations. To better
control the continuum extrapolation, we used two different
improved staggered quark formulations in our calculations,
namely, the so-called p4 action [5] and the highly improved
staggered quark (HISQ) action [6].
Fluctuations of conserved charges have been studied in

lattice QCD for many years and confirm the expected
temperature dependence discussed above. Second order
quark number susceptibilities have been studied by several
groups [7–14]. Fourth order fluctuations have also been
studied using the so-called p4 improved staggered fermion
action [15–17]. More recently, they have been studied
using HISQ and stout actions [18–21].
At sufficiently high temperatures, one should be able to

describe quark number susceptibilities using weak cou-
pling techniques. Lattice QCD calculations of the quark
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number susceptibilities thus can provide useful tests for the
range of validity of these weak coupling approaches.
Second order quark number susceptibilities have been
calculated using resummed perturbation theory [22–24]
as well as the dimensionally reduced effective theory
[25,26] for some time. The fourth order quark number
susceptibilities have been first calculated in perturbation
theory in Ref. [27], and very recently have also been
studied using resummed perturbation theory [28–31]. In
this paper, we make precision tests of the applicability of
various weak coupling calculation techniques by perform-
ing continuum extrapolated lattice QCD calculations of
second order quark number susceptibilities at even higher
temperatures. The analysis of various second and fourth
order susceptibilities [19] suggests that the deconfined
medium becomes weakly interacting for T > 300 MeV.

We extend our earlier calculations of diagonal quark
number susceptibilities in 2þ 1 flavor QCD to higher
temperatures and compare them with perturbative calcu-
lations. The rest of the paper is organized as follows. In
Sec. II we present the details of the lattice simulations.
Section III is dedicated to the discussion of the cutoff
effects of quark number susceptibilities in the free theory.
Our main numerical results are summarized in Sec. IV. In
Sec. V we compare our lattice results with the results of
weak coupling calculations. Finally, Sec. VI presents our
conclusions. Some preliminary results have been presented
in conference proceedings [32,33].

II. DETAILS OF THE LATTICE SIMULATIONS

We performed calculations in 2þ 1 flavor QCD using
p4 and HISQ actions at the physical value of the strange
quark mass ms. The gauge configurations have been gen-
erated using the rational hybrid Monte Carlo algorithm
[34]. The lattice spacing has been fixed using the r1 and
r0 scales defined in terms of the static potential

r2
dV

dr

��������rx

¼ Cx; x ¼ 0; 1; (2)

where C0 ¼ 1:65 and C1 ¼ 1:0. The parameter r0 is also
known as the Sommer scale [35]. As in Ref. [36], we use
the values r0 ¼ 0:468 fm and r1 ¼ 0:3106 fm. The lattice
spacing in units of r0 and r1 as a function of the bare gauge
coupling was given in Ref. [37] for the p4 action and in
Ref. [36] for the HISQ action. The quark number suscep-
tibilities can be expressed in terms of the quark matrix and
the corresponding formulas were given in Refs. [15,16,38].
The necessary operators are evaluated using the random
noise method (see Ref. [38] for details).

We calculated second order quark number susceptibili-
ties using the HISQ action on lattices with temporal extent
N� ¼ 4, 6, 8, 10, 12, and 16, and aspect ratio N�=N� ¼ 4,
with N� denoting the spatial extent of the lattice. For light
quark masses, we used ml ¼ ms=20 corresponding to a
pion mass of 160 MeV in the continuum limit [36]. Our

calculations covered a wide temperature range from 200 to
about 950 MeV (1400 MeV for N� ¼ 4). We used 20
random noise vectors to evaluate the operators needed for
quark number susceptibilities for N� ¼ 4 and 6 lattices, 50
random noise vectors for N� ¼ 8 lattices, 100 random
noise vectors for N� ¼ 10 lattices, and 200 random noise
vectors for N� ¼ 12. We accumulated 3000 to 8000
molecular dynamics trajectories of unit length for each
temperature value.
For the p4 action, the calculations have been performed

on 323 � N� lattices with temporal extent N� ¼ 6, 8, and
12. The light quark mass in this calculation was ml ¼
ms=10 corresponding to a pion mass of 220 MeV in the
continuum limit [37]. For N� ¼ 6 and 8 lattices, we accu-
mulated between 10,000 and 25,000 trajectories, while for
N� ¼ 12 we accumulated between 3000 and 10,000 tra-
jectories. The length of the molecular dynamic trajectory
here was 0.5. On N� ¼ 6 and N� ¼ 8 lattices, we calcu-
lated quark number susceptibilities both for the strange and
light quarks. We typically used 196 random vectors in
these calculations. For N� ¼ 12 in the light quark sector,
we only calculated second order quark number suscepti-
bilities. Here we used 96 random vectors to evaluate the
necessary operators. In the strange quark sector, both sec-
ond and fourth order quark number susceptibilities have
been evaluated and 196 random vectors have been used.
Note that in the studied temperature range, the slightly
larger than physical light quark masses do not have any
significant effect [39,40]. In fact, at these high tempera-
tures, the light quark masses in temperature units are
negligibly small and can be considered to be zero.

III. QUARK NUMBER SUSCEPTIBILITIES
IN THE FREE THEORY

As a first step toward understanding the cutoff depen-
dence of quark number susceptibilities and making con-
tinuum extrapolations at high temperature, let us review
their cutoff dependence in the noninteracting massless
theory. Since we consider the massless case, the index q
in the quark number susceptibilities will be omitted. The
cutoff dependence of quark number susceptibilities has
been studied in Refs. [8,15,41]. The p4 action and the
HISQ action both contain a three-link term in the Dirac
operator and completely eliminate Oð1=N2

�Þ discretization
errors at tree level. In the case of the p4 action, bended
three-link terms are used, while the HISQ action has a
straight three-link path known as the Naik term [42]. The
different types of the three-link terms not only eliminate
the Oð1=N2

�Þ discretization effects but also have the same
corrections at order 1=N4

� [41,43]. The differences between
the Naik action and the p4 action appear at higher orders of
1=N� [41,43]. In Ref. [41], the N� dependence of quark
number susceptibilities was calculated analytically up to
Oð1=N6

�Þ,
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�2 ¼ 1þ a24
�4

N4
�

þ a26
�6

N6
�

;

�4 ¼ 6

�2

�
1þ a44

�4

N4
�

þ a46
�6

N6
�

�
;

a24 ¼ � 93

70
; a44 ¼ � 21

10
;

a26 ¼ � 381

70
; a46 ¼ 62

945
; Naik

a26 ¼ 127

3150
; a46 ¼ � 62

7
; p4:

(3)

Note, however, that numerically higher order terms in
1=N� may be important for N� � 8. As one can see from
the above equation, there is a large coefficient in front
of the 1=N6

� term in �2 for the Naik action and a small
one for the p4 action. For �4, the situation is just the
opposite. In Fig. 1, we show the complete results on the
cutoff dependence of �2 and �4 and contrast it with
the analytic results. For second order quark number sus-
ceptibility and p4 action, the analytic result expanded up to
order 1=N6

� describes the complete cutoff dependence
fairly accurately. In all other cases, the truncated analytic
results give only a qualitative description of the complete
result. The complete result indicates a quite small cutoff
dependence for both �2 and �4 in the case of the p4 action.
It should be stressed that the free theory results in general
cannot be used for a quantitative description of the cutoff
dependence of the lattice data, as higher order perturbative
corrections are important and could be significant [43]. In
particular, there are cutoff effects proportional to g2n=N2

�

both for the p4 and HISQ actions. Yet the analysis of the
cutoff dependence in the free theory provides an important

starting point for the discussion of the cutoff effects in the
high temperature lattice calculations.

IV. RESULTS

In this section we present our numerical results for �q
2

and �q
4 and discuss the cutoff effects in quark number

susceptibilities, as well as the details of the continuum
extrapolations. Our main result is summarized in Fig. 3.
Readers not interested in technical details are advised to
skip the following text till the end of Sec. IVB where this
result is discussed.

A. Numerical results on second order quark
number susceptibilities

We start the discussion of our numerical results with the
second order light and strange quark number susceptibili-
ties. In Fig. 2, we show the numerical results for the HISQ
and p4 actions in the high temperature region, T >
200 MeV. In the continuum limit, the quark number sus-
ceptibilities approach unity at very high temperatures. The
strange quark number susceptibilities approach the high
temperature limit slower than the light quark number sus-
ceptibilities. The difference between the light and strange
quark number susceptibilities becomes small above tem-
peratures of 400 MeV and negligible for T > 600 MeV.
The difference between the light and strange quark number
susceptibilities can be understood in terms of the strange
quark mass for T > 250 MeV, but at lower temperatures it
is significantly larger than the expected suppression due to
the relatively large strange quark mass, ms ’ 90 MeV, see
the discussion in Ref. [17]. The cutoff effects are relatively
small for T < 300 MeV but become significant above that
temperature.
In the case of the HISQ action, there is a qualitative

change in the behavior of the cutoff effects for T >
300 MeV; i.e., the ordering of quark number susceptibili-
ties calculated at different N� qualitatively starts to follow
expectations based on the systematics seen for the free
theory. The continuum limit seems to be approached
from below. The free theory result shown as horizontal
lines in Fig. 2 shows larger cutoff dependence than the
numerical data. This is expected to some extent; from the
analysis of the high temperature limit of pure gauge theo-
ries [44], it is known that cutoff effects in the interacting
theory typically are about a factor 2 smaller than in the free
theory. Interestingly enough though, at the highest tem-
perature, the N� ¼ 4 data point is very close to the lattice
ideal gas value.
For the p4 action, the pattern of the cutoff dependence

observed in the free theory is not seen in the interacting
case for the entire temperature range explored by us. As
discussed in Sec. III, for improved actions the quark num-
ber susceptibilities in the free theory approach the contin-
uum limit from below. Our p4 lattice data, on the other
hand, seem to approach the continuum limit from above.
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FIG. 1 (color online). Second (filled symbols) and fourth order
(open symbols) quark number susceptibilities in the free theory
as functions of N�4

� normalized by the corresponding continuum
Stefan-Boltzmann values. Also shown in the figure are the free
theory results expanded in 1=N� up to OðN6

�Þ [41]. These are
shown as dotted, solid, dashed, and dashed-dotted lines corre-
sponding to �2 and p4 action, �2 and Naik action, �4 and p4
action, and �4 and Naik action, respectively.
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This implies that cutoff effects proportional to �s and
higher orders in the coupling constant are significant, con-
trary to the case of the HISQ action. The main difference
between the p4 and HISQ action that could be responsible
for the difference in the cutoff behavior is the use of
smeared gauge fields in the latter. The use of smeared
gauge fields is known to reduce cutoff effects in higher
order perturbative corrections in lattice calculations [45].

B. Continuum extrapolation of second order quark
number susceptibilities

Using the lattice results for quark number susceptibili-
ties at different N�, we perform continuum extrapolations.
First, for each N� we interpolate the lattice results using
smooth splines. The errors on the interpolated values were
estimated using the bootstrap method. We used the R

package for this analysis [46]. Using the interpolations,
we obtain the values of the quark number susceptibilities at
the same set of temperatures. Finally, we perform contin-
uum extrapolations at this set of temperatures. The N� ¼ 4
data have not been used in the continuum extrapolations.
In the case of the HISQ action, we consider the tem-

perature interval from 225 to 950 MeV for each N�, with
the step of 25 MeV for T � 400 MeV and the step 50 MeV
for larger temperatures. Our extrapolations for HISQ are
motivated by the leading order N� dependence of quark
number susceptibilities in the free theory. Namely, we
performed continuum extrapolations using the following
form:

�q
2ðN�Þ ¼ aþ b=N4

� þ c=N6
�: (4)

We also performed extrapolations using the simpler aþ
b=N4

� form and data for N� � 8 only. The two fits gave
identical results within the estimated errors. Furthermore,
we used the complete tree-level result for the N� depen-
dence of the quark number susceptibility to perform the
continuum extrapolation; i.e., we fitted the data for each

temperature with aþ c � ð�q;free
2 ðN�Þ � �SB

2 Þ. This gives

extrapolated values for �q
2 that are systematically lower

than the above fits but still agree within errors. For the
coefficient c, we typically find values around 0.6; i.e., the
cutoff effects in the interacting theory are 40% smaller than
in the free field limit. Since beyond tree level there are also
discretization errors proportional to 1=N2

�, we also per-

formed extrapolations using aþ c � ð�q;free
2 ðN�Þ � �SB

2 Þ þ
d=N2

�. These extrapolations give results that agree within
errors with the extrapolations obtained using the ansatz
aþ b=N4

� þ c=N6
�, though they are systematically higher.

The coefficient d turns out to be negative, and at the highest
temperatures it is compatible with zero. Thus, it is possible
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FIG. 3 (color online). Second order light (filled symbols) and
strange (open symbols) quark number susceptibilities as functions
of the temperature in the continuum limit. Note that �SB

2 ¼1.
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FIG. 2 (color online). Second order quark number susceptibilities calculated on different lattices with the HISQ action (left) and p4
action (right) as functions of the temperatures. The filled symbols correspond to light quark number susceptibilities, while open
symbols correspond to strange quark number susceptibilities. The horizontal lines refer to the values of the quark number
susceptibilities in the free theory corresponding to different temporal extent N�. The free theory result for N� ¼ 4 and the p4 action
has been shifted upwards by 0.2 for better visibility. Note that �SB

2 ¼ 1.
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that the 1=N2
� term just mimics cutoff effects proportional

to 1=Nn
� , n � 4 at higher order in the weak coupling

expansion. It turns out that the differences between the
mean values of �q

2 obtained by using the above two fits and

the fit that uses Eq. (4) are smaller or equal to the statistical
errors of the three-parameter fit given by Eq. (4). In other
words, the systematic errors estimated as the differences of
the above three fits are smaller or of the same size as the
statistical errors of that fit. Therefore, we use the extrapo-
lation based on Eq. (4) and its statistical errors as our final
continuum result for HISQ.

For the p4 action, the continuum limit is approached
from above, contrary to the free field expectations. This
implies that the dominant cutoff effects come from higher
orders in the weak coupling expansion and scale like 1=N2

�.
Therefore, we performed the continuum extrapolation
using the simple constant plus 1=N2

� form. We also tried
to add an 1=N4

� term in the fit when doing the continuum
extrapolations. It turns out that the inclusion of such a term
did not change the result within the errors. Moreover, the
coefficient of the 1=N4

� term was 4–10 times smaller than
in the free theory. This confirms our assumption that the
dominant cutoff effects in the case of the p4 action go
like 1=N2

�.
The continuum extrapolated quark number susceptibil-

ities are shown in Fig. 3 for both p4 and HISQ actions.
Overall, the p4 results and HISQ results agree quite well.
Note that the agreement between the p4 results and HISQ
results is particularly good for T > 400 MeV. This is
remarkable in view of the different nature of the cutoff
effects for the HISQ and p4 actions. To better illustrate this
point, in Fig. 4 we show theN� dependence of �

l
2 for the p4

and HISQ action together with the continuum extrapola-
tions based on the 1=N2

� form and Eq. (4), respectively, for
two temperatures T ¼ 400 MeV and T ¼ 500 MeV. In the
figure, we also show the N� dependence of the HISQ
results for T ¼ 700 MeV together with the fit based on
Eq. (4). Note that the N� ¼ 16 HISQ data point was not
included in the continuum extrapolations but happens to lie
on the fitted curve.

For the p4 action, the cutoff effects at order 1=N4
� and

higher seem to be very small, and the dominant cutoff
effects are proportional to 1=N2

� with a positive coefficient.
For the HISQ action, there is no indication for such a term
in the data, and if it is put in the ansatz for the extrapola-
tions, the corresponding coefficient turns out to be nega-
tive. The cutoff dependence, thus, is well described by the
free theory modified by a multiplicative factor. The con-
tinuum extrapolated values for �q

2 obtained using the HISQ

action are given in Table I. Remarkably, the continuum
extrapolated �q

2 results at high temperatures deviate from

the massless ideal gas limit only by 5%. We also have
compared our results with recent continuum extrapolated
results obtained by using the stout action [13]. For �s

2, our

result agrees with the stout results within errors up to
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FIG. 4 (color online). The N� dependence of �l
2 obtained with the HISQ and p4 actions for T ¼ 400 (left), 500 (middle), and

700 MeV (right, HISQ only). The lines correspond to the fit of N� dependence based on Eq. (4) and 1=N2
� form for the HISQ and p4

action, respectively. The triangles correspond to the continuum value obtained using the HISQ action. The N� ¼ 16 data have not been
included in the fit.

TABLE I. Continuum extrapolated values for the second order
light and strange quark number susceptibilities obtained using
the HISQ action.

T (MeV) �l
2 �s

2

225 0.8768(85) 0.7585(81)

250 0.8968(60) 0.8137(55)

275 0.9156(44) 0.8568(48)

300 0.9230(38) 0.8807(44)

325 0.9263(40) 0.8939(49)

350 0.9352(44) 0.9098(59)

375 0.9393(46) 0.9176(56)

400 0.9406(47) 0.9222(60)

450 0.9428(52) 0.9303(44)

500 0.9440(43) 0.9344(37)

550 0.9452(39) 0.9379(35)

600 0.9462(36) 0.9407(36)

650 0.9472(35) 0.9430(38)

700 0.9484(34) 0.9451(40)

750 0.9497(35) 0.9474(39)

800 0.9511(35) 0.9497(38)

850 0.9526(37) 0.9516(38)

900 0.9539(41) 0.9538(45)

950 0.9551(47) 0.9563(58)
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350 MeV. For 350 MeV< T < 400 MeV, the stout results
are lower by 1.2–1.5 standard deviations. For �l

2, our
results agree with the stout results only up to 260 MeV.
Above that temperature, the stout results are lower than
ours by 2 standard deviations.

C. Fourth order quark number susceptibilities

As mentioned already in Sec. II, for the p4 action we
also calculated the strange and light fourth order quark
number susceptibilities for N� ¼ 6 and 8. The calculation
of the fourth order light quark number susceptibility is
more demanding than the calculation of the corresponding
strange quark number susceptibility. Therefore, for N� ¼
12 we calculated the fourth order quark number suscepti-
bility only in the strange quark sector. Our numerical
results for �q

4 normalized by the corresponding massless

ideal gas (SB) value are shown in Fig. 5. The cutoff
dependence of �q

4 is qualitatively the same as for �q
2;

namely, the continuum limit is approached from above,
contrary to the free theory results shown in Fig. 5 as
horizontal lines. As discussed above, the difference be-
tween the light and strange quark number susceptibilities
is expected to be small for T > 400 MeV and our numeri-
cal data clearly show this. In fact, with the exception of the
N� ¼ 8 data point at the lowest temperature, the difference
between the light and strange fourth order quark number
susceptibilities is of the same order or smaller than the
statistical errors. For �q

4 , the deviations from the ideal gas

value seem to be significantly larger than for �q
2 at tem-

peratures 350 MeV< T < 500 MeV and increase with
increasing N�.

Given the large statistical errors of the N� ¼ 12 lattice
data, it is at present difficult to perform a reliable contin-
uum extrapolation for �s

4. However, the N� dependence of

�s
4 for 350 MeV< T < 500 MeV is compatible with the

1=N2
� behavior of the cutoff effects, and such an extrapo-

lation would result in the value of �s
4=�

q;SB
4 around 0.77;

i.e., the deviations from the massless ideal gas limit for �4

could be almost 4 times larger than for the second order
quark number susceptibilities. Looking at the data shown
in Fig. 5, it is possible that the ordering of N� ¼ 8 and
N� ¼ 12 data will change for T > 550 MeV, becoming
qualitatively compatible with the free theory expectations.
Therefore, it would be very important to extend the lattice
calculations of fourth order susceptibility to higher
temperatures.

V. COMPARISON OF THE LATTICE AND THE
WEAK COUPLING RESULTS

Let us finally compare our lattice findings with results
from weak coupling calculations. As already discussed in
Sec. I, weak coupling results have existed for the second
order quark number susceptibility for some time. Recently,
resummed perturbative calculations for the fourth
order quark number fluctuations also became available
[28–31]. In these studies, also the second order quark
number susceptibilities have been considered.
In Fig. 6, we show the comparison of our continuum

extrapolated data for �l
2 with the perturbative calculations

in the dimensionally reduced effective field theory [29].1

The scale in the dimensionally reduced calculations was
fixed using the criteria of the fastest apparent convergence
for the gauge coupling of the dimensionally reduced effec-
tive theory [47] and was varied around this optimal value
by a factor of 2. The width of the band shown in Fig. 6
corresponds to this variation of the scale as well as to the
uncertainty in the value of the gauge coupling [29]. As
mentioned in Sec. I, in the case of more than one quark
flavor, one has to distinguish between the case where
different quark flavors couple to different or the same
chemical potential. In the latter case, there are contribu-

tions from off-diagonal quark number susceptibilities �ij
11,

i � j, i ¼ u, d, s which are absent in the single flavor
quark number susceptibilities defined in Eq. (1).
The resummed perturbative calculations in

Refs. [23,30,31] consider the case of three degenerate
massless quark flavors with equal chemical potential.
Therefore, the corresponding results cannot be directly
compared with our lattice calculations of �l

2. However,
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FIG. 5 (color online). Fourth order quark number susceptibil-
ities calculated with the p4 action and normalized by the
corresponding Stefan-Boltzmann value. The horizontal lines
correspond to the free field value of �q

4=�
SB
4 in the massless

limit. The free field result for N� ¼ 4 has been shifted upwards
by 0.44 for better visibility. The open symbols correspond to the
strange quark, while the filled symbols correspond to the light
quarks. Note that �SB

4 ¼ 6=�2.

1We compare here with the updated version of the 3D re-
summed perturbative calculation shown in Ref. [29]. We thank
S. Mogliacci and A. Vuorinen for bringing to our attention a
problem with an earlier version of the perturbative calculation
for �l

2 and sending us the corrected version of it prior to
publication.
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we also estimated the second order off-diagonal quark

number susceptibilities �ij
11 and find that their contribution

is about 1% or less in the temperature range considered

here. Furthermore, since �ij
11 has very large statistical

errors and is only marginally different from zero, its
inclusion would not change the comparison of our lattice
data and the results of the resummed perturbative calcu-
lations. Therefore, in Fig. 6 we also compare our results
with resummed perturbative calculations in so-called next-
to-leading log approximation (NLA) [23] shown as the
blue band and to the three-loop hard thermal loop pertur-
bation theory (HTLpt) [31]. The width of the blue band
reflects the scale uncertainties of the NLA calculations and
corresponds to the variation of the renormalization scale
from � ¼ �T to � ¼ 4�T. The dashed lines shown in
Fig. 6 correspond to the three-loop HTLpt results for the
renormalization scale � ¼ �T, 2�T, and 4�T.

As one can see from Fig. 6, the resummed perturbative
calculation based on the dimensionally reduced effective
theory reproduces the lattice results reasonably well,
while the calculation performed in NLA approximation
is above the lattice data by a few percent. The three-loop
HTLpt results also agree with the lattice results, given
their quite large-scale uncertainty. Note, however, that the
one-loop HTLpt results of Refs. [29,30] are below the
lattice data. Furthermore, the calculations of Ref. [30]
consider the case of three degenerate quarks with equal
chemical potential, while Ref. [29] considers single flavor
quark number susceptibilities. However, both calculations
yield very similar results. This further justifies the
comparison of our lattice results with the results of
Refs. [23,31].

The comparison of the lattice and weak coupling
results for the fourth order quark number susceptibility

normalized to the Stefan-Boltzmann limit is also shown
in Fig. 6. Unlike for the second order quark number sus-
ceptibilities, the contribution from the off-diagonal terms is
significant. Here we only show the comparison of the
lattice results for �s

4 with resummed calculations within

the effective 3D theory and LO HTLpt calculations from
Ref. [29] that considers single flavor quark number sus-
ceptibilities. The width of the bands again correspond to
the scale uncertainty of the perturbative calculations. For
the calculations within the dimensionally reduced effective
theory, the uncertainty band was estimated in the same
manner as for the second order susceptibility (see above).
The uncertainty of the LO HTLpt calculations of Ref. [29]
comes from the scale uncertainty as well as the uncertainty
of the gauge coupling. Using the lattice data for �s

4 for the

comparison with the perturbative results is justified, as the
effects of the nonvanishing strange quark mass are smaller
than the current errors in lattice calculations. Within errors,
theN� ¼ 8 and 12 lattice results for�s

4 are compatible with

the perturbative calculations. However, as already dis-
cussed in the previous section, for temperatures below
400 MeV there is a clear tendency for �s

4 to decrease

with increasing N�. Thus, in the continuum limit, �s
4 may

turn out to be below the above-mentioned perturbative
results, at least for T < 400 MeV. If we assume a 1=N2

�

behavior of the cutoff effects for �s
4 (which seems to be

correct for �s
2) the continuum limit would be below the

perturbative result. Of course, to see if this is indeed the
case, calculations with the HISQ action for
the fourth order susceptibility will be required. Let us
mention that the preliminary continuum estimate of the
fourth order quark number susceptibility obtained with the
stout action is also below the resummed 3D perturbative
result [48].
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FIG. 6 (color online). The second order quark number susceptibility (left) and fourth order quark number susceptibility (right)
calculated on the lattice and in resummed perturbation theory. For the second order quark number susceptibilities, we show the results
obtained in dimensionally reduced 3D effective theory [29], the results of NLA calculations [23], and of three-loop HTLpt (dashed
lines) [31] corresponding to different renormalization scales � ¼ �T, 2�T, and 4�T (bottom to top). For the fourth order quark
number susceptibilities, we show the results obtained in reduced 3D effective theory and the one-loop HTLpt [29]. The ideal massless
quark gas susceptibilities are �SB

2 ¼ 1 and �SB
4 ¼ 6=�2.
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The fourth order baryon number susceptibility has been
calculated in three-loop HTLpt [31], and the corresponding
results show agreement with the available lattice data for
T < 400 MeV. As discussed above, the fourth order
baryon number susceptibility differs significantly from
the fourth order quark number susceptibility by off-
diagonal contributions. Therefore, to further validate the
perturbative calculations, it will be important to also cal-
culate off-diagonal susceptibilities, which we plan to do in
the near future.

VI. CONCLUSIONS

We have calculated second and fourth order quark num-
ber susceptibilities for T > 200 MeV in lattice QCD using
two different improved staggered fermion formulations:
the p4 and HISQ actions. We performed continuum ex-
trapolations for the second order quark number suscepti-
bilities. While the cutoff dependence of the quark number
susceptibilities is quite different for the HISQ and p4
actions, we obtain consistent results in the continuum limit.
This makes us confident that the continuum extrapolations
are under control. The detailed study of the cutoff effects in
the quark number susceptibilities at high temperatures
provides valuable information for analyzing the cutoff
dependence of the pressure and other thermodynamic
quantities, where the numerical calculations are much
more involved due to the need of proper vacuum

subtractions. In particular, we find indications that the
cutoff effects in the temperature interval 400 MeV< T <
950 MeV are 40% smaller than in the free theory.
Lattice calculations of quark number susceptibilities

provide stringent constraints on the applicability of
resummed perturbative calculations at high temperature.
We performed a detailed comparison with the available
perturbative results and find agreement with them given the
uncertainties of the latter. To further constrain the reliabil-
ity of the perturbative results, it will be important to
perform continuum extrapolations for the fourth order
quark number susceptibilities as well as to study off-
diagonal quark number susceptibilities.
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[21] S. Borsányi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and
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