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The phase structure of magnetized cold quark matter is analyzed in the framework of the two-flavor

Nambu-Jona-Lasinio models paying special attention to its dependence on the model parameters as

different values within the phenomenological allowed range are considered. We first discuss the simpler

chiral limit case, and then the more realistic situation of finite current masses. We show that in spite of the

difference in the nature of some transitions, both cases are alike and exhibit a rather rich phase structure

for a significant range of acceptable parameters. A simplification of the phase structure is obtained as

parameters leading to larger values of the dressed quark mass in the vacuum are considered. Finally, we

consider the so-called ‘‘inverse catalysis effect’’ showing that in some phases it implies an actual decrease

of the order parameter as the magnetic field increases.
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I. INTRODUCTION

Understanding the behavior of strongly interacting mat-
ter under the influence of intense magnetic fields has
become an issue of increasing interest in recent years [1].
This has been mostly motivated by the realization that
strong magnetic fields may be produced in several physi-
cally relevant situations. For example, present estimates [2]
indicate that in noncentral heavy ion collisions at very high
energies the field intensity could be B� 1019 G, i.e. eB�
0:06 GeV2 in natural units. Moreover, the compact stellar
objects believed to be the source of intense � and X rays,
magnetars, are expected to bear fields of the order of
1013–1015 G at their surface reaching values several orders
ofmagnitude greater at their center [3]. Note that in all these
situations the matter is, in addition, subject to extreme
conditions of temperature and/or density. Thus, it is of great
interest to investigate which modifications are induced by
the presence of strong magnetic fields on the whole QCD
phase diagram. Unfortunately, even in the absence of those
fields, the present knowledge of such phase diagram is only
schematic. Only recently have powerful lattice QCD
(LQCD) simulations [4] firmly established that for 2þ 1
flavors and vanishing baryon chemical potential there is a
crossover-like transition at Tpc ’ 160 MeV from a had-

ronic phase, in which chiral symmetry is broken and quarks
are confined, to a partonic phase in which chiral symmetry
is restored and/or quarks are deconfined. The situation is
less clear for finite chemical potentials due to the well-
known difficulty given by the so-called sign problemwhich
affects lattice calculations [5]. Of course, the presence of
strong magnetic fields makes the situation even more com-
plex. Thus, most of our present knowledge of their effect
comes from investigations performed in the framework of
effective models (see e.g. Refs. [6,7] and references

therein). A general outcome is an enhancement at vanishing
chemical potential of the dynamical symmetry breaking
due to external magnetic field, a phenomenon usually re-
ferred to as ‘‘magnetic catalysis’’ [8]. In fact, a recent
LQCDstudy [9] of the behavior of theu- andd- condensates
at zero and finite temperature in an external magnetic field
has confirmed the magnetic catalysis phenomena predicted
by most of the models at zero temperature. However, for
temperatures of the order of the crossover temperature a
decrease of the quark condensates is found. It remains an
open and interesting question what prevents magnetic ca-
talysis to persist for these larger temperatures. In this article
we will concentrate on a different sector of the phase
diagram: that of finite chemical potential and low tempera-
tures. Although this region has been the subject of several
investigations in the past (see e.g. Refs. [10–18]), as in the
case of vanishingmagnetic field the corresponding behavior
of the strongly interacting matter has not been firmly estab-
lished. For example, only very recently was it fully realized
that there exists an ‘‘inverse catalysis effect’’ at certain
values of the magnetic field [19]. We will perform our
analysis in the framework of the two-flavor Nambu-Jona-
Lasinio (NJL)-type models [20]. As is well known (see e.g.
Ref. [21]), even in the simplest version of these models
there is a significant range of phenomenologically accept-
able values for the model parameters. In this situation,
previous NJL studies of the effect of the magnetic field on
cold quark matter have only considered some particular
choices of allowed parameterizations. Our aim is to perform
a systematic analysis of how both the qualitative and quan-
titative details of the phase diagram of cold dense quark
matter subject to intense magnetic fields depend on the
specific choice of the parameters. It should be noted that
the generic features of such phase diagram have been first
studied in Refs. [10,11]. However, in these works only the
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chiral limit was considered and no details of the precise
dependence of the phase diagram on parametrizations
within the range of phenomenological interest were given.
As already mentioned, for the more realistic case of finite
current quarkmasses only a few particular parametrizations
were considered.

This work is organized as follows. In Sec. II we provide
a brief review of the NJL model description of cold dense
quark matter in the presence of external magnetic fields.
The model parameters, as well as the way to determine
them, are also introduced. In Sec. III we consider the
parameter dependence of the phase diagrams in the chiral
limit. The case of finite quark masses is analyzed in Sec. IV.
Our main conclusions are presented in Sec. V. Finally, we
have included two appendices: in Appendix A we provide
some details of the parametrizations for the chiral case
while in Appendix Bwe give the numeric values of parame-
ters used for the case of finite current masses.

II. FORMALISM

Our starting point is the Euclidean effective action of
the SU(2) NJL model in the presence of an external
electromagnetic field. It reads:

SE ¼
Z

d4xf �c ð�i��D� þmcÞc
�G½ð �c c Þ2 þ ð �c i��5c Þ2�g; (1)

wheremc is the current quark mass (we work in the isospin
limit mc ¼ mu ¼ md) and G is a coupling constant. The
coupling of the quarks to the electromagnetic field A� is

implemented through the covariant derivative D� ¼ @� �
iqfA� where qf represents the quark electric charge

(qu=2 ¼ �qd ¼ e=3). We consider a static and constant
magnetic field in the z direction,A� ¼ ��2x1B. Since the

model under consideration is not renormalizable, we need
to specify a regularization scheme. Here, we introduce a

sharp cutoff in 3-momentum space, only for the ultraviolet
divergent integrals. Together with mc and G, the cutoff �
forms a set of three parameters that completely determine
the model. These parameters are usually fixed so as to
reproduce the empirical values in the vacuum of the pion
mass m�, the pion decay constant f�, and the quark con-
densate h �qqi0. The latter is related to dressed quark mass in
the vacuum M0 via M0 ¼ mc � 2Gh �qqi0. Whereas the
physical values m� ¼ 138:0 MeV and f� ¼ 92:4 MeV
are known quite accurately, the uncertainties for the quark
condensate are rather large. Limits extracted from sum rules

are 190 MeV<�hu �ui1=30 < 260 MeV at a renormalization

scale of 1 GeV [22], while typical lattice calculations yield

�hu �ui1=30 ¼ 231� 8� 6 MeV [23] (see e.g. Ref. [24] for

some other lattice results). As a consequence of this, differ-
ent parametrizations compatible with this rather broad
range of values for the condensate have been used in the
literature. As frequently done, herewe choose to takeM0 as
the quantity which defines those parametrizations. To be
compatible with the above-mentioned phenomenological
values for the quark condensate wemust have 300 & M0 &
600 MeV [21].
To account for finite temperature T and chemical poten-

tial � one can follow the standard Matsubara formalism
which amounts to performing the replacements,

p4 ! ð2nþ 1Þ�T � i�;
Z dp4

2�
! X

n

: (2)

In the case of the local NJL model under consideration the
sum over Matsubara modes can be analytically performed.
Since we are particularly interested in analyzing the be-
havior of cold quark matter, we take the limit of vanishing
temperature in the resulting expressions. In this limit, the
thermodynamical potential in the mean field approxima-
tion (MFA) reads [11,13]

�ð�;B;MÞ ¼ ðM�mcÞ2
4G

þ NcNf

8�2

8<
:M4 ln

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þM2

p

M
��ð2�2 þM2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þM2

p 9=
;
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2�2

X
f¼u;d

ðqfBÞ2
�
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x2f
4
� 1

2
ðx2f � xfÞ ln xf

�

� Nc

4�2

X
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�ð�� skfÞ�kjqfjB
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>>:�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � s2kf

q
� s2kf ln

2
664�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � s2kf

q
skf

3
775
9>>=
>>;; (3)

where �k ¼ 2� �k0, skf¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ2kjqfjB

q
and xf¼

M2=ð2jqfjBÞ. In addition, � 0ð�1;xfÞ¼d�ðz;xfÞ=dzjz¼�1,
where �ðz; xfÞ is the Riemann-Hurwitz zeta function. The
sum over k in the last line corresponds to the sum over the
populated Landau levels (LL’s) associated to each quark
flavor f. The dressed quark mass Mð�;BÞ at a given value

of � and B is found as solution of the gap equation,
@�=@M ¼ 0. As is well known, the behavior of these
solutions as a function of � indicates the existence of
some kind of phase transition which, in the chiral case,
can be of first or second order depending on the value of the
external magnetic field. For finite current masses, however,
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these possible second order phase transitions become
smooth crossovers. Consequently, there is not a unique
way to define their position. In fact, even in the absence
of a magnetic field, different prescriptions have been used
in the literature to define the position of a crossover-type
transition. They include, for example, the location of the
peak of the chiral susceptibility 	ch ¼ @h �qqi=@mc, of the
peak of the derivative of an order parameter with respect to
some thermodynamical variable (as e.g. � or T), etc. This
issue will be discussed in some detail in Sec. IV. We should
also mention that, as will be seen in Sec. III, some addi-
tional second order transitions can occur in the chirally
restored phaseM ¼ 0 in the chiral case. There, one should
consider some additional quantity, like the quark number
density 
 ¼ �@�=@�, in order to observe their effect.

As already stated, the main aim of this work is to
perform a detailed analysis of how the character and loca-
tion of these different types of phase transitions depend on
the chosen parametrization of the NJL model. For conve-
nience, we discuss in the next section the simplified case of
mc ¼ 0. The more realistic case of finite quark mass will
be addressed in Sec. IV.

III. PHASE DIAGRAMS IN THE CHIRAL LIMIT

In this section we analyze the chiral case mc ¼ 0. As
discussed in the Appendix A, in this case the model has
only two parameters: the coupling constant G and the 3D
cutoff �. In order to work along a line of ‘‘constant
physics’’ we determine them as a function of M0 so as to
reproduce a value of the pion decay constant in the chiral
limit fch� ¼ 90 MeV. The numerical results for the dimen-
sionless coupling constant g ¼ G�2 and � as functions of
M0 are given in the Appendix A (see upper panel of
Fig. 15). Note that since for mc ¼ 0 the pion decay con-
stant is the only dimensionful quantity in the problem, any
dimensionful quantity (expressed in natural units) has to be
the product of some fch� -independent constant multiplied
by some power of it. In this way, all the results to be shown
in this section can be easily made ‘‘universal,’’ in the sense
of being independent of the chosen value for fch� . Of
course, some extra dependence on the chosen procedure
to regularize the UV divergencies might still exist.

We start by discussing the situation at vanishing mag-
netic field. Although this has already been discussed in the
literature to some extent [25–27] it will serve as a bench-
mark for a better understanding of the modifications in-
troduced by the presence of external magnetic fields. The
corresponding diagram in the M0-� plane is shown in
Fig. 1. There, the full lines correspond to first order phase
transitions while the dashed lines to second order ones. Let
us recall that each value of M0 corresponds to a different
parametrization of the model. As we see, depending on the
value of M0, three different regions can be distinguished.
For M0 <M0ðbÞ two consecutive second order transitions
occur as � increases. The first one connects a phase in

which M ¼ M0 independently of the value � to one in
which M ¼ Mð�; 0Þ with 0<M<M0. The second tran-
sition in turn connects the latter phase to the chirally
restored phase M ¼ 0. Note that while the first of these
transitions implies a discontinuity of d2M=d�2 at the
critical point [26], in the case of the second one already
the first derivative is discontinuous at the corresponding
point. For M0ðbÞ<M0 <M0ðaÞ the situation is similar
except for the fact that the second transition is of first order
type. Finally, for M0 >M0ðaÞ there is only one first order
transition connecting the phase with M ¼ M0 to the one
with M ¼ 0. These possible situations are illustrated in
Fig. 2 where we display the behavior of M (upper panel)
and the density 
 (lower panel) as a function of� for three
values ofM0, each one lying in one of the above-mentioned
regions. For our chosen value of fch� we obtain M0ðaÞ ¼
334:45 MeV and M0ðbÞ ¼ 239:64 MeV. As already indi-
cated, these quantities can bewritten in a ‘‘universal’’ way if
we express them in terms of fch� . We obtain

M0ðaÞ ¼ 3:716fch� ; M0ðbÞ ¼ 2:663fch� : (4)

It should be mentioned that an approximation to the above
expression for M0ðaÞ was given in Ref. [25] where the
relation M0ðaÞ ’ 4fch� was quoted. On the other hand, in
Ref. [11] the values ofM0ðaÞ andM0ðbÞwere given in terms
of the cutoff �. Although in principle correct, we find that
this way to express these critical massesmight be somewhat
inconvenient. Note that for a fixed ratio M0=�, different
values of � correspond to different values of fch� [see
Eq. (A2)] and, thus, do not represent the same physical
situation. For this reason we find it more adequate to take
fch� instead of � as the ‘‘independent’’ variable.
We turn now to the finite B case. In Fig. 3 we display the

behavior of the critical chemical potentials of the different

FIG. 1 (color online). Critical chemical potentials as functions
of the model parametrization (specified by the value of M0) in
the absence of the magnetic field.
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possible transitions as functions of M0 for several repre-
sentative values of eB. Note again that if the values of �,
M0 and eB are scaled with the corresponding powers
of fch� ¼ 90 MeV these figures are ‘‘universal’’ in the
sense described above. We concentrate first in the lowest
value of the magnetic field considered, eB ¼ 0:01 GeV2.
Comparing it with the corresponding one for eB ¼ 0
shown in Fig. 1, we observe some differences and similar-
ities. First, here we can observe that there is a clearly
different behavior depending on whether M0 >M0ðaÞ or
not. Note that in general the value ofM0ðaÞ depends on eB
(see Fig. 5 below and its corresponding discussion). For
parametrizations with M0 >M0ðaÞ there is only one first
order transition at a given critical �. Such transition con-
nects the chirally broken phase with M ¼ Mð0; BÞ to the
chiral phase M ¼ 0. On the other hand, for M0 <M0ðaÞ
the chirally restored phase is reached only after a succes-
sion of several first order transitions. This situation is
illustrated in the left panels of Fig. 4 where we display
the behavior of M (upper panel) and the quark density 

(lower panel) for eB ¼ 0:01 GeV2 and two representative
values of M0. It is interesting to analyze the case M0 <
M0ðaÞ in some detail. Contrary to what happens for
eB ¼ 0, where the lowest critical � corresponds to a

second order transition, we note that as soon as a small
external field is present such transition becomes first order.
It is possible to check that if one takes, for example,M0 ¼
210 MeV and considers values of eB < 0:01 GeV2, the
number of first order transitions needed to reach the
M ¼ 0 phase increases as eB decreases and, eventually,
the curves of M and 
 as functions of � tend to those
shown in Fig. 2 as eB vanishes. It is clear that the disconti-
nuities present in the finite eB case are due to the quanti-
zation of the (Landau) levels induced by the magnetic
fields. Another important observation concerns the last
transition before the M ¼ 0 phase is reached. Such tran-
sition can be of first or second order depending on the
chosen value of M0. Although somewhat difficult to ob-
serve in the case of eB ¼ 0:01 GeV2, this effect becomes
clear as larger values of eB are considered. Finally we note
that, independently of the chosen parametrization, in the
chirally restored phase M ¼ 0 extra second order transi-
tions occur at the chemical potentials indicated by the
dotted lines. The corresponding critical values of � are
such that some new Landau levels contribute to the last line
of Eq. (3) for M ¼ 0. Thus,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kcfeB=3

q
(5)

where cu ¼ 2cd ¼ 2. It is important to note that, although
in the chiral case these transitions do not cause any change
in the chiral order parameter, some other quantities like the
derivatives of the quark density do display discontinuities
at the critical point. This effect can be observed, for
example, in the behavior of the density as function of �
for the case M0 ¼ 210 MeV displayed in the left lower
panel of Fig. 4. In fact, all the features present there are
associated with the magnetic oscillations related to the
so-called ‘‘van Alphen–de Haas effect’’ [10]. Note that
while for chemical potentials leading to massive phases
these oscillations induce first order transitions, for those
corresponding to massless ones the transitions are of
second order.
Continuing with the analysis of the M0-� diagrams

displayed in Fig. 3 we discuss now how they are modified
as eB increases. We see that for eB ¼ 0:05 GeV2 the value
of M0ðaÞ is somewhat larger than for eB ¼ 0:01 GeV2. In
addition, for a given M0 <M0ðaÞ the number of first order
transitions needed to go from the M ¼ Mð0; BÞ phase to
the one with M ¼ 0 decreases. Of course, as is clear from
Eq. (5), the spacing between the dotted lines becomes
larger. Note also that, for the range of values of M0

considered, all the transitions connecting the finite M
phases to the vanishing M ones are of first order type.
The situation changes for eB ¼ 0:08 GeV2 since in this
case there is a region of values ofM0 for which theM ¼ 0
phase is reached through a second order phase transition. It
is interesting to note that such second order line ends at the
point where a dotted line meets a first order line. As seen in
previous cases, however, the intersection of a dotted line

FIG. 2 (color online). Behavior of the dressed mass M (upper
panel) and the quark density 
 (lower panel) for eB ¼ 0. Plots
for several representative model parameter sets specified by the
value of M0 are shown.
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and a first order one does not necessarily imply the exis-
tence of a second order ‘‘chiral’’ line that ends at the
meeting point. The behavior of M and 
 as functions of
� for some representative values of M0 are shown in the
right panels of Fig. 4. For the next value considered, eB ¼
0:09 GeV2, we observe that the point a still moves towards
larger values of M0, and both the beginning and the end of
the second order line are inside the considered range of
parametrizations. However, if we increase the magnetic
field further to eB ¼ 0:10 GeV2 the position of a displays
a sudden jump toward smaller values of M0. Moreover, no
second order ‘‘chiral’’ line is present for M0 > 200 MeV.
In the last case explicitly considered, which corresponds to
eB ¼ 0:15 GeV2, we see that the point a has moved fur-
ther to the lower left corner of the diagram. In addition a
new second order line appears, but only for parametriza-
tions corresponding to small values M0 < 220 MeV. We
note that for even larger values of eB we get M0ðaÞ<
200 MeV and, thus, there is only one first order transition
in the whole range of parametrizations considered. Of
course, in addition to such transition, there also exist the
corresponding second order transitions which are always
present in the chirally restored phase.

From the analysis above it is clear that the presence of the
magnetic field induces a rather rich and diverse structure of
phase transitions for the different possible parametrizations
laying within the physical range 300 & M0 & 600 MeV.
Particularly interesting is the behavior of the position of
the critical point a as a function of eB. In fact, for parame-
trizations with M0 >M0ðaÞ only one first order phase
transition connects the vacuum phase to the chirally re-
stored phase. Such behavior is shown in Fig. 5. As we see,
the corresponding curve is not monotonic and presents
two peaks followed by two associated discontinuities.
Expressed in ‘‘universal’’ fashion the highest maximum
(hm) corresponds to

M0ðaÞhm ¼ 4:127fch� with eBhm ¼ 11:35ðfch� Þ2 (6)

while the lowest maximum (lm) corresponds

M0ðaÞlm ¼ 3:798fch� with eBlm ¼ 17:95ðfch� Þ2 (7)

which for our chosen value fch� ¼ 90 MeV leads to
M0ðaÞhm ¼ 371:46 MeV and M0ðbÞlm ¼ 341:80 MeV.
We should mention that, in principle, additional peaks
and discontinuities might appear for larger values of eB.

FIG. 3 (color online). Critical chemical potentials as functions of the model parametrization specified by the value ofM0 for several
representative values of the magnetic field.
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However, the corresponding values of M0ðaÞ would be
below 200 MeV and, thus, far from the physical range of
interest. The value ofM0ðaÞhm is particularly important. In
fact, for parametrizations with M0 >M0ðaÞhm the phase
diagram in the eB-� plane is very simple since, as it will be
shown below, it only displays a single first order phase
transition for all values of the magnetic field. It is interest-
ing to note that the intervalM0ðaeB¼0Þ<M0 <M0ðaÞhm is
the one mentioned in footnote 9 of Ref. [11] for which
stable quark droplets are formed by massive quarks. Note,
however, that no precise value for M0ðaÞhm was given in
that reference.

We turn now to the analysis of the eB-� phase diagrams.
However, before considering values of M0 within the ac-
cepted range of physical interest, we will focus on the
situation for M0 ¼ 200 MeV. Although this might be
only considered a case of academic interest, it is never-
theless instructive since it displays the full complexity that
a phase diagram of this type might have, allowing also to
appreciate how such diagram is simplified as M0 increases
towards the physical region of parameters. The corre-
sponding phase diagram is shown in Fig. 6. This diagram

is very similar to the one sketched in Fig. 4 of Ref. [10]
which corresponds to a simplified one-flavor model. Note
that we use different types of lines to represent the various
types of transitions. In Fig. 6, full (black) lines correspond
to first order phase transitions, dashed (red) lines to second

FIG. 4 (color online). Behavior of the dressed mass M (upper
panels) and the quark density 
 (lower panels) for two selected
values of eB and several representative model parameter sets
specified by the value of M0.

FIG. 6 (color online). Phase diagrams in the eB-� plane for
the chiral case and M0 ¼ 200 MeV. Full (black) lines represent
first order phase transitions while dashed (red) lines represent
second order ones. Dotted (blue) lines correspond to the second
order transitions which separate the different massless phases.
Phase B corresponds to the fully chiral symmetry broken phase
with no LL populated, while the phases Ci to massive phases in
which LL’s up to k ¼ i for d-quarks and k ¼ m for u-quarks are
populated. Here, m ¼ i=2ðði� 1Þ=2Þ if m is even (odd). In phase
B, the dressed mass takes the vacuum value Mð0; eBÞ indepen-
dently of � while in the phases Ci it takes a smaller value which
does depend on �. The phases Ai are phases in which chiral
symmetry is restored and LL’s up to k (related to i as above) are
populated.

FIG. 5. Position of the critical point a as a function of eB in the
chiral case. Note that for parametrizations with M0 >M0ðaÞ
only one first order transition connects the vacuum phase to
the chirally restored phases.
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FIG. 7. Behavior of the dressed mass M (left panels) and the quark density (right panels) as functions of the chemical potential for
the chiral case with M0 ¼ 200 MeV and several representative values of the magnetic field.
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order ‘‘chiral’’ transitions and dotted (blue) lines to the
second order transitions between massless phases. On
the other hand we follow the notation of Ref. [10] to denote
the different phases and critical points. In fact, the phase B
corresponds to the fully chirally broken phase where
M ¼ Mð0; BÞ, while the phases Ci correspond to massive
phases where M also depends on �. This can be clearly
observed in Fig. 7 where we display the behavior ofM (left
panels) and 
 (right panels) for different representative
values of eB. Note that while the quark density in the B
phases vanishes, this is not the case in the phasesCi. Finally,
the phases Ai correspond to massless phases with different
number of populated LL’s. For convenience, we also intro-
duce the following notation for the lines separating the
different phases. We use ‘B to indicate the first order line
that separates the B phase from the C0 or A0 phases, ‘Ci
(with i ¼ 1; 2 . . . ) the first order line separating the Ci and
Ci�1 phases and ‘Ai (with i ¼ 1; 2 . . . ) the second order line
separating the Ai and Ai�1. Note, however, that in general
there exists a segment of the ‘Ci line (that going from ti to
si�1) that actually separates the Ai and Ci�1 phases. As
discussed in Ref. [10], for vanishing eB all the ‘Ci lines are
expected tomeet ‘B at a single point,M,with�ðMÞ ¼ M ¼
200 MeV in the present case. Note that this point should lie
on the lower dashed line of Fig. 1 and, thus, corresponds to a
second order transition point. The main difference with
Fig. 4 of Ref. [10] is the form of the segments connecting
the points ti and si�1. In fact, we find that the slope of the
corresponding functions �ðeBÞ is always positive and in-
creases with eB. The equations for the ‘Ai lines are given by
Eq. (5). Note that each time that one of these lines is crossed
from right to left some new LL’s are populated. In fact, the
crossing of ‘A1 corresponds to the population of the d-quark
state with k ¼ 1, that of ‘A2 to the simultaneous population
of the u-quark state with k ¼ 1 and d-quark state with
k ¼ 2, etc. The fact that the population of the u-quark state
with a certain k coincides with the one of the d-quark state
with 2k is simply due to the fact that (in modulus) the
electric charge of the first is twice that of the second.
Thus, those ‘Ai associated with odd i correspond to popu-
lation of only one d-quark statewhile the ones with even i to
the simultaneous population of a d-quark and a u-quark.
Consequently larger effects are expected to happen when
crossing the ‘‘even’’ ‘Ai. A similar phenomenon occurs
when crossing the first order ‘Ci lines. This pattern can be
particularlywell observed in the upper panels of Fig. 7.Here
one should keep inmind that the first transition (the onewith
the lowest�) corresponds to the crossing of the ‘B line and,
thus, should not be expected to follow the above-mentioned
trend. Note that while in the B phase no quark state is
populated, in both the C0 and A0 phases only the lowest
Landau levels (LLL’s) of the d- and u-quark are. It is also
interesting to notice that for the parametrization M0 ¼
200 MeVwe are discussing each first order line ‘Ci appears
to be naturally continued by the ‘Ai one. As we will see

below, this correspondence is not so clear for larger values
ofM0. To complete the description of the phase diagram for
M0 ¼ 200 MeV we present some comments on the second
order lines going from the points si to ti, and which separate
the Ai phase from the Ci one. The points on these lines
obey relations that can be obtained by demanding that the
quadratic coefficient of the Landau expansion of Eq. (3)
vanishes. Although in general these relations can be only
numerically given, the case for the line connecting s0 to t0
admits a simple analytical expression. It reads

� ¼ 1

22=3

ffiffiffiffiffiffiffi
eB

3�

s
exp

�
2

�
1� gc

g

�
�2

eB

�
(8)

with gc ¼ �2=NcNf. Of course, the equation is valid for

eBðs0Þ< eB< eBðt0Þ. The position of the critical point s0
can be easily obtained by demanding that Eq. (8) and the
relation� ¼ 2

3 eB are simultaneously satisfied. Note that the

latter relation corresponds to the line ‘C1 [see Eq. (5)]. On
the other hand, to obtain the location of the critical point
t0, Eq. (8) has to be solved togetherwith the relation satisfied
by the first order line separating the B and C0 phases,
which follows from the condition �ð�; eB;Mð0; eBÞÞ ¼
�ð�; eB; 0Þ. This procedure can be generalized so as to
determine the precise position of the rest of the si and ti
critical points. However, due to the lack of simple analytical
expressions for the equations involved, this has to be
numerically done.
In the rest of this section we discuss how the eB-�

diagrams for cold quark matter evolve as we turn to pa-
rametrizations corresponding to the relevant range 300<
M0 < 600 MeV. Diagrams with several values of M0 at
intervals of 20 MeV are shown in Fig. 8. Only parametri-
zations up to M0 ¼ 400 MeV are explicitly displayed. As
discussed below, beyond that value ofM0 the corresponding
phase diagrams do not involve any qualitative new feature.
Let us consider first the case M0 ¼ 300 MeV. As we see,
there is a considerable simplification with respect to that of
M0 ¼ 200 MeV. In fact, apart from the ever present B
phase, only two massive phases exist in the relevant range
of magnetic fields (very close to eB ¼ 0:01 GeV2 there is a
very tiny region ofC2 phasewhich can hardly be seen in the
figure). Thus, contrary to the case ofM0 ¼ 200 MeV, there
is a range of magnetic fields for which a first order transition
can connect the Ci phase to some phasesAiþm, withm> 1.
The fact that the C1 phase is no longer simply connected
can be understood as due to a ‘‘strangulation’’ of that region
caused by the rise of the central part of the line connecting
M to s0. In fact, the strict correspondence between the first
order line ‘Ci and the second order one ‘Ai (with the same i)
mentioned above is lost here. Going now to the case M0 ¼
320 MeV, only one sector of the C1 phase (the one sur-
rounded by the phases C0, A1 and A2) shows up for eB >
0:01 GeV2. Moreover, the C0 phase gets smaller and is split
into two pieces. It is interesting to note that slightly above
eB ¼ 0:1 GeV2 two first order lines seem to touch at one
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single point. In fact this is exactly true for a somewhat lower
value M0 ¼ 319:2 MeV. In any case, the existence of this
particular meeting point might be worrisome since no more
than three first order lines are expected to converge at one
point. However, since only three different phases (B,C0 and
A1) coexist at this point, this does not bring any contra-
diction with general statistical mechanical arguments. IfM0

is increased further to M0 ¼ 340 MeV only two small
‘‘islands’’ of C0 remain: one (which can hardly be seen in
the figure) is separated from theA0 phase by a second order
transition, and the other is fully surrounded by first order

lines. In addition theC1 region gets somewhat smaller. Note
that since for this value of M0 there is only one single first
order transition in the limit of vanishing magnetic field (see
Fig. 1), no other region of any Ci phase is expected to
appear even for lower values of eB. For M0 ¼ 360 MeV
the region C1 becomes very tiny, and forM0 ¼ 380 MeV it
is not present anymore. Note that from there on (see e.g. the
diagram for M0 ¼ 400 MeV) the diagrams become very
simple displaying only one first order phase transition for
any arbitrary value of the magnetic field considered. Of
course, in addition to it, we have the ‘Ai lines separating the

FIG. 8 (color online). Phase diagrams in the eB-� plane in the chiral case and for various representative values of M0. Full (black)
lines represent first order phase transitions while dashed (red) lines to second order ones. Dotted (blue) lines correspond to the second
order transitions which separate the different massless phases. Different phases are denoted as in Fig. 6.
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different Ai phases. The precise value at which the C1

disappears can be determined by finding when the points
s1 and t1 meet. Of course, this value coincides with that of
M0ðaÞhm given in Eq. (6). Thus, for our choice fch� ¼
90 MeV, the parametrization beyond which the eB-�
diagram is particularly simple corresponds to M0 ¼
371:46 MeV. We can also mention that the C0 phase does
not exist for parametrizations M0 >M0ðaÞlm.

It is interesting to address at this point the so-called
‘‘inverse catalysis effect’’ recently discussed in the litera-
ture [19]. This is usually related to a decrease of the critical
chemical potential at intermediate values of the magnetic
fields. Such a phenomenon is clearly observed for all the
cases indicated in Fig. 8. In fact, we see that after staying
fairly constant up to eB ’ 0:05 GeV2 the transition line ‘B
bends down reaching a minimum at eB ’ 0:2–0:3 GeV2

after which it rises indefinitely with the magnetic field.
This implies that, in general, there is some interval of
values of the chemical potential for which an increase of
the magnetic field at constant � causes first a transition
from the massive phase B to some massless phase Ai and
afterwards from the massless phase A0 back to massive
phase B. This is clearly observed in Fig. 9 where we plot
the behavior of M as a function of eB for several repre-
sentative values of � and M0 ¼ 320 and 400 MeV. An
important feature not so often discussed in the literature
(see however Ref. [14] for a brief comment on this) can
also be noticed in the case of M0 ¼ 320 MeV: when the
system is in a Ci phase there is an actual ‘‘inverse catalysis
effect’’ in the sense that the order parameter for sponta-
neous chiral symmetry breaking (M or the chiral conden-
sate) does decrease with the magnetic field while staying in
the same phase. For example, in the case of� ¼ 300 MeV
(green dot-dashed line) there is first a ‘‘catalysis effect’’
while the system stays in the B phase, then at about

eB ¼ 0:127 GeV2 there is a first order transition to the C0

phase after which the ‘‘inverse catalysis effect’’can be
clearly observed. This situation proceeds up to eB ¼
0:139 GeV2 where there is a second order transition to the
A0 phase. Eventually, at eB ¼ 0:394 GeV2 the system
undergoes a new first order transition that brings it back to
the B phase. In the case of � ¼ 310 MeV (red dotted line)
the situation is similar except for the fact that the intermedi-
ate transition is of first order. Finally, for � ¼ 321 MeV
(blue dashed line) the system is in the C0 phase even for
very small magnetic fields and, thus, the inverse catalysis
effect is already present at low values of eB. At eB ¼
0:074 GeV2 there is a first order transition to the C1 phase
after which the ‘‘inverse catalysis effect’’ can still be clearly
observed. At eB ¼ 0:088 GeV2 there is a second first order
transition to the A1 whereM vanishes and, finally, at eB ¼
0:39 GeV2 there is a newfirst order transition to theB phase.
Note that between the last two transitions there is a second
order transition from the A1 phase to the A0 one which, of
course, in the present chiral case does not produce any effect
on the behavior ofM as a function of eB.
We conclude this section with a brief comment on the

sometimes used LLL approximation. It is clear that such an
approximation is well justified if only such Landau level is
involved in the transitions under study. For example, for
the parametrizationM0 ¼ 300 MeV, this is the case for the
lowest � first order transition and the whole range of
values of eB considered. However, the situation changes
asM0 increases. Already forM0 ¼ 360 MeV it can only be
safely used to describe the transition between the B and C0

phases, i.e. for rather large values of eB.

IV. FINITE CURRENT QUARK MASSES

The addition of a nonzero current mass to the problem
brings along a few qualitative and quantitative differences.
To begin with, there is no longer a universal character to
the phase diagram: parameter sets associated with different
values of f� are not related among themselves through a
scale change. In the rest of thiswork,we setm� ¼ 138 MeV
and f� ¼ 92:4 MeV and choose a value of M0 within the
phenomenological range 300 & M0 & 600 MeV in order to
fix themodel parametersmc, g ¼ G�2 and�. The resulting
values as well as those associated with the corresponding
chiral condensates are given in Appendix B.
For zero magnetic field, the M0-� phase diagram is

qualitatively similar to the one corresponding to the chiral
case (see Fig. 1) except for the fact that the highest� second
order transitions occurring forM0 <M0ðbÞ become smooth
crossovers here. For the values of f� and m� given above,
we findM0ðaÞ ¼ 361:2 MeV andM0ðbÞ ¼ 300:1 MeV.
We turn now to the case of finite magnetic field. Before

presenting the actual phase diagrams we will discuss the
main qualitative differences introduced by the existence of
finite current quark mass. We start by the second order
lines which separate the different Ai phases in the chiral

FIG. 9 (color online). Dressed quark mass M as a function of
eB in the chiral case for several representative values of the
chemical potential using the parameter sets associated with
M0 ¼ 320 MeV (left panel) and M0 ¼ 400 MeV (right panel).
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case, and whose equations are given in Eq. (5). Let us recall
that the corresponding critical chemical potentials are the
values at which new LL’s contribute to the sum in the last
line of Eq. (3) for M ¼ 0. In the case of finite quark

masses, although M never vanishes we can still define
the value of the chemical potential at which new LL’s
are populated, i.e. the one that satisfies the condition

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2kcfeB=3

q
. As it turns out, in all the cases

under study we found that for a given value of eB there is
no second order transition located at this chemical poten-
tial but a (weak) first order one in its vicinity, the transition
becoming weaker as the critical � increases. Namely, the
second order ‘Ai lines present in the chiral case become
first order here, being signaled by very small jumps in the
dressed mass. The situation is illustrated in Fig. 10 where
we plot the thermodynamical potential as a function of M
for some representative values of eB. In each case, we have
chosen one value of� above the critical chemical potential
and the other one below. Moreover, in each case we have
subtracted the value of the thermodynamical potential at
the intermediate maximum so as to be able to include all
the cases in the same plot. Figure 10 clearly displays the
existence of two solutions on either side of the point at
which the condition mentioned above is satisfied, and how
one of them becomes the absolute minimum depending on
whether � is below (black full line) or above (red dot-
dashed line) its critical value. The decrease of the jump in
mass as eB (and, thus, the critical chemical potential)
increases can also be observed in Fig. 10. Since for finite

FIG. 10 (color online). Thermodynamical potential as a function
of M for some representative values of eB. In each case we have
subtracted the value of the thermodynamical potential at the inter-
mediate maximum so as to be able to include all the cases in the
same plot. Red full lines (black dot-dashed lines) correspond to a
value of chemical potential slightly above (below) the critical value.

FIG. 11 (color online). Contour plots of the dressed mass (left panel) and the chiral susceptibility (right panel) as functions of � and
eB. Parameters are as in the chiral case for M0 ¼ 300 MeV but with mc ¼ 1 MeV. Full (black) lines represent first order phase
transitions. The different definitions discussed in the text are used to obtain the crossover transition lines: Def. (i) (peak of dM=dB) is
represented by dot-dashed line, Def. (ii) (peak of 	ch as a function of eB) by a dashed line and Def. (iii) (peak of 	ch as a function of�)
by a dotted line. Def. (iv) corresponds to the line of ‘‘slowest descent’’ from the absolute peak of the chiral susceptibility (dark blue
region in right panel) which basically coincides with that of Def. (ii). Different phases are denoted as in Fig. 6.
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current quark masses the different Ai phases are separated
by first order lines (in the same way as different Ci phases
are), it is no longer possible to distinguish between ‘Ai and
‘Ci lines as done in the chiral case: one simply has a single
continuous first order line that plays their role.

We turn now to the fate of the transition lines that separate
the phases Ci from the Ai ones, and which are of second
order in the chiral case. For finite current quarkmasses these
transitions become smooth crossovers. Consequently, as
already mentioned in Sec. III, there is not a unique way to

define their position. In the present case, considering the
peak of the derivative ofM with respect to� orB gives rise
to two possible prescriptions. As it happens, however, due to
the particular form of the transition lines (rather parallel to
the� axis as one can expect from the chiral case, see Fig. 8)
we find that in general there is no peak of dM=d�. Thus, we
are only left with the second possibility that we denote
Def. (i). For basically the same reason, the transition line
defined as the position of the peaks of the chiral suscepti-
bility when plotted as a function of eB at fixed � [denoted

FIG. 12 (color online). Phase diagrams in the eB-� plane in the case of finite current quark masses and for various representative
values of M0. Full (black) lines represent first order phase transitions while dashed (red) lines crossover ones. Different phases are
denoted as in Fig. 6.
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Def. (ii)] do not coincide, in general, with the one that
follows from the alternative possibility [denoted
Def. (iii)], i.e. the peaks of the chiral susceptibility when
plotted as a function of� at fixed eB. Moreover, in the latter
case the transition line tends to be washed away when the
current quarkmass is varied frommc ¼ 0 to its correspond-
ing physical value. To avoid this dependence on the some-
what ad-hoc chosen direction in the eB-� plane one can
define the transition line as the ridge occurring in the chiral
susceptibility when regarded as a two dimensional function
of eB and�. Mathematically, it can be defined by using for
each value of the susceptibility (starting from its maximum
value in the given region) the location of the points at which
the gradient in the eB-� plane is smaller. We denote this as
Def. (iv). The situation is illustrated in Fig. 11wherewe plot
the contour lines corresponding to M (left panel) and the
chiral susceptibility (right panel) for the case in which �
andg take thevalues associated to the chiral casewithM0 ¼
300 MeV but mc is arbitrarily set to mc ¼ 1 MeV. While
nonphysical, for this parameter set it is possible to use all the
alternative ways to define the transition lines mentioned
above (in particular, that associated with the peak of
d	ch=d� which rapidly disappears as mc increases). In
this way one can obtain some measure of the ambiguity
this introduces in the location of the transition line. In
Fig. 11 the thick dot-dashed lines correspond to Def. (i),
the dashed line to Def. (ii) and the dotted line to Def. (iii).
From the left panel of this figure it is quite clear that the
latter definition leads to a transition line which basically
coincides with the one obtained from Def. (iv), which in
turn corresponds to the line of ‘‘slowest descent’’from the
absolute peak of the chiral susceptibility (darker blue re-
gion). Although some alternative definitions are still pos-
sible (e.g. the contour line in the susceptibility diagram that,
at the contact point, is tangent to the first order line that

separates the C1 or A1 phases from the A2) we see that the
different definitions lead to qualitatively similar results.
Thus, in what follows we will use Def. (iv) keeping in
mind that to ensure the real existence of the transition line
one should be able to define it in at least more than oneway.
This requires that Def. (iv) must be complemented with the
condition that on each side of the curve there should exist at
least one region such that there is a maximum in the sus-
ceptibility for an arbitrary path connecting both regions. As
a corollary of this discussion we note that the location of the
critical points equivalent to the points si and ti discussed in
the previous section is also subject to definition ambiguities.
The phase diagrams in the eB-� plane for different

values of M0 are presented in Fig. 12. Apart from the
particular features just discussed, we observe that the gen-
eral trend is similar to the one of the chiral case shown in
Fig. 8: For low M0 values there are several different tran-
sitions that coalesce into fewer transitions as M0 is in-
creased. Moreover, while several crossovers between Ci

and Ai phases are still present for the set M0 ¼ 300 MeV,
they continue to exist from M0 ¼ 320 MeV until M0 ¼
360 MeV only for i ¼ 0, 1. It would seem that a phase
diagram for a givenM0 in the chiral case is always similar to
another one in the nonchiral case with larger M0. In par-
ticular, for finite quark masses the value ofM0 above which
there is a unique transition is 375.9 MeV. It interesting to
note that in this case the C0 phase (in particular the piece
completely surrounded by first order transition lines) is the
last one to disappear. In fact, theC1 phase ceases to exist for
values of M0 slightly above 360 MeV.
The way in which curves merge together asM0 increases

is qualitatively similar to the chiral case. This is shown in
Fig. 13 where we display a detail of the eB-� diagram for
M0 ¼ 300 MeV (left panel) and M0 ¼ 310 MeV (right
panel). We see that the curves develop a flat cubic-like

FIG. 13 (color online). Detail of the eB-� phase diagram in the case of finite current quark masses for M0 ¼ 300 MeV (left panel)
and M0 ¼ 310 MeV (right panel). Different phases are denoted as in Fig. 6.
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region, through which they come into contact. A transition
curve that is nearly independent of the chemical potential
is eventually formed from these flat regions. From the
original curves, the vertical parts with higher chemical
potential (i.e. those separating the Ai phases) continue to
exist asM0 is increased, while the lower chemical potential
parts of the curves tend to move to lower magnetic field
values and eventually disappear. In Fig. 13 it is also quite
clearly seen that the curves join in pairs, transition curves
being colored in the figure as to indicate which curves join
between themselves. For example, the first line to the right,
corresponding to the simultaneous population of the sec-
ond d-quark LL and the first u-quark LL, merges with the
following curve which corresponds to the population of the
third d-quark LL.

We end this section by discussing the inverse catalysis
effect for the case in which a finite current mass is present.
In Fig. 14, we display the behavior of the mass as a
function of magnetic field for several chemical potentials,
and the M0 ¼ 320 MeV and M0 ¼ 400 MeV parameter
sets. The complex phase structure for the M0 ¼ 320 MeV
case accounts for the different possible behaviors depending
on the chemical potential. For� ¼ 290 MeV, the system is
in theB phase for thewhole range ofmagnetic fields, and the
catalysis effect is clearly seen. For� ¼ 310 MeV, a similar
behavior is seen, except for a middle section where the
system passes through a C0 phase and an A0 phase before
returning to the vacuum phase again. As opposed to the
chiral case, the transition from C0 to A0 is not particularly
noticeable since at most the transition is signaled by a peak
in the susceptibility or the derivatives in the order parameter
as already discussed. In this region of the curve, as well as in
the rest of the following curves, the effect of inverse catalysis
is also present. In fact, it is absolutely dominant except
for barely noticeable regions in the Ai phases for the � ¼
340 MeV curve, and we can conclude that within phases

with nonzero quark density, the value of M is typically a
decreasing function of the magnetic field, while catalysis
occurs principally in the vacuum phase. In particular, for
� ¼ 321 MeV, the phase remains in C0 for a significant
range of magnetic fields and the mass decreases continu-
ously. Paying attention to the cases � ¼ 330 MeV and
� ¼ 340 MeV, we will also note that when we move to a
phase of increasing i, so as to populate new LL’s, the
discontinuity will be toward a lower mass, while if i de-
creases in the transition so as to leave a formerly occupied
Landau level empty, the jump will be toward a higher mass.

V. SUMMARYAND CONCLUSIONS

In this work we have considered the phase structure of
magnetized cold quark matter in the framework of the two-
flavor Nambu-Jona-Lasinio models. As is well known, even
in the simplest version of thesemodels there is a rather broad
range of phenomenologically acceptable values for the cor-
responding model parameters. Thus, we have performed a
detailed analysis of how the character and location of the
different types of phase transitions depend on the chosen
parametrization. As is frequently done in the literature, we
have specified each parametrization by the associated value
of the dressed quark mass in the vacuum at vanishing mag-
netic field M0, with the phenomenological range given by
300 & M0 & 600 MeV [21]. We have first discussed the
simpler situation in which the chiral limit is taken. In this
case the phase structure is basically dictated by the ratio
M0=f

ch
� . For M0=f

ch
� > 4:127 such structure is particularly

simple since only one single first order transition line ‘B
exists. This line separates the vacuumphase B from the ones
in which a certain number of Landau levels associated with
massless u- andd-quarks are populated. FollowingRef. [10]
we denote the latter ones asAi phases. They are separated by
second order transition lines that we called ‘Ai

. On the other

hand, for M0=f
ch
� < 4:127 the phase diagram is more

complex since additional first phase order and second
order transition lines appear as M0 decreases. In particular,
there appear new phases Ci in which chiral symmetry is
only partially restored. Namely, for a given magnetic field
the corresponding dressed mass is smaller than its vacuum
value and depends on the chemical potential. It is important
to stress that, for a typical value fch� ¼ 90 MeV, the parame-
trization below which these new phases and transition
lines appear corresponds to M0 ¼ 371:46 MeV, a value
which is well inside the phenomenological acceptable range
quoted above.
When a finite current mass is included in the model there

are some changes, but the general structure of the eB-�
phase diagram remains the same, with a particular M0

diagram in the chiral case typically very similar to another
one with larger M0 in the nonchiral case. In particular, a
slightly higher value M0 ¼ 375:9 MeV is required for the
passage from the broken symmetry phase to the restored
phases Ai to occur in one single transition. As in the chiral

FIG. 14 (color online). Dressed quark mass M as a function of
eB for several representative values of the chemical potential
using the parameter sets associated with M0 ¼ 320 MeV (left
panel) and M0 ¼ 400 MeV (right panel).
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case, below this critical M0 value several transitions are
needed to move from the vacuum phase B to the chiral
symmetry restored phases Ai, if chemical potential is in-
creased at constant magnetic field. One of the most notable
qualitative modifications induced by the presence of a finite
quark mass is related to the character of the transitions
between the Ai phases: while in the nonchiral case the
transitions are of first order, signaled by a jump both in the
density and the dressed mass, in the chiral case the order
parameter is zero in all of these phases and the transition is
second order and signaled by a discontinuous derivative of
the quark density. The transitions between aCi phase and the
corresponding Ai phase are also different, being second
order transitions in the chiral case and smooth crossovers
when current mass is finite. Several definitions for the loca-
tion of the crossover transitions were studied, finding in
general that even though the different definitions introduce
certain ambiguity as to the exact location of the transition, in
all studied cases they agree onwhether the transition actually
exists or not. As well, in what respects to their tendency to
disappear asM0 increases, these crossovers behave similarly
to their second order analogues occurring in the chiral case.

The behavior of the dressed mass for a constant � in
response to magnetic field was studied as well for both the
chiral and nonchiral cases, resulting in different effects
depending on the phase. On the one hand, the increase in
dressed mass with magnetic field, known as magnetic ca-
talysis, was principally seen in the vacuum phase B, where
symmetry is fully broken, in both chiral and nonchiral
cases. On the other hand, phases with nonzero quark density
and finite dressed mass (Ci phases in the chiral case, and Ci

andAi in the nonchiral case) showed a dominant decrease in
the dressed mass as magnetic field increased. This can be
taken as a manifestation of inverse magnetic catalysis usu-
ally associated with a decrease of the critical chemical
potential at intermediate values of the magnetic fields
[19]. It should be noted that these continuous drops in the
mass occurred within single phases, and that discontinuous
jumps occurred whenever a new phase with a different
amount of occupied Landau levels was reached.

Throughout this work only the simplest version of the
two flavor NJL with maximum flavor mixing has been
considered. It is clear that the parametrization dependence
of the phase structure of magnetized cold quark matter as
described by possible extensions of the model which incor-
porate the effect of different amounts of flavor mixing [14],
color superconductor channels [15,17,18], vector interac-
tions [28], strangeness degrees of freedom [29], etc. is
interesting and certainly deserves further investigation. Of
course, the analysis of how the phase structure of magne-
tized quark matter at finite temperature depends on the
model parametrization should also be addressed [30]. In
this respect, however, it is important to mention that the
model extensions that incorporate the effect of the Polyakov
loop reduce, in the low temperature region, to the type of

model studied here. Finally, studying the parameter depen-
dence of the predictions for the properties of the pion and
sigma meson in the presence of intense magnetic fields
[31,32] will be useful as well.
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APPENDIX A: PARAMETRIZATION IN THE
CHIRAL CASE

In this appendix we provide some details of the way in
which the parameters are determined in the chiral limit. In
this case the model has only two parameters: the coupling
constant G and the 3D cutoff �. In order to work along ‘‘a
line of constant physics’’ we choose to determine them so
as to reproduce a certain value of fch� , taking the dressed
mass M0 as a free parameter which takes values within a
typical range 200–600 MeV. The set of equations to be

FIG. 15. Upper panel: Cutoff parameter � and dimensionless
coupling constant g as functions of the dressed quark mass M0.
Lower panel: Chiral quark condensate as a function of the
dressed quark mass M0.
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satisfied by the dimensionless coupling g ¼ G�2 and the
cutoff � are the T ¼ � ¼ 0 gap equation

gc ¼ g f

�
M0

�

�
(A1)

together with

ðfch� Þ2 ¼ Nc

2�2
�2

2
4 M2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ�2
q � f

�
M0

�

�35: (A2)

The second equation corresponds to the expression for f�
in the chiral limit. Moreover, gc ¼ �2=ðNcNfÞ is the criti-
cal dimensionless coupling above which the gap equation
has nontrivial solutions and

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� x2 ln

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x

!
: (A3)

The numerical results for g and� as functions ofM0 are
shown in the upper panel of Fig. 15. In the lower panel we
display the values of the quark condensates associated with
the corresponding values of the parameters. Here, we have
chosen a typical value for fch� ¼ 90 MeV. Note, however,
that since in the chiral limit fch� is the only dimensionful
quantity in the problem any dimensionful quantity (ex-
pressed in natural units) has to be the product of some
fch� -independent constant multiplied by some power of it.
This means that if, for example, in the lower panel of
Fig. 15 we divide the quantities in both axes by fch� ¼
90 MeV the resulting curve is universal in the sense that it
does not depend on the chosen value of fch� . Of course,

some extra dependence on the procedure used to regularize
the UV divergencies might still exist.

APPENDIX B: PARAMETRIZATION IN THE
FINITE QUARK CASE

In this Appendix we give the model parameters used in
our calculations of Sec. IV, i.e. for the nonchiral case. They
are listed in Table I. As stated in the main text the are
determined so as to reproduce the physical values m� ¼
138:0 MeV and f� ¼ 92:4 MeV for a chosen value of
dressed quark massM0 within the phenomenological range
300 & M0 & 600 MeV [21]. The resulting values of the

condensates �h �uui1=30 ¼ �h �ddi1=30 are also given. We re-

mind here that the limits extracted from sum rules are

190 MeV<�hu �ui1=30 < 260 MeV at a renormalization

scale of 1 GeV [22], while typical lattice calculations yield

�hu �ui1=30 ¼ 231� 8� 6 MeV [23] (see e.g. Ref. [24] for

some other lattice results).
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