Possible candidate of the 0^+ $s\bar{s}s\bar{s}$ state

Bing An Li

University of Kentucky, Lexington, Kentucky 40506, USA (Received 8 July 2013; published 21 November 2013)

The possibility of the 0^+ $\eta\eta$ resonance $f_0(2100)$ as a candidate of the $Q^2\bar{Q}^2$ state $C^{ss}(36)$ is explored. The $\eta\eta$ channel of $f_0(2100)$ is the dominant decay mode; the $\eta\eta'$ channel has less decay rate; the decay rate of the $\eta'\eta'$ channel is very small. The $\pi\pi$, $K\bar{K}$, 4π modes are at next leading order in N_C expansion. Other possible decay modes are discussed.

DOI: 10.1103/PhysRevD.88.094016

PACS numbers: 12.39.Mk, 12.39.Ba, 13.20.Gd

Among many $I^G(J^{PC}) = 0^+(0^{++})$ resonances discovered [1] around 2 GeV there are $f_0(2100)$ and $f_0(2020)$ two scalar mesons [1]. The parameters of the $f_0(2100)$ are determined to be [1]

$$M = 2103 \pm 8$$
 MeV, $\Gamma = 209 \pm 19$ MeV.

The $f_0(2020)$ is a broad scalar meson whose decay width is about 400 MeV and it has many decay modes: $\rho \pi \pi, \pi^0 \pi^0, \rho \rho, \omega \omega, \eta \eta, \dots$ [1]. The $f_0(2100)$ is different from the $f_0(2020)$. In this paper the possible nature of the $f_0(2100)$ is investigated. In 1993 $\eta \eta$ resonances have been reported in the following processes [2]:

$$\bar{p} + p \rightarrow 3\pi^0, 2\pi^2, \pi^0 2\eta, 3\eta.$$

The $f_0(2100)$ is one of the three $\eta \eta$ resonances and its mass and decay width are determined to be

$$M = 2104 \pm 20$$
 MeV, $\Gamma = 203 \pm 10$ MeV.

This state has not been identified definitely in the $\pi\pi$ channel and the quantum numbers are not determined in this study. In Ref. [3], $f_0(2100)$ has been discovered in

$$\bar{p} + p \rightarrow \eta \eta, \eta \eta', \ldots$$

The $f_0(2100)$ appears strongly in the $\eta \eta$ channel and

$$M = 2105 \pm 10$$
 MeV, $\Gamma = 200 \pm 25$ MeV.

The $f_0(2100)$ appears weakly in the $\pi^0 \pi^0$ data, contributing only $(4.6 \pm 1.5)\%$ of the cross section, compared with $(38 \pm 5)\%$ in the $\eta\eta$ channel. The cross section for $\eta\eta'$ contains a weak peak at about 2150 MeV.

Recently, the BES III Collaboration has reported the discovery of the $\eta\eta$ resonance $f_0(2100)$ in $J/\psi \rightarrow \gamma\eta\eta$ [4]. Its mass and decay width are determined to be

$$m = 2081 \pm 13$$
 MeV, $\Gamma = 273^{+27}_{-24}$ MeV,

respectively, which are in agreement with the measurements [2,3]. The product branching ratio is measured to be

$$B(J/\psi \to \gamma f_0(2100) \to \gamma \eta \eta) = (1.13^{+0.09}_{-0.1}) \times 10^{-4}.$$

On the other hand, the discovery of $f_0(2100)$ has not been reported in $K\bar{K}$ channels of $J/\psi \rightarrow \gamma K\bar{K}$ [4] and $pp \rightarrow p_f(K\bar{K})p_s$ [5,6]. In Ref. [7] in $J/\psi \rightarrow \gamma \pi^+ \pi^-$ besides a 2⁺⁺ state $\theta(1700)$ a X(2100) is reported

$$M = 2027 \pm 12$$
 MeV, $\Gamma = 220 \pm 30$ MeV.

However, it is claimed that the angular distributions of X (2100) are similar to those of the $\theta(1700)$ which has been determined to be a 2⁺⁺ state. In Ref. [7] in the decay $J/\psi \rightarrow \gamma \pi \pi$ a wide resonance $f_0(2020)$ is seen, which is listed in Ref. [1]. It seems that the results from these two experiments do not agree each other. On the other hand, in Ref. [1] the scalar resonance $f_0(2100)$ is not listed in the $\pi\pi$ channel in $J/\psi \rightarrow \gamma \pi \pi$.

The experimental study of the scalar resonance in the 4π channel lasts a pretty long time. Now it is needed to check whether the $f_0(2100)$ has 4π decay mode. $J/\psi \rightarrow \gamma 4\pi$ and $pp \rightarrow p_f(4\pi)p_s$ are the two processes to search for $X \rightarrow 4\pi$.

- (1) MARK II has done a study of $J/\psi \rightarrow \gamma 4\pi$ [8] and it is found that the $\gamma \rho \rho$ are the components of these channels. It is not mentioned whether there is resonance of $\rho \rho$ around 2 GeV.
- (2) In Ref. [9] a 0^{-+} resonance $\eta(2100)$ which decays to both $\rho^+\rho^-$ and $\rho^0\rho^0$ has been observed by DM2 and $f_0(2100) \rightarrow \rho\rho$ has not been reported.
- (3) MARK III did a study on $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$ [10]. The $f_0(2104)$ has been reported in the 4π channel with $\Gamma = 203$ MeV and $\sigma\sigma$ is the dominant decay channel. Large branching ratios are reported:

$$B(J/\psi \to \gamma X(2104))B(X(2104) \to 4\pi)$$

= (3.0 ± 0.8) × 10⁻⁴,

$$B(J/\psi \to \gamma X(2104))B(X(2104) \to \rho \rho)$$

$$= (6.8 \pm 1.8) \times 10^{-4}$$

(4) BES has reported a partial wave analysis of $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$ [11]. $f_0(2100)$ has been found in the 4π channel with

 $M = 2090^{+30}_{-30}$ MeV, $\Gamma = 330^{+100}_{-100}$ MeV.

 $f_0(2100) \rightarrow \sigma \sigma$ decay is reported. From the values of the mass and width of f_0 , it is hard to say the resonance is $f_0(2100)$ or $f_0(2020)$. From the current data it is difficult to draw a conclusion whether the $f_0(2100)$ has been found in the 4π channel produced in the J/ψ radiative decays.

The process $pp \rightarrow p_f(4\pi)p_s$ has been studied by WA102 [12] and broad scalar with

$$m = 2020 \pm 35$$
 MeV, $\Gamma = 410 \pm 50$ MeV

has been found. The resonance decays to $\rho \pi \pi$ and $\rho \rho$. It is the $f_0(2020)$ resonance. In Ref. [13] a spin analysis of the 4π channels produced in central pp interactions has been done. It is mentioned that the $J^P = 0^+ \rho \rho$ distribution shows a peak at 1.45 MeV together with a broad enhancement around 2 GeV. These experiments show that the 0^+ resonance found in the 4π channel produced in pp collision is the broad $f_0(2020)$.

The experimental data mentioned above show that the scalar resonance $f_0(2100)$ discovered in $p\bar{p}$ annihilation and J/ψ radiative decay decays to $\eta\eta$ dominantly. It has weak coupling with the $\pi\pi$ channel in $p\bar{p}$ annihilation and it is not found in $J/\psi \rightarrow \gamma\pi\pi$. The $f_0(2100)$ weakly decays to $\eta\eta'$. It is not discovered in the $K\bar{K}$ channels of J/ψ radiative decay and $p\bar{p}$ collision. The data of $p\bar{p} \rightarrow p_s(4\pi)p_f$ show that there is no sign of the $f_0(2100) \rightarrow 4\pi$.

The authors of Ref. [3] claim that $f_0(2100)$ decays dominantly through a $s\bar{s}$ component and the strong production in $p\bar{p}$ strongly suggest exotic character. It is either a glueball or a hybrid and there may be mixing with $q\bar{q}$ and $s\bar{s}$.

In this paper, the possible exotic character of the $f_0(2100)$ is investigated. We explore the possibility that the $f_0(2100)$ is a four quark state of $s\bar{s}s\bar{s}$ [14]. The possible direct decay channels of $s\bar{s}s\bar{s}$ are $\eta\eta$, $\eta\eta'$, $\eta'\eta'$, $\phi\phi$, etc. The $\eta \eta$ mode has the largest phase space. Therefore, the $\eta \eta$ is the dominant decay mode of the $f_0(2100)$. The $\pi \pi$, $K\bar{K}$, 4π decays of the $f_0(2100)$ are via the meson loop diagrams, $\eta \eta \rightarrow \pi \pi$, $K\bar{K}$, 4π completed. In a meson theory [15] it shows that the tree diagrams of mesons are at the leading order in the N_C expansion and the meson loop diagrams are at next leading order. For example, in this meson theory [15], the amplitude of $\phi \to K\bar{K}$ is at $O(N_C)$. The decay $\phi \rightarrow \rho \pi$ is via one-loop meson diagrams completed. The amplitude of this decay is at O(1) in the N_C expansion. Comparing with $\phi \to K\bar{K}$, the decay $\phi \rightarrow \rho \pi$ is suppressed. For the decays of the $f_0(2100)$ the $f_0(2100) \rightarrow \eta \eta$ result in a tree diagram and the $\pi \pi$, KK, 4π channels result in loop diagrams of mesons; therefore, they are suppressed in the N_C expansion.

In Ref. [14] the spectrum and the properties of $Q^2 \bar{Q}^2$ states have been studied in the MIT bag model. The $Q^2 \bar{Q}^2$ states studied in Ref. [14] have been successfully applied to study the reactions $\gamma \gamma \rightarrow \rho^0 \rho^0$ and $\gamma \gamma \rightarrow \rho^+ \rho^-$ [16]. Recently, a 0⁺⁺ resonance, $f_0(1810)$, has been discovered in $J/\psi \rightarrow \gamma \omega \phi$ [17]. If this new resonance is just one of the ordinary mesons, the process $J/\psi \rightarrow \gamma f_0(1810)$, $f_0(1810) \rightarrow \omega \phi$ would be doubled Okubo-Zweig-Iizuka (OZI) suppressed. In Ref. [18] the new $\omega \phi$ resonance has been interpreted as the production of the $Q^2 \bar{Q}^2$ state, $C^s(\underline{9})$ [14], in J/ψ radiative decay and the doubled OZI suppression is avoided.

In Ref. [19] the approach of effective Lagrangian has been applied to study the possible mixing of quark antiquark states with other states made of two quarks and two antiquarks in the low-lying scalar and pseudoscalar mesons, such as $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, $f_0(1710)$, etc. The study shows the $q\bar{q}q\bar{q}$ is the dominant component of the $f_0(500)$ and some of the states have significant $q\bar{q}q\bar{q}$ components [19]. The mixing between the scalar mesons and scalar glueball has been investigated in Ref. [19] too. As mentioned above, the $s\bar{s}s\bar{s}$ state at about 2 GeV has been predicted by the MIT bag model [14]. The work done in this paper is a phenomenological study of this $s\bar{s}s\bar{s}$ state. Based on the study in Ref. [19], in principle the mixing between scalar $q\bar{q}$, $q\bar{q}q\bar{q}$, and glueball state and the $s\bar{s}s\bar{s}$ state should exist. As mentioned above, the experimental data show that the decay rates of the $f_0(2100)$ to $\pi\pi$, 4π , and $K\bar{K}$ are smaller (suppressed). It is shown in Ref. [1] that the $\pi\pi$ is the dominant decay channel of the $f_0(500)$ and $f_0(980)$. The decays of the $f_0(1370) \rightarrow \pi\pi, 4\pi, \rho\rho$ are found [1] and the $\rho\rho$ is the dominant channels of the $f_0(1370)$. The decay channels of $\pi\pi$ and 4π of the $f_0(1500)$ have large branching ratios, respectively. The decay modes of $K\bar{K}$, $\eta\eta$, $\pi\pi$, $\omega\omega$ of the $f_0(1710)$ are found. As mentioned above, the experimental data show the decay rates of the $f_0(2100) \rightarrow \pi\pi$, $K\bar{K}$, etc. are smaller. It is known that scalar glueball decays to $\pi\pi, K\bar{K}, \ldots$ too. Therefore, phenomenologically the mixing between the $s\bar{s}s\bar{s}$ state and $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, $f_0(1710)$, scalar glueballs should be smaller. In this paper these smaller mixings are not studied.

Now we take the $0^{++} C^{ss}(36)$ state studied in Ref. [14] as the $s\bar{s}s\bar{s}$ state,

$$C^{ss}(36) = \eta_s \eta_s, \qquad \eta_s = s\bar{s}, \tag{1}$$

whose mass has been predicted to be

$$m = 1950 \text{ MeV.}$$
 (2)

This value is very close to the mass of the $f_0(2100)$. The color wave function of the $C^{ss}(36)$ state consists of color octet–color octet and color singlet–color singlet two parts [14]. The recoupling coefficients of this state are shown in Table I [14] (the color octet is indicated by an underline).

In this study the $C^{ss}(36)$ with mass 2100 MeV is taken as the $f_0(2100)$ and the decays and productions of the $C^{ss}(36)$ state are investigated. We study the decays first, then the productions. Through a "fall apart" [14] mechanism the

TABLE I. Recoupling coefficients.

	PP	VV	<u>P</u> · <u>P</u>	$\underline{V} \cdot \underline{V}$
$C^{ss}(36)$	-0.644	0.269	-0.322	-0.639

 $C^{ss}(36)$ decays to $\eta\eta$, $\eta\eta'$, $\eta'\eta'$, $\phi\phi$, etc. For the decay $s\bar{s}s\bar{s} \rightarrow PP$ the $s\bar{s}s\bar{s}$ is expressed as

$$s\bar{s} = \frac{1}{\sqrt{3}}\eta' - \sqrt{\frac{2}{3}}\eta,$$

$$s\bar{s}s\bar{s} = \frac{2}{3}\eta\eta + \frac{1}{3}\eta'\eta' - \frac{2\sqrt{2}}{3}\eta\eta',$$
(3)

where $\eta = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$ and $\eta' = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$ are taken. The three decay amplitudes are via the mechanism of fall apart obtained:

$$\langle \eta \eta | T | f_0(2100) \rangle = -0.644 \, a \, m \frac{4}{3},$$

$$\langle \eta \eta' | T | f_0(2100) \rangle = 0.644 \, a \, m \frac{2\sqrt{2}}{3},$$

$$\langle \eta' \eta' | T | f_0(2100) \rangle = -0.644 \, a \, m \frac{2}{3},$$

$$(4)$$

where *a* is an unknown constant from the mechanism of the fall apart, -0.644 is the recoupling coefficient from Table I, m = 2100 MeV. The decay widths are derived as

$$\begin{split} \Gamma(f_0 \to \eta \,\eta) &= \frac{0.644^2}{18\pi} a^2 m \Big(1 - \frac{4m_\eta^2}{m^2} \Big)^{\frac{1}{2}} \\ &= 1.34 \times 10^{-2} a^2 \,\text{GeV}, \\ \Gamma(f_0 \to \eta \,\eta') &= \frac{0.644^2}{9\pi} a^2 \Big\{ \frac{1}{4m^2} (m^2 + m_\eta^2 - m_{\eta'}^2)^2 - m_\eta^2 \Big\}^{\frac{1}{2}} \\ &= 1.05 \times 10^{-2} a^2 \,\text{GeV}, \\ \Gamma(f_0 \to \eta' \,\eta') &= \frac{0.644^2}{72\pi} a^2 m \Big(1 - \frac{4m_{\eta'}^2}{m^2} \Big)^{\frac{1}{2}} \\ &= 1.58 \times 10^{-3} a^2 \,\text{GeV}. \end{split}$$
(5)

The ratios of the three decay channels of the $f_0(2100)$ are

$$\Gamma(\eta \eta): \Gamma(\eta \eta'): \Gamma(\eta' \eta') \sim 1:0.78:0.12.$$
(6)

This $s\bar{s}s\bar{s}$ scheme [14] predicts a very small decay rate for the channel $\eta'\eta'$, which is caused by two factors: small phase space and small coefficient of the decomposition (3). This mechanism also predicts a smaller decay rate for the channel $\eta\eta'$. In Ref. [3] a weaker peak in the channel $\eta\eta'$ at 2150 MeV has been reported.

It is known that there is mixing between η , η' and the 0⁻⁺ glueball which is believed to be $\eta(1405)$ [20]. The mixing makes the 0⁻⁺ glueball $\eta(1405)$ have an $s\bar{s}$ component [20]. Therefore, the decay $f_0(2100) \rightarrow \eta \eta(1405)$ exists and has a small decay rate. Using the results presented in the first paper of Ref. [20], it is estimated $\Gamma(f_0(2100) \rightarrow \eta \eta(1405)) \sim 0.09\Gamma(f_0(2100) \rightarrow \eta \eta)$. However, this decay channel will provide useful information for accurate determination of the $\eta - \eta' - \eta(1405)$ mixing. Because the coefficients of the mixing determined by different authors [20] are different, the mixing effects on Eqs. (5) and (6) will not be studied in this paper. In the same way the decay $f_0(2100) \rightarrow \phi \phi$ can be studied

$$\langle \phi_{\lambda_1}(k_1)\phi_{\lambda_2}(k_2)|T|f_0(2100)\rangle = 2b\,m\,0.269\,\epsilon^{\lambda_1}(k_1)\cdot\epsilon^{\lambda_2}(k_2),$$

$$\Gamma(f_0 \to \phi\,\phi) = \frac{1}{8\pi}(0.269)^2 m \left(1 - \frac{4m_\phi^2}{m^2}\right)^{\frac{1}{2}}$$

$$\times \left\{2 + \frac{m^4}{4m_\phi^4} \left(1 - \frac{2m_\phi^2}{m^2}\right)\right\} b^2$$

$$= 0.633 \times 10^{-2} b^2 \,\text{GeV}, \quad (7)$$

where b is a parameter and the relationship between a and b is unknown.

Because the parameter b is unknown, it is not able to do a reliable prediction for the decay rate of the $\phi \phi$ channel. It is worth searching for the resonance $f_0(2100)$ in the $\phi\phi$ channel. Comparing with the $\eta \eta$ channel, the small phase space and the recoupling coefficient of the $\phi\phi$ channel make the decay rate of $f_0(2100) \rightarrow \phi \phi$ too small. However, there are another two factors which enhance the decay rate of $f_0(2100) \rightarrow \phi \phi$. The amplitude of this decay contains a factor $\epsilon^{\lambda_1}(k_1) \cdot \epsilon^{\lambda_2}(k_2)$, where $\lambda_i (i = 1, 2)$ and $k_i (i = 1, 2)$ are the polarization and momentum of the two ϕ mesons, respectively. This polarization factor contributes a factor 4.38 to the decay rate. The second factor is that for the channel $\phi \phi$ the factor for the $s\bar{s}s\bar{s}$ component is one and for the $\eta\eta$ channel this factor is $\frac{4}{9}$ (3). All the factors together make the decay rate of $f_0(2100) \rightarrow \phi \phi$ not too small. If $a \sim b$ is assumed we obtain

$$\Gamma(f_0(2100) \to \eta \eta) : \Gamma(f_0(2100) \to \phi \phi) \sim 1 : 0.47.$$

There are experimental studies on $J/\psi \rightarrow \gamma \phi \phi$ [21], in which the $0^{++}\phi \phi$ at 2100 MeV is not studied. It is worth searching for the $f_0(2100)$ in the $J/\psi \rightarrow \gamma \phi \phi$.

In the picture of four quark states the mechanism of the productions of the $\eta \eta$ resonance $f_0(2100) (C^{ss}(36))$ in $p\bar{p}$ collisions and J/ψ radiative decay can be understood qualitatively. A proton is made of *uud* quarks and the $f_0(2100)$ is a $s\bar{s}s\bar{s}$ state. How is this $s\bar{s}s\bar{s}$ state produced in $p\bar{p}$ collision? It is known that half of the energy of a proton is carried by gluons. Therefore, $p\bar{p} \rightarrow gg + \cdots$, $gg \rightarrow f_0(2100)$ is the process for the production of the $f_0(2100)$ in $p\bar{p}$ collisions. In QCD the J/ψ radiative decay is described as $J/\psi \rightarrow \gamma gg$. Therefore, the same $gg \rightarrow \chi$ $f_0(2100) \rightarrow \dots$ is responsible for the production of the $f_0(2100)$ in J/ψ radiative decay. In this study the $f_0(2100)$ is taken as the $C^{ss}(36)$ in which there is a component $-0.639 \phi \cdot \phi$ (Table I), where ϕ is the color octet ϕ . The vector meson dominance works well in particle physics, in which the photon is coupled to the vector mesons (ρ, ω, ϕ) . A similar mechanism is proposed in Refs. [22,23], in which the gluon is coupled to the color octet vector, V,

$$\frac{1}{\sqrt{2}}g_s g_{\underline{\phi}} g^a \underline{\phi}^a,\tag{8}$$

where the *a* is the color index, g_s is the coupling constant of QCD, $g_{\phi}^2 = \frac{2}{3}g^2$, g = 0.395 is determined in Ref. [15], and g^a is the gluon field. The process $g + g \rightarrow \phi \phi \rightarrow \phi$ $f_0(2100) \rightarrow \eta \eta$ is responsible for the productions of the $f_0(2100)$ in both $p\bar{p}$ annihilation and J/ψ radiative decay. Using this mechanism, the amplitude of the production of $f_0(2100)$ is at $O(g_s^2)$. Comparing with glueball production in J/ψ radiative decay, the amplitude of the production of the $f_0(2100)$ is suppressed by $O(\frac{1}{N_c})$ and is at the same order of magnitude of the production of the hadrons made of quarks. Roughly speaking, the production rate of the glueball in J/ψ radiative decay is at about $O(10^{-3})$ and the $f_0(2100)$ is at $O(10^{-4})$. This is consistent with the analysis above. This mechanism has been applied to study $J/\psi \rightarrow$ $\gamma X(1810), X(1810) \rightarrow \omega \phi$ [18]. Usually, the $J/\psi \rightarrow$ $\gamma \omega \phi$ is a double OZI suppressed process. However, if X(1810) is a four quark state the double OZI suppression no longer exists.

Based on the MIT model [14], the investigation of the $f_0(2100)$ presented in this paper is a phenomenological study only. On the other hand, there are established four-quark scalar nonets below 1 GeV [19]. Based on the MIT model these four quark states below 1 GeV have been studied too [19]. For example, $C^0(\underline{9}, 0^+) = \frac{1}{\sqrt{2}} u \bar{u} d \bar{d} (m = 650 \text{ MeV}), C^s(\underline{9}, 0^+) = \frac{1}{\sqrt{2}} s \bar{s} (u \bar{u} + d \bar{d}) (m = 1100 \text{ MeV}),$ etc. The $C^{ss}(36)$ studied in this paper is the lowest state of $s \bar{s} s \bar{s}$ [14]. The $C^{ss}(36)$ and $C^0(\underline{9}, 0^+), C^s(\underline{9}, 0^+)$ have very different structure of the flavors (see Table I [14]).

On the other hand, besides the $C^{ss}(36)$ studied in this paper, another $C^{ss}(36^*)$ whose mass is 2350 MeV has been predicted in Ref. [14] too. According to Ref. [14], these two states have different flavor structure. The *PP* and the

<u>*V*</u> · <u>*V*</u> components of the $C^{ss}(36^*)$ are 0.041 and -0.089, respectively [14]. They are much smaller than corresponding components of the $C^{ss}(36)$ (see Table I). Therefore, very small production rates of $p\bar{p} \rightarrow C^{ss}(36^*) \rightarrow \eta\eta$ and $J/\psi \rightarrow \gamma C^{ss}(36^*) \rightarrow \gamma\eta\eta$ should be expected. It is reasonable to assume that the $f_0(2100)$ is the $C^{ss}(36)$.

It is worth mentioning that in Ref. [14] in the range of 2 GeV there is another scalar,

$$C^{0}(36^{*}) = -\frac{1}{2}\pi\pi + \frac{\sqrt{3}}{2}\eta_{0}\eta_{0}, \qquad (9)$$

where $\eta_0 = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})$. The mass of this state is predicted to be m = 2100 MeV [14]. Equation (9) shows that this state is very different from the state $C^{ss}(36)$ studied above. At the leading order this state decays into mesons made of u and d quarks. It is worth investigating the possibility that this state is related to the broad resonance $f_0(2020)$ [1] mentioned above The width of the $f_0(2020)$ is 442 ± 60 MeV and the decay modes $\rho \pi \pi$, $\pi^0 \pi^0$, $\rho \rho$, $\omega \omega$, and $\eta \eta$ are seen [1]. A detailed phenomenological study of this state is beyond the scope of this paper.

In summary, the study shows that all the decay properties of the $\eta\eta$ resonance $f_0(2100)$ can be understood by the four quark state $s\bar{s}s\bar{s}$, $C^{ss}(36)$. The $\eta\eta$ channel is the dominant decay mode. The study predicts that the $f_0(2100) \rightarrow \eta\eta'$ has less decay rate. The decay channels, $\pi\pi$, $K\bar{K}$, 4π are at next leading order in N_C expansion and suppressed. The existence of the decay mode of $f_0(2100) \rightarrow \phi\phi$ is predicted and the measurement of this channel is significant for the $q^2\bar{q}^2$ scheme of the $f_0(2100)$. Because of $\eta - \eta' - \eta(1405)$ mixing the $\eta(1405)$ should have a small $s\bar{s}$ component. Therefore, $f_0(2100) \rightarrow$ $\eta\eta(1405)$ exists. The production of $f_0(2100)$ in J/ψ radiative decay and $p\bar{p}$ collisions result in $gg \rightarrow f_0(2100)$.

- [1] J. Beringer *et al.* (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
- [2] T.A. Armstrong et al., Phys. Lett. B 307, 394 (1993).
- [3] A. V. Anisovich *et al.*, Phys. Lett. B 449, 145 (1999); Nucl. Phys. A662, 319 (2000); Phys. Lett. B 491, 47 (2000).
- [4] M. Ablikim et al., Phys. Rev. D 87, 092009 (2013).
- [5] R. M. Baltrusaitis et al., Phys. Rev. D 35, 2077 (1987).
- [6] J.Z. Bai *et al.*, Phys. Rev. Lett. **77**, 3959 (1996); Phys. Rev. D **68**, 052003 (2003); D. Barberis *et al.*, Phys. Lett. B **453**, 305 (1999).
- [7] M. Ablikim et al., Phys. Lett. B 642, 441 (2006).
- [8] D.L. Burke et al., Phys. Rev. Lett. 49, 632 (1982).
- [9] D. Bissello et al., Phys. Rev. D 39, 701 (1989).
- [10] D. V. Bugg, I. Scott, B. S. Zou, V. V. Anisovich, A. V. Sarantsev, T. H. Burnett, and S. Sutlief, Phys. Lett. B 353, 378 (1995).

- [11] J.Z. Bai et al., Phys. Lett. B 472, 207 (2000).
- [12] D. Barberis et al., Phys. Lett. B 413, 217 (1997).
- [13] D. Barberis et al., Phys. Lett. B 471, 400 (2000).
- [14] R.L. Jaffe, Phys. Rev. D 15, 267 (1977); 15, 281 (1977).
- [15] B.A. Li, Phys. Rev. D 52, 5165 (1995); 52, 5184 (1995).
- [16] See the recent review article by J. Rosner, Phys. Rev. D 70, 034028 (2004); B. A. Li and K. F. Liu, Phys. Lett. 118B, 435 (1982); S. P. Li and M. Baker, Phys. Lett. 124B, 397 (1983); Phys. Rev. Lett. 51, 1510 (1983); K. F. Liu and B. A. Li, Phys. Rev. Lett. 58, 2288 (1987); N. N. Achesov, S. A. Devyanin, and G. N. Shestakov, Phys. Lett. 108B, 134 (1982); 108B, 435(E) (1982); Z. Phys. C 16, 55 (1982); N. N. Achesov, S. A. Devyanin, and G. N. Shestakov, Z. Phys. C 27, 99 (1985); I. V. Anikin, B. Pire, and O. V. Teryaev, Phys. Lett. B 626, 86 (2005); Acta Phys. Pol. B 37, 883 (2006).

- [17] M. Ablikim et al., Phys. Rev. Lett. 96, 162002 (2006).
- [18] B.A. Li, Phys. Rev. D 74, 054017 (2006).
- [19] A. H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 79, 074014 (2009); 77, 034006 (2008); 72, 034001 (2005); A. H. Fariborz, Phys. Rev. D 74, 054030 (2006); A. H. Fariborz, Int. J. Mod. Phys. A 19, 2095 (2004); D. Black, A. H. Fariborz, S. Moussa, S. Nasri, and J. Schechter, Phys. Rev. D 64, 014031 (2001); D. Black, A. H. Fariborz, and J. Schechter, Phys. Rev. D 61, 074001 (2000); D. Black, A. H. Fariborz, F. Sannino, and J. Schechter, Phys. Rev. D 59, 074026 (1999).
- [20] B. A. Li, Phys. Rev. D 81, 114002 (2010); A. Masoni, C. Cicalo, and G. L. Usai, J. Phys. G 32, R293 (2006); C. Amsler *et al.*, Phys. Lett. B 667, 1 (2008); F. Ambrosino *et al.* (KLOE Collaboration), Phys. Lett. B 648, 267 (2007); T. Feldmann, P. Kroll, and B. Stech, Phys. Rev.

D 58, 114006 (1998); Phys. Lett. B 449, 339 (1999); Hai-Yang Cheng, Hsiang-Nan Li, and Keh-Fei Liu, Phys. Rev. D 79, 014024 (2009); T. Gutsche, V. E. Lyubovitskij, and M. C. Tichy, Phys. Rev. D 80, 014014 (2009); F. Buisseret, V. Mathiau, and C. Semay, Phys. Rev. D 80, 074021 (2009); V. Mathiau and V. Vento, Phys. Rev. D 81, 034004 (2010); S. He, M. Huang, and Q. S. Yan, Phys. Rev. D 81, 014003 (2010).

- [21] D. Bisello *et al.* (DM2 Collaboration), Phys. Lett. B 179, 294 (1986); (), Phys. Lett. B 241, 617 (1990); Z. Bai *et al.* (MARK III Collaboration), Phys. Rev. Lett. 65, 1309 (1990).
- [22] B.A. Li and K.F. Liu, Phys. Rev. D 40, 2856 (1989).
- [23] B. A. Li and K. F. Liu, Phys. Lett. 134B, 128 (1984); B. A. Li, Q.-X. Shen, H. Yu, and K.-F. Liu, Phys. Rev. D 32, 308 (1985); B. A. Li and K. F. Liu, Phys. Rev. D 28, 1636 (1983); 30, 613 (1984).