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We describe the main features of recent LHC data on elastic pp scattering through a simple

parametrization to the amplitude, inspired by a model proposed by Barger and Phillips in 1973, comprised

of two exponentials with a relative phase. Despite its simplicity, this parametrization reproduces two

essential aspects of the elastic differential cross section: the well-known precipitous descent in the forward

direction and a sharp ‘‘dip’’ structure. To include a complete description of data sets near �t ¼ 0, we

correct the original parametrization. We examine two possibilities: the presence of the two-pion threshold

singularity or a multiplicative factor reflecting the proton form factor. We find good descriptions of LHC7

and ISR data in either case. The form-factor model allows simple predictions for higher energies through

asymptotic theorems and asymptotic sum rules in impact parameter space. We present predictions for this

model at higher LHC energies, which can be used to test whether asymptotia is reached. The black-disk

limit in this model is seen to be reached only for
ffiffiffi
s

p � 106 TeV.
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I. INTRODUCTION

The total pp cross section and the elastic differential
cross section offer a unique opportunity to study confine-
ment and the transition to perturbative QCD, as they are
influenced by large and small distances.

We now have data for the total and the elastic differential
cross section from LHC running at

ffiffiffi
s

p ¼ 7 TeV (LHC7)
[1]. Data from LHC running at

ffiffiffi
s

p ¼ 8 TeV (LHC8) [2]
are available for the total cross section, and are expected
soon for the differential cross section. We notice that data
at

ffiffiffi
s

p ¼ 14 TeV (LHC14) may be, for a long time, our last
chance to study pp scattering and explain it in fundamental
terms. A tool to help in this endeavor is a good phenome-
nological understanding of the data, without the bias im-
posed by models. To present one such phenomenological
description is the aim of this paper.

In what follows we shall propose an empirical descrip-
tion of the differential elastic pp cross section to be used
at LHC8 and LHC14. This description follows from the

original proposal by Barger and Phillips (BP) [3], who
described ISR data with a five-parameter fit, i.e. writing
the scattering amplitude as

Aðs; tÞ ¼ i½
ffiffiffiffiffiffiffiffiffi
AðsÞ

p
eBðsÞt=2 þ ei�ðsÞ ffiffiffiffiffiffiffiffiffiffi

CðsÞ
p

eDðsÞt=2�: (1)

In Ref. [4], we had applied this parametrization to prelimi-
nary TOTEM results at LHC7 for the elastic differential
cross section [5]. In this paper we refine that analysis by
presenting an improved description of published data [1],
which includes the very small �t value, i.e. parametrizing
both the total and the elastic cross section within a few
percent of the present LHC7 data.
The idea in the present paper, as in our previous one [4],

is to dissect the elastic differential cross section into its
basic building blocks—namely the optical point, the for-
ward peak, the dip and the tail—and study the energy
dependence of each of them in a single simple analytical
expression. We hope in this way to gain insight on a
problem which has so far defied a complete description.
We find that the optical point requires the introduction of
the proton form factor, and we modify Eq. (1) accordingly.
The energy dependence of the parameters in this model

is a priori unknown. However, asymptotic theorems
can be invoked for a possible extension of the model to
higher energies. In particular, since the parameters A and B
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control the total cross section and the diffractive peak, we
use the Froissart-Martin bound [6,7] and unitarity to pro-
pose an expression for their energy dependence. For the
second term, which is nonleading at small �t-values, we
use the Khuri-Kinoshita theorem [8] and total absorption in
impact parameter space at infinite energy [4]. While this
procedure introduces more parameters, it also clarifies
the role played by each term in Eq. (1) and allows us to
study the black-disk limit. We shall show that, with this
parametrization, the black-disk limit is only obtained for
energies well beyond the reach of present-day cosmic-ray
or accelerator experiments.

II. THE BARGER AND PHILLIPS
MODEL AND LHC7 DATA

The parametrization, given in Eq. (1), corresponds to a
complex amplitude, which is composed of two terms, and a
relative phase �, which was found phenomenologically to
be �2:8 rad at LHC7, and can be interpreted as corre-
sponding to contributions from opposite parities, C ¼ �1.
The publication of the actual data by the TOTEM collabo-
ration [1] requires an update and also a revision of the
analysis we performed to preliminary TOTEM data in
Refs. [4,9]. Applying Eq. (1) to the published data and
using the same parameters as in Ref. [4], we find that, when
both statistical and systematic errors are included in the fit,
the description is still acceptable with �2=d:o:f:� 2:6.
However, when the analysis is performed with only statis-
tical errors, the �2 for the entire range becomes unaccept-
ably large. In particular, the parametrization of Eq. (1)
reproduces poorly the measured value of the total cross
section at LHC7. The problem therefore seems to lie with
the optical point. To pinpoint the origin of the problem, we
have fitted TOTEM LHC7 data [1] by implementing differ-
ent cuts of tmin for which the BP model provides a suitable
description. Specifically, any result with �2=d:o:f: & 3 is
considered acceptable. In Table I we display a grid of
possible cuts and the respective �2=d:o:f: values. We also
calculate the corresponding values obtained for the differ-
ential cross section at the optical point and the total cross

section. We find that, when the fit with the BP amplitude is
able to reproduce the optical point, the statistical descrip-
tion is not very good. On the other hand, the fit becomes
quite good for 0:2 GeV2 < jtmin j< 0:3 GeV2, even
though the total cross section obtained in these cases is
too low. From Table I we conclude that, past the very small
�t < 0:2 GeV2 values, the parametrization of Eq. (1) is
suitable to describe two essential features of the differen-
tial elastic cross section at high energies, namely the dip
structure and the larger jtj region, as one can also see from
Fig. 1. Notice that the exponential fit in the range jtj>
1:0 GeV2 can be taken to be as good as the power-law fit
jtj�n presented by the TOTEM Collaboration in Ref. [5].
This is shown in the inset of Fig. 1 where we display both
fits in the large �t range, following TOTEM’s fit proce-
dure, namely, taking only the data in the range 1:5 GeV2 <
�t < 2:0 GeV2. In this sense, the comparison with their fit
is immediate. We notice at this point that, for the BP model
of Eq. (1) to give a good global description from the optical
point to past the dip, the very small jtj behavior must
receive a correction, while, at the same time, the region
past �t ¼ 0:2 GeV2 should still be described through two
exponentials (and the phase). Namely, since the BP model
gives a very good description of LHC7 data except that in
the forward region, there is no phenomenological reason to
modify it either around the dip or in the tail. We thus
propose to ameliorate the very small �t behavior by
modifying only the first term in Eq. (1) with a factor
Gðs; tÞ such that Gðs; 0Þ ¼ 1, and suggest to parametrize
existing and future pp data with the amplitude

Aðs;tÞ¼ i½Gðs;tÞ ffiffiffiffiffiffiffiffiffi
AðsÞp

eBðsÞt=2þei�ðsÞ ffiffiffiffiffiffiffiffiffiffi
CðsÞp

eDðsÞt=2�: (2)

We have examined two possibilities:

(i) A factor Gðs; tÞ ¼ exp ½��ðsÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � t

p � 2�Þ�
reflecting the presence of the nearest t-channel
singularity, i.e. the two-pion threshold [10,11]

TABLE I. Statistical results of fits to TOTEM data for the
elastic differential pp cross section at LHC7 [1] with the simple
BP model of Eq. (1), with �2 calculated for the range �t >
�tmin and the resulting values for the optical point and the total
cross section.

�tmin

(GeV2) d.o.f. �2=d:o:f:
d�el=dtjt¼0

(mbGeV�2)

�tot

(mb)

0.01 156 9.40 490.2 97.9

0.10 118 6.33 422.8 90.9

0.20 94 2.66 282.0 74.2

0.30 80 1.62 181.8 59.6

0.40 70 1.41 212.1 64.4
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FIG. 1 (color online). Fit to the differential pp cross section at
7.0 TeV [1] with the BP parametrization of Eq. (1) in the range
0:38 � jtj � 2:4 GeV2 with �2=d:o:f: in this interval. Inset: The
power-law fit jtj�n, with n � 8, compared to the exponential fit
in the range 1:5 � jtj � 2:0 GeV2.
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discussed in Refs. [12,13]; this possibility is labelled
the mBP1 model,

(ii) A factor Gðs; tÞ ¼ F2
P ¼ 1=ð1� t=t0Þ4 modeled

after the proton form factor, which describes phe-
nomenologically the probability that the proton
breaks up as the squared momentum transfer
increases; this is labelled the mBP2 model.

The mBP1 model and other possible modifications of the
BP models are discussed in detail in Appendices A and B.
In the appendices we shall also present further details, such
as analytic expressions for the elastic cross section and, in
Appendix C, the impact parameter profile functions for
both the mBP1 and mBP2 models.

III. THE PROTON FORM-FACTOR
MODIFICATION: mBP2

In this section, and the ones to follow, we present a
modification of the BP model at very small t values
obtained through the proton form factor. As a viable
parametrization of LHC data, we analyze the physics
content of the following model for the elastic scattering
amplitude:

Aðs; tÞ ¼ i½F2
PðtÞ

ffiffiffiffiffiffiffiffiffi
AðsÞp

eBðsÞt=2 þ ei�ðsÞ ffiffiffiffiffiffiffiffiffiffi
CðsÞp

eDðsÞt=2�; (3)

with A, B, C, D, � and t0 as free parameters. We display
our results with this model (henceforth called mBP2) in
Fig. 2. ISR data sets used in the fits comprise the data
collection by Amaldi and Schubert [14] and all experimen-
tal information available from 1980 onwards [15–18].
LHC7 data are from Ref. [1].

A point to notice is that at the ISR energy
ffiffiffi
s

p ¼
53 GeV, the data beyond �t ’ 7 GeV2 suggest the pres-
ence of a second wiggle in the amplitude, as would be
expected by simple eikonal models. In this range the
present parametrization does not reproduce this behavior.
Data are scant here, but it is also possible for the parame-
trization not to hold for the entire �t range explored at
ISR. Namely no conclusion can be drawn about the valid-
ity of the model at ISR beyond�t ’ 7 GeV2. On the other
hand, no second wiggle is seen at higher energies in the
TOTEM data and the increase with energy of the slope
DðsÞ (see Table II) could cover any wiggle beyond the first
dip. This is a specific prediction of this model, in this jtj
range.

Another comment still concerns the tail at LHC7. In this
model, the large �t behavior is described by an exponen-
tial with the slope DðsÞ. This differs from the power-law
behavior proposed by the TOTEM collaboration [1].
A similar power law was also proposed by Barger and
Phillips in Ref. [3] and could be ascribed to a large �t
proton form-factor behavior. A QCD interpretation as a
triple-gluon exchange was proposed in Refs. [19,20]. Our
proposal follows the empirical scope of this and our pre-
vious paper [4] in providing a parametrization for the entire
�t range under consideration. Figure 2 shows the two fits,

TOTEM and ours, extrapolated up to �t ¼ 2:5 GeV2 and
highlights both fits outside the narrow range 1:5 GeV2 <
�t < 2:0 GeV2.
We summarize the results of the fit in Table II, while

plots and fit results for the model with the two-pion
threshold correcting the t� 0 behavior can be found in
Appendix A. From this table we notice that the value of
the parameter t0 is larger at ISR energies than at LHC7,
where its value is consistent with FPðtÞ being the elec-
tromagnetic (EM) form factor, i.e. t0 � 0:71 GeV2.
Namely, it would appear that asymptotically, t0 corre-
sponds to its EM form factor value. In fact, fits to the
LHC7 data with this value give a �2=d:o:f: ¼ 2:5 just as
in the case of the free fit. This difference between ISR
and LHC probably corresponds to low-energy contribu-
tions to this parameter. We reproduce this result in the
last two rows, which correspond to the fit to LHC7
data obtained by using for t0 the results from the fit
(six-parameter fit) or keeping t0 fixed at 0:71 GeV2

(five-parameter fit).
From the mBP2 model the analytical expression for the

elastic cross section is
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FIG. 2 (color online). Fits to the ISR and LHC7 data sets with
the model mBP2, and with t0 a free parameter. Data sets are as
described in the text. Inset: LHC7 data near the optical point are
shown in comparison with the present model, which includes the
proton form-factor modification.

ELASTIC pp SCATTERING FROM THE OPTICAL . . . PHYSICAL REVIEW D 88, 094019 (2013)

094019-3



�elðsÞ ¼ At0e
Bt0E8ðBt0Þ þ C

D

þ 2ð ffiffiffiffiffiffiffi
AC

p
cos�Þt0eðBþDÞt0=2E4

�ðBþDÞt0
2

�
; (4)

with EnðxÞ ¼
R1
1 dye�xy=yn. In Table III we present the

values of the total and elastic cross sections as obtained
from both models, mBP1 and mBP2, together with the
optical point for LHC7 and ISR energies. Parameter values
for the mBP1 model can be found in Appendix A.

We shall now apply to the modified amplitude the
asymptotic sum rules presented in our previous analysis
[4]. The sum rules correspond to the ansatz of total absorp-

tion in b space, namely, SR1 � =m ~Aðs; b ¼ 0Þ ¼ 1 and

SR0 � <e ~Aðs; b ¼ 0Þ ¼ 0 at asymptotic energies, where
~Aðb; sÞ is the Fourier transform of the scattering ampli-
tude in b space. For the mBP1 model, the analytical
expressions for the sum rules for the imaginary and real
parts of the amplitude are presented in Appendix A. As
discussed in Ref. [4], for the satisfaction of the first sum
rule, SR0 ¼ 0, it is necessary to introduce a real part for the
first term, the one dominant at small �t, for which
C ¼ þ1. Let us denote with �̂ðsÞ the contribution to the

ratio of the real part to the imaginary part of the first term.
For mBP2 the sum rules give the following results:

SR1 ¼ 1

2
ffiffiffiffi
�

p
Z 1

o
dT

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

1þ �̂2

s
e�BT=2

½1þ ðT=t0Þ�4

� ffiffiffiffi
C

p
e�DT=2j cos�j

3
5 ¼ 1ffiffiffiffi

�
p

2
4�

ffiffiffiffi
C

p
D

j cos�j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

1þ �̂2

s
t0
2
eBt0=2E4ðBt0=2Þ

3
5; (5)

SR0 ¼ 1ffiffiffiffi
�

p
2
4�

ffiffiffiffi
C

p
D

sin�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

1þ �̂2

s
�̂
t0
2
eBt0=2E4ðBt0=2Þ

3
5: (6)

Using the tight bound

1

xþ n
< ½exEnðxÞ�< 1

xþ n� 1
; n ¼ 1; 2; . . . ; (7)

we have�
1

Bþ 8=t0

�
<

t0
2
eBt0=2E4ðBt0=2Þ<

�
1

Bþ 6=t0

�
: (8)

Hence, a simple analytical result for the sum rules can be
obtained in the modified mBP2 model by taking the mean
value 7 in the denominator, so that

SR1 ¼ 1ffiffiffiffi
�

p
2
4�

ffiffiffiffi
C

p
D

j cos�j þ
ffiffiffiffiffiffiffiffiffi
A

1þ�̂2

q
B̂

3
5; B̂ ¼ Bþ 7

t0
;

(9)

SR0 ¼ 1ffiffiffiffi
�

p
2
4�

ffiffiffiffi
C

p
D

sin�þ
ffiffiffiffiffiffiffiffiffi
A

1þ�̂2

q
B̂

�̂

3
5; B̂ ¼ Bþ 7

t0
:

(10)

Asymptotically, we expect the following:

SR1 ! 1�; SR0 ! 0þ : (11)

TABLE II. The first six rows give values of the free-fit parameters A, B, C,D, t0 and� for the modelmBP2 at each energy analyzed.
In the last row, the scale parameter t0 is kept fixed. A and C are expressed in units mbGeV�2, B and D in units of GeV�2, t0 in units of
GeV2 and � in radians.ffiffiffi
s

p
(GeV) A B Cð�10�3Þ D t0 � d.o.f. �2

d:o:f:

24 74:8� 0:8 4:0� 0:1 4:8� 0:7 2:03� 0:06 1:06� 0:03 3:31� 0:01 128 1.2

31 83:7� 0:2 3:90� 0:07 5:4� 0:5 2:12� 0:04 0:99� 0:01 3:06� 0:01 200 1.6

45 89:6� 0:2 4:27� 0:05 2:4� 0:2 1:84� 0:02 0:912� 0:009 2:83� 0:01 201 3.7

53 93:0� 0:1 4:51� 0:05 2:5� 0:1 1:84� 0:01 0:947� 0:008 2:79� 0:01 313 4.7

63 97:4� 0:2 4:3� 0:1 3:5� 0:4 1:97� 0:04 0:90� 0:01 2:86� 0:06 159 2.1

7000 565� 2 8:2� 0:2 1370� 70 4:66� 0:04 0:69� 0:01 2:755� 0:008 155 2.5

7000 562� 1 8:54� 0:03 1280� 34 4:61� 0:03 0.71 (fixed) 2:744� 0:004 156 2.5

TABLE III. Cross sections and the optical point following
from models mBP1 and mBP2.

Model

ffiffiffi
s

p
(GeV)

�tot

(mb)

�el

(mb)

d�el=dtjt¼0

(mbGeV�2)

mBP1

24 40.0 6.80 82.0

31 40.6 7.15 84.3

45 42.1 7.14 90.9

53 42.9 7.43 94.0

63 43.7 7.68 97.8

7000 101 25.6 524

mBP2

24 37.9 6.65 73.6

31 40.1 7.20 82.4

45 41.6 7.13 88.7

53 42.4 7.42 92.1

63 43.3 7.60 96.3

7000 100 25.5 515
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In order to estimate the values taken by SR0 and SR1 and
check whether total absorption has been taking place, an
estimate for �̂ is needed. To this aim we use the soft-kt
resummation model of Ref. [21] where the leading term
of the cross section is driven by QCD mini-jets. In this
model the asymptotic behavior of the total cross section

is obtained as �total � ðln sÞ1=p [22], where the parameter
p controls the large-b behavior of the impact-parameter
distribution and obeys the constraint 1=2< p< 1.
Asymptotically then, �̂ðsÞ ¼ �=2p ln s.

We show in Table IV the numerical results for SR1 and
SR0 for both models, mBP1, where the small �t modifi-
cation is obtained through a term reflecting the two-pion
loop singularity, and mBP2, where the form factor is
dominating the t ’ 0 behavior. The table indicates that
the modified models ameliorate the satisfaction of the
sum rules with respect to the simpler BP parametrization,
but the asymptotic value SR1 ¼ 1 is not yet reached.

We also notice that in the BP model (and in its modified
versions as well), the real-to-imaginary part of the elastic
amplitude in the forward direction, �ðsÞ, is given by

�ðsÞ¼ �̂�
ffiffiffiffiffiffi
ðCAÞ

q
sin�

1�
ffiffiffiffiffiffi
ðCAÞ

q
jcos�j

! �̂þ
ffiffiffiffiffiffiffiffiffi�
C

A

�s
½�̂jcos�j�sin��;

(12)

for
ffiffiffiffiffiffiffiffiffiffi
C=A

p 	 1. We shall make use of Eq. (12) when
discussing asymptotic predictions.

Before leaving this section, we present the results one
obtains when the model mBP2 is applied to elastic �pp
data. We show the results of the fits to �pp data in
Fig. 3. Data are from Refs. [23–25] for S �ppS and from
Refs. [26–28] for the Tevatron. We note the absence of a
distinctive dip in �pp, but also its faint appearance as the
energy increases. From this and other indications, one can
argue that, at those energies where �pp data are available,
asymptotia has not yet been reached. For the fits, a value
for the parameter t0 in the form factor needs to be chosen.
Interpolating between ISR and the LHC, we obtain for t0
the values indicated in the figure. At the end of this paper,

we shall comment more on the differences between the
energy behavior of the parameters for pp and �pp.

A. Slope parameter in the modified models

The introduction of a general factor,Gðs; tÞ, given either
as in Eq. (A2) or by the square of the proton form factor,
leads to a change of curvature in the local slope.
This behavior should be expected since the new model is
influenced by Gðs; tÞ as follows:

Beffðs;tÞ¼
�
d�el

dt

��1
�
ABeBtG2ðs;tÞþ2AeBtGðs;tÞdGðs;tÞ

dt

þCDeDtþ ffiffiffiffiffiffiffi
AC

p ðBþDÞGðs;tÞeðBþDÞt=2 cos�

þ2
ffiffiffiffiffiffiffi
AC

p
eðBþDÞt=2dGðs;tÞ

dt
cos�

�
: (13)

In Fig. 4 we display data for the effective forward slope
BeffðsÞ � Beffðs; t ¼ 0Þ, compared with the local slope
Beffðs; tÞ, at ISR53 and LHC7, following from the above-
mentioned models. We notice from this figure that the
modification with the square root in the exponential,
mBP1, appears to overrate near-forward slopes. In fact,
the respective forward slopes exceed by some 10% the
measurements at ISR53 and LHC7. This provides yet
another reason to focus on the form-factor-modified model,

TABLE IV. Sum rules for modified BP models at ISR23,
ISR53 and LHC7.

Model p
ffiffiffi
s

p
(GeV) SR1 SR0

mBP1


 
 
 24 0.721 0.011


 
 
 53 0.722 0.049

0.66 7000 0.953 0.067

0.77 7000 0.956 0.046

mBP2


 
 
 24 0.719 0.021


 
 
 53 0.717 0.049

0.66 7000 0.950 0.070

0.77 7000 0.953 0.048

)2|t| (GeV
0 0.5 1 1.5 2 2.5

)
-2

/d
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mBP2. We also notice that, from a numerical point view,
while in the original BPmodelBðsÞ ’ BeffðsÞ, in the case of
mBP2 the following approximation holds:

BðsÞ ’ BeffðsÞ � 8

t0
; (14)

as one can easily check using Eq. (13). For this model, we
also show in the right panel of Fig. 4 the comparison
between BeffðsÞ from experimental results from ISR to
LHC. The parametrization applied in Fig. 4 for BeffðsÞ is
inspired by the asymptotic theorems, and is consistent with
the result for the effective slope by Schegelsky and Ryskin
[29]. Indeed, when fitting BeffðsÞ with an additional term
with a linear ln s dependence, the respective coefficient is
consistent with zero. This leads to the best fit shown in
Fig. 4, with BeffðsÞ � ðln sÞ2.

IV. ASYMPTOTIC PREDICTIONS OF THE
EMPIRICAL MODEL mBP2

The original BP model of Eq. (1) had purported
to present a ‘‘model independent analysis of the structure
in pp scattering’’ [3]. As such, and as pointed out by
Uzhinsky and Galoyan [30], the BP parametrization does
not, in itself, possess a predictive power. However, its
simplicity can be exploited to make higher-energy predic-
tions. In fact, the model has the virtue of allowing a simple
implementation of the asymptotic sum rules we presented
in Ref. [4], and thus to obtain the asymptotic behavior of
the parameters which can lead to the predictions of the
present model for the elastic differential cross section at
LHC8 and LHC14. We shall now proceed to illustrate such
an asymptotic, and partly empirical, realization of the
mBP2 model.

This model has six parameters, i.e. two amplitudesffiffiffiffiffiffiffiffiffi
AðsÞp

and
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

, two slopes BðsÞ and DðsÞ, a phase �
and a scale t0. The fits to ISR and LHC7 data suggest t0 !
0:71 GeV2 at LHC energies, and thus for asymptotic

predictions we fix t0 to acquire the value of the EM form
factor of the proton, i.e. t0 ¼ 0:71 GeV2. As for the phase
�, the same fits support the approximation �� const in
energy. In Regge models, the phase would be t dependent,
and, in such case, the phase, as used here in the empirical
model, would represent a value averaged over the range �t
of validity of this model.
Having thus made the ansatz that both t0 and � are

asymptotically constant, we remain with four energy-
dependent parameters. As we shall shortly discuss in detail,

to comply with asymptotic theorems
ffiffiffiffiffiffiffiffiffi
AðsÞp

and BðsÞ
should have the same asymptotic behavior, namely at
most like ðln sÞ2. For the slope of the second (nonleading)
term, an asymptotic normal Regge behavior would be the
most appealing possibility. The amplitude of the second
term is so far unconstrained. From the asymptotic sum

rules, the amplitude
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

can either have a constant or a
logarithmic energy dependence. We shall now see how this
behavior can be understood in more detail.
The satisfaction of the sum rules for elastic scattering at

higher energies, namely, SR1 ! 1 and SR0 ! 0, is sug-
gested by our results, presented in Table IV. Based on their
saturation, we propose to make predictions concerning the
energy behavior of the parameters AðsÞ, BðsÞ, CðsÞ and
DðsÞ. We begin with the simple BP model, which contains
the asymptotics of the sum rules, since both �ðsÞ and t0 of
the modified versions of the model are approximately
constant in energy. The asymptotic sum rules read

SR0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðsÞ
1þ �̂ðsÞ2

s
�̂ðsÞffiffiffiffi
�

p
BðsÞ �

ffiffiffiffiffiffiffiffiffiffi
CðsÞp

sin�ffiffiffiffi
�

p
DðsÞ ! 0; (15)

SR1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðsÞ
1þ �̂ðsÞ2

s
1ffiffiffiffi

�
p

BðsÞ þ
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

cos�ffiffiffiffi
�

p
DðsÞ ! 1: (16)

Since � is approximately constant throughout the range
from ISR and beyond, and if �̂ðsÞ � 1= ln s, one can then
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obtain the following asymptotic relationships between the
parameters: ffiffiffiffiffiffiffiffiffi

AðsÞp
BðsÞ �

ffiffiffiffiffiffiffiffiffiffi
CðsÞp
DðsÞ ln s; (17)

ffiffiffiffiffiffiffiffiffi
AðsÞp
BðsÞ �

ffiffiffiffi
�

p
ð1þ � cot�

2p ln s Þ
� const; (18)

where s, the squared c.m. energy, is meant to be in units of
GeV2.

We now start from the fact that to leading order in ln s,
the parameter AðsÞ / �2

tot. The satisfaction of asymptotic
theorems [31] suggests that asymptotically �total � BðsÞ,
which is also in agreement with Eq. (18).

We consider here a specific realization of the Froissart-
Martin bound [6,7], namely the case of maximal energy

saturation. The more general case of �total � ðln sÞ1=p with
1=2< p< 1 will be discussed elsewhere. Then,

AðsÞ � ðln sÞ4; BðsÞ � ðln sÞ2; DðsÞ �
ffiffiffiffiffiffiffiffiffiffi
CðsÞ

p
ln s:

(19)

The above results are proposed in the context of the simple
BP model, with five parameters. The form-factor modifi-
cation of Eq. (3) may introduce some changes, but, if we
assume the parameter t0 to asymptote to a constant value
(of t0 ’ 0:71 GeV2), its introduction will not spoil the
simple relations of Eqs. (17) and (18). We point out that
the ansatz BðsÞ � ðln sÞ2 is asymptotically consistent with
data, as discussed in Ref. [29] and seen in Fig. 4. However,
at nonasymptotic energies the parameter BðsÞ may have a
slower growth.

To estimate the energy dependence of the parameters of
the nonleading term, i.e. DðsÞ and CðsÞ, is more compli-

cated. An important consequence of Eq. (12) is that
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

,
if at all, must increase less than ln s, if both �ðsÞ and �̂ðsÞ �
ðln sÞ�1 asymptotically. Namely, we have the following:

(i) If the first term,
ffiffiffiffiffiffiffiffiffi
AðsÞp

, in the elastic amplitude
indeed represents a C ¼ þ1 vacuum term, then

�̂ðsÞ ! �

ln s
: (20)

(ii) If the Froissart-Martin bound is indeed saturated,
then we have the Khuri-Kinoshita theorem accord-
ing to which also

�ðsÞ ! �

ln s
½with the same coefficient��: (21)

(iii) If both Eqs. (20) and (21) are simultaneously true,
then we must have that

½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC=AÞ

p
� ln ðsÞ ! 0: (22)

(iv) The above precludes
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

from growing asymp-

totically as ln ðsÞ, if ffiffiffiffiffiffiffiffiffi
AðsÞp � ½ln ðsÞ�2.

In the logarithmic approximations we are using here, the
simplest assumption—albeit not the only one—satisfying
the sum rules, the Froissart bound and the Khuri-Kinoshita
theorem [8] is then

DðsÞ � ln s;
ffiffiffiffiffiffiffiffiffiffi
CðsÞ

p
� const: (23)

In other words, when the Khuri-Kinoshita asymptotic
behaviour for the real part of the amplitude is satisfied,
one can choose the amplitude CðsÞ ! const and the sum
rules dictate a normal Regge-like behavior for the slope of
the nonleading term,DðsÞ. However there are some caveats
and subtleties to be aware of:
(i) The phenomenology presented for pp, and �pp

scattering as well, shows that
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

increases very
rapidly from ISR to LHC7, and hence a constant
behavior over this energy range is not observed
(see Table II).

(ii) For a large range of the energy interval �ðsÞ � const
[average value 0.12] and thus over the same range
CðsÞ may increase in order to keep SR0 � 0. This
seems to be borne out by the phenomenology.

Thus it is quite possible that, at least in the energy range in

which �ðsÞ � const,
ffiffiffiffi
C

p � ln ðsÞ. Unfortunately, with
present data, no unique limit can be prescribed. We shall

thus resort to an empirical parametrization for
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

, as
shown shortly below.

A. Phenomenological results for the parameters
and their physical meaning

In this section we propose an empirical description of
the differential elastic pp cross section to be used at LHC8
and LHC14. This parametrization follows Eq. (3) and
refines the one proposed in Ref. [4], presenting an optimal
description of the very small �t value, in addition to the
already mentioned good description of the dip and the tail.
Following the above discussion, and fits to ISR

and LHC7 data we propose the following asymptotic
parametrization:

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�AðsÞ

p
ðmbÞ ¼ 47:8� 3:8 ln sþ 0:398ðln sÞ2; (24)

BðsÞðGeV�2Þ ¼ BeffðsÞ � 8

t0

¼ 11:04þ 0:028ðln sÞ2 � 8

0:71

¼ �0:23þ 0:028ðln sÞ2; (25)

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�CðsÞ

p
ðmbÞ ¼ 9:6� 1:8 ln sþ 0:01ðln sÞ3

1:2þ 0:001ðln sÞ3 ; (26)

DðsÞðGeV�2Þ ¼ �0:41þ 0:29 ln s: (27)

The parametrization for CðsÞ is empirical,
ffiffiffiffiffiffiffiffiffi
AðsÞp

and BðsÞ
follow asymptotic maximal energy saturation behavior,
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and DðsÞ shows normal Regge behavior. In Fig. 5 we plot
the parametrizations from Eqs. (24)–(27), and indicate the
results of the fit to the elastic differential cross sections for
pp data (black dots). The red dots indicate the value of the
parameters obtained when fitting �pp data with the mBP2
model. Notice that �pp data were not used to determine the
parametrization given in Eqs. (24)–(27). A comment on the
difference between the results of the fit of pp and �pp can
be found in the next section.

B. A simple Regge-model for constant average �

We have mentioned that, for the purpose of the
empirical parametrization described by this model, the
phase � is to be considered as averaged over the range of
momentum transfer under consideration. The previous phe-
nomenology also indicates that it is approximately constant
in energy. Here we shall show the connection between an
arbitrary phase such as � and the contribution to the am-
plitude from C ¼ �1 states, commenting on the energy
dependence. This follows if, in Regge language, the two
trajectories contributing to the amplitude are degenerate.

Consider a C ¼ þ1-state contribution to the elastic
amplitude. It reads

A ðþÞ
R ðs; tÞ ¼ iCþ

�
1

s

���
se�i�=2

so

��
�þðtÞ

; (28)

where �þðtÞ is the positive-signature trajectory, R stands
for a general Regge parametrization, and so is a generic
energy scale. For a C ¼ �1 state, on the other hand, we
have

A ð�Þ
R ðs; tÞ ¼ C�

�
1

s

���
se�i�=2

so

��
��ðtÞ

; (29)

where ��ðtÞ is the negative-signature trajectory. Notice,
the absence of i in the second term.
We consider the two trajectories to be degenerate

(in analogy to the often invoked ‘‘standard’’ exchange
degeneracy between f2-a2 and �-! trajectories, which is
so essential for a lack of resonances in ‘‘exotic’’ channels).
Consider the limit

�þðtÞ ¼ ��ðtÞ: (30)
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If as usual we assume them to be linear and just for
simplicity also assume that ��ð0Þ ¼ 1 (the case of the
‘‘old’’ uncritical Pomeron), we may write their total
contribution as

A Rðs; tÞ ¼ i
Cþ � iC�

so
et�

0ðlnðs=soÞ�i�=2Þ: (31)

If we define

Cþ ¼ soC cos�; C� ¼ �soC sin�; (32)

we may rewrite Eq. (31) as

A Rðs; tÞ ¼ iCet�
0ðlnðs=soÞ�i�=2Þei�: (33)

Apart from the ‘‘extra’’ phase e�it�0�=2, this corresponds
to the second term of the Barger-Phillips amplitude, the
‘‘C-term.’’ Notice that this phase is present in any Regge
amplitude.

Now we turn to some numerics related to this identifica-
tion. Clearly, DðsÞ ¼ 2�0 ln ðs=soÞ. Our phenomenological
value gives approximately DðsÞ � 0:29 ln ðs=soÞ GeV�2,
which corresponds to �0 � 0:145 GeV�2. This ‘‘extra’’
phase �ðtÞ ¼ �t�0�=2 [which is constant in s and hence
nonleading with respect to ln ðs=soÞ] in our case is bounded
between 0< �ðtÞ< 0:23 as 0< jtj< 1 GeV2, an order of
magnitude smaller than the values of � ¼ 2:7� 2:9 rad
found.

Figure 5 shows that the fit values for CðsÞ and the slope
DðsÞ for �pp scattering do not completely follow the pa-
rametrization obtained for the case of pp amplitudes. In
Regge language, this corresponds to different nonleading
contributions from the Regge trajectories. The essential
point is that while the leading terms for pp and �pp are
the same by virtue of asymptotic theorems, the nonleading
terms [characterized by CðsÞ, DðsÞ and the phase] are not,
leading to different ratios of charge-conjugation C ¼ �1
terms for the two cases. In this paper we shall not discuss
this point further, leaving a Regge analysis of this model to
future studies.

C. The position of the dip

Although the phase � is consistent with a constant as
the energy increases, its value fluctuates. In the rangeffiffiffi
s

p ¼ 53–7000 GeV, the fits for pp and �pp indicate � ’
2:7� 2:9 rad. We note that the value used for� influences
the position and depth of the dip. In order to choose a value
for �, we then study how the dip moves as a function
of energy. The simplest asymptotic assumption for the
dip position as a function of energy is to assume geomet-
rical scaling, namely tdip�total � const. In the maximal

saturation model, in which �total � ðln sÞ2, one can then
parametrize the dip position as

tdip ¼ � a

1þ bðln sÞ2 : (34)

In Fig. 6 we compare data for the position of the dip in pp
scattering with a parametrization obtained from Eq. (34)

and with other predictions from amplitudes obeying
geometrical scaling as discussed in Ref. [32]. A linear
logarithmic fit is also shown for comparison. Using these
different possibilities, one can calculate the position of the
dip at LHC8 and LHC14, as shown in Table V. In this table,
GS1 refers to the parametrization of Eq. (34), andGS2 and
GS3 refer to different applications of the geometrical
scaling model of Ref. [32]. The geometrical scaling values
are in good agreement with recent predictions for the dip
position at LHC14 from Refs. [33,34].

V. PREDICTIONS FOR LHC8 AND LHC14
AND THE BLACK-DISK LIMIT

We are now in a position to predict the t dependence of
the elastic differential cross section in pp scattering at
higher LHC energies, using the empirical asymptotic
model described in the previous section. In Fig. 7 we
show these predictions for pp elastic differential cross
sections at LHC8 and LHC14. This model does not include
a second dip, or a wiggle, as in many eikonal models, such
as that seen in Ref. [35]. On the other hand, at present, at
LHC7, in the interval 0<�t < 2:5 GeV2 TOTEM data do
not allow one to establish the presence of a second dip or
wiggle. Finally, the dotted and full line correspond to
different values of the phase � and the figures confirm
the sensitivity of the dip depth and position to the chosen
value for the phase �.
We now turn to higher energies and consider one favorite

test of asymptotia, namely the black disk limit for the ratio
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TABLE V. Dip position from
ffiffiffi
s

p ¼ 8 TeV onwards as
predicted by geometrical scaling models and simple linear
logarithmic evolution.ffiffiffi
s

p
(TeV) jtjLINdip jtjGS1dip jtjGS2dip jtjGS3dip

8 0.510 0.518 0.495 0.511

14 0.417 0.471 0.439 0.452

ELASTIC pp SCATTERING FROM THE OPTICAL . . . PHYSICAL REVIEW D 88, 094019 (2013)

094019-9



of the elastic to the total cross section, Rel ¼ �el=�tot. As
was also noticed in Ref. [36], present data from LHC7
indicate that we are still far from this limit. The question
is, how far?

Using the energy parametrization discussed in the pre-
vious section, an approximately constant scale t0 and a
band of values for �, we obtain the result shown in Fig. 8.
We notice that this ratio is in agreement with Auger results
[37]. Moreover, the asymptotic behavior is dictated by the
sum rules, which reinforcing the condition of total absorp-
tion of partial waves, lead to the saturation of the black-
disk limit, i.e. Rel ! 1=2 as s ! 1. From the parameters
presented in Table VI, we estimate that Rel ’ 1=2 at

ffiffiffi
s

p ’
1010 GeV (corresponding to the energy in the lab frame
E ’ 1020 GeV), i.e. at energies typically larger than the
Planck scale.

As expected, the ratio Rel is less sensitive to variations in
�, since the contribution arising from the dip region to the
integrated elastic cross section is minimal. Therefore, not-
withstanding the observable effect in the elastic differential
cross section, shown in Fig. 7, the predictions of
this model for different values of � lead to practically
overlapping curves.

We now summarize the physics content of the proposed
parametrization as follows:

(1) The first term in which the amplitude is split corre-
sponds to a leading positive charge-conjugation term,
C ¼ þ1, and the second term corresponds to a

mixture of C ¼ þ1 and C ¼ �1 exchanges. The
value of the phase, �� � but � �, �=2 indicates
that the second term is predominantly C� even, and
thus the interpretation of the tail as due only to a three-
gluon exchange [19] is not observed in this model.

(2) The parameters of the first term control the total
cross section, via AðsÞ, and the diffraction peak with
BðsÞ; the parametrization of their energy behavior is
valid for both pp and �pp. This is in keeping with the
Pomeranchuk theorem.

(3) For the second term, the slope DðsÞ can be inter-
preted as arising from nonleading Regge and
Pomeron exchanges. These contributions differ for
pp and �pp. This is confirmed by the fact that its
energy behavior is not quite the same for the two
processes. A similar argument can be used for the
energy dependence of the nonleading amplitude
CðsÞ, which is a mixture of C� even and C� odd
exchanges.
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FIG. 7 (color online). mBP2 model predictions for the differ-
ential elastic cross section at LHC8 and LHC14 in a maximal-
energy-saturation model, �total � ðln sÞ2.
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(4) The proton form factor multiplying the first term is
used to describe the probability that the proton does
not break up at �t ’ 0.

VI. CONCLUSIONS

We have shown that the pp differential elastic cross
section in the range measured by the TOTEM experiment
at LHC can be parametrized through two exponentials and
a phase, provided the first term is modified by a multi-
plicative factor to optimize the description of the forward
peak. Two different modifications were proposed. For the
model with a proton form factor to modify the �t ’ 0
behavior, we extracted predictions at LHC8 and LHC14,
and calculated the ratio of the elastic to the total cross
section up to and beyond

ffiffiffi
s

p ¼ 57 TeV.
The parametrization of pp elastic cross-section data

presented in this paper is not meant to be exact, but rather
to indicate how to break up the amplitude in a set of
building blocks, and apply this dissection to the data as
the energy increases. This parametrization addresses the
following basic elements:

(i) the value of the differential cross section at t ¼ 0,
namely the optical point value;

(ii) a rapid decrease, characterized by a slope, which,
between �t ¼ 0 and the dip, is not a constant;

(iii) the occurrence of a dip in pp at all energies from
ISR to LHC;

(iv) an exponential decrease after the dip, with a
nonleading slope and an amplitude much smaller
than before the dip.

This behavior is described by an empirical model, with two
amplitudes, two different slopes, a phase and the proton
form factor to multiply the amplitudes. This empirical
model might help us to understand the elastic pp differ-
ential cross section [40]. It describes the data well and, as
such, can be used by model builders and experimentalists
alike.

The interpretation of the model is in parts straightfor-
ward, but not completely. In our previous analysis of
TOTEM data for the elastic differential cross section
[4], we have commented on the physical meaning of the
model. Our considerations were that the two terms in the
amplitude receive contributions from different charge-
conjugation processes: the first term is purely from C ¼
þ1, while the second nonleading term has contributions
from both C ¼ �1 terms, which, at high energies, render

� � �, �=2. The energy behavior of the leading ampli-
tude AðsÞ is consistent with many eikonal models, but the
exponential behavior in the momentum transfer before and
after the dip is not, and it is probably due to rescattering
effects in the final state. On the other hand, the modifica-
tion of the model with a form factor which reproduces the
proton electromagnetic form factor at high energy suggests
the need to include rescattering effects within each collid-
ing hadron, namely the probability that the proton does not
break up as the momentum transfer increases.
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APPENDIX A: TWO-PION THRESHOLD EFFECTS
ON THE BP MODEL: MBP1

We discuss here a model where the very small �t
behavior is influenced by the nearest t-channel singularity
of the scattering amplitude. In this model, which we call
mBP1,

Aðs; tÞ ¼ i½ ffiffiffiffiffiffiffiffiffi
AðsÞp

eBðsÞt=2Gðs; tÞ þ ei�
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

eDðsÞt=2�; (A1)

with Gðs; 0Þ ¼ 1 in order to not spoil the good description
of the dip by Eq. (1), as discussed in the text. Such a factor
would arise from the contribution of the two-pion loop
in the Pomeron trajectory, as was originally proposed
in Refs. [10,11], and more recently discussed by Khoze,
Martin and Ryskin [12] and Jenkovszky [13,41]. In par-
ticular �PðtÞ, at very small t, should include a square-
root singularity at t ¼ 4�2, with � ¼ m� being the pion
mass. Mindful of such possibilities, we have applied the
following correction to the first term of Eq. (1), namely we
shall use

Gðs; tÞ ¼ e��ðsÞð
ffiffiffiffiffiffiffiffiffiffiffi
4�2�t

p
�2�Þ; (A2)

with �ðsÞ a free parameter. Being applied to the near-
forward region, such a term shall influence the small-jtj

TABLE VI. Values of mBP2 parameters used in the predictions at LHC8, LHC14 and AUGER57 and the ratio Rel at each c.m.
energy. In all cases the values of t0 have been frozen at 0:71 GeV2 and bands for � were considered. These bands determine the
uncertainty in the predictions for the ratio.ffiffiffi
s

p
(TeV) A (mbGeV�2) B (GeV�2) C (mbGeV�2) D (GeV�2) � (rad) �el=�tot

8 596 8.8 1.44 4.7 2.72–2.81 0:257� 0:001

14 739 10.0 1.70 5.1 2.76–2.92 0:270� 0:001

57 1233 13.2 2.30 5.9 2.72–2.92 0:304� 0:001
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behavior of the elastic differential cross section, producing
a changed curvature in the effective slope Beffðs; tÞ in this
region. The original expressions for the total cross section
and the optical point remain unchanged, but the modifica-
tion of the model of Eq. (1) given by Eqs. (A1) and (A2)
introduces an additional t dependence in the first term,
through a square root, and hence a sixth parameter. Using
the modified BP model of Eqs. (A1) and (A2), we update
our fits [4] to LHC7 data samples as well as to the ISR data
sets in the full range for pp data with

ffiffiffi
s

p ¼ð23�63ÞGeV,
as displayed in Table VII and Fig. 9. ISR data sets used in
the fits comprise the data collection by Amaldi and
Schubert [14] and all experimental information available
from 1980 onwards [15–18]. This table shows that this

modification gives an acceptable statistical description
from the optical point to the full jtj range. In Fig. 10 we
present the energy dependence of the fit parameters for the
mBP1 model. The continuous (dotted) lines in these fig-
ures are computer parametrizations drawn to guide the eye.
We now make two comments. Firstly, the square-root

factor is only used for the first term of the BP amplitude, as
this factor comes from the contribution of the pion loop to
the leading vacuum term and it may not be present for the
second nonleading term, which, for a generic �, also has
contributions from C ¼ �1 processes. The second com-
ment comes from an inspection of Table VII and the energy
dependence of the parameter�ðsÞ. This energy dependence,
displayed in Fig. 10 from ISR to LHC7, shows a very slow
increase, even compatible with a constant in energy, shed-
ding doubt on a straightforward interpretation of this factor
in terms of a small-t contribution to the Pomeron trajectory.
The elastic cross section for this model from Eqs. (A1)

and (A2) is obtained as

�elðsÞ ¼
Z 0

�1
dtjAðs; tÞj2

¼ Ae4m��I1 þ C

D
þ 2

ffiffiffiffiffiffiffi
AC

p
e2m�� cos�I3; (A3)

where the integrals I1 and I3 are given as

I1 ¼
Z 0

�1
dteBt�2�

ffiffiffiffiffiffiffiffiffiffiffi
4m2

��t
p

; (A4)

I3 ¼
Z 0

�1
dteðBþDÞt=2��

ffiffiffiffiffiffiffiffiffiffiffi
4m2

��t
p

: (A5)

An analytical evaluation can be obtained, using the result

Ið�;	; 
Þ �
Z 0

�1
dte�t�	

ffiffiffiffiffiffiffiffi

2�t

p

¼ 1

�
e�
	 � 	

ffiffiffiffi
�

p
2�3=2

� Erfc½ ffiffiffiffi
�

p ð
þ 	=2�Þ�e�
2þ	2=4�;

(A6)

where ErfcðxÞ ¼ 2ffiffiffi
�

p R1
x e�y2dy denotes the complemen-

tary error function. Thus, from Eqs. (A4)–(A6) it follows
that

TABLE VII. Values of the free fit parameters A, B, C, D, � and � at each energy analyzed. A and C are expressed in units of
mbGeV�2, B and D in units of GeV�2, � in units of GeV�1 and � in radians.ffiffiffi
s

p
(GeV) A B Cð�10�3Þ D � � �2

d:o:f:

24 82:8� 1:0 6:3� 0:1 2:3� 0:2 1:79� 0:04 2:15� 0:07 2:94� 0:01 200
134�6 ¼ 1:1

31 85:1� 0:2 6:99� 0:06 1:9� 0:1 1:79� 0:02 1:79� 0:03 3:02� 0:01 310
206�6 ¼ 1:6

45 91:5� 0:2 7:51� 0:05 1:18� 0:06 1:62� 0:02 1:92� 0:03 2:73� 0:02 801
207�6 ¼ 4:0

53 94:6� 0:1 7:78� 0:05 1:49� 0:05 1:70� 0:01 1:79� 0:02 2:68� 0:01 1490
319�6 ¼ 4:8

63 98:5� 0:2 7:98� 0:09 1:7� 0:1 1:75� 0:03 1:74� 0:04 2:75� 0:03 332
165�6 ¼ 2:1

7000 565� 2 13:7� 0:2 970� 40 4:43� 0:03 2:01� 0:06 2:703� 0:007 497
161�6 ¼ 3:2
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FIG. 9 (color online). Fits to the ISR and LHC7 data sets with
the model mBP1.
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�elðsÞ ¼ A

B
þ C

D
þ 4

ffiffiffiffiffiffiffi
AC

p
ðBþDÞ cos�� ffiffiffiffi

�
p A�

B3=2
Erfc

� ffiffiffiffi
B

p �
2m� þ �

B

��
e4m

2
�ðBþ�=m�Þþ�2=B

� ffiffiffiffiffiffiffi
8�

p ffiffiffiffiffiffiffi
AC

p
� cos�

ðBþDÞ3=2 Erfc

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BþD

2

s �
2m� þ �

BþD

�35e2m
2
�ðBþDþ�=m�Þþ�2=2ðBþDÞ: (A7)

In the above expression one can see that the contributions with positive sign come from the simple BP amplitude, as can
easily be checked by taking the limit � ! 0. Thus, the presence of negative terms in Eq. (A7), being due toGðs; tÞ, reflects
the importance of modifying the first term of the original BP amplitude.

The sum rules for the elastic amplitude presented in Ref. [4] can be applied to this model, and used to check the
saturation of the elastic amplitude at LHC energies. One has

SR1 ¼ 1ffiffiffiffi
�

p
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

1þ �̂2

s
þ

ffiffiffiffi
C

p
ffiffiffiffi
�

p
D

cos��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2

A

1þ �̂2

s
�

B3=2
Erfc

2
4 ffiffiffiffi

B

2

s �
2m� þ �

B

�35e2m
2
�ðBþ�=m�Þþ�2=2B; (A8)

SR0 ¼ �̂ffiffiffiffi
�

p
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

1þ �̂2

s
�

ffiffiffiffi
C

p
ffiffiffiffi
�

p
D

sin�� �̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2

A

1þ �̂2

s
�

B3=2
Erfc

2
4 ffiffiffiffi

B

2

s �
2m� þ �

B

�35e2m
2
�ðBþ�=m�Þþ�2=2B: (A9)

As above for the elastic cross section, the first two terms
come from the original BP amplitude and the input Gðs; tÞ
produces the last term.

APPENDIX B: OTHER FORM-FACTOR
MODIFICATIONS OF THE BARGER

AND PHILLIPS MODEL

We examine here two more possible modifications of the
Barger and Phillips model, complementary to the form-
factor modification of the first term, presented in the text.

(i) The entire BP amplitude is multiplied by a factor

F2
P ¼ 1

ð1� t=t0Þ4
; (B1)

with t0 a free parameter, namely

Aðs; tÞ ¼ iF2
PðtÞ

h ffiffiffiffiffiffiffiffiffi
AðsÞp

eBðsÞt=2

þ ei�ðsÞ ffiffiffiffiffiffiffiffiffiffi
CðsÞp

eDðsÞt=2
i
: (B2)

(ii) Both terms of the BP amplitude are multiplied by a
form factor (squared), but with difference scales, t0
and tO, namely

Aðs; tÞ ¼ i
h
F2
PðtÞ

ffiffiffiffiffiffiffiffiffi
AðsÞp

eBðsÞt=2

þ ei�ðsÞF2
OðtÞ

ffiffiffiffiffiffiffiffiffiffi
CðsÞp

eDðsÞt=2
i
; (B3)

with

F2
O ¼ 1

ð1� t=tOÞ4
: (B4)

with t0;O free parameters.

We show the results of the fit in Fig. 11. In Tables VIII
and IX we indicate the values taken by the parameters for
the best fits of Fig. 11. An inspection of these fits indicates
that an overall multiplicative factor, corresponding to the
first top plots, is the least favored of the above two possi-
bilities (and less favored than the one chosen in the text,
mBP2). From the point of view of the �2, the fits do not
favor the second possibility relative to the choice mBP2,
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FIG. 10 (color online). Energy behavior of parameters from the mBP1 model.
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discussed in the text: multiplying both terms by form factors
with different scales or only the first term as inmBP2, gives
an equally good fit, both at ISR and at LHC. However, we
notice a problem with the fits of the bottom figures, when
the two terms are each multiplied by a different factor,
namely these fits are quite insensitive to the second scale.
Phenomenologically, therefore, this possibility is not par-
ticularly useful, albeit it could be further studied.

APPENDIX C: IMPACT-PARAMETER STRUCTURE
IN THE MODIFIED MODELS

Besides the sum rules, the impact-parameter structure of
the models mBP1 and mBP2 provides us useful informa-
tion about unitarity saturation. From our fits with both
models, we extract the elastic profile, through the Hankel
transform of the amplitude (A1),
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FIG. 11 (color online). Fits to ISR53 and LHC7 data sets with the two other modified BP models described by Eqs. (B2) and (B3),
with ISR fits on the left hand side and LHC fits on the right hand side. Top row: BP amplitude multiplied by an overall form factor like
term. Bottom row: the two terms in BP amplitude are multiplied by form factors with different scales.

TABLE VIII. Fit parameters of the model with an overall form factor. A and C are in units of mbGeV�2, B and D are in units of
GeV�2, � is in radians and t0 is in units of GeV2.ffiffiffi
s

p
(GeV) A B C D � t0 �2

d:o:f:

53 131� 2 2:90� 0:04 3:4� 0:3 0:10� 0:01 3:008� 0:006 0:811� 0:005 1659
319�6 ¼ 5:3

7000 2180� 210 4:3� 0:1 580� 110 1:54� 0:07 3:043� 0:007 0:582� 0:004 420
161�6 ¼ 2:7

TABLE IX. Fit parameters of the model with two scale form factors. A and C are in units of mbGeV�2, B and D are in units of
GeV�2, � is in radians, and t0 and tO are in units of GeV2.ffiffiffi
s

p
(GeV) A B C D � t0 tO �2

d:o:f:

53 93:3� 0:2 4:4� 0:1 0:004� 0:001 1:1� 0:2 2:811� 0:02 0:93� 0:01 7:2� 2:3 1456
319�7 ¼ 4:7

7000 565� 2 8:2� 0:2 1:37� 0:07 4:65� 0:07 2:755� 0:008 0:69� 0:01 62� 247 383
161�7 ¼ 2:5
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~Aðs; bÞ ¼ �i
Z 1

0
qdqJ0ðqbÞAðs; tÞ: (C1)

On the one hand, the dominant contribution comes from
the real part, which assumes distinct forms for the models
mBP1 and mBP2,

~AmBP1
R ðs;bÞ¼ ffiffiffiffi

A
p

e2m��J ðs;bÞþ
ffiffiffiffi
C

p
D

e�b2=2Dcos�; (C2)

AmBP2
R ðs; bÞ ¼ ffiffiffiffi

A
p

t40Kðs; bÞ þ
ffiffiffiffi
C

p
D

e�b2

2D cos�; (C3)

where the integrals J ðs; bÞ and Kðs; bÞ are given as

J ðs; bÞ ¼
Z 1

0
qdqJ0ðqbÞe�Bq2=2��

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

�þq2
p

; (C4)

K ðs; bÞ ¼
Z 1

0
qdqJ0ðqbÞ e�Bq2=2

ðt0 þ q2Þ4 : (C5)

On the other hand, the imaginary part turns out to be the
same,

A mBP1;mBP2
I ðs; bÞ ¼

ffiffiffiffi
C

p
D

e�b2

2D sin�: (C6)

Unfortunately, due to the introduction of corrections into
the first term of the original BP parametrization, the inte-
grals (C4) and (C5) can no longer be solved analytically.
Therefore, we perform numerical evaluations of such
integrals. In Fig. 12 we present these calculations and the
energy evolution of the elastic b distributions, following
from Eqs. (C2)–(C6), from ISR energies to LHC7.
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