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We compute the isospin asymmetries in B ! ðK�; �Þ� and B ! ðK;K�; �Þlþl� for low lepton pair

invariant mass q2, within the Standard Model (SM) and beyond the SM in a generic dimension six

operator basis. Within the SM the CP-averaged isospin asymmetries for B ! ðK;K�; �Þll, between
1 GeV2 � q2 � 4m2

c, are predicted to be small (below 1.5%) though with significant cancellation. In the

SM the non-CP-averaged asymmetries for B ! �ll deviate by � �5% from the CP-averaged ones. We

provide physical arguments, based on resonances, of why isospin asymmetries have to decrease for large

q2 (towards the endpoint). Two types of isospin violating effects are computed: ultraviolet isospin

violation due to differences between operators coupling to up and down quarks, and infrared isospin

violation where a photon is emitted from the spectator quark and is hence proportional to the difference

between the up- and down-quark charges. These isospin violating processes may be subdivided into weak

annihilation (WA), quark loop spectator scattering, and a chromomagnetic contribution. Furthermore we

discuss generic selection rules based on parity and angular momentum for the B ! Kll transition as well

as specific selection rules valid for WA at leading order in the strong coupling constant. We clarify that the

relation between the K and the longitudinal part of the K� only holds for leading twist and for left-handed
currents. In general the B ! �ll and B ! K�ll isospin asymmetries are structurally different yet the

closeness of �CKM to 90� allows us to construct a (quasi)null test for the SM out of the respective isospin

symmetries. We provide and discuss an update onBðB0 ! K�0�Þ=BðBs ! ��Þ which is sensitive to WA.
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I. INTRODUCTION

The isospin asymmetry in B ! K�ll gave, in recent
years, some indication of being of opposite sign to the
Standard Model (SM) prediction [1]. This trend has not
been confirmed by the new LHCb data in the year of 2012
[2], yet in B ! Kll a negative deviation from zero has been
measured at the level of 4� taking into account the entire
q2 spectrum. The isospin asymmetry in B ! Kll is ex-
pected to be small in the SM and therefore it is important
to assess this observable. Isospin asymmetries of the
B ! K�� and B ! �� [3] are found to agree and deviate
by 2 standard deviations from the SM giving rise to con-
straints and curiosity for futuremeasurements, respectively.

Independent of any signs of deviation, the isospin
asymmetry contributes to the microscopic investigation
of flavor changing neutral currents. It is sensitive to a large
number of four Fermi operators of the �F ¼ 1-type and
complements the constraints from nonleptonic decays.

In this paper we consider two types of isospin violating
effects: ultraviolet (UV) isospin violation due to unequal
coupling of up and down quarks to Fermi operators as well
as infrared (IR) isospin violation from spectator emission
of the intermediate photon which is therefore proportional
to the charge difference of up and down quarks. The latter
mainly results from processes for which the large energy

release of the b-quark is transferred to the spectator quark
which then emits an energetic photon as the external
kinematics require. The processes are depicted in Fig. 1
and are from left to right: weak annihilation (WA), quark
loop spectator scattering (QLSS), and the contribution
from the chromomagnetic operator which we shall simply
denote by O8 hereafter. Isospin effects in quantum chro-
modynamical (QCD) quantities such as masses and decay
constants are known to be just below the subpercent level,
to be discussed later on, and therefore small in comparison
to the precision accessible to near future experiments.
In this paper we have computed WA in light-cone sum

rules (LCSR), extending earlier results for q2 ¼ 0 [4,5],
QLSS within QCD factorization (QCDF), and O8 we take
from our recent computation [6]. Furthermore we include a
complete set of dimension six operators relevant at leading
order of the strong coupling constant �s ¼ g2s=4�. By
mapping a specific model into an operator basis, such as
the family model considered in [7], one can get the effects
with our estimates.
Various aspects of the isospin asymmetry in B ! K,

K�lþl� decay have been calculated previously. The closely
related decay B ! V� has been computed using QCD
factorization (QCDF) in [8] and using a mixture of
QCDF and LCSR in [9]. A program computing the isospin
asymmetry B ! K�� in the minimal supersymmetric SM
has been reported in [10]. B ! K, K�lþl� was computed
using QCDF in [11], and a mixed approach was recently
employed for B ! Kll in [12]. In this paper we improve on
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these works by including a complete basis of dimension six
operators for WA and QLSS, our recent O8 computation
[6], and the complete set of twist-3 terms for WA.

Essential results of the paper are that the isospin asym-
metries of B ! K, K�, �ll are small in the SM; especially
and systematically for high q2. The isospin asymmetries of
the K� and �mesons turn out to be very similar at small q2

up to form factor ratios due to the, presumably, accidental
closeness of the Cabibbo-Kobayashi-Maskawa (CKM)
angle �CKM to 90�. This prompts us to define a quantity
�aI which serves as a (quasi)null test of the SM. The results

of the generic dimension six operators are given in the form
of tables and complement constraints from nonleptonic
decays and B ! ðK�; �Þ� decays, which we discuss.

This work is written in the language of B ! K=K�
transition. Adaptation to other light vector mesons is gen-
erally straightforward, with the exception of WA for
B0 ! �0 and Bs ! � transitions which we discuss in the
corresponding section in some detail. The paper is organ-
ized as follows: In Sec. II we present formulas for pseu-
doscalar and vector meson decay rates in terms of helicity
amplitudes, the relation of the latter to form factors and
quark loop functions, and finally formulas for the isospin
asymmetries in a linear approximation. In Sec. III the
complete operator basis of dimension six operators con-
tributing at Oð�0

sÞ to the WA subprocess is given; with
results in Sec. III D and detailed formulas in Appendix F 3.
In Sec. IV we present the complete dimension six operator
basis contributing to QLSS at order Oð�sÞ along with
results computed in QCDF. In Sec. V we present the
B ! K�ll and B ! K�� isospin asymmetries. In
Sec. VA we discuss selection rules: those applicable to
any scalar ! scalar ll decay in VA1, those particular to
WA in the factorization approximation VA2, and we also
discuss to what extent the K distribution amplitude (DA)
does or does not correspond to the K�

k in VA3. In Sec. VB

we discuss q2 dependence of the isospin asymmetries, and
in Sec. VC we discuss the kaon isospin asymmetries in the
SM, respectively. In Sec. VI we present the isospin asym-
metry of B ! ��=ll as well as an extension of the operator
basis for the �0 channel. In Sec. VII we cover aspects of
isospin beyond the SM (BSM): in VIIA we (briefly) dis-
cuss constraints and in VII B we propose the ratio of the

K�� and �� asymmetries as a (quasi)null test of the SM.
We end the paper with a summary and conclusions in
Sec. VIII.
We give an updated prediction for BðB0 ! K�0�Þ=

BðBs ! ��Þ in Appendix A, which was recently mea-
sured by LHCb. Various explicit results can be found in
Appendix F, such as numbers for the generic dimension six
operator basis for all isospin asymmetries discussed in this
paper in Appendix F 1. Aspects of gauge invariance of the
WA and QLSS computations, which turn out to be rather
intricate, can be found in Appendix D.

II. DECAY RATE AND FORM FACTORS

The effective Hamiltonian in the SM, to be extended in
upcoming sections, is parametrized by

H eff ¼ GFffiffiffi
2

p
�X2
i¼1

ð�uCiOu
i þ �cCiOc

i Þ � �t

X10
i¼3

CiOi

�
;

�i � V�
isVib; (1)

where the b ! s unitarity relation reads �uþ�cþ�t¼0.
The basis is given by [13]

Oq
1 ¼ ð �siqjÞV�Að �qjbiÞV�A;

Oq
2 ¼ ð �siqiÞV�Að �qjbjÞV�A;

O3 ¼ ð �sibiÞV�A

X
q

ð �qjqjÞV�A;

O4 ¼ ð �sibjÞV�A

X
q

ð �qjqiÞV�A;

O5 ¼ ð �sibiÞV�A

X
q

ð �qjqjÞVþA;

O6 ¼ ð �sibjÞV�A

X
q

ð �qjqiÞVþA;

O7 ¼ � emb

8�2
�s� � Fð1þ �5Þb;

O8 ¼ �gsmb

8�2
�s� � Gð1þ �5Þb;

O9 ¼ �

2�
ð�l�	lÞð�s�	ð1� �5ÞbÞ;

O10 ¼ �

2�
ð�l�	�5lÞð�s�	ð1� �5ÞbÞ;

(2)

FIG. 1. Isospin violating processes included in our calculation. Crosses indicate possible photon emission points. Throughout this
paper double lines stand for the b-quark flavor. Left: weak annihilation; middle: quark loops with spectator scattering; right:
chromomagnetic operator O8. Note that in WA we have indicated photon emission from quarks with Qb charge as well as WA is
sensitive to UV isospin violation where the four Fermi operators with spectator quarks u and d appear in unequal proportion.
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where i, j are color indices, ð �sbÞV�A ¼ �s�	ð1� �5Þb and
O0

7–10 will denote the operators with opposite chirality as

usual, and we have taken the opposite sign of O7;8.
1 These

are the same conventions as in [14]. Details of the calcu-
lation of the Wilson coefficients C1–10 are given in

Appendix E 3. Furthermore, e ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
> 0 where � is

the fine structure constant and GF is the Fermi constant.
We parametrize the amplitude as follows:

outhMðpÞlþðl1Þl�ðl2Þ j Bðpþ qÞiin
¼ GFffiffiffi

2
p �t

�mb

q2�

�
�uðl1Þ�	vðl2Þ

X
i

T V
i P

	
i

þ �uðl1Þ�	�5vðl2Þ
X
i

T A
i P

	
i

�
�ð4Þðq� l1 � l2Þ; (3)

where M stands, throughout this work, for a light vector
ðK�; �Þ or pseudoscalar (K) meson. The symbols u, v
correspond to lepton polarization spinors of mass dimen-
sion 1=2 and q ¼ l1 þ l2 is the total momentum of the
lepton pair. For lepton coupling we only allow V and A
couplings as present in the SM. The isospin violating
contributions all proceed through a photon and thus have
a vectorial coupling. The axial coupling is included as it
originates through Z penguins and box diagrams which are
significant in the SM. In this work we do not include
non-SM lepton couplings. The basis tensors P

	
i [6] are

the standard choice for penguin form factors

K�: P	
1 ¼ 2
	�����

�p�q�;

P
	
2 ¼ i½ðm2

B �m2
K� Þ��	 � ð�� � qÞð2pþ qÞ		;

P
	
3 ¼ ið�� � qÞ

�
q	 � q2

m2
B �m2

K�
ð2pþ qÞ	

�
;

K: P	
T ¼ 1

mB þmK

½ðm2
B �m2

KÞq	 � q2ð2pþ qÞ		;

(4)

in the sense thatT V
i ¼ C7Tiðq2Þ þ corrections.2 The basis

for pseudoscalar and vector meson decays are P
	
T and

P
	
1;2;3, respectively. Note we have implicitly assumed

ml ¼ 0 as otherwise there is additional direction propor-
tional to q	 which vanishes for the V but is proportional to
ml for A. The four vector � denotes the vector meson
polarization. We use the Bjorken and Drell convention
for the Levi-Civita tensor 
0123 ¼ þ1. In discussing physi-
cal quantities and problems it will prove advantageous to
go over to the so-called helicity basis:

h0

hþ
h�

0
BB@

1
CCA ¼

0 a b

1=
ffiffiffi
2

p �c=
ffiffiffi
2

p
0

1=
ffiffiffi
2

p þc=
ffiffiffi
2

p
0

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�B

T 1

T 2

T 3

0
BB@

1
CCA; (5)

which corresponds to 0, �3 polarization of the vector
meson. Basis tensors corresponding to h0;� are given in

Appendix C. The variables a, b, c in the basis transforma-
tion matrix are given by

ða; bÞ �
ffiffiffiffiffi
q̂2

8

s
1

m̂V

�
1þ 3m̂2

V � q̂2ffiffiffiffiffiffi
�V

p ;
� ffiffiffiffiffiffi

�V

p
1� m̂2

V

�
;

c � 1� m̂2
Vffiffiffiffiffiffi

�V

p ¼ 1þOðq̂2Þ;
where here and below hatted quantities are normalized
with respect to the B-meson mass, q̂2 � q2=m2

B, m̂
2
V �

m2
V=m

2
B and �V is the Källén-function with normalized

entries:

�V � �Vð1; m̂2
V; q̂

2Þ
¼ ðð1þ m̂VÞ2 � q̂2Þðð1� m̂VÞ2 � q̂2Þ: (6)

For the K meson there is no polarization and no freedom in
choosing a basis.
The decay rates are given by4

d�

dq2
½B ! K�lþl�	

¼
�
�3=2
V

q2

��
�

4�

�
2
cFcL

X
i¼V;A

½jhiþj2 þ jhi�j2 þ jhi0j2	;

(7)

d�

dq2
½B! Klþl�	 ¼

�
�3=2
P

2ðmB þmKÞ2
��

�

4�

�
2
cFcL

X
i¼V;A

jhiTj2;

(8)

�½B!K��	¼
�
3

4
�3=2
V

��
�

4�

�
cF½jhVþj2þjhV�j2	jq2¼0; (9)

where cF � ðG2
Fj�tj2m2

bm
3
B=12�

3Þ, hiT � T i
T , and cL ¼

ð1þ 2m2
l =q

2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l =q
2

q
accounts for nonzero lepton

mass. An important observation is that for mV ! 0 the
rate remains bounded5 provided that

1This corresponds to a covariant derivative D	¼@	�
iQeA	� igsA	 and interaction vertex þiðQeþ gs

�a

2 Þ�	

in agreement with [14] but differing from [4,5,13,15].
2The T V

i differ from the ones in [14] in that we include the
contributions of C9 as well.

3The direction 0 and � are also known as the longitudinal and
transversal polarization directions.

4The IR sensitive 1=q2 factor in the B ! Vll rate forml ! 0 is
compensated by a virtual lepton loop in the limit q2 ! 0 as the
collinear lepton pair is indistinguishable from a photon. This
corresponds to the famous Bloch-Nordsieck cancellation mecha-
nism. Furthermore we note that jh0j2 
 q2 by virtue of (6) and
(5) and corresponds to the well-known decoupling of the zero
helicity mode towards q2 ! 0. In the differential rate into the
pseudoscalar (8) the q2 has been factored out from jhT j2 to
cancel the explicit pole.

5Note we do not want to invoke themV ! 0 limit per se as it is
well known that massless and massive representations differ in a
discontinuous fashion.

ISOSPIN ASYMMETRIES IN . . . PHYSICAL REVIEW D 88, 094004 (2013)

094004-3



hi0 ¼ Oðm0
VÞ ) T i

2

¼ �V

ð1� m̂2
VÞð1þ 3m̂2

V � q̂2ÞT
i
3 þOðmVÞ: (10)

This expression reduces to the form we have given in our
previous work [6] in the appendix in the mV ! 0 limit.
In essence the relation between T 2 and T 3 cancels the
explicit 1=mV in h0 which appears through (5) and (6).
Note in the SM hþ � h� by virtue of the V-A interactions.
In [14], which operates in the heavy quark limit, hþ ! 0.
In our work hþ is vital as we allow for right-handed
structures that violate isospin.

The axial lepton amplitudes T A
i arise only from theO10

operator and are given in terms of standard form factors by

T A
1 ¼ C10q

2Vðq2Þ
2mbðmB þmK� Þ ; T A

3 ¼ �C10

mK�

mb

A3ðq2Þ;

T A
2 ¼ C10q

2A1ðq2Þ
2mbðmB �mK� Þ ; T A

T ¼ C10

mB þmK

2mb

fþðq2Þ:
(11)

We will split the vector lepton amplitudes into isospin
sensitive and insensitive parts denoted by T q and T 0,
respectively, with q being the light flavor of the B meson:

T V
i ¼ T V;0

i þT V;q
i ;

T V;q
i ¼ Ceff

8 Gq
i ðq2Þ þWq

i ðq2Þ þ Sqi ðq2Þ:
(12)

Note, we have absorbed the Wilson coefficient (WC) for
WA and QLSS into the functions Wq

i ðq2Þ and Sqi ðq2Þ,
respectively, as there are quite a few of them. The WC
Ceff
7;8;9 correspond to scheme and basis independent WCs

which include quark loop contributions and will be defined
further below. The symmetric part is approximated
throughout this work by the Ceff

7;9 contributions, which in

terms of standard form factors is given by

T V;0
1 ðq2Þ ¼ Ceff

9 ðq2Þq2Vðq2Þ
2mbðmB þmK� Þ þCeff

7 T1ðq2Þ;

T V;0
3 ðq2Þ ¼ �Ceff

9 ðq2ÞmK�

mb

A3ðq2Þ þCeff
7 T3ðq2Þ;

T V;0
2 ðq2Þ ¼ Ceff

9 ðq2Þq2A1ðq2Þ
2mbðmB �mK� Þ þCeff

7 T2ðq2Þ;

T V;0
T ðq2Þ ¼ Ceff

9 ðq2ÞmB þmK

2mb

fþðq2Þ þCeff
7 fTðq2Þ:

(13)

The isospin sensitive diagrams are shown in Fig. 1. The
weak annihilation amplitude, denotedWq

i ðq2Þ, (Fig. 1, left)
originates from O1–6 and is computed using LCSR in
Sec. III. Spectator scattering with a quark loop, denoted
Sqi ðq2Þ, (Fig. 1, middle) arises from O1–6 as well and is
computed using QCD factorization in Sec. IV. The specta-
tor contributions due to O8 (Fig. 1, right) are denoted by
Gq

i ðq2Þ and are taken from our recent work [6]. For the
short distance form factors in (11) and (13) we use the fits

in [16,17], recomputed with updated hadronic inputs as
in [6]. Quark loop contributions, other than the ones with a
gluon connecting to the spectator, are absorbed into the
effective WCs. The structures proportional to the mb mass
are independent of q2 and described by

Ceff
7 ¼ C7 � 4

9
C3 � 4

3
C4 þ 1

9
C5 þ 1

3
C6;

Ceff
8 ¼ C8 þ 4

3
C3 � 1

3
C5:

(14)

The other contributions are taken care of by Ceff
9 ðq2Þ [18],

Ceff
9 ðq2Þ ¼ C9 þ Yðq2Þ; (15)

where

Yðq2Þ
¼ hðq2;mcÞ

�
��c

�t

ð3C1 þC2Þ þ 3C3 þC4 þ 3C5 þC6

�

� hðq2;mbÞ
2

ð4C3 þ 4C4 þ 3C5 þC6Þ

� hðq2; 0Þ
�
�u

�t

ð3C1 þC2Þ þ 1

2
ðC3 þ 3C4Þ

�

þ 4

27
ðC3 þ 3C4 þ 8C5Þ; (16)

with hðs; mqÞ being the photon vacuum polarization which

we quote in Sec. IVB, and we restored the �u and �c

factors explicitly especially in view of the fact that for
the b ! d transition the hierarchies differ from the b ! s
transitions.

A. Definition of isospin asymmetries

The experimentally accessible isospin asymmetry aIðq2Þ
and its CP-average �aI,

6 which are functions of the lepton
pair invariant mass q2, are defined as follows:

a
�0�
I ðq2Þ

� dA
�0�
I

dq2

� c2Md�½ �B0 ! �M0lþl�	=dq2�d�½B� !M�lþl�	=dq2
c2Md�½ �B0 ! �M0lþl�	=dq2þd�½B� !M�lþl�	=dq2 ;

�aIðq2Þ � 1

2
ða�0�

I ðq2Þþa0þI ðq2ÞÞ; (17)

where a0þI corresponds to the CP-conjugated process

of a
�0�
I . The constant cM is given by cK ¼ cK� ¼ 1 and

c� ¼ ffiffiffi
2

p
.7 A similar definition without differential applies

6For the K� this merely doubles the statistics and reduces
experimental uncertainties in the production. For the pseudosca-
lar K this is essential as the K0

S is detected in experiment which is
a linear superposition of js �di and jd �si eigenstates which implies
averaging.

7This accounts for �0 
 ð �uu� �ddÞ= ffiffiffi
2

p
since the leading de-

cay amplitude only couples to the �dd component of the �0.
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for the B ! K�=�� transition. The definition above makes
clear the meaning of isospin in this context: it is understood
throughout this paper to mean a rotation between u and d
quarks, with no corresponding rotation between b and t
quarks, as is understood in the case of the electroweak
precision parameter � for instance.

Assuming that the decay rate is dominated by
C7;9;10, only taking linear terms into account as in [8,11],

we arrive at

dA
�0�
I

dq2
½B ! K�lþl�	 ¼

P
i¼f0;�g

Re½hV;0i ðq2Þ�V;d�u
i ðq2Þ	

P
i¼f0;�g

½jhV;0i ðq2Þj2 þ jhAi ðq2Þj2	

þOð½�V;d�u
i ðq2Þ	2Þ;

dA
�0�
I

dq2
½B ! Klþl�	 ¼ Re½hV;0T ðq2Þ�V;d�u

T ðq2Þ	
jhV;0T ðq2Þj2 þ jhATðq2Þj2
þOð½�V;d�u

T ðq2Þ	2Þ;

a
�0�
I ½B ! K��	 ¼

P
i¼�

Re½hV;0i ð0Þ�V;d�u
i ð0Þ	P

i¼�
½jhV;0i ð0Þj2 þ jhAi ð0Þj2	

þOð½�V;d�u
i ð0Þ	2Þ; (18)

where �V;d�u

 ðq2Þ � ðhV;d
 ðq2Þ � hV;u
 ðq2ÞÞ. It is worth

mentioning that in the above formulas we have explicitly
and implicitly neglected effects from phase space differ-
ences, isospin corrections to QCD quantities such as decay
constants, and the light quark masses mq. The latter are

negligibly small and QCD corrections to isospin are known
to be small: for example the pseudoscalar decay constant
differs by roughly 0.5% between the neutral and charged
case; see e.g. [19] for a computation in chiral perturbation
theory. For the B mesons isospin effects are even smaller
as mB0 �mB� ¼ 0:32ð6Þ MeV8 [20], which is minuscule

in comparison with the heavy quark scale �� ¼ mB �mb ’
600 MeV. Thus in summary it is expected that isospin
violation arising from the form factors will not reach the
1% level and we shall therefore not discuss them any
further.

III. WEAK ANNIHILATION CONTRIBUTION

The weak annihilation (WA) process B�!W�!Kð�Þ�
is described by the ‘‘tree-level’’ operatorsO1;2 in a process

as shown in Fig. 1 (left). By extension, the same name is
also given to diagrams with the same arrangement of quark
lines involving O3–6, though they arise from renormaliza-
tion running and short distance penguins.

The WA contribution to B ! K��=lþl� has previously
been computed atOð�sÞ using LCSR at q2 ¼ 0 in [4,5] and
in QCD factorization at q2 ¼ 0 [21] and for q2 > 0
[11,14]. We extend the LCSR computation to higher q2

including twist-3 corrections from the hk DA relevant

to the longitudinal K� component which were neglected
in [11,14].

A. Complete WA basis of dimension six
operators at Oð�0

s Þ
We include all four quark operators �q�1b�s�2q which

potentially contribute at Oð�0
sÞ9:

OWA
1 � �qb�sq; OWA

2 � �q�5b�sq;

OWA
3 � �qb�s�5q; OWA

4 � �q�5b�s�5q;

OWA
5 � �q�	b�s�

	q; OWA
6 � �q�	�5b�s�

	q;

OWA
7 � �q�	b�s�

	�5q; OWA
8 � �q�	�5b�s�

	�5q;

OWA
9 � �q�	�b�s�

	�q; OWA
10 � �q�	��5b�s�

	�q;

(19)

parametrized by the effective Hamiltonian,

HWA;q ¼ �GFffiffiffi
2

p �t

X10
i¼1

aqi O
WA
i ; (20)

where we suppress the q superscript on the operators OWA
i

throughout this work. Note that at Oð�sÞ, as well as for
the �0 for Oð�0

sÞ to be discussed in Sec. VIA, the size of
the basis doubles as octet combinations of the type

OWA;8
1 � ð1=4Þ �q�ab�s�aq contribute as well.

1. Projection on SM basis (WA in SM)

In the SM the operators (19) obey minimal flavor
symmetry (MFV) [22–26] and may be expressed in the
form �q�PLb�sPR�q (2). Since WA fixes the quark flavors
and couples to only a single color structure, two indepen-
dent combinations of SM WCs (� 2 f1; �	g) appear

in each B ! Mll process. For a bq ! sq process, with
q ¼ u, d, the couplings are given by

SM: scalars: aq1 ¼ �aq2 ¼ aq3 ¼ �aq4 ¼ �2

�
C5

Nc

þ C6

�
;

vectors: aq5 ¼ �aq6 ¼ �aq7 ¼ aq8 ¼
�
C3

Nc

þ C4

�

� �qu

�u

�t

�
C1

Nc

þ C2

�
;

tensors: aq9 ¼ aq10 ¼ 0; (21)

where a5–8 are the only ones which are nondegenerate in q
and Nc ¼ 3 denotes the number of colors. The role of Ou

1;28The mass difference between the two neutral kaons is about
1% and relatively large and rather exceptional as a result of
the Gell-Mann–Oakes–Renner relation m2

K ¼ �2ðmq þmsÞ�h �qqi=f2K þ � � � .
9As we shall see shortly there are further selection rules e.g.

parity at Oð�sÞ and Lorentz covariance to all orders for the K.
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in the SM is exceptional as there is no Od
1;2 counterpart. It

corresponds to what we called UV isospin violation. In
particular, radiation from all quarks in Fig. 1 (left) contrib-
utes to the isospin asymmetry. Therefore the isospin
asymmetry in the SM is sensitive to three independent
combinations of the four quark WCs C1–6. Note, in the
SM the effect is CKM suppressed in b ! s contrary to
b ! d. In the latter case the closeness of�CKM to 90� leads
to a suppression of the effect, to be discussed and exploited
in further sections.

B. WA at leading order Oð�0
s Þ

The WA matrix element with uncontracted photon
polarization tensor 
ðqÞ� reads

A��jWA ¼ hX��ð�Þj �q�1b�s�2qjBijWA

¼ hXj�s�2qj0ih��ð�Þj �q�1bjBi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
initial state radiation

þ hX��ð�Þj�s�2qj0ih0j �q�1bjBi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
final state radiation

þOð�sÞ:

(22)

We shall call the first and second term initial (ISR) and
final state radiation (FSR), respectively. The computation
of these two contributions is performed, as previously
stated, using LCSR and further details are deferred to
Sec. III C. The computation is valid as long as q2 is away
from partonic and hadronic thresholds. This means that
the �, ! resonance region has to be treated with care and
that the computation is valid say 1–2 GeV2 below the
J=�-resonance region. For B ! V� (partial) effects of
the �, ! mesons are included into the photon DA
[4,5,27]. For q2 > 1 GeV2 the corresponding leading twist
effects are included in the quark condensate contributions
and appear as h �qqi=q2 in the results. We refrain from using
our computations between 0 and 1 GeV2. A salient feature
due to the resonance region is the appearance of an imagi-
nary part. In the partonic computation this results from the
photon emitted from the light valence quark of theBmeson
corresponding to the cross in the lower left of Fig. 2(a).
In the hadronic picture this corresponds to the emission

of �;!; . . . mesons and conversion into the photon; the
analogous O8 case can be found in Ref. [6], Fig. 4 (left).
In Fig. 3 we plot the Wðq2ÞT (12) matrix element for a8
contribution (with a8 ¼ au8 ¼ ad8), which illustrates the

point made above.
We restrict ourselves to leading twist-2 and twist-3 DAs;

cf. Appendix B 1. We neglect 3-particle DAs and quark
mass corrections and thus the twist-3 2-particle DAs for
the K� may be written in terms of the twist-2 DAs via the
so-calledWandzura-Wilczek relations [28]. We include the
first two moments in the Gegenbauer expansion and thus
have a total of four input parameters to theK� in addition to
the decay constants. TheK DAs�P and�� are also related
[17], but here we use the asymptotic forms for reasons
discussed in Appendix B.
In Table I the selection rules for the operators are

depicted. It is apparent that selection rules are at work.
We refer the reader to Sec. VA2 where the WA selection
rules in the factorization, cf. Eq. (22), approximation are
discussed in some detail.
At this point, we wish to briefly discuss the issue of

gauge invariance (GI) in the factorization approximation
(22). At the level of the amplitude (22) electromagnetic GI,
that is invariance under 
�ðqÞ	 ! 
�ðqÞ	 þ q	, implies:

FIG. 2. Weak annihilation Feynman diagrams for B ! Mlþl�. The zigzag line is the B meson current insertion. Crosses mark
possible photon insertions, although the contribution from the insertion at the dashed cross is zero.

FIG. 3 (color online). WA contribution to B ! Kll from the
OWA

8 operator (19) as defined implicitly in (12). The imaginary

part originates from the emission of �;!; . . . meson and conver-
sion into the photon, which is analogous to the O8 contribution;
cf. Fig. 4 (right) [6].
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q�A��jWA ¼ 0: (23)

When the mesons are neutral this equation is satisfied for
ISR and FSR separately. When the mesons are charged
the two terms cancel each other when they are treated at
the same level of approximation. From Table I we infer
that for the K and K� this is the case for O4;8 and O5;6,

respectively. For the current-current operators O5–8 the
final state radiation is, by virtue of the (axial) vector Ward
identity (WI), equal to a contact term. This was implicitly
used in [4,5] and analyzed in more clarity and detail in [29].
In the caseO4 for the K there is ISR and FSR and no WI at
hand which complicates the issue. More precisely this
necessitates the same approximation scheme be used for
both ISR and FSR as discussed and illustrated at length in
Appendix D 1.

C. Light cone sum rules

We calculate initial state terms using the technique
known as light cone sum rules [30,31] which originates
from QCD sum rules [32,33] and the light-cone operator
product expansion (LC-OPE). We extract the matrix
elements required in (22) from the correlation function

�ðq2; p2
BÞ ¼ i

Z
d4xe�ipB�xh��ðqÞMðpÞjTfJBðxÞOð0Þgj0i;

(24)

where

JB ¼ imb
�b�5q; h �BjJBð0Þj0i ¼ m2

BfB (25)

is the interpolating current for the Bmeson. By application
of Cauchy’s theorem we can express this matrix element as

FIG. 4. Quark condensate contribution to be replaced by the photon DA contribution for q2 ¼ 0 case i.e. B ! V�. The important
point to realize is that both diagrams are gauge variant and produce, together with the other diagram in Fig. 2(b) (right), a fully gauge
invariant result.

TABLE I. Operators contributing to WA. The acronyms t. and cov. stand for twist and for covariance, respectively, and � odd/even
for odd/even chirality. Furthermore note the following: (i) (I,F) radiation from inital (I) and or final (F) state; (Fc) corresponds solely to
a (local) contact term contribution from final state radiation. The latter are then necessarily to all orders in the twist expansion. (ii) (✓)
contribution expected in initial and final state; (iii) (⨯) no contribution due to parity invariance of strong interactions in the
factorization approximation Oð�0

s Þ; (iv) (⨯) no contribution, in any order of �s and twist, as chirality necessitates a Levi-Civita tensor
structure for which there are not enough independent vectors for contraction (relevant for pseudscalar final state). We should also note

that gðv;aÞ? and hðs;tÞk are related to �? an �k by Wandzura-Wilczek type relations [28]. At our level of approximation, mq ¼ 0 and no

3-particle DA, this corresponds to Eqs. (4.15/16) and (3.21/22) [28], respectively. See also Appendix B 1 for further comments. This

means that when gðv;aÞ? and hðs;tÞk are computed �k and �? are needed to render the computation gauge invariant at the relevant OðmVÞ
level. Thus for (I, Fc), contrary to (F) itself, it is not possible to properly distinguish between twist 2 and 3 which is reflected in the
table.

Operator OWA
n

Twist 1 2 3 4 5 6 7 8 9 10

B ! K

cov. (�0
s) ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

� even (�K) 2 I, Fc
� odd (�P;�) 3 I,F

cov. (�n
s , n > 0) ✓ ⨯ ⨯ ✓ ✓ ⨯ ⨯ ✓ ✓ ⨯

B ! K�

cov. (�0
s) ⨯ ⨯ ⨯ ⨯

� even (�k) 2 I I, Fc
� even ðgðvÞ? ; gðaÞ? Þ 3 I I, Fc

� odd (�?) 2 F F I I

� odd ðhðtÞk ; hðsÞk Þ 3 F I

cov. (�n
s , n > 0) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ISOSPIN ASYMMETRIES IN . . . PHYSICAL REVIEW D 88, 094004 (2013)

094004-7



�ðq2; p2
BÞ ¼

m2
BfB

m2
B � p2

B

h��ðqÞMðpÞjOð0ÞjBðpBÞi

þ 1

2�i

I
�NP

ds

s� p2
B

�ðq2; sÞ; (26)

where the integration contour �NP separates the pole at
p2
B ¼ m2

B of the desired matrix element h��ðqÞMðpÞj
Oð0ÞjBðpBÞi from all other poles and branch cuts. The
matrix element in (24) may also be calculated within
the LC-OPE, and after applying Cauchy’s theorem to the
LC-OPE result we get that, at large spacelike p2

B,

�ðq2; p2
BÞ ¼

1

2�i

I
�

ds

s� p2
B

�LC-OPEðq2; sÞ; (27)

where the contour � encloses all poles and branch cuts
of this function. The sum rule is obtained by equating
the two representations (26) and (27) and making the
approximation, known as semiglobal quark-hadron
duality, �ðq2; sÞ ¼ �LC-OPEðq2; sÞ under the integral in
(26). A Borel transformation is also applied to reduce the
sensitivity to the duality threshold, which in this case only
requires the relation

Bp2
B!M2

�
1

x� p2
B

�
¼ e�x=M2

M2
; (28)

yielding the final form of the sum rule

h��ðqÞMðpÞjOð0ÞjBðpBÞi

¼ 1

fBm
2
B

1

2�i

Z
�n�NP

ds exp

�
m2

B � s

M2

�
�Pðq2; sÞ

� 1

fBm
2
B

Z s0

cut
ds exp

�
m2

B � s

M2

�
�ðq2; sÞ; (29)

where �n�NP is the difference between the integration
contours in (26) and (27). The resulting contour will lie
along either side of the real line and thus the final sum rule
may be expressed in terms of an integral over the density
function � on the real line from the lowest perturbative state
mass (m2

b here) to the duality threshold s0. In the full theory
the lowest lying multiparticle state coupling to the current
JB occurs at ðmB þ 2m�Þ2, and s0 is an effective parameter
which is adjusted so that the continuum contribution
matches that of QCD. In practice this means that one
expects 
ðmBþ 2m�Þ2 ’ 30:9 GeV2<s0< ðmBþm�Þ2 ’
36:6 GeV2 with s0 somewhat closer to the upper boundary
as the other case is �s suppressed.

D. WA results

Due to our choice of basis for the four quark operators,
it is convenient to present our results for the K� in the
following linear combinations, which is basically the
helicity basis,

Wq
Vðq2Þ ¼ Wq

1 ðq2Þ ¼
1ffiffiffi
2

p ðW�ðq2Þ þWþðq2ÞÞ;

Wq
Aðq2Þ ¼ cWq

2 ðq2Þ ¼
1ffiffiffi
2

p ðW�ðq2Þ �Wþðq2ÞÞ;

Wq
0 ðq2Þ ¼ aWq

2 ðq2Þ þ bWq
3 ðq2Þ;

(30)

where V and A are the PC and PV transverse decay
modes, and the constants a, b, c are defined in (5) and
(6). The matrix elementsWq


 ðq2Þ, with 
 2 fT; V; A; 0g, are
decomposed as follows:

Wq

 ðq2Þ ¼

X10
j¼1

aqj ½Fq
j;
ðq2Þ þ Iqj;
ðq2Þ	: (31)

The functions I and F stand for ISR and FSR and are
further parametrized as

Iqj;
ðq2Þ ¼
1

fBm
2
B

�
h �qqi exp

�
m2

B �m2
b

M2
WA

�
Vq
j;
ðq2Þ

þ
Z s0

m2
b

ds exp

�
m2

B � s

M2
WA

�
�q
j;
ðq2; sÞ

�
;

Fq
j;iðq2Þ ¼ f?K�fB

�
mB

mb

�
2 Z 1

0
fqj;iðq2; uÞdu; (32)

for the K� meson with i 2 fV; A; 0g and

Fq
j;Tðq2Þ ¼ 	2

Kf
wti
B

�
mB

mb

�
2 Z 1

0
fqj;Tðq2; uÞdu; (33)

for the K meson. We take the Borel parameter M2
WA ¼

9ð2Þ GeV to be the same for all WA processes, although
this is not strictly necessary since in principle the results
should be independent of it within a reasonable range, and
a calculation involving higher twist and/or �s corrections
would usually extremize the result with respect to the
Borel parameter. We take the duality threshold as s0 ¼
35ð1Þ GeV2. The quoted uncertainty in the Borel parame-
ter and the duality threshold are the ranges over which we
vary them to provide an estimate of the error of the LCSR
method. The use of fwtiB inFq

j;Tðq2Þ arises because this is the
only case where both physical initial and final state radia-
tion contribute, and thus we must choose fwtiB as the sum
rule approximation of fB which corresponds to our ap-
proximation of the initial state radiation contribution in
order to fulfil the Ward identity:

fwtiB ¼ m2
b

fBm
4
B

�
3

8�2

Z s0

m2
b

exp

�
m2

B � s

M2
WA

� ðs�m2
bÞ2

s
ds

�mbh �qqi exp
�
m2

B �m2
b

M2
WA

��
: (34)

This procedure is discussed further in Appendix D 1. The
occurrence of fB in Iqj;
 is evaluated using the leading order

sum rule including the h �qqi and h �qGqi condensates [34]
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ðm2
BfBÞ2 ¼ m2

b exp

�
m2

B �m2
b

M2
fB

��
3

8�2

Z s0

m2
b

exp

�
m2

b � s

M2
fB

�

� ðs�m2
bÞ2

s
ds�mbh �qqi	

� mb

2M2
fB

�
1� m2

b

2M2
fB

�
h �qGqi	

�
; (35)

where M2
fB

¼ 5:0ð5Þ GeV is used. Quark condensates are

taken at 	 ¼ 1 GeV to be h �qqi ¼ ð�0:24ð1Þ GeVÞ3 and
h �qGqi ¼ ð0:8ð1Þ GeVÞ2 h �qqi which are the same values as
in [6]. The occurrence of fB in Fq

j;i is taken from lattice

data as fB ¼ 191ð5Þ MeV [35,36]. Formulas for DAs of
the external light mesons are given in Appendix B 1.
Formulas for all functions appearing on the right-hand
side of (33) are given in Appendix F 3.

E. WA at q2 ¼ 0—photon DA replaces
some h �qqi contributions

The local OPE for q2 � 0, used in diagrams like Fig. 4
(left) for the light quark propagator originating from the
JB current, results in terms like Qqh �qqi=q2; cf. (33) which
cannot be a good description at q2 ¼ 0. The resolution to
this apparent paradox is to replace the this term by the
photon DA10 as sketched in Fig. 4.

This type of computation has been completed in [4,5]
for the vector-current operators OWA

5–8. Our calculation,

essentially, extends this to the complete four quark opera-
tor basis (19). Aspects of GI and contact terms as well as a
difference in the ðQb �QqÞh �qqi contribution with refer-

ence [5] are discussed in Appendix D 3 c. We note that the
latter are small and have not been included in [4].

Our results are given, such that Iqj;iðq2Þ ! Iqj;ij� in (33),

Iqj;ij� ¼ 1

fBm
2
B

�
h �qqi exp

�
m2

B �m2
b

M2
WA

�
Vq;�
j;i

þ
Z s0

m2
b

ds exp

�
m2

B � s

M2
WA

�
�q;�
j;i ðsÞ

�
; (36)

where we reuse our result from q2 � 0 for the density via

�q;�
j;i ðsÞ ¼ �q

j;ið0; sÞ þ h �qqi~�q;�
j;i ðsÞ; (37)

and Vq;�
j;i and ~�q;�

j;i ðsÞ are given in Appendix F 6 b.

IV. QUARK LOOP SPECTATOR SCATTERING

The quark loop spectator scattering (QLSS) topology
parallels the O8 contribution as can be seen from Fig. 1.
We would expect an LCSR computation of this contribu-
tion to include some long distance (LD) contributions, in

analogy with the O8 contribution (intermediate multipar-
ticle states with quantum numbers ð �sqÞJP¼0� ; cf. Fig. 4
(left) in [6]. On a computational level though spectator
scattering differs from the analogous O8 computation by
the additional nested quark loop which makes the compu-
tation rather involved; especially in view of the fact that we
further expect a nontrivial analytic structure including
anomalous thresholds [6]. Thus the evaluation of this con-
tribution with LCSR is beyond the scope of this paper. We
therefore resort to QCDF where it would seem that these
LD contributions are, at least at leading order in Oð�sÞ,
absent. In QCDF, QLSS has been computed previously for
the B ! K�lþl� [11] and for the B ! K�� case in [8]. We
extend these computations by including a complete basis
of four quark operators. Elements of GI are discussed in
Appendix D 2.

A. Complete QLSS basis of dimension six
operators at Oð�sÞ

We now turn to the discussion of the relevant operators
contributing to QLSS. The vectorial coupling of the gluon
in Fig. 5 imposes efficient selection rules such that only 4
out of the 10 operator types, as listed in Eq. (19), can
contribute:

Q4f
1LðRÞ �

1

4
�f�a�	f �sLðRÞ�a�	b;

Q4f
2LðRÞ �

1

4
�f�a�	�f �sLðRÞ�a�	�b:

(38)

Quark flavors and color matrices are arranged, differently
from Eq. (19), in a way that is convenient for the QLSS
computation. Since we shall set the light quark masses to
zero the light flavor u, d, s are effectively degenerate and it
proves economic to introduce the SUð3ÞF singlet operator

Q4SUð3ÞF
xLðRÞ � ðQ4u

xLðRÞþQ4d
xLðRÞþQ4s

xLðRÞÞ; x¼1;2: (39)

Finally, the relevant effective Hamiltionian for QLSS
becomes

FIG. 5. Hard gluon scattering through a charm loop. Isospin
symmetry violating photon insertions are indicated by crosses.
The segment in the dashed box is computed first without the DAs
attached to simplify the calculation.

10One might also pose the problem the other way around,
starting from the photon DA at q2 ¼ 0 and asking how the latter
is to be modified when q2 > 0. The primary effect can be
covered by the quark condensate contribution.
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H QLSS ¼ �GFffiffiffi
2

p �t

X
x;�;f

sfx�Q
4f
x�; x ¼ 1; 2;

� ¼ L; R; f ¼ SUð3ÞF; c; b;
(40)

with sfx� being WCs. The somewhat baroque sum over the
indices x, �, f, which amounts to 12 operators at this stage,
will prove economic in the end. Wewould like to stress that
this basis in linearly independent, though not orthogonal,
to the WA basis (19). This is the case as in WA the flavor f
is, modulo a few exceptions, fixed by the spectator flavor
and since in QLSS f is either c, b, or the sum of light
flavors linear independence follows.

B. QLSS results

The computation of QLSS may be broken up into
two stages: first, the intermediate process shown in the
dashed box of Fig. 5 is computed, and second, the results
of this computation are combined with the remainder of the
diagram in Fig. 5.

To start, the intermediate process can be written, by
virtue of Lorentz covariance, as

a	 ¼ hsgðr;	ÞjHeff jbi
¼ X

i¼L;R

½K	
1;iF1;iðr2Þ þ K

	
2;iF2;iðr2Þ	; (41)

where r is the gluon momentum and 	 is the gluon
polarization index. The two tensor structures

K	
1;ðL;RÞ ¼

r	r� r2�	

r2
PL;R;

K	
2;ðL;RÞ ¼

r	 � r�	

r2
PL;R;

(42)

are the only ones allowed by gauge invariance
r � a ¼ 0.

In our parametrization (40), the functions Fx;� are

given by

Fx;�¼ sSUð3Þ
x;� Hxðs;0Þþscx;�Hxðs;mcÞþsbx;�Hxðs;bÞ; (43)

and it is clear that F2 
mf, where f is the flavor of the

quark running in the loop, by virtue of dimensional analy-

sis. This means that sSUð3Þ
2LðRÞ is heavily suppressed and not

present in our approximation where we set the light quark
masses to zero and so only 10 of the 12 operators in (40)
effectively contribute. The functions Hx result from loop
integrals for the vector and tensor currents and are given by

H1ðs;mÞ ¼ � 1

96�2
½9hðs;mÞ þ 4	;

H2ðs;mÞ ¼ � m

4�2
B0ðs;m2; m2Þ;

(44)

where the function hðs;mqÞ is the vacuum polarization

(this form from [11]), with z � 4m2
q

s ,

hðs;mqÞ ¼ �4

9

�
log

m2
q

	2
� 2

3
� z

�
� 4

9
ð2þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz� 1j

p

�
8><
>:
arctan 1ffiffiffiffiffiffiffi

z�1
p z> 1

log 1þ ffiffiffiffiffiffiffi
1�z

pffiffi
z

p � i�
2 z� 1

;

B0ðs;m2
q;m

2
qÞ ¼ 2� log

m2
q

	2
þ 2

9
4hðs;mqÞ þ log

m2
q

	2 � 2
3� z

2þ z
;

(45)

which can be found in any standard textbook on quantum
field theory.
Before quoting the full result let us detail a few points of

the computation. The B meson DA used is [37,38]

h0j �q�ðxÞ½x; 0	b�ð0ÞjBi
¼ �ifBmB

4

Z 1

0
dlþe�ilþx�=2

�
�
1þ 6v
2

f�þðlþÞ6nþ þ��ðlþÞ6n�g�5

�
��

: (46)

Definitions of the vectors and various terms involved along
with a more complete version of this formula are given in
Appendix B 3; however, this version of the formula con-
tains all terms involved in our computation of the diagram
in Fig. 5.
To this end let us mention that corrections of Oðq2=m2

BÞ
which come from neglecting the l� direction of the light
quark in the B-meson DA and aspects of the B-meson DA
including the transverse derivative are discussed in
Appendix B 3 a. Since we have restricted ourselves to
q2 < 4m2

c, using the B-meson light-cone DA (46) seems
reasonable. A more interesting question is to what extent
the shape of the q2 distribution is accurate or trustworthy.
We write the results directly in the helicity basis, S�;0,

whose transformation to the T 1;2;3 basis is given in (5), for

the K� meson:

Sq�ðq2Þ ¼
ffiffiffi
2

p
Qq

CF

Nc

16�3�sfBmB

mb

Z 1

0
duðF1;Lð �um2

B þ uq2Þ

� 1

mB

F2;Rð �um2
B þ uq2ÞÞ

�
f?K��?ðuÞ
�um2

B þ uq2

� fK�mK�

2�þðq2Þðm2
B � q2Þ

�
gðvÞ? ðuÞ � gðaÞ

0
? ðuÞ
4

��

�F2;Rð �um2
B þ uq2Þ

mB

�
f?K��?ðuÞuðm2

B � q2Þ
2ð �um2

B þ uq2Þ2

� fK�mK�

2�þðq2Þðm2
B � q2Þ

gðaÞ? ðuÞ
4 �u

�
; (47)

Sqþðq2Þ ¼ ðL $ RÞ; (48)
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d � Sq;V0 ðq2Þ ¼ �Qq

CF

Nc

32�3�sfBmB

mb

fK�mK�

��ðq2Þðm2
B � q2Þ

�
Z 1

0
du�kðuÞ

�
F1;Að �um2

B þ uq2Þ

þ mB

�uðm2
B � q2ÞF2;Að �um2

B þ uq2Þ
�
; (49)

with d � �
ffiffi
2

p
mBmVffiffiffiffi
q2

p
E

. For the K meson we get

SqTðq2Þ ¼ �Qq

CF

Nc

ðmB þmKÞ16�3�sfBfK
mBmb��ðq2Þ

Z 1

0
du�KðuÞ

�
�
F1;Vð �um2

B þ uq2Þ

� mB

�uðm2
B � q2ÞF2;Vð �um2

B þ uq2Þ
�
; (50)

where we have used F1;VðAÞðsÞ � F1;RðsÞ � F1;LðsÞ for the
sake of compact notation. At this point we would like to
specify some details of the computation. There are two
types of terms that appear:

X1 ¼
Z 1

0
dlþ��ðlþÞH1ðlþÞ; (51)

X2 ¼
Z 1

0
dlþ��ðlþÞ H2ðlþÞ

lþ � q2=mB � i

; (52)

where the kernels HðlþÞ are smooth and the denominator
in the second term originates from a propagator which in
turn cancels for the type one term. The following recipe is
applied:

X1 !
�Z 1

0
dlþ��ðlþÞ

�
H1ð0Þ ¼ constant �H1ð0Þ; (53)

X2 !
�Z 1

0
dlþ

��ðlþÞ
lþ � q2=mB � i


�
H2ð�lþÞ ¼ H2ð�lþÞ

��ðq2Þ
;

(54)

where �lþ � q2=mB, 1=��ðq2Þ is further detailed in
Appendix B 3. The term in (47) proportional to �?ðuÞ is
of the first type and all others are of the second type as
can be seen in Eqs. (47)–(50). The equation (47) disagrees

with Eq. (24) in Ref. [11] by a factor of 2 in the gðv;aÞ? term

but agrees with the result in [8] in the limit q2 ! 0. The
definitions of the B-meson moment functions ��ðq2Þ and
the K and K� DA functions are given in Appendix B 1. An
important remark is that the Wandzura-Wilczek type equa-
tions of motions (ms ¼ 0) (B5) for the K� have been used.

We note that we have included the K� DAs �k, �?, and
gðv;aÞ? . In light of Table I it might seem that we should have

also included hðs;tÞk ; however, here we are considering the

leading 1=mB term, so it is the gðv;aÞ? term which requires

justification. It is included because the�? coefficient does

not contain a 1=�� factor as it might, and therefore occurs

at the same power of 1=mB as gðv;aÞ? . Since the �k term

comes with a 1=�� factor, an hðs;tÞk term would beOð1=mBÞ
suppressed so we neglect it.
It should be noted that there is an endpoint (infrared)

divergence proportional to F2;ðR;LÞð0Þ in S�ðq2 ! 0Þ aris-
ing from the �u ! 0 integration region which is of the same
type asO8. There are three ways to deal with it: (i) only use
it for q2 > 0 in which case an IR sensitivity remains;
(ii) employ the cutoff model [8,11], or (iii) perform a local
subtraction to render the QCDF result finite and then use
the IR finite result from LCSR [6] to compensate. We
choose option (iii). To get an infrared finite result we write

F2;iðr2Þ ¼ ½F2;ið0Þ	LCSR þ ½F2;iðr2Þ � F2;ið0Þ	QCDF; (55)

where the contribution of each term in square brackets to

B ! Kð�Þll is computed as indicated in the subscript. The
LCSR term is therefore a local operator and the O8 result
[6] applies, and the QCDF term vanishes for r2 ! 0
restoring IR finiteness of (47) at q2 ¼ 0. The slightly
inconsistent feature is that the LCSR computation contains
LD contributions which are not present at this level of
approximation in QCDF as explained at the very beginning
of this section.
At last we wish to add some remarks about imaginary

parts. In the partonic picture the charm quark can go on
shell, whose importance has been emphasised in [39], as is
visible from the formulas. Fortunately the momentum that
enters the charm loop depends on the momentum fraction
of the light meson as �um2

B þ uq2 and is sufficiently
smeared out that a partonic description seems tolerable.
Conversely the interpretation of such effects in the real
hadronic world would be a D �D threshold for which is,
compared to a single resonance, sufficiently tame to be
described by partons within our quoted uncertainties.

C. Projection on SM basis (QLSS in the SM)

In the SM using naı̈ve dimensional regularization we
have [11]

SM: F1;LðsÞ ¼ 3

32�2

�
hðs; mcÞ

�
��c

�t

C2 þ C4 þ C6

�
þ hðs; mbÞðC3 þ C4 þ C6Þ
þ hðs; 0Þ

�
��u

�t

C2 þ C3 þ 3C4 þ 3C6

�

� 8

27
ðC3 � C5 � 15C6Þ

�
;

F1;RðsÞ ¼ 0; (56)

F2;RðsÞ ¼ mb

8�2
ðCeff

8 � C8Þ;

F2;LðsÞ ¼ ms

8�2
ðCeff

8 � C8Þ ! 0þOðmsÞ:
(57)
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The MFV symmetry of the SM implies that F1;R ¼ 0. The

operators Q4f
2� are not present in the SM in d ¼ 4 but give

contributions in the spirit of evanescent operators in naive
dimensional regularization. They render the effective WC
Ceff
8 scheme independent [40,41]. It is worth pointing out

that in the SM the charm loop dominates as it originates
fromOc

2 which is proportional to a largeWC C2 � 1 and is
not CKM suppressed. All other WCs are small as can be
seen in Table VIII.

V. ISOSPIN ASYMMETRIES B ! Kð�Þ�=ll

We shall first make a few generic remarks on selection
rules and related issues in Sec. VA, reflect on the q2

behavior from various viewpoints in Sec. VB and then

discuss the isospin asymmetries of B ! Kð�Þ in the SM in
Sec. VC. Discussion of isospin asymmetry beyond the SM
is deferred to Sec. VII.

A. Generic remarks on selection rules

In total there are 32 operators potentially contributing to
the isospin asymmetry at the level of Oð�sÞ correction we
are considering. Schematically they decompose as follows:

32 ¼ 2
Oð0 Þ

8
ð2Þ þ 20WAð19Þ þ 10QLSSð38Þ (58)

where the prime denotes V þ A chirality as previously

defined. We note that OSUð3Þ
2LðRÞ gives no contribution in the

limit of all light quark masses set to zero since it is
proportional tomf as pointed out in Sec. IVB. The number

32 will be reduced further for the K and K� below.
We shall discuss below general selection rules for the K

in Sec. VA1 before discussing more specific selection
rules for WA in the factorization approximation in
Sec. VA2 and then comment on the (non)relation between
the K and K�

k amplitude in Sec. VA3.

1. Parity and angular momentum selection rule for K

For the K there is a parity selection rule. We note that

B½0�	 ! K½0�	ð��½1�	 ! lþl�½1�	Þ
) pwave; i:e: l ¼ 1; (59)

where ½JP	 denotes total angular momentum and parity,
respectively, and l is the spatial angular momentum
of the decay product. Thus the left-hand side (LHS) and
right-hand side (RHS) of the decay have odd parity
and the decay is therefore induced by parity conserving
(PC) operators. This means that operators of the type
�s . . .�5q �q . . .b, �s . . .q �q . . .�5b, where . . . stands for
strings of � matrices not including �5, do not contribute.
This reduces the number of operators for the K (by a factor
of 2) down to 1O8

and 5QLSS using the notation of Eq. (58).

It seems worthwhile to emphasize that the selection rules
are generic. In the next subsection we are going to discuss

WA in the factorization approximation (22) for which there
are additional selection rules.

2. WA selection rules in the factorization approximation

In the factorization approximation, automatic at Oð�0
sÞ

we are considering for WA, there are more stringent
selection rules. They come from the fact that the Dirac
traces of the B meson and the K� meson close separately,
and so �5 matrices cannot be commuted from one end to
the other. Selection rules arising due to this effect derive
from the matrix element which does not emit the photon,
i.e. the initial state in a FSR diagram and vice versa. We
call the matrix element imposing the selection rule the
local matrix element (LME) since it is the matrix element
of an external state coupling to a local operator.
The OWA

9;10 operators must be considered separately: in

the case of the K they do not contribute in the factorization
approximation since the LME will be a pseudoscalar
coupling to an antisymmetric tensor operator and no such
tensor can be formed from a single vector. On the other
hand in the case of the K� both operators contribute

since an antisymmetric tensor p½	��	 is available and by

	������ ¼ 2i�	��5 the two different parities are trivi-

ally related. For OWA
1...8, the LME will impose a selection

rule since the external state will only couple to a local
scalar or vector operator of the correct parity. This reduces
the number of applicable operators by a factor of 2. If this is
further combined with the global parity constraint for theK
case so for B ! Kll only 2 of the 8 operators remain.
Combining these rules we expect 8=2þ 2 ¼ 6 and

8=2=2þ 0 ¼ 2 operators to contribute to WA in the facto-
rization approximation for the K� and the K, respectively.
This is indeed the case as the reader may verify from
Table I or Table II. With respect to the latter table note
that we have not taken into account the degeneracy in
q ¼ u, d in the previous wording and this is why the
numbers are 12 and 4 rather than 6 and 2.

3. On the (non)relation between K�
k and K

There is some conventional wisdom, throughout the
literature, that the longitudinal polarization of the K� cor-
responds to that of the K. We shall argue that this is true in
the SM at leading twist and falls apart thereafter.
The main points follow from the fact the longitudinal

polarization can be decomposed as follows:

TABLE II. Operators contributing to isospin in B ! Kð�Þll.
In square brackets we denote the number of operators that are
present in the SM for the respective channel. In this counting we
neglect C0

8 as C0
8=C8 ’ ms=mb.

Cð0Þ
8 WA Eq. (19) QLSS Eq. (19) Total

K� 2[1] 12[3] aq2;4;5;6;9;10 10[3] all no i ¼ 2, f ¼ SUð3Þ 24[7]

K 1[1] 4[3] aq4;8 5[3] idem no � ¼ A 10[7]
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�ð0Þ	 � �
	
k ¼ p	

mK�
þ ðq	OðmK� Þ þ p	OðmK� ÞÞ: (60)

Thus at leading twist,m2
K� ¼ 0, we see that�	

k and p	 play

the same role. Since the former is a pseudovector and the
latter is a vector we also see that they couple to opposite
parity: K only couples to PC operators, as pointed out in
Sec. VA1, andK�

k only couples to PVoperators. Due to the

V-A interactions in the SM there is a link between the
corresponding WCs and this makes it clear that the
statement at the beginning of this subsection is true.

On the other hand it is then also clear that the presence of
right-handed currents, i.e. V þ A interactions, invalidates
the statement. Furthermore the OðmK� Þ corrections, by
virtue of (60), are going to bring in new structures as
well and we can therefore not expect the correspondence
to hold at twist 4. Examples include the following:

(i) Working example at leading twist: From the
formulas in Appendix F 3 one infers that the parity
related OWA

6 and OWA
8 contributions are (indeed)

proportional to each other [a6ðK�
kÞ 
 a8ðKÞ].

(ii) Nonworking example at nonleading twist: From
Table I we infer that OWA

4 couples to ISR for the
K but the corresponding PVoperator OWA

2 does not
for the K�.

The latter point deserves some further explanation. Should
there be an extension of the correspondence from �p;� to

K� amplitudes then it would be through the same chirality

DA and necessarily involve the chiral-odd DA�? and hðs;tÞk
in Table I. That this cannot hold can also be seen as
follows: the chiral-odd K� 2-particle DAs included in our
calculation have independent coefficients to the chiral-
even ones. In the case of the K this is not so: the chiral-
odd DAs are fully constrained by equations of motion and
arise from finite quark masses, 3-particle and higher twist
DAs, and chiral symmetry breaking, the last of which is the
only effect we include.

4. Implications of selection rules on
twist-expansion hierarchy

In practice selection rules such as the ones depicted in
Table I enforce a rethinking of the matters of the twist
expansion. More precisely we mean that if a largeWC does
not contribute at leading twist but say only at next leading
twist then it does not seem wise to truncate at leading twist.
Thus in practice this implies that one should expand to
the twist order such that all sizeable WC, allowed by the
fundamental selection rules such as the ones quoted in
Sec. VA1, contribute to the amplitude.

The K shall serve as an explicit example. For the latter
we see that at leading and next leading twist aq8 and

aq4 contribute which correspond to ðC3=Nc þ C4Þ and
ðC5=Nc þ C6Þ in the SM (21). From the size of the WC
VIII, we infer that the latter could be of importance

especially in view of the fact that the next leading twist
DA �p;� is known to be chirally enhanced which can be

inferred from its normalization (B1). The reader is referred
to Figs. 6 and 8 to convince himself or herself of this fact.

B. Generic remarks on q2 dependence

Below we add a few generic remarks on the q2 depen-
dence ranging from the validity the LCSR up to pointing
out the dominant contributions. The latter are particularly
useful for understanding the isospin asymmetries within
and beyond the SM.

(i) Physical spectrum and approximation ranges: the

physical spectrum of the decays ranges from 4m2
l <

q2 < ðmB �mð�Þ
K Þ2 ¼ 22:9ð19:3Þ GeV2. In this work

we compute the isospin asymmetries at low q2 (large
recoil) where the LCSR (WA and O8) and QCDF
(QLSS) results are naturally trustworthy. We restrict
ourselves to the interval of ½1; 8	 GeV2 whose
boundary is limited by the nearby !, �, �0 reso-
nances from below and the charmonium resonances,
commencing at q2¼m2

J=�’ð3:1GeVÞ2’9:6GeV2,

from above. While it is plausible to assess effects of
the latter close to these regions we consider it too
difficult to asses them locally and thus refrain from
doing so.

(ii) Isospin asymmetry in B ! K�ll decreases for high
q2: to understand the possible size of isospin asym-
metry for a givenWC as a function of q2 it is helpful
to look at the WCs C9;10 and note the following:

(a) They are large as compared to the other WC
(cf. Table VIII), partially as a result of a 1=sin�2W ’4
enhancement, where �W is the Glashow-Weinberg
angle.

(b) We may write the leading terms in the B ! Mll
decay rate as

hT 
 ½Ceff
9;10Oð1Þ þ Ceff

7 Oð1Þ	;
h0 


ffiffiffiffiffi
q2

q
½Ceff

9;10Oð1Þ þ Ceff
7 Oð1Þ	;

h� 
 ½Ceff
9;10Oðq2=m2

BÞ þ Ceff
7 Oð1Þ	:

(61)

This behavior can be inferred from Eqs. (5), (13),
and (11). Another way to look at it is to realize that
C9;10 should never be sensitive to 1=q

2 in front of the

rate as they are not generated by an intermediate
photon but through intermediate Z bosons and box
diagrams.

We therefore see that at low q2 in B ! K�ll isospin violat-
ing terms only compete against Ceff

7 , but at high q2 they
must compete with the much larger C9;10 and hence the

asymmetry decreases for large q2. In B ! Kll no such
argument applies as in hT Ceff

7 and C9;10 are on equal

footing.
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FIG. 6 (color online). Left (right), top: Isospin asymmetry for B ! Kð�Þll with grey error bands. We have plotted the isospin
asymmetry for the longitudinal part of the K� meson denoted by subscript L. Left (right), middle, and bottom: Contribution of
different SM operators to the isospin asymmetry in B ! Kð�Þll. The bottom ones are the sizeable contributions. The dominance of
½C6 þ ðC5=3Þ	 has been found previously. Its decrease is due to the relevant operators OWA

1–4 entering at subleading twist in the

longitudinal part which is dominant at high q2. See Appendix E 2 for details of the calculation of the grey error band.
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(iii) High q2 � ðmB �mð�Þ
K Þ2 region: In this paper we

have not assessed the isospin asymmetry at high q2,
that is low recoil, per se. We shall discuss it from
two viewpoints which fortunately lead to the same
conclusion, namely, that the isospin violating
effects get smaller for large q2; that is to say the
short-distance form factor contribution with small
isospin effects are dominant.

Form factor contributions (FFCs) in the high-q2 region.
In that region the C7;9;10 FFC are expected to be enhanced

by the presence of the nearby resonance at q2 ¼ m2
B�
s
,

which can be foreseen from the plots and form factor
parametrizations in [16] whereas no such enhancement
is present in the isospin violating (IVQE) terms.11 Let
us add that IVQE terms, arising from intermediate
off-shell photons, will be enhanced by light resonances

FIG. 7 (color online). Top: Isospin asymmetry for B ! �ll with grey error bands. Left (right), middle: Contribution of different SM
operators to the isospin asymmetry in B ! �ll. The graph on the right shows sizeable contributions. Note that unlike at q2 ¼ 0 the C2

contribution is comparable to the C6 contribution here; this is due to a small weak phase arising from Ceff
9 alleviating the cos�CKM

suppression a little. See Appendix E 2 for details of the calculation of the grey error band. Left (right), bottom: Isospin asymmetry for
B ! �ll not CP-averaged b ! d and �b ! �d type. They do add up to the CP average (top) but do deviate significantly from the latter as a
result of strong and weak phases as discussed in Sec. VIC. No such effect is observed for theK� as explained in some detail in that section.

11This statement is only corrected by UV isospin violating
effects in WA at Oð�sÞ.
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at q2 ¼ m2
�; m

2
!; . . . , as can be seen for example in

Fig. 3, and also by a heavy resonance �ð �bbÞ. Thus in

summary the isospin asymmetry is expected to be sup-

pressed both by small WCs and competing with a resonant

isospin-symmetric term, and thus should be very small at

high q2.
Low recoil OPE: Some time ago an OPE in q2 and

m2
b was proposed [42] for the low recoil region, which

was implemented into phenomenology [43] and reinvesti-

gated from a theoretical viewpoint in [44]. In this language

the FFC come as dimension three matrix elements

and IVQE originate from higher dimensional operators

(dimension six for WA and dimension five for QLSS and
O8) and are therefore naturally small.

C. Isospin asymmetries B ! Kð�Þ�=ll in the SM

The plots of the B ! Kð�Þll isospin asymmetries are
given in Fig. 6, including a plot of the longitudinal part
(zero helicity) of theK� DA, and the values are tabulated in
Table X (Appendix F 1). Important aspects on which
operators or WC contribute were discussed in the previous
subsection. The feature that is obvious is that the isospin
asymmetry is small on the scale of �100% to 100% for

B ! Kð�Þll for q2 > 1 GeV2; specifically below the 2%

FIG. 8 (color online). Breakdown of contributions of WA (ai), QLSS (sfx;�), and Oð0Þ
8 to the isospin asymmetry B ! Kð�Þll in the

linear approximation (18). We have split the contributions as detailed in Table II into different graphs in order to make them more

readable. Note that we use aqi ¼ 0:1 and sfx;� ¼ 1 to produce these figures, as in the tables.
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level. Qualitatively they agree with previous determination
e.g. B ! K�ll [11] and B ! Kll [12].12 A few qualitative
remarks on the size of the contributions can be found in the
caption. Generically the asymmetries are dominated by
WA which can also be inferred indirectly from Fig. 8 in
the next subsection. Let us quote here the world average
of the B ! K�� isospin asymmetry from the Heavy Flavor
Averaging Group (HFAG) [3]

�aIðK��ÞHFAG ¼ 5:2ð2:6Þ%; �aIðK��ÞLZ ¼ 4:9ð2:6Þ%;

(62)

which compared with our value turns out to be really close.
Our value is also close to values previously found by
[8,9,11]. The calculation of the theoretical uncertainty is
detailed in Appendix E 2. To what extent this constrains

the dimension six operators and therefore B ! Kð�Þll is
discussed in Sec. VII A.

Let us briefly discuss the three contributions in Fig. 1
considered in this paper.

(i) WA: The SM contributions ½aqi 	SM (21) are given in
terms of the Ci in Eq. (21). For WA one has to
distinguish between �qb�sq operators (omitting the
Lorentz indices) as generated from tree and penguin
processes. When originating from penguin processes
O3–6, an equal amount of q ¼ u, d is generated and
the process is dominated by the top quark penguin
which results in a �t 
 �2 CKM prefactor. The q ¼
u case also has a tree contributionOu

1;2 which is then

proportional to �u 
 �4. Thus a priori it seems
difficult to judge whether the loop suppression or
the CKM suppression is more effective.13 Inspecting

Fig. 6 and taking into account that WA is the leading
effect we see that the answer depends on q2 and the
Dirac structure: C6 dominates the isospin asymmetry
for B ! K�ll but for B ! Kll the C2;4 contributions

are of similar magnitude to C6.
(ii) QLSS: QLSS is dominated by the charm loop as

the latter originates from the tree operators Oc
1;2.

Whereas this contribution is not CKM suppressed
�c 
 �2 it is of course loop suppressed.

(iii) O8: The chromomagneticO8 contribution has been

discussed in a separate paper [6]. For B ! Kð�Þ the
transition matrix element is found it to be rather
small, as compared to the QCD penguin form fac-
tors T1ð0Þ. The total and isospin violating parts
were found to be in the 6% and 2% range, as
compared to T1ð0Þ, respectively. An interesting
aspect is the large strong phase attributed to LD
contributions. The phase is of importance for CP
violation in new physics searches in D ! V� [45],
but not for CP-averaged isospin as the latter is only
sensitive to the real part of strong phases, at least in
the linear approximation cf. (18). Furthermore we
should point out that we neglect the O0

8 contribu-

tion in the SM, as C0
8=C8 ’ ms=mb by virtue of the

MFV symmetry.
Some of the points discussed above and in the previous
subsection are summarized in Table III.

VI. ISOSPIN ASYMMETRIES IN B ! ��=ll

B ! � decays14 differ from B ! K� decays in two
important respects: (1) WCs of the operators O1;2 are not

TABLE III. SM operators contributing to the isospin asymmetryO1–6;8 and operators not contributing to the asymmetryO7;9;10. This
table summarizes the discussion in Sec. VC. WC denotes whether the operator is generated by a tree or penguin process. CKM denotes
the CKM suppression, and � ’ 0:22 stands for the Wolfenstein parameter. In anticipation of B ! �ll we have indicated the CKM
hierarchy for b ! d in parenthesis. M.E. denotes whether the matrix element is a tree or loop level process.

b ! sðdÞ WA QLSS O8

OX WC CKM M.E. CKM M.E. CKM M.E.

O1;2 tree �u 
 �4ð�3Þ tree �c 
 �2ð�3Þ loop � � � � � �
O3-6 penguin �t 
 �2ð�3Þ tree �t 
 �2ð�3Þ loop � � � � � �
O8 penguin � � � � � � � � � � � � �t 
 �2ð�3Þ loop

O7 penguin not isospin sensitive and dominates low q2

O9;10 penguin/box not isospin sensitive and dominates high q2

12We differ from these references in that we compute WA and
O8 in LCSR which includes LD contributions as argued at the
beginning of Sec. IVB. Moreover we include twist-3 contribu-
tions for WA for the reasons mentioned in Sec. VA4. The QLSS
contributions are effectively treated in the same way. Whereas
their result is small it differs from ours quantitatively which is
explained by the differences mentioned above.
13For D ! V� and decays such as Dþ

s ! �þ� there is no
CKM suppression at all and since all other subprocesses are
small, WA dominates these decays as we have argued in [45] and
in Appendix A.

14In this work we refrain from including the isospin asymmetry
B ! �ll. Bþ ! �þll, but not the neutral mode, has only been
observed recently by the LHCb Collaboration [46]. Another
logical extension would be to consider a �-! asymmetry as in
[9]. We refrain from doing so mainly because the latter suffers
from a large theoretical uncertainty in the actual difference, not
to be confused with the separate values, of the � and ! form
factors. This situation could be improved considerably through a
dedicated study of the respective ratio of decay constants; both
transversal and longitudinal.
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CKM suppressed (cf. Table III), and (2) B0 ! �0, by virtue
of �0 
 ð �uu� �ddÞ, contains additional diagrams with
different arrangements of the four quark operators, and
as a consequence also couples to color octet operators
[octet with respect to the basis (19)]. We shall see shortly
that the first point is effectively irrelevant as the relevant
CKM angle �CKM ¼ 89ð4Þ� [20] chooses to be close to
Pythagorian perfection.

More precisely the O1;2 contribution in the SM comes

with a CKM prefactor

�bd
u

�bd
t

¼ �
���������

bd
u

�bd
t

��������e�i�CKM ; (63)

where �bd
i � V�

idVib, in close analogy to � � �bs
i � V�

idVib

used previously. Since the CP-averaged isospin asymme-
try is sensitive to the real part, giving cos�CKM ¼ 0:02ð7Þ,
the relatively large magnitude of �bd

u =�bd
t is overruled

and thus the overall contribution from O1;2 is very

small. Essentially there is then no interference of the
O1;2jWA with the leading contributions. This is why the

non-CP-averaged isospin asymmetry leads to rather
different results (already in the SM; cf. Sec. VI C).

A. Extending the effective Hamiltonian
for B0 ! �0�=ll

For theB0!�0�=ll decay (�0
 �uu� �dd), the basis (19)
has to be extended to include

OWA
i ¼ �q�1b�s�2q ) OWA;8

i ¼ 1

4
�q�a�1b�s�

a�2q; (64)

so that for example OWA;8
1 ¼ 1

4
�q�ab�s�aq, and we modify

the effective Hamiltonian (20) to

HWA;q ¼ �GFffiffiffi
2

p �t

X10
i¼i

½aqi OWA
i þ a8qi OWA;8

i 	: (65)

In spite of all these operators being present, the basic
situation presented in Table I has not changed: our calcu-
lation only picks up six linearly independent combinations
of WCs in the B0 ! �0�=ll case. We therefore choose to
present the isospin asymmetry for the � meson in the
following schematic way:

�� $ aui ; �0 $ ~adi ¼ cdi a
d
i þ c8di a8di þ c8ui a8ui (66)

with cxi given in Appendix F 2.

B. Isospin asymmetries in B ! ��=ll in the SM

The SM values of the new color octet coefficients are

a8q1 ¼ �a8q2 ¼ a8q3 ¼ �a8q4 ¼ �4C5;

a8q5 ¼ �a8q6 ¼ �a8q7 ¼ a8q8 ¼ 2C3 � 2�qu

�u

�t

C1;

a8q9 ¼ a8q10 ¼ 0:

(67)

The ones for the color singlet operators are the same as for
the K� (21). The formulas for ~a, in relation to �0 (66), are
given in Appendix F 6 a for the SM.
Our results for B ! �ll, including breakdowns of

operator dependence, are shown in Figs. 7 and 9, and
tabulated data is given in Appendix F 1 in Table XI. The
experimental measurement of the isospin asymmetry is
defined differently to the K� case, as [47]

�ð��Þ ¼ �B0

2�Bþ

BðBþ ! �þ�Þ
BðB0 ! �0�Þ � 1

¼ �2 �aIð��Þ
1þ �aIð��Þ �aIð��Þ�1�2 �aIð��Þ (68)

[aIð��Þ ¼ ��ð��Þ=ð2þ�ð��ÞÞ] where a CP-averaged
branching fraction is used. In this normalization, our result
compares with the experimental result as [3]

�ð��ÞHFAG ¼ �46ð17Þ%; �ð��ÞLZ ¼ �10ð6Þ%:

(69)

We shall quote � in percentage even though, contrary to
�1 � aI � 1, � is not bounded when aI ! �1. For com-
pleteness we further quote our result for the CP-averaged
isospin asymmetry in B ! �� in the SM as

�aIð��ÞHFAG ¼ 30

��13

þ16

�
%; �aIð��ÞLZ ¼ 5:2ð2:8Þ%;

(70)

where we have used Eqs. (69) and (68) for computing what
we call the HFAG value above. Our result is comparable to
that obtained in [9]15 and somewhat larger than that in [48],
principally due to a different choice of �CKM. Our SM
result is marginally consistent with the current experimen-
tal value, that is to say they are exactly two standard
deviations apart. There is another way one can reflect on
the experimental value (69); namely, one can extract
jVtd=Vtsj from the ratio of branching fractions R�=K� ¼
BðB ! ��Þ=BðB ! K��Þ which can be applied for
charged and neutral case separately. In view of the fact,
to be discussed in the next section, that the isospin splitting
of the ratios of the � and K� channel is accidentally small
(i.e. SM: R�0=K�0 � R�þ=K�þ for current CKM angles), we

may infer from Table 12 in Ref. [9] that��������Vtd

Vts

��������R
�0=K�0

¼0:229ð25%Þ;
��������Vtd

Vts

��������R�þ=K�þ
¼0:165ð25%Þ;

��������Vtd

Vts

��������PDG½19	
¼0:211ð7Þ; (71)

and we have quoted the current value from the Particle
Data Group (PDG) for comparison. We have given a rough

15Note that the authors of Ref. [9] use the opposite sign
convention for �ð��Þ.
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estimate of the error which is mainly due to the B ! ��
branching fraction (cf. Appendix E 4). Thus we infer that
the discrepancy in �ð��Þ (69) is presumably due to the
�þ- rather than the �0 channel.

C. On subtleties of CP averaging the
isospin asymmetries

In this paper we have computed CP-averaged quantities
which resultsin the linear approximation to taking the real
part of the strong and weak phase separately, whereas no
CP average implies taking the real part of the product of
the strong and weak phase. Schematically,

CP average: Re½ei�strong	Re½ei�weak	;
noCP average: Re½ei�strongei�weak	: (72)

To be more precise the weak and the strong phase is the
difference between the isospin-violating and the isospin-
conserving amplitude. Thus in general there can be signifi-
cant differences if both �strong and �weak are sizeable.

Are there sizeable strong phase differences? The isospin
conserving amplitude has a very small strong phase in the
region we are considering and thus the question is whether
there is a sizeable strong phase in the isospin violating
amplitude. The answer to this is no for q2 ¼ 0, as only
O8ð0Þ contributes with a strong phase at leading order in �s

(which is at least small in the SM). For 1 GeV2 � q2 �
4m2

c, however, the answer is yes: the photon emitted from a
light quark converts via an intermediate �, ! meson and
gives rise to a tail in the imaginary part. This is the case for
all IR isospin violation and we refer the reader to Fig. 4
(left) in [6] for an illustration.
Are there large sizeable weak phase differences? In the

SM this is the case for B ! �ðb ! dÞ as can be seen from
(63) with �CKM ¼ 89ð4Þ but not for B ! K, K�ðb ! sÞ. In
BSM scenarios this question is open modulo constraints,
in particular, CP observables.
We summarize the conclusions to be drawn from the

discussion above in Table IV. The plots for the
non-CP-averaged isospin asymmetries in B ! �ll are

FIG. 9 (color online). Breakdown of contributions of WA (ai), QLSS (sfx;�), and Oð0Þ
8 to the isospin asymmetry B ! �ll in the linear

approximation (18). We have split the contributions as detailed in Table II into different graphs in order to make them more readable.

Note that we use aui ¼ 0:1, ~adi ¼ 0:1, and sfx;� ¼ 1 to produce these figures, as in the tables.

TABLE IV. CP effect stands for CP-averaging effect on the
isospin asymmetries and ⨯(✓) mean (in)significant. Overview of
the conclusions to be drawn from the analysis of Sec. VI C. Note
that an enhancement of O8 or sizeable radiative corrections to
WA or QLSS would raise �strong and could shift the situation

slightly.

CP effect B ! ðK�; �Þ� B ! Kð�Þll B ! �ll

SM ⨯ ⨯ ✓

BSM (�BSM
weak) ⨯ ✓ ✓
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shown in Fig. 9. We see that the asymmetries raise up to
�5% in the 1 GeV2 � q2 � 4m2

c region.
In general it might therefore be interesting to measure

non-CP-averaged isospin asymmetries in future experi-
mental determinations. This is certainly possible for the
K� and the � but not for the K, as it is observed through K0

S

which is a superposition of the strangeness eigenstates
K0 and �K0.

VII. ISOSPIN ASYMMETRIES BEYOND THE SM

The extension of the SM basis was discussed throughout
the main text and summarized in Sec. VA. Possibly we
should reemphasize, for the sake of clarity, that O0

7;9;10

operators of V þ A chirality are of no interest to the isospin
asymmetry as they do not violate isospin. Of course if they
become extremely large then they would affect the rate.
Yet it is already known that they cannot be too large; see
e.g. [49–51]. The various contributions of the extended
basis are detailed in Figs. 8 and 9 and tabulated in
Tables IX, X, and XI (Appendix F 1) for the K, K� and �
channels, respectively. One aspect that is immediately
apparent from these graphs is that there are overwhelm-
ingly many contributions that can give rise to a sizeable
isospin asymmetry at low q2. In fact there are so many that
by the rules of probability one would expect cancellations
in the generic case. Fortunately this is where the q2 spec-
trum should help us, should there be new physics; one
cannot expect to be unlucky over the entire q2 range.

In Sec. VA3 we discussed that only for leading twist and
SM chirality the K and the K�

k are related. As noted there

this link breaks down in the presence of right-handed
currents, which are only partially constrained, and thus in
a generic scenario the link between the K and the K�
isospin asymmetry is lost. The reader can convince himself
or herself of this fact directly from the corresponding tables
and figures referred to above.

A. Constraints on isospin sensitive four
Fermi operators

We shall now briefly turn to the question to what extent
these operators are already constrained. We identify

nonleptonic decays16 as well as B ! �=K�� isospin asym-
metries themselves as the main sources for constraints:
(i) B ! �=K�� isospin asymmetries: the experimental

values are quoted in (62) and (69), respectively.
These isospin asymmertries are sensitive to
aq2;4;5;6;9;10 of WA, in particular. Of course one num-

ber such as �aIðK��Þ cannot seriously bound 12
numbers. We might though give indicative con-
straints by imposing that each of the coefficients
shall not be more than two standard deviations
away from the central value, which roughly amounts
to 0< �aIðK��Þ< 10% and 6< �aIð��Þ< 67%
[�80%< �ð��Þ<�12%]. The results of this pro-
cedure are collected in Tables Vand VI, respectively.

(ii) Nonleptonic decays: four Fermi operators do affect

nonleptonic decays such as B!�=�Kð�Þ, Bs!
Kð�Þ�, etc. The disadvantage is that they are difficult
to predict from a theoretical viewpoint, especially in
the absence of a first principle approach to final state
rescattering. The uncertainty in strong phases ob-
scures interference effects which affects all observ-
ables, let alone CP asymmetries. The advantage
though is that there is a plethora of channels which
allows theorists to constrain certain weak topolo-
gies, see e.g. [52–54], and permits them to cross-
check their methods. Interesting constraints on four
Fermi operators, such as the so-called electroweak
penguins present in the SM, have been obtained in
Refs. [55,56] for instance in the framework of QCD
factorization. We would like to add two remarks.
First, these operators do partially overlap with ours
and would indeed bring in additional constraints.
Yet only global fits lead to solid constraints which is
beyond the scope of this work. Second, from the

TABLE V. Constraints on WCs aqi from B ! K�� at 2�, assuming no accidental cancellations
occur, along with SM values. We assume 0< �aIðK��Þ< 10%, and derive constraints from
Table X assuming that only a single coefficient aqi deviates from its SM value. SM values are

calculated from (21) and Table VIII. All constraints are for the real part of these coefficients; the
imaginary part is not constrained by the isospin asymmetry.

B ! K�� Min. SM Max. Min. SM Max.

au2 �0:39 �0:068 0.25 ad2 �0:24 �0:068 0.11

au4 �0:38 �0:068 0.25 ad4 �0:24 �0:068 0.10

au5 �0:41 �0:021 0.37 ad5 �0:67 �0:028 0.61

au6 �0:62 0.021 0.57 ad6 �1:0 0.028 1.0

au9 �0:049 0 0.049 ad9 �0:080 0 0.080

au10 �0:048 0 0.048 ad10 �0:080 0 0.080

16�F ¼ 2 constraints from neutral meson oscillations, usually
rather severe, are presumably not very strong. More precisely if
we are to compare SM/MFV type operator OMFV

�B¼2 �j�tj2GF=16�
2ð �b�1sLÞð �b�2sLÞ (with �1;2 specific Dirac struc-

tures) then by integrating out either b quarks or saturating light
quarks with intermediate hadronic states one would expect to get
a GF � ðm2

b;�
2
QCDÞ � ð10�4; 10�6Þ suppression in each case.
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plots in Refs. [55,56] one infers that it is rather
unlikely that the NP contributions to the WC ex-
ceeds the SM values by a factor of 5 but could easily
be out by a factor of 2. In view of the multitude of
channels this might very well be true for SM opera-
tors. It seems more difficult to come to a quick
judgement for non SM operators (by which we
mean operators with small WCs). Partial studies
do exist; e.g. an interesting direction, in view of
right-handed currents, is the investigation of polar-
ization in B ! VV decays [54] which was carried
out in [57] in the framework of QCD factorization.

B. B ! K�=�� isospin asymmetry
splitting—(quasi-)SM null test

The closeness of �CKM to 90� may be exploited to
predict an observable with much smaller theoretical uncer-
tainty, albeit at the expense of larger current experimental
uncertainty.

Our prediction is essentially that �aIð��Þ and �aIðK��Þ
should be similar, up to form factor and hadronic parameter
differences.17 A major source of uncertainty in determin-
ing �aIðK��Þ and �aIð��Þ, however, is the renormalization
scale used to compute the WCs, and because of this it is
worthwhile to calculate a quantity in which the leading
scale dependence and form factor differences cancel,
namely,

�aI � 1� �aIð��Þ
�aIðK��ÞR�K�

¼ 1þ �ð��Þ
ð2þ�ð��ÞÞ �aIðK��ÞR�K� ; (73)

where

R�K� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðB ! ��Þ
��ðB ! K��Þ

s ��������Vts

Vtd

��������; (74)

and a barred partial width �� implies a CP average,
and omission of charges implies an isospin average.18

The dominant contributions to the right-hand side
of (73) are

aIðV�Þ � C6 þ C5=3

Ceff
7

f?V FWAð0Þ
TV
1 ð0Þ

þ � � � ;

��ðB ! V�Þ � 3�cF
8�

j�tC
eff
7 j2jTV

1 ð0Þj2;
(75)

where the dots stand for C3;4 contributions—which are

small as the K� and � cases are very similar—quark
masses, and B0 ! �0 diagrams at Oð�2

sÞ where the
different structure of the �0 matters even for small
cos�CKM. The function f?V FWAð0Þ stands for final state
emission where we have explicitly factored out the f?
decay constant as compared with (33). More precisely,
f?V FWAðq2Þ ¼ P

i¼2;4ðFd
i ðq2Þ � Fu

i ðq2ÞÞ (i ¼ 2, 4 are the

operators proportional to C6þC5=3) in the notation of
(33), and FWA is the same for the K� and the � in our
approximation up to small corrections from different
Gegenbauer moments. The correction factor R�K� serves

the purpose of eliminating the form factor ratio as

�aIð��Þ= �aIðK��Þ ’ TB!K�
1 ð0Þ=TB!�

1 ð0Þ which follows

from Eq. (75). Since the WA contribution f?FWAð0Þ is
essentially proportional to f?, it then follows that

�aI ¼ 1� f?� =f?K� þ small corrections; (76)

where the principal source of uncertainty, the scale
dependence of C6 þ C5=3, drops out. Note that by
‘‘small corrections’’ we mean small as compared to 1.
The quantity �aI is particularly sensitive to corrections

to the isospin asymmetry and we therefore include terms
quadratic in WA amplitudes present in (17) but neglected
in (18) and elsewhere. Comparing our prediction with
a naive combination of PDG [20] results for these
quantities gives

½�aI 	exp ¼ �4:0ð3:5Þ; ½�aI 	LZ ¼ 0:10ð11Þ: (77)

The theoretical uncertainty should be compared with 1
as it is a ratio, as above and thus is at 11%, is under
rather good control, as compared to roughly 50% in
the individual asymmetries. See Appendix E 4 for the
experimental input used as well as brief comments on
the uncertainty. Let us briefly add that the uncertainty
due to the difference in B meson lifetimes and
jVts=Vtdj is negligible. Experimental and theoretical
values agree within uncertainties, though the central
value is very different and an improved experimental

TABLE VI. Constraints on operators aqi from B ! �� at 2�,
assuming no accidental cancellations occur, along with SM
values. We assume 6%< �aIð��Þ< 67% and derive as described
below Table V. Again note that we list the real part only as this
is what enters the CP-averaged isospin asymmetry. Since
our calculated SM value is the lower bound of this range (within
uncertainties), we quote the SM value of the coefficient and the
other bound; the true value is expected to lie in this range.

B ! �� SM Bound SM Bound

au2 �0:068 �4:1 ~ad2 �0:068 �2:1
au4 �0:068 �4:0 ~ad4 �0:068 �2:0
au5 �0:021 4.9 ~ad5 �0:028 8.1

au6 0.021 �7:6 ~ad6 0.028 �13
au9 0 0.56 ~ad9 0 0.94

au10 0 0.56 ~ad10 0 0.93

17An extension to q2 > 0 is not straightforward as the isospin
asymmetries of the K� and �� do differ qualitatively: Ceff

9 ðq2Þ
contributes a small weak phase to the leading amplitude which
partially alleviates the cos�CKM suppression.

18For the � meson this implies ��ðB!��Þ¼1
2
��ðBþ!�þ�Þþ

��ðB0!�0�Þ due to �0 
 ð �uu� �ddÞ= ffiffiffi
2

p
as discussed previously.
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determination is desirable since the theoretical errors
are under good control. The experimental uncertainty
due to all four branching fractions involved in �aI is

rather similar, and thus all of them need to be reduced
to significantly improve the overall uncertainty. It
should also be added that if the asymmetries are
measured in the same experiment (some) systematic
uncertainties can be expected to cancel.

The behavior of �aI and its uncertainty as a function

of �CKM are shown in Fig. 10. We provide a fit for
this plot,

½�aI 	LZ ¼ 0:10–0:87 cos�CKM; (78)

where the 1� bounds are given by ½�aI 	LZ � ½�	LZ where

½�	LZ ¼ 0:10þ 0:14cos 2�CKM is a good fit for the error
band shown in Fig. 10.
It is clear that the structure of the SM is responsible

for the smallness of �aI (73). In general the quantity �aI is

thus highly sensitive to new physics. Two examples are as
follows:
(i) Non-MFV isospin violation: For example,

ðaqi jb!sÞ=ðaqi jb!dÞ � �bs
t =�bd

t ; cf. Eq. (19) and

thereafter for the definition of aqi .
(ii) UV isospin violation: Four fermi operators of the

type (19) in unequal proportion of q ¼ u, d quarks.
Such a difference is sensitive to the structure of the
K�;0 and �0 parton content.

We provide some example values for the case of UV
isospin violation in Table VII.

VIII. CONCLUSION

Isospin violating effects considered in this paper are
of the UV type, i.e. Heff is asymmetric under u $ d, as
well as IR-isospin violation which manifests itself in
photon emission from the spectator quark. We have
found that CP-averaged isospin asymmetries in the SM
are small, below 1.5%, for B ! ðK;K��Þll at lepton pair
momentum 1 GeV2 � q2 � 4m2

c as can be inferred from
Figs. 6 and 8 as well as the actual breakdown of the
various operator contributions. In fact in the SM the
ðK;K�Þll and �ll are somewhat accidentally small. In
the former case the large Wilson coefficient Cu

2 is sup-

pressed by a small CKM prefactor j�u=�tj ’ �2 � 0:04
and in the latter case it is the smallness of cos�CKM

which suppresses the tree-level WC Cu
2 . The latter point

is also the reason why the non-CP-averged isospin
asymmetry for B ! �ll deviates from the CP-averged
one; cf. Sec. VI C. Not performing the CP average,
which is possible for the � and K�, is certainly an
interesting option for the former per se; cf. Fig. 8
(bottom) and for the latter in the presence of new
weak phases.
Isospin asymmetries of B!K�=�� are a bit higher,

around 5% each, due to the photon pole enhancement
and are measured with reasonable accuracy (62) and (69).
Whereas the K� experimental result is in perfect agree-
ment with our prediction, the � asymmetry is off by 2
standard deviations and calls for further experimental
data. In both cases we use these results to give indicative
constraints on the WA WCs; cf. Tables V and VI, by
demanding that no coefficient is more than 2 standard
deviations away from the experimental results. The
smallness of cos�CKM implies that the K�=�� SM iso-
spin asymmetries are structurally very similar, resulting
in the almost identical numerical result, which prompted
us to define a (quasi)null test of the SM �aI in

Sec. VII B.

TABLE VII. Effect of varying adi from their SM values on the
isospin splitting �aI . We fix all aqi to their SM values and then

alter a single one by the specified amount. More precisely
�aI ½ad8 þ x	 $ �aI ½ad;SM8 þ x	 above. The resulting variation of

�aI can be large and is primarily the result of the �0 coupling to a

different combination of ai as discussed in Sec. VIA, and is
therefore an example of UV isospin violation (but not MFV
violation). The uncertainties quoted in this table do not include
uncertainty from varying the renormalization scale; this would
require a computation of the scale dependence of the
Hamiltonian (65) and is thus beyond the scope of this work.
The renormalization scale is taken to be the usual central value,
	 ¼ 4:7 GeV.

x �
ad
1
þx

aI �
ad
8
þx

aI

�0:3 1.16(15) 1.71(20)

�0:2 0.82(11) 1.21(13)

�0:1 0.47(9) 0.67(9)

0.1 �0:29ð14Þ �0:51ð15Þ
0.2 �0:68ð18Þ �1:14ð21Þ
0.3 �1:08ð23Þ �1:78ð28Þ

FIG. 10 (color online). Plot of the effective � to K� isospin
asymmetry difference �aI (73). Vertical lines indicate the current

experimental value of �CKM [20] and its uncertainty. At the
present small value of cos�CKM, �aI is well determined

theoretically.
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We have not systematically investigated the isospin
asymmetry in the high q2 region in this work.
Nevertheless we have argued that it has to be small
as it is (i) no longer artificially enhanced as at low q2

by the photon pole, through which isospin effects
propagate, and (ii) its contribution is further sup-
pressed relative to the form factor contributions as
the latter feel the closeness of the t channel pole at
q2 ¼ m2

B�
s
. On grounds of these arguments, modulo

magic cancellation at low q2, one expects the isospin
asymmetry to decrease. We should add that the authors
of Ref. [44] had come to the same conclusion using
arguments of a high q2 OPE.

We have introduced the most general basis of di-
mension six operators for WA (19) and QLSS (38)
and have detailed various contributions in Tables IX,
X, and XI in Appendix F 1 as well as Figs. 8 and 9 in
Sec. VII, respectively. Generic selection rules for the
B ! Kll, valid for any scalar ! scalar ll transition,
were discussed in Sec. VA 1. Selection rules for
WA, which are more stringent, were worked out in
Sec. VA 2 for vectors and pseudoscalars. After apply-
ing all selection rules 24 and 10 operators remain for
a vector and pseudoscalar meson final state, which
compares with 7 operators in the SM for the K� and
the K meson. In view of the large number of operators
that can contribute, as detailed in Fig. 6 and Tables IX
and X, respectively, one might even wonder whether
by the laws of probability cancellation of new physics
is the rule rather than the exception. One would hope
that a refined experimental analysis in q2 would reveal
the deviation in one bin or another. In this paper we
have not attempted to constrain the four Fermi opera-
tors through nonleptonic decays but have, for the time
being,19 contented ourselves with a few generic
remarks in Sec. VII A. In the future data from isospin
asymmetries in B ! P, V�=ll could be combined with
data in nonleptonic decays B ! PP, PV, VV to con-
strain four Fermi operators of bsðdÞqq type more
effectively.

On the theoretical side the SM isospin prediction
would benefit from an evaluation at Oð�sÞ of the WA
contribution. This computation would also be beneficial
to understand D0 ! Vll=� decays [45]. For the BSM
analysis a computation of QLSS within LCSR would be
desirable for the reasons mentioned at the beginning of the
Sec. IVB.

We explained why the K and the K�
k contribution are

linked at leading twist and for left-handed currents only.
Thus the relation between the Kll and K�ll asymmetry is
therefore already only approximate in the SM and lost
entirely should there be sizeable V þ A structures.

In view of the experimental results we therefore con-
clude: Whereas it is very plausible that the K isospin
asymmetry is larger or very different from the K� isospin
asymmetry, it remains mysterious at this moment why it
would be sizeable at high q2 at all. In fact, in view of
this and the smallness of the prediction in the low q2

region, cf. Fig. 6 (top, right), the measured deviation of
the integrated isospin asymmetry in B ! Kll of the
LHCb Collaboration [2] away from zero by 4 standard
deviations is somewhat puzzling. More statistics,
especially in the neutral channel, is therefore eagerly
awaited.
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APPENDIX A: BðB0 ! K�0�Þ=BðBs ! ��Þ
The LHCb Collaboration has recently measured [58]

the ratio of branching fractions of B0 ! K�0� to
Bs ! �� to be

RK���BðB0!K�0�Þ
BðB0

s !��Þ ¼1:23ð6Þstatð4Þsystð10Þfs=fd ; (A1)

where the uncertainties are statistical, systematic, and due
to s, d fragmentation.
In the SM the difference to unity of (A1) is mainly due to

the ratio of form factors. Generically a difference can arise
from WA and this is where it connects to the rest of this
work. We shall give an update of the form factor ratio
below and discuss an example of how an enhancement of
one of the operators in (19) can lead to sizeable deviations
from the SM value.

1. Form factor ratio update

We present a phenomenological update of the form
factor ratio,

rK�� ¼ TB!K��
1 ð0Þ

TBs!��
1 ð0Þ ¼ 0:89ð10Þ%; (A2)

using the results in [16] with the same hadronic input as in
[6]. The uncertainty consists of an estimate of violation of
semiglobal quark hadron duality as well as a parametric
error. The first uncertainty is obtained by varying the

continuum thresholds s
B!K�;Bs!�
0 separately and adding

them in quadrature. It leads to a �s0 � 4% uncertainty.

We fix sB!K�
0 , sBs!�

0 ¼ 35ð1Þ, 36ð1Þ GeV2 which is con-

sistent with sB!K�
0 � sBs!�

0 � m2
Bs
�m2

Bd
. The second

19Tables IX, X, and XI can be obtained from the authors upon
request.
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uncertainty is obtained by varying all other parameters and
adding them in quadrature which leads to a �para � 6%

uncertainty. Possibly we should add that we vary the K�

and � decay constants separately but vary f? and fk in a
correlated way as the ratio is known from lattice QCD to a

high precision. This leads to either a ð�2
paraþ�2

s0Þ1=2¼7%

or �para þ�s0 ¼ 10% error depending on whether the two

uncertainties are added in quadrature or linearly. We chose
to quote the more conservative error in Eq. (A2) above.

It would seem worthwhile to compare the central
value with previous determinations. Taking the ratio of
the individual form factor predictions in [16] we get
rK�� ¼ 0:95þ 0:93ða1ðK�Þ � 0:1Þ. In this formula

a?1 ðK�Þ ¼ ak1ðK�Þ was assumed which is still a reason-
able rule in view of current determinations a?1 ðK�Þ ¼
0:04ð3Þ and ak1ðK�Þ ¼ 0:06ð4Þ as used in [16]. Taking the

average value of the two Gegenbauer moments one gets
rK�� ¼ 0:91, a value rather close to (A2).20

One might further wonder why rK�� is about 18% lower

than a naive estimate f?K�=f?� . We identify four main

effects: (1) �6% due to m� � mK� , (2) �3% sB!K�
0 �

s
Bs!�
0 , (3)�5% due to a1ðK�Þ � a1ð�Þ ¼ 0, and (4)�2%
due to a2ðK�Þ � a2ð�Þ which adds up to 16% and consists
of the bulk effect.

2. Prediction of BðB0 ! K�0�Þ=BðBs ! ��Þ
and BSM effect of WA

The theoretical prediction in the SM is proportional to
the form factor ratio

RK�� ¼ jrK��j2cK��ð1þ �WAÞ (A3)

times a phase space factor (whose uncertainty is almost
entirely from to the uncertainty in �Bs

)

cK�� ¼ �B0

�Bs

�
mB0

mBs

�
3
�1�m2

K�0=m
2
B0

1�m2
�=m

2
Bs

�
3 ¼ 1:01ð2Þ; (A4)

and a small correction for WA: �WA ¼ �0:02ð2Þ. Thus
essentially RK��jSM � jrK��j2 Finally we shall requote

experimental ratio (A1) besides our prediction assembling
all three quantities in (A3):

RK��jLHCb ¼ 1:23ð6Þstatð4Þsystð10Þfs=fd ;
RK��jLZ ¼ 0:78ð18Þ: (A5)

The theory uncertainty is almost entirely due to the
form factor ratio uncertainty (A2) which is after all
not small. Thus new physics would need to manifest

itself rather prominently21 in order to surface above the
form factor uncertainty, the possibility of which we shall
illustrate just below.
The WA processes in Bs ! � decay couples to a unique

set of operators, and so we can modify the WCs in such a
way as to shift this amplitude without affecting any other
process considered in this work. By way of example, mak-

ing the shift au;d;s7 ! au;d;s7 � 0:5 leads to �WA ! 0:5ð3Þ,
and therefore RK�� ! 1:2ð3Þ, without affecting any other

flavor changing neutral currents process we are considering.
This result cannot be derived by a simple rescaling of the
results in Table X because the effect of Gegenbauer
moments in the Bs ! � WA amplitudes are significant.
An extension of this analysis to the differential

branching fractions ðB0ÞBs ! K�0ð�Þ	þ	�, which have
recently been measured by the LHCb Collaboration [59],
would be interesting and is deferred to later work.

APPENDIX B: DISTRIBUTION AMPLITUDES

1. Light meson DA

We shall briefly summarize and define the DA used
throughout this paper. For further references we refer the
reader to the classic review [60], the LCSR review [31],
and the thorough paper on higher twist DA [28]. The
2-particle DA for the pseudoscalar at twist-2 (�K) and
�3 (�p;�) (e.g. [17]) is given by

hKðpÞj�sðxÞa½x; z	qðzÞbj0i
¼

Z 1

0
dueiðup�xþ �up�zÞ

�
i
fK
4Nc

½6p�5	ba�KðuÞ

� i
	2

K

4Nc

½�5	ba�pðuÞ � i
	2

K

24Nc

p	ðx� zÞ�

� ½�	��5	ba��ðuÞ
�
þ higher twist; (B1)

where a, b are Dirac indices, �u � 1� u, 	2
K �

fKm
2
K=ðms þmqÞ, and the ½x; z	, here and hereafter,

represent a QCD Wilson line to make the matrix ele-
ment gauge invariant. The asymptotic forms22 of the DA
functions are

�KðuÞ ¼ ��ðuÞ ¼ 6 �uu �pðuÞ ¼ 1: (B2)

From the appendix of [17] we see that upon neglecting
quark masses and 3-particle DAs, equations of motion
constrain �p;�ðuÞ to their asymptotic forms. �KðuÞ is

expanded in Gegenbauer moments as usual.
The 2-particle DA for the vector meson at twist-2 (�k;?)

and -3 (gðv;aÞ? ) (e.g. [16]) is

20In [9] rK�� ¼ 0:99ð13Þ was quoted based on some input from
lattice QCD on the ratio of fBs

=fBd
for which there is no reason

if the fBd;s
are taken from sum rules to the same order which is a

consistent procedure.

21Similar remarks would apply to ratio of the kind BðB0 !
��0�Þ=BðB0 ! !�Þ, as discussed in a previous footnote.
22By asymptotic we mean, as usual, for 	F ! 1. All DA
depend on the factorization scale 	F of the LC-OPE which we
do not indicate explicitly.
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hK�ðp;�Þj�sðxÞa½x; z	qðzÞbj0i ¼
Z 1

0
dueiðup�xþ �up�zÞ

�
f?K�

4Nc

�
ð� 6pÞba�?ðuÞ � i

2
ð1Þbað� � ðx� zÞÞm2

K�h
ðsÞ
k ðuÞ

� ið�	�Þbap	ðx� zÞ� � � ðx� zÞ
ðp � ðx� zÞÞ2 m

2
K�h

ðtÞ
k ðuÞ

�

þmK�fK�

4Nc

�
ð6pÞba � � ðx� zÞ

p � ðx� zÞ�kðuÞ þ
�
�� 6p� � ðx� zÞ

p � ðx� zÞ
�
ba
gðvÞ? ðuÞ

þ 1

4

	����

�p�ðx� zÞ�ð�	�5ÞbagðaÞ? ðuÞ
�	

þ higher twist: (B3)

The asymptotic DAs are

�?ðuÞ ¼ �kðuÞ ¼ gðaÞ? ðuÞ ¼ hðsÞk ðuÞ ¼ 6 �uu

gðvÞ? ðuÞ ¼ 3

4
ð1þ ðu� �uÞ2Þ hðtÞk ðuÞ ¼ 3ðu� �uÞ2:

(B4)

In fact, these functions overparametrize the K� state and
are related by QCD equations of motion [28]. In the limit
of three massless quark flavors, the relevant constraint for
QLSS reads [8]23Z u

0
dv½�kðvÞ � gðvÞ? ðvÞ	

¼ �u

�
gðvÞ? ðuÞ � gðaÞ

0
? ðuÞ
4

�
� gðaÞ? ðuÞ

4
; (B5)

which is used to eliminate the integral from (47). We also
require the identity

uhðtÞk ðuÞþu

2
hðsÞ

0
k ðuÞ¼2

Z u

0
ðhðtÞk ðvÞ��?ðvÞÞdv (B6)

in order to show gauge invariance in OWA
2 results in

Appendix F 3. To this end we note that Eqs. (B5) and
(B6) follow from equations (4.15) and (4.16) and (3.21)
and (3.22) in [28].

2. Photon DA

The leading twist 2 photon DA [27] is

h�ðq; 
Þj �qaðxÞ½x; z	qbðzÞj0i
¼ ie

Z 1

0
d4y
�	eiq�yh0jT �qaðxÞ½x; z	qbðzÞj	emðyÞj0i

¼ iQqh �qqi
4Nc

Z 1

0
dueiðuq�xþ �uq�zÞð��ðuÞ���
�q�

þ ðx� zÞ � 
Þba þ higher twist: (B7)

The first and second term on the last line correspond to
the left-hand side of equation (2.7) of [27] and second

term on the right-hand side of the same equation. The
reason Eq. (B7) is not gauge invariant is that ½x; z	 does
not contain the QED (quantum electrodynamical)
Wilson line as we expand in the external field to first
order. Furthermore we have assumed the Lorentz gauge
@ � A ¼ 0 through A	 ! 
	e

iq�x.24 Note that the pertur-

bative photon contribution has to be included separately.
The asymptotic photon DA is given by

��ðuÞ ¼ 6� �uu; (B8)

where � is the magnetic susceptibility of the quark
condensate, calculated to be � ¼ �3:15ð10Þ GeV�2

at 	 ¼ 1 GeV in [27] (the sign is adjusted to our
convention of the covariant derivative).

3. B-meson DA

The B-meson DA used in the QLSS diagrams is given in
[37,38],

h0j �qaðxÞ½x; z	bbð0ÞjBðpBÞi
¼ �ifBmB

4Nc

Z 1

0
dlþe�il�x

�
1þ v

2

�
�þðlþÞ6nþ

þ��ðlþÞ
�
6n� � lþ��

?
@

@l�?

�	
�5

�
ba

��������l¼lþnþ
2

; (B9)

where pB ¼ mBv and nþ and n� are lightlike vectors

n2þ ¼ n2� ¼ 0; nþ � n� ¼ 2; (B10)

for which n� ¼ ð1; 0; 0;�1Þ is a possible parametrization.
This allows an arbitrary vector x to be written as

x	 ¼ xþn
	
þ þ x�n	�

2
þ x

	
? (B11)

and the scalar product of two such vectors reads:

x � y ¼ 1

2
ðxþy� þ x�yþÞ þ x? � y?: (B12)

23This may be obtained from the Eq. (8) in [8] assuming that
�kðuÞ ¼ �kð �uÞ and likewise for gðvÞ? and gðaÞ? which is valid up to
small isospin violating terms. It may more properly be derived
directly from the equation of motion in [28].

24By working with a plane wave the Lorentz gauge is a natural
choice. Note still adhering to the plane wave picture the axial
gauge n � A ¼ 0 with A	 ! ð
	 � ðn � 
Þ=ðn � qÞq	Þeiq�x is an
alternative. It would amount to replacing the polarization vector
accordingly in the formulas above.
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The kinematics required for B ! Kð�Þð�� ! llÞ are

pþ¼mB� q2

mB

; p�¼0; qþ¼ q2

mB

; q�¼mB; (B13)

with p? ¼ q? ¼ 0.
Furthermore we take �þ and �� to be the model

functions defined in [61]

�þð!Þ ¼ !

!2
0

e�!=!0 ; ��ð!Þ ¼ 1

!0

e�!=!0 ; (B14)

with !0 ¼ 2�HQET=3 ’ 0:4 GeV. Our results contain the

moment functions

��1� ðq2Þ ¼
Z 1

0
dlþ

��ð!Þ
lþ � q2=mB � i


(B15)

which evaluate to

��1þ ðq2Þ ¼ 1

!0

½1þ ye�yði�� EiðyÞÞ	;

��1� ðq2Þ ¼ e�y

!0

ði�� EiðyÞÞ;
(B16)

where y ¼ q2=!0mB and the function Ei is the exponential
integral.

a. On corrections for QLSS within QCDF

We would like to discuss the origin of the Oðq2=m2
BÞ

corrections due to neglecting the l� direction and the l?
derivative alluded to in Sec. IV. Further comments can be
found in that section.

(i) Neglecting the l� direction: We wish to stress a
particular feature of the B-meson DA: it takes the
form of a function of a light-cone coordinate. In the
B-meson rest frame all components of the spectator
quark momentum are expected to be of comparable
magnitude Oð�QCDÞ and thus the special role of lþ
originates from the dynamics. It turns out that to
leading order in 1=mB the short distance part of the
matrix element is only sensitive to the lþ component
of the light quark momentum,25 and hence a light-
cone DA is what is required [38]. The next-leading
order diagram in Fig. 5 with photon emission next to
the B meson is sensitive to ðq� lÞ2 ¼ q2 þ l2 �
qþl� � q�lþ [q? ¼ 0 in the notation of (B12)]
with q� ¼ mB and qþ ¼ mBðq2=m2

BÞ. Thus at
q2 ¼ 0 the process depends only on the lþ direction
but becomes increasingly sensitive to the l� direc-
tion as q2 rises. At q2 ¼ 4m2

c this amounts to about a
30% effect (qþ=q� ’ 0:3).

(ii) Neglecting the l? derivative: The derivative with
respect to l? will be 1=mB suppressed, as compared
to the other term coupling to ��ðlþÞ, except for the

case where the photon is emitted from the light
quark originating from the B meson (same diagram
as discussed in the previous point). The effect on the
corresponding light quark propagator SF is

lþ�
�
?

@

@l�?
�5�

	SFðq� lÞ

¼ ilþ�5�
�
?�

	

�
��
?

ðq� lÞ2 þ 2
6q�6 l

ðq� lÞ4 l
�
?

�
¼ Oð�QCD=mBÞ: (B17)

This comes about as follows. The second term
vanishes by setting l? ¼ 0 after taking the deriva-
tive. To analyze the first term we contract ��

?6
�?;�

with a polarization vector 
	, using the light-cone

decomposition (B11),

lþ�
�
?6
�?;� ¼ �lþ½6nþ
þ þ 6n�
�	

þ lþ�
�
?6
?�?;�|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

; (B18)

where the first part must be compared with the other
structure coupling to ��ðlþÞ:

i6n�6
ð6q�6 lÞ ¼ i

4
6n�½
þq� þ 6
?6nþðqþ þ lþÞ	:

(B19)

We therefore see that the derivative term is sublead-
ing in the 
þ coefficient by lþ=q� ¼ Oð�QCD=mBÞ.
The 
� coefficient must be related by gauge invari-
ance; see Appendix D 2 for further discussion. At
last we would like to mention that it would be
interesting to study whether there is any significant
change for 0< q2 < 4m2

c.

APPENDIX C: HELICITY PROJECTORS

As hinted in the main text, the basis T 1;2;3, or more

precisely T 2;3, is not ideal for addressing physical quanti-

ties. In the decay rate this emerges in two ways. First a
particular direction, namely, zero helicity has to be OðmVÞ
(10) and furthermore the directionsT 2;3 are not orthogonal

to each other. In the main text we have given the trans-
formation to the helicity basis h0;� in Eq. (5). We shall give

the Lorentz structures for the latter and discuss a few more
details. As in (3) we define

outhVðp;�Þlþðl1Þl�ðl2Þ jBðpþqÞiin
¼GFffiffiffi

2
p �t

�

q2�
ðT V	 �uðl1Þ�	vðl2ÞþT A	 �uðl1Þ�	�5vðl2ÞÞ;

where

T ðV;AÞ	 ¼ X
i¼�;0

hðV;AÞP	
i ; (C1)

and the helicity basis tensors are given by

25This is the component in the lightlike direction which is
parallel to the final state light meson.
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P	
� ¼ 1ffiffiffi

2
p

�
2
	�����p�q� 
 iffiffiffiffiffiffi

�V

p ð�Vm
2
B�

	 � 2ð� � qÞ

� ðð1� m̂2
V � q̂2Þp	 � 2m̂2

Vq
	ÞÞ

�
;

P	
0 ¼ 4im̂Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q̂2�V

p ð� � qÞ½2q̂2p	 � ð1� m̂2
V � q̂2Þq		:

Writing ~Ph ¼ ðP0; Pþ; P�Þ and ~P ¼ ðP1; P2; P3Þ, sup-
pressing a Lorentz index for the time being, the trans-
formation follows from the transformation (5) through
~Ph ¼ ðBTÞ�1 ~P. The Lorentz structures have the following
properties: q � P�;0 ¼ 0 and p � P� ¼ 0. It seems worth-

while to mention that the mV factor in P	
0 cancels against

the 1=m2
V originating from the polarization sum:

P
pol ¼

�	�� ¼ ðp	p�=m
2
V � g	�Þ. This assures finiteness of the

rate as mV approaches zero, provided that h0 ¼ Oðm0
VÞ.

APPENDIX D: GAUGE INVARIANCE

1. WA contact terms and gauge invariance

Before discussing the problem in more detail let us state
a few general facts, some of which have already been
stated in the main text.

(i) GI (23) is satisfied in Qb and Qq terms separately.

(ii) When there is ISR as well as FSR then one needs to
approximate ISR and FSR consistently in order for
(i) to be true.

(iii) In the neutral case (i.e. Qb ¼ Qq), (ii) can be

circumvented, at the cost of (i), as ISR and FSR
are separately gauge invariant.

(iv) Statement (ii) can be circumvented in the case when
the four quark operator is of the current-current
type [OWA

5�8 (19)]. In this case FSR corresponds to

a contact term, up to corrections Oðmq;sÞ, which is

easily computed using the weak WI.
In previous computations [4,5], as discussed in [29] in

more clarity, (iv) applied as in the SM onlyOWA
5�8 type (21)

are significant in the absence of CKM suppression; then
(ii) does not apply as there is either only ISR or FSR;

cf. Table I. Inspecting Table I we see thatOWA
4 for the K is

the only problematic case which we shall discuss in some
more detail in Sec. D 1 a below. Furthermore statement
(iv) is explained in Sec. D 1 b. The modification of the issue
of contact terms for q2 ¼ 0, which implies substituting
the quark condensate terms hqqi=q2 for the photon DA,
is outlined in Appendix D 3 c.

a. Eliminating parasitic cuts—spurious momentum k

It is at this point we must point out that factorizing the
WA matrix elements conceals a problem in constructing
sum rules: the problem of parasitic cuts. As shown in
Fig. 11 (left) a naı̈vely constructed sum rule will receive
contributions from cuts which do not have the same quan-
tum numbers as the B meson. A solution to this problem
was introduced in [62] where spurious momentum k is
introduced at the weak vertex, which gives the second
cut in Fig. 11 (left) momentum ðpB � kÞ2 which is distinct
from p2

B of the first cut. How the effect of the momentum k
is eliminated from the final result is to be discussed shortly
below. We use the momentum assignments shown in
Fig. 11 (right) and reuse the modified basis tensors from
[6], which are given by

p�
T ¼ i

�
Q� � q2

Q � ðpB þ pÞ ðpB þ pÞ�
�
;

�p�
�T
¼ i

�
k� � k �Q

Q � ðpB þ pÞ ðpB þ pÞ�
�
;

(D1)

where Q � q� k. Amongst the possible six invariants,
four are fixed as

p2 ¼ m2
V;P ¼ 0 k2 ¼ 0 Q2 ¼ q2; (D2)

and the remaining two invariants p2
B and P2 ¼ ðpB � kÞ2

correspond to the two cuts shown in Fig. 11 (left). p2
B is the

dispersion variable and the second cut variable P2 ¼
ðpB � kÞ2 is the only trace of the spurious momentum.
This is eliminated by setting P2 ¼ m2

B as p2
B ’ m2

B by
virtue of Eq. (29). After projection onto this extended

FIG. 11. Left: momentum assignments for B ! K�� including an additional momentum at the weak vertex. Right: dashed lines
denote possible cuts with momentum ðpþ qÞ2 flowing through them, which contribute to a naı̈ve sum rule. The right-hand cut is a
parasite because the lines it cuts do not have the quantum numbers of the B meson so should not contribute to a dispersion relation for
the B-meson current JB.
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basis, the coefficient of p
�
T corresponds to the coefficient of

P
�
T which appears in the decay rate.

b. Vector and axial 4-quark operators and the weak WI

In this subsection we dwell in more detail on how
point (iv) at the beginning of this appendix unfolds.
According to statement (ii) ISR and FSR then ought to
be treated consistently, as for instance outlined in the
previous subsection, in order to maintain GI. The prob-
lem in distinguishing the two cuts shown in Fig. 11
(right) applies only to the FSR diagram.26 We shall see
just below that in the case where the current with kaon

quantum numbers is of the vector and axial type the

diagram is a pure contact term by virtue of the weak WI

and only produces a gauge variant part. This means that

it does not carry any nontrivial dynamics and that its

sole purpose is to render the matrix element gauge

invariant. Furthermore we note that adding a spurious

momentum does not have any impact on the diagram. In

two subsequent paragraphs we are going to show this

through the weak WI and infer the same result by

sketching an explicit computation.
Weak WI: Consider the FSR for the operator OWA

6 at

leading order Oð�0
sÞ,

hK��j�s�	qj0ih0j �q�	�5bjBi ¼ �efBðpBÞ	
�
Z
x
e�ipB�xhK�jT �s�	qðxÞJ�emð0Þj0i

¼ �efB
�
Z
x
e�ipB�xhK�ji@	fT �s�	qðxÞJ�emð0Þgj0i

¼ ieðQq �QsÞfB
�hK�ðp;�Þj�s��qð0Þj0i
¼ ieðQq �QsÞfBfK�mK� ð� � 
Þ; (D3)

where we have used h0j �q�	�5bð0ÞjBðpþ qÞi ¼
ifBðpþ qÞ	 in the first equality,

weak WI: @	 �s�
	qðxÞ ¼ Oðms �mqÞ ! 0 (D4)

in the second equality, and ½Q;O	 ¼ QOO
(Q ¼ R

d3xJ0em) in the third equality. The last step is
due to the definition of the K� decay constant:
hK�ðp;�Þj�s��qð0Þj0i ¼ mK�fK���. As stated previously
this contribution is a pure gauge variant term. Adding a
spurious momentum pB ! pB � k would not change
anything in the derivation. Similarly we find for the K,

hK�j�s�	�5qj0ih0j �q�	�5bjBi ¼ eðQq �QsÞfBfKðp � 
Þ:
(D5)

We would like to remark that the results in (D3) and (D5)
are correct to all orders in QCD (with mq ¼ 0).

In summary the weakWI (D4) replaces the computation.
In the next paragraph we shall outline the main points of
the explicit LC-OPE computation which comes to the same
conclusion.

Explicit computation: we would like to mention one
additional point: the reader may wonder whether we could
have simply used the K� DAs in (B3), worked out the
result, and not had to concern ourselves with arguments
based onWIs. It turns out that (B3) is in fact insufficient for
this purpose and the Wandzura–Wilczek type relation (B5)
has to be used. We have checked that this leads to the same
result up to Oðm2

K� Þ terms. The latter are of twist-4 and

expected to be there as we have consistently neglected
them throughout this work.

c. Remarks on gauge invariance and
contact terms at q2 ¼ 0

At q2 ¼ 0 the h �qqi term from the light quark propagator,
originating from the interpolating current JB, have to
replaced by the photon DA. This gives rise to a puzzle as
the former are gauge variant whereas DA are usually GI.
The resolution is, as we shall see, that the photon DA is
QED gauge variant.
Generally for q2 � 0 and for OWA

5–8 the term with FSR

produces solely a gauge variant contact term proportional
to Qq �Qb; cf. (D3) as discussed in Sec. D 1 b. GI is

restored by a gauge variant term coming from ISR. As
discussed in the main text Sec. III E for q2 ¼ 0 the Qqh �qqi
is replaced by a photon DA term as depicted in Fig. 4. This
means that the ISR and FSR cancellation of gauge non-
invariant terms at the ðQq �QbÞh �qqi level implies that the

matrix element used for the photon DA, which is usually
gauge invariant, is gauge variant. This is indeed the case as
the QED Wilson line is absent in the matrix element (B7)
as we expand in the external electromagnetic field. This
can be seen explicitly from the corresponding matrix ele-
ment which is the sum of an explicit gauge invariant plus a
gauge variant term. We have checked that, by working in
the Lorentz gauge @ � A ¼ 0,27 which is consistent with
A	 ! 
	e

iq�x, the gauge variant term [corresponding to

the second term on the right-hand side of (B7)] conspires
with the gauge variant terms from the other diagram in

26For ISR radiation the second cut corresponds to the kaon, as
the momentum flowing into a 4-quark operator is the kaon final
state momentum.

27Note, the Lorentz gauge does still allow for residual gauge
transformations of the form 
	 ! 
	 þ q	 for example.
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Fig. 2(b) (right) to produce a term proportional toQq �Qb

which combines with the contact term Eq. (D3) and leads
to a gauge invariant result.

2. QLSS and gauge invariance

The issue of GI for spectator scattering, in Sec. IV, at
q2 � 0 is not straightforward. In principle wewould expect
the two diagrams, by which we mean photon emission
form the spectator quark, in Fig. 5 to be GI. The compu-
tation used in [11],28 which we reproduced in this paper for
non-SM operators, can only be expected to respect GI at
leading order. Yet, since GI mixes different orders, a
rigourous test cannot be expected. The recipe of the prag-
matist is then subtract the amount of next leading term
that renders the leading term GI.We shall discuss it in more
detail below and see that a pole in 1=q2 supports our
argumentation from another point of view.

In full generality, the B ! K�lþl� decay may be
parametrized:

hK�ð�;pÞ��ðq;	ÞjH effjBðpþ qÞi
� U	ðq2Þ ¼ ð� � qÞp	Upðq2Þ þ ð� � qÞq	Uqðq2Þ

þ �	ðp � qÞU�ðq2Þ þ i
	�����p�q�U
ðq2Þ: (D6)

QED GI requires the following WI to hold:

0 ¼ q	U
	ðq2Þ

¼ ð� � qÞ½ðp � qÞUpðq2Þ þ q2Uqðq2Þ þ ðp � qÞU�ðq2Þ	:
(D7)

In the best of all worlds, where GI is obeyed exactly, we
may choose to eliminate any function by virtue of the
equation above. For example we could solve for either

⨯ Uqðq2Þ ! �p � q
q2

½Upðq2Þ þU�ðq2Þ	; (D8)

✓ Upðq2Þ ! �U�ðq2Þ � q2

p � qUqðq2Þ: (D9)

For (D8) to be well defined the following relation must
hold:

Upð0Þ þU�ð0Þ ¼ 0; (D10)

or Uqðq2Þ behaves as 1=q2, which is not acceptable.29

Since Upp	 is power suppressed with respect to Uqq	,

cf. (B13), we cannot expect (D10) to hold; however, apply-
ing (D9) does work since in contrast to (D8) it does not

contain anym2
B=q

2 enhancement. Note for theK meson the
same discussion applies with U�jK ¼ 0 from the start. The

term U
 is of no relevance for the discussion here.
We will illustrate this procedure in the case of

B ! Klþl�. The result in this case is

U	 / ðlþmB � 2q2Þp	 þ 2ðp � qÞq	
lþmB � q2

¼ 2
ðp � qÞq	 � q2p	

lþmB � q2
þ lþmBp

	

lþmB � q2
: (D11)

Our procedure (D9) (U�jK ¼ 0) demands that Up ¼
�ðq2=ðp � qÞÞ2ðp � qÞðlþmB � q2Þ, which amounts to
dropping the second term on the right-hand side. This
ensures GI. We reemphasize that if the 1=mb expansion
was implemented to all orders GI would have been
automatic.

APPENDIX E: DETAILS OF CALCULATION

1. Input values

Here we summarize the numerical input to our calcula-
tion for the convenience of the reader. We compute �s

using 2-loop running with 4 or 5 active flavors, with
MZ ¼ 91:1876ð21Þ GeV, �sðMZÞ ¼ 0:1184ð7Þ, and

mbðmbÞ ¼ 4:18ð3Þ GeV in the MS scheme [20]. We use b
and c quark masses adapted for the pole mass scheme
mc ¼ 1:4ð1Þ and mb ¼ 4:7ð1Þ GeV in all other cases. We
use a lattice average fB ¼ 191ð5Þ [35,36] when not calcu-
lating sum rules, i.e. in the computation of Fð2;4Þ;i (33).

Inputs used to compute WCs are given below Table VIII.
We compute the CKM matrix elements using a Wolfenstein

TABLE VIII. WCs at 	 ¼ mb and 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�H

p
at NNLL

order for mb ¼ 4:7 GeV, MW ¼ 80:4 GeV, sin 2�W ¼ 0:23,

mt ¼ 177 GeV, �H ¼ 0:5 GeV, and �ð5Þ
QCD ¼ 214 MeV in two

different bases. Three loop running for �s is used. The BBL
basis we use is that defined in [14]; it is equivalent to the
traditional basis defined in [13] at leading order. We use the
CMM basis [15] for loop calculations. The BBL coefficients
presented here are defined in terms of a linear transform of the
CMM coefficients as explained in the text.

	 ¼ mb 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�H

p
CMM BBL CMM BBL

C1 �0:2622 �0:1311 �0:5636 �0:2818
C2 1.0087 1.0524 1.0299 1.1238

C3 �0:0051 0.0110 �0:0175 0.0194

C4 �0:0778 �0:0316 �0:1718 �0:0524
C5 0.0003 0.0087 0.0012 0.0132

C6 0.0009 �0:0371 0.0042 �0:0775
Ceff
7 �0:2975 �0:3351

Ceff
8 �0:1569 �0:1828

C9 4.0354 4.4207

C10 �4:2496 �4:2496

28These authors do not discuss the QED GI.
29More precisely integrability of the rate, which we expect, is
incompatible with 1=q2 behavior. Note this pole cannot be
compensated by virtual correction as in � ! ll which leads to
1=q2 in jh�j2 (7).
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parametrization expanding up to Oð�2Þ [63,64] with the
parameters � ¼ 0:2254ð7Þ, A ¼ 0:81ð2Þ, �� ¼ 0:131ð26Þ,
and �� ¼ 0:345ð14Þ [20]. For the �CKM dependence
of �aI (73), we fix the magnitude j�u=�tj from the

Wolfenstein parametrization. All hadronic inputs for
the light mesons are as given in our previous paper [6].
The new input 	2

K ¼ fKm
2
K=ms is computed using

msð2 GeVÞ ¼ 95ð5Þ MeV [20]. The condensates h �qqi and
h �qGqi are taken to be h �qqið1 GeVÞ ¼ ð�0:24ð1Þ GeVÞ3
and h �qGqið1GeVÞ¼ ð0:8ð1ÞGeVÞ2h �qqi [6].

2. Error estimation

We compute error estimates in the following way: the
central value of a result is computed using the central
values of all inputs. To compute the error, we then generate
a list of pseudorandom sample points from the probability
distributions of the input parameters, and compute the
result for each sample point.

For a function fðxÞ, where x represents all N input
parameters and is thus N dimensional, the variance is
estimated as

�2 ¼ 1

n� 1

Xn
i¼1

ðfðxiÞ � fðxcÞÞ2; (E1)

where xc is the central values of the input parameters, and
not included in xi, and n is the number of sample points
used to compute an error estimate, excluding the
central value xc. The points xi are generated from the
N-dimensional probability distribution of input parameters;
note that xi is varied for all parameters simultaneously, so
none of its elements are equal to the central value of any
input parameter. In effect, this is a primitive Monte Carlo
integration over the input parameter distribution space. All
input parameters are assumed to be Gaussian distributed
with standard deviation equal to their quoted error, except
for the renormalization scale, to be discussed below. We
assign the functions h0;� and hT an error of 20%, which

arises from the uncertainty in the form factors Ti, A1;3, V,
and fþ;T and nonform factor corrections. We impose this at

the level of the h functions so that constraints such as (10)
and hþ 
Oð1=mBÞ are maintained.

To compute the scale uncertainty only 3 points are
sampled: 	, 	=2, and 2	. The renormalization scale is
set to 	 to compute the central value of a result. The error
is computed as

�2
	 ¼ 1

2n� 1

Xn
i¼1

��
f

�
	

2

�
� fð	Þ

�
2 þ ðfð2	Þ � fð	ÞÞ2

�
;

(E2)

although in practice this is implemented by generating a
2n pseudorandom number yi in [0,1] and selecting 	=2 or
2	 depending on whether y > 0:5. This may then be
incorporated into the same procedure as sampling all

other input parameters. We take the central renormaliza-
tion scale 	 ¼ mb ¼ 4:7 GeV for all processes except

QLSS and O8, which we take to be 	0 ¼ ffiffiffiffiffiffiffiffiffiffiffi
�H	

p
, where

�H ¼ 0:5ð2Þ GeV as in [6].

3. Wilson coefficients

Although we specify our results in the BBL basis [13]
our calculation is carried out in the CMM basis [15]

H eff ¼ GFffiffiffi
2

p
�X2
i¼1

ð�uC
CMM
i Qu

i þ �cC
CMM
i Qc

i Þ

� �t

X10
i¼3

CCMM
i Qi

�
; (E3)

where Q7�10 ¼ O7�10 and the four quark operators are
given by

Qq
1 ¼ 4ð �sL�	T

aqLÞð �q�	TabLÞ;
Qq

2 ¼ 4ð �sL�	qLÞð �q�	bLÞ;
Q3 ¼ 4ð �sL�	bLÞ

X
q

ð �q�	qÞ;

Q4 ¼ 4ð �sL�	T
abLÞ

X
q

ð �q�	TaqÞ;

Q5 ¼ 4ð �sL�	����bLÞ
X
q

ð �q�	����qÞ;

Q6 ¼ 4ð �sL�	����T
abLÞ

X
q

ð �q�	����TaqÞ;

(E4)

with 2qL ¼ ð1� �5Þq. We transform into the BBL basis
following the recipe in Appendix A of [14]; our Ci are
equivalent to the �Ci in [14] and are defined by a linear
transform from CCMM

i . This linear transform reproduces
BBLWCs at Oð�0

sÞ.
We calculate the WCs to NNLL order. The calculation is

carried out as described in the appendix of [14] using the
full anomalous dimension matrix computed in [65], at
fixed Nf ¼ 5, and initial conditions are computed at

	 ¼ MW as described therein using the NNLO expressions
in [66] for C1�6 and C9;10 and those in [67] for Ceff

7;8. An

example of the result of this calculation is given in
Table VIII.

4. Numerical evaluation of �aI
from PDG values

In terms of experimentally measured quantities, �aI is

�aI ¼ 1�
��������Vts

Vtd

��������
2
�Bþ
�
B0
BðB0 ! �0�Þ �BðBþ ! �þ�Þ

�Bþ
�
B0
BðB0 ! K�0�Þ �BðBþ ! K�þ�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Bþ
�
B0
BðB0 ! K�0�Þ þBðBþ ! K�þ�Þ

2
�Bþ
�
B0
BðB0 ! �0�Þ þBðBþ ! �þ�Þ

s
: (E5)

We use the values [20]
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�Bþ

�B0

¼ 1:079ð7Þ;
��������Vtd

Vts

��������¼ 0:211ð7Þ;

BðBþ ! �þ�Þ ¼ 9:8ð2:5Þ � 10�7;

BðB0 ! �0�Þ ¼ 8:6ð1:5Þ � 10�7;

BðBþ ! K�þ�Þ ¼ 4:21ð18Þ � 10�5;

BðB0 ! K�0�Þ ¼ 4:33ð15Þ � 10�5;

(E6)

and combine all errors in quadrature to get the result (77).
The main error comes from the ratio of differences,
that is to say the isospin asymmetries themselves, with
approximately equal parts from the numerator and the
denominator.

APPENDIX F: RESULTS

1. Tabulated results for four Fermi operators

We provide numerical data corresponding to Figs. 6
and 8 in Tables X and IX, at 1 GeV2 intervals in q2. Data
for Figs. 7 and 9 are given in Table XI. We also provide
data for B ! ðK�; �Þ�, denoted by q2 ¼ 0 in Tables X
and XI, respectively.

2. Effective coefficients in B0 ! �0 decay

Here we collect the formulas for ~adi omitted from
Sec. VI.

~ad2 ¼ ad2 þ
1

6
ð�au2 � au3 þ 4au6 � 4au7 þ 3au10Þ

þ 2

9
ð�a8u2 � a8u3 þ 4a8u6 � 4a8u7 þ 3a8u10Þ

þ 1

12
ð�ad2 � ad3 þ 4ad6 � 4ad7 þ 3ad10Þ

þ 1

9
ð�a8d2 � a8d3 þ 4a8d6 � 4a8d7 þ 3a8d10Þ; (F1)

~ad4 ¼ ad4 þ
1

6
ð�au1 � au4 þ 4au5 � 4au8 þ 3au9Þ

þ 2

9
ð�a8u1 � a8u4 þ 4a8u5 � 4a8u8 þ 3a8u9 Þ

þ 1

12
ð�ad1 � ad4 þ 4ad5 � 4ad8 þ 3ad9Þ

þ 1

9
ð�a8d1 � a8d4 þ 4a8d5 � 4a8d8 þ 3a8d9 Þ; (F2)

~ad5 ¼ ad5 þ
1

12
ð2ðad5 � au5Þ þ 2ðad8 � au8Þ þ ðad4 � au4Þ

� ðad1 � au1ÞÞ þ
1

9
ð2ða8d5 � a8u5 Þ þ 2ða8d8 � a8u8 Þ

þ ða8d4 � a8u4 Þ � ða8d1 � a8u1 ÞÞ; (F3)

TABLE IX. Breakdown of contributions to B ! Kll isospin asymmetry in SM operator
coefficients Ci, and in a generalized basis of four quark WA operators with coefficients ai
and QLSS contributions with coefficients sqx�. We use aqi ¼ 0:1 and sqx;� ¼ 1 to produce these

values.

q2=GeV2

B ! Kll 1 2 3 4 5 6 7 8

au4 ¼ 0:1 0.35% 0.14% �0:03% �0:15% �0:23% �0:27% �0:28% �0:25%

au8 0.68% 0.60% 0.63% 0.64% 0.62% 0.58% 0.53% 0.47%

ad4 �0:10% �0:13% �0:18% �0:21% �0:22% �0:23% �0:22% �0:20%

ad8 0.35% 0.31% 0.33% 0.33% 0.32% 0.30% 0.27% 0.24%

sSUð3Þ
1ðR;LÞ ¼ 1 1.28% 0.68% 0.35% 0.18% 0.08% 0.04% 0.01% �0:01%

sc1ðR;LÞ 0.88% 0.60% 0.39% 0.25% 0.16% 0.11% 0.07% 0.04%

sb1ðR;LÞ �0:20% �0:34% �0:31% �0:25% �0:20% �0:15% �0:12% �0:09%

sc2ðR;LÞ �4:68% �3:94% �3:13% �2:46% �1:96% �1:57% �1:25% �0:91%

sb2ðR;LÞ 5.03% 1.75% 0.03% �1:04% �1:76% �2:25% �2:51% �2:44%

C1 Table VIII �0:00% �0:00% �0:00% �0:00% �0:00% �0:00% �0:00% �0:00%

C2 �0:84% �0:45% �0:22% �0:10% �0:03% 0.01% 0.03% 0.04%

C3 0.02% 0.04% 0.04% 0.04% 0.04% 0.04% 0.03% 0.03%

C4 �0:11% �0:21% �0:28% �0:31% �0:31% �0:29% �0:27% �0:24%

C5 0.01% �0:00% �0:01% �0:02% �0:03% �0:03% �0:03% �0:03%

C6 0.20% 0.23% 0.30% 0.35% 0.39% 0.41% 0.39% 0.34%

Ceff
8 �0:22% �0:09% �0:02% 0.02% 0.05% 0.08% 0.09% 0.09%

SM total �0:93% �0:48% �0:20% �0:01% 0.12% 0.20% 0.24% 0.24%
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~ad6 ¼ ad6 þ
1

12
ð2ðad6 � au6Þ þ 2ðad7 � au7Þ þ ðad2 � au2Þ

� ðad3 � au3ÞÞ þ
1

9
ð2ða8d6 � a8u6 Þ þ 2ða8d7 � a8u7 Þ

þ ða8d2 � a8u2 Þ � ða8d3 � a8u3 ÞÞ; (F4)

~ad9 ¼ ad9 þ
1

6
ðad9 � au9Þ þ

1

12
ððad1 � au1Þ þ ðad4 � au4ÞÞ

þ 1

9
ðða8d1 � a8u1 Þ þ ða8d4 � a8u4 ÞÞ; (F5)

~ad10 ¼ ad10 þ
1

6
ðad10 � au10Þ

þ 1

12
ððad2 � au2Þ þ ðad3 � au3ÞÞ

þ 1

9
ðða8d2 � a8u2 Þ þ ða8d3 � a8u3 ÞÞ: (F6)

a. Effective coefficients in B0 ! �0 decay in the SM

The effective coefficients in B0 ! �0 decay in the SM
for B0 ! �0 are

TABLE X. Breakdown of contributions to B ! K�ll isospin asymmetry in SM operator coefficients Ci, and in a generalized basis of
four quark WA operators with coefficients ai and QLSS contributions with coefficients sqx�. We use aqi ¼ 0:1 and sqx;� ¼ 1 to produce

these values. The q2 ¼ 0 value corresponds to the process B ! K�� and is computed slightly differently to B ! K�ll as described in

Sec. III E. The value for sf1R and sf2L are zero at q2 ¼ 0 as a consequence of hþð0Þ ¼ 0 in our approximation.

q2=GeV2

B ! K�ll 0 1 2 3 4 5 6 7 8

au2 ¼ 0:1 �1:55% �0:22% �0:00% 0.06% 0.08% 0.08% 0.07% 0.06% 0.06%

au4 �1:58% �0:33% �0:09% �0:00% 0.02% 0.03% 0.04% 0.03% 0.03%

au5 1.29% �0:07% 0.02% 0.00% �0:00% 0.00% 0.01% 0.02% 0.03%

au6 �0:84% �0:53% �0:64% �0:67% �0:65% �0:60% �0:54% �0:47% �0:42%

au9 10.3% �0:20% 0.23% 0.03% �0:02% 0.02% 0.10% 0.17% 0.26%

au10 10.5% 0.43% 0.40% 0.13% 0.08% 0.14% 0.24% 0.34% 0.47%

ad2 ¼ 0:1 �2:85% �0:40% �0:00% 0.12% 0.15% 0.15% 0.14% 0.12% 0.11%

ad4 �2:91% �0:61% �0:17% �0:01% 0.05% 0.07% 0.07% 0.07% 0.06%

ad5 0.78% 0.00% 0.02% 0.00% �0:00% �0:00% �0:00% 0.00% 0.01%

ad6 �0:50% �0:30% �0:34% �0:35% �0:33% �0:31% �0:27% �0:24% �0:21%

ad9 6.23% 0.18% 0.20% 0.02% �0:04% �0:03% 0.00% 0.04% 0.08%

ad10 6.29% 0.45% 0.24% 0.03% �0:03% �0:01% 0.04% 0.09% 0.16%

sSUð3Þ
1R ¼ 1 0.00% �1:26% �0:75% �0:38% �0:18% �0:08% �0:03% �0:01% 0.00%

sc1R 0.00% �0:90% �0:67% �0:43% �0:26% �0:16% �0:10% �0:06% �0:03%

sb1R 0.01% 0.20% 0.38% 0.34% 0.26% 0.19% 0.14% 0.10% 0.08%

sSUð3Þ
1L �0:28% 0.81% 0.58% 0.36% 0.21% 0.12% 0.06% 0.03% �0:00%

sc1L �0:40% 0.67% 0.57% 0.42% 0.30% 0.22% 0.16% 0.11% 0.07%

sb1L 0.95% �0:00% �0:28% �0:33% �0:31% �0:26% �0:22% �0:18% �0:14%

sc2R 1.59% �1:82% �1:96% �1:64% �1:27% �0:97% �0:73% �0:54% �0:36%

sb2R 5.03% 8.33% 3.25% 0.12% �1:56% �2:38% �2:67% �2:62% �2:28%

sc2L 0.02% 2.43% 2.21% 1.66% 1.19% 0.85% 0.61% 0.44% 0.29%

sb2L 0.05% �4:60% �1:84% �0:05% 0.98% 1.56% 1.83% 1.88% 1.69%

C1 Table VIII �0:01% �0:00% �0:00% �0:00% �0:00% �0:00% �0:00% �0:00% �0:00%

C2 0.11% �0:71% �0:44% �0:24% �0:12% �0:06% �0:02% 0.01% 0.03%

C3 0.09% 0.01% 0.04% 0.04% 0.05% 0.04% 0.04% 0.03% 0.03%

C4 �0:98% �0:08% �0:25% �0:30% �0:31% �0:30% �0:28% �0:26% �0:24%

C5 �0:51% �0:09% �0:02% 0.01% 0.02% 0.02% 0.02% 0.02% 0.01%

C6 6.41% 1.40% 0.40% 0.03% �0:11% �0:17% �0:18% �0:18% �0:17%

Ceff
8 �0:19% �0:34% �0:14% �0:02% 0.05% 0.09% 0.10% 0.10% 0.09%

SM total 4.92% 0.18% �0:42% �0:48% �0:44% �0:38% �0:33% �0:28% �0:24%
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~ad2 ¼ ~ad4 ¼ 2

�
C5

Nc

þ C6

�
;

~ad5 ¼ �~ad6 ¼
�
C3

Nc

þ C4

�
þ �u

�t

�
C1 þ C2

Nc

�
;

~ad9 ¼ ~ad10 ¼ 0;

(F7)

where we have used the formulas of the previous section
and Eqs. (21) and (67) Note, we recognize the well-known
color suppressed tree-level combination C1 þ C2=Nc in
the formula above.

3. Weak annihilation formulas

We list the functions defined on the right-hand side
of (33). Any function not listed is zero and there are
many as can be inferred from Table I. The functions �Cb

an �Cd
are derived from the dispersion representation of the

Passarino-Veltman functions

Cb ¼ C0ðp2
B; p

2
B �m2

B; q
2; 0; m2

b; 0Þ;
Cd ¼ C0ðp2

B; p
2
B �m2

B; q
2; m2

b; 0; m
2
bÞ;

(F8)

TABLE XI. Breakdown of contributions to B ! �ll isospin asymmetry in SM operator coefficients Ci, and in a generalized basis of
four quark WA operators with coefficients ai and QLSS contributions with coefficients sqx�. We use aui ¼ 0:1, ~adi ¼ 0:1 and sqx;� ¼ 1 to
produce these values. The modified four quark coefficients ~ai are explained in Sec. VI. The q2 ¼ 0 value corresponds to the process

B ! �� and is computed slightly differently to B ! �ll as described in Sec. III E. The value for sf1R and sf2L are zero at q2 ¼ 0 as a

consequence of hþð0Þ ¼ 0 in our approximation.

q2=GeV2

B ! �ll 0 1 2 3 4 5 6 7 8

au2 ¼ 0:1 �1:55% �0:23% �0:01% 0.05% 0.07% 0.07% 0.07% 0.06% 0.06%

au4 �1:59% �0:33% �0:09% �0:01% 0.02% 0.04% 0.04% 0.04% 0.03%

au5 1.25% �0:06% 0.02% 0.00% �0:00% 0.00% 0.01% 0.02% 0.03%

au6 �0:81% �0:62% �0:72% �0:74% �0:71% �0:66% �0:59% �0:52% �0:46%

au9 11.0% �0:20% 0.26% 0.04% �0:02% 0.03% 0.11% 0.19% 0.28%

au10 11.1% 0.45% 0.43% 0.14% 0.07% 0.12% 0.23% 0.33% 0.47%

~ad2 ¼ 0:1 �3:10% �0:46% �0:03% 0.11% 0.14% 0.15% 0.14% 0.12% 0.11%

~ad4 �3:17% �0:65% �0:18% �0:01% 0.05% 0.07% 0.07% 0.07% 0.07%

~ad5 0.76% 0.00% 0.02% 0.00% �0:00% �0:00% �0:00% 0.00% 0.01%

~ad6 �0:48% �0:34% �0:38% �0:38% �0:37% �0:34% �0:30% �0:26% �0:23%

~ad9 6.62% 0.19% 0.22% 0.03% �0:04% �0:03% 0.00% 0.04% 0.09%

~ad10 6.68% 0.48% 0.27% 0.04% �0:03% �0:01% 0.03% 0.09% 0.16%

sSUð3Þ
1R ¼ 1 0.00% �1:39% �0:81% �0:41% �0:19% �0:08% �0:03% �0:01% 0.00%

sc1R 0.00% �1:01% �0:74% �0:47% �0:28% �0:17% �0:10% �0:06% �0:03%

sb1R 0.01% 0.22% 0.42% 0.37% 0.29% 0.21% 0.15% 0.11% 0.08%

sSUð3Þ
1L �0:40% 0.94% 0.64% 0.39% 0.22% 0.12% 0.06% 0.03% �0:00%

sc1L �0:44% 0.77% 0.64% 0.45% 0.32% 0.23% 0.16% 0.12% 0.07%

sb1L 1.12% 0.00% �0:31% �0:36% �0:33% �0:28% �0:23% �0:19% �0:15%

sc2R 1.76% �2:05% �2:13% �1:74% �1:34% �1:01% �0:76% �0:57% �0:38%

sb2R 4.02% 8.46% 3.29% 0.06% �1:70% �2:55% �2:86% �2:82% �2:47%

sc2L 0.02% 2.69% 2.38% 1.76% 1.26% 0.89% 0.64% 0.46% 0.30%

sb2L 0.05% �4:81% �1:85% 0.03% 1.11% 1.70% 1.99% 2.04% 1.83%

C1 Table VIII 0.01% 0.02% 0.01% 0.01% 0.00% 0.00% �0:00% �0:00% �0:00%

C2 0.01% �1:46% �1:00% �0:65% �0:40% �0:23% �0:11% �0:02% 0.09%

C3 0.08% 0.01% 0.04% 0.05% 0.05% 0.05% 0.04% 0.04% 0.03%

C4 �0:93% �0:09% �0:28% �0:34% �0:35% �0:33% �0:31% �0:28% �0:26%

C5 �0:54% �0:10% �0:02% 0.01% 0.02% 0.02% 0.02% 0.02% 0.01%

C6 6.74% 1.51% 0.46% 0.06% �0:10% �0:16% �0:18% �0:18% �0:18%

Ceff
8 �0:14% �0:35% �0:14% �0:01% 0.06% 0.09% 0.11% 0.11% 0.09%

SM total 5.22% �0:45% �0:93% �0:87% �0:72% �0:57% �0:43% �0:32% �0:21%
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which are given in Appendix H of [6] (note that Cb ¼ Caju¼1 and Cd ¼ Ccju¼1).
The functions in (33) which apply at jq2j> 1 GeV2 are given in Sec. F 6 a, and the functions in (36) which apply at

q2 ¼ 0 are given in Sec. F 6 b.

a. WA formulas jq2j > 1 GeV2

Defining, as before, d � �
ffiffi
2

p
mBmVffiffiffiffi
q2

p
E

, we get,

fq2;Aðq2; uÞ ¼ 2�2�?ðuÞ
�

Qq

ðu� 1Þm2
B � uq2

� Qb

um2
B � uq2 þ q2

�
; (F9)

d � fq2;0ðq2; uÞ ¼
32�2m2

K�m2
B

ðm2
B � q2Þ2 hðsÞ

0
k ðuÞ

�
�uQb

um2
B þ �uq2

� uQq

�um2
B þ uq2

�
; (F10)

fq4;Vðq2; uÞ ¼ �2�2�?ðuÞ
�

Qb

um2
B � uq2 þ q2

þ Qq

�um2
B þm2

B þ uq2

�
; (F11)

�q
5;Vðq2; sÞ ¼

3

2
mbfK�mK� ðsðs� q2Þ3Þ�1

�
ðm2

b � sÞðQb �QqÞðs2 � ðq2Þ2Þ � sQbð2m2
bq

2 � sq2 þ s2Þ

� log

�
sm2

b

m2
bq

2 � sq2 þ s2

�
þ sQqq

2ð2m2
b þ q2 � sÞ log

�
sðm2

b þ q2 � sÞ
m2

bq
2

��
; (F12)

Vq
5;Vðq2Þ ¼

2�2fK�mK� ðm2
bQq �Qbq

2Þ
m2

bq
2

; (F13)

�q
6;Aðq2; sÞ ¼

3

2
mbfK�mK� ðs2ðs� q2Þ3ðq2 �m2

BÞÞ�1

�
ðm2

b � sÞðs� q2Þðm2
bðQb �QqÞð�sq2 þ ðq2Þ2 þ 2s2Þ

� sðs� q2ÞðsðQb �QqÞ � 2Qbq
2ÞÞ þ s2Qqq

2ð�2m2
bðs� q2Þ þ 2m4

b þ ðs� q2Þ2Þ log
�
sðm2

b þ q2 � sÞ
m2

bq
2

�

þ s2Qbð�2sm2
bðs� q2Þ � 2m4

bq
2 þ sðs� q2Þ2Þ log

�
sm2

b

m2
bq

2 � sq2 þ s2

��
; (F14)

Vq
6;Aðq2Þ ¼ � 2�2fK�mK� ð�m2

bq
2ðQb � 3QqÞ þm4

bQq þQbðq2Þ2Þ
m2

bq
2ðm2

B � q2Þ ; (F15)

d � �q
6;0ðq2; sÞ ¼ 3mbm

2
BfK�mK� ðs2ðs� q2Þ3ðm2

B � q2ÞÞ�1

�
2s2m4

bQb log

�
sm2

b

m2
bq

2 � sq2 þ s2

�

� 2s2m2
bQqðm2

b þ q2 � sÞ log
�
sðm2

b þ q2 � sÞ
m2

bq
2

�

þ ðm2
b � sÞðQb �QqÞðs� q2Þðm2

bðq2 � 3sÞ þ sðs� q2ÞÞ
�
; (F16)

d � Vq
6;0ðq2Þ ¼

8�2m2
BfK�mK�Qq

q2ðm2
B � q2Þ ; (F17)
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�q
9;Vðq2; sÞ ¼

3

2
ðsðs� q2Þ3Þ�1f?K�

�
�2sm4

bQbq
2 log

�
sm2

b

m2
bq

2 � sq2 þ s2

�
þ ðm2

b � sÞðs� q2Þðm2
bðQb �QqÞðq2 þ sÞ

� sðQb þQqÞðs� q2ÞÞ þ 2sm4
bQqq

2 log

�
sðm2

b þ q2 � sÞ
m2

bq
2

��
; (F18)

Vq
9;Vðq2Þ ¼

4�2f?K� ðm2
bQq �Qbq

2Þ
mbq

2
; (F19)

�q
10;Aðq2; sÞ ¼ � 3

2
f?K� ðsðs� q2Þ2ðq2 �m2

BÞÞ�1

�
�2sm4

bQbq
2 log

�
sm2

b

m2
bq

2 � sq2 þ s2

�

þ ðm2
b � sÞðs� q2Þðm2

bðQb �QqÞðq2 þ sÞ � sðQb þQqÞðs� q2ÞÞ þ 2sm4
bQqq

2 log

�
sðm2

b þ q2 � sÞ
m2

bq
2

��
;

(F20)

Vq
10;Aðq2Þ ¼

4�2ðm2
b � q2Þf?K� ðm2

bQq �Qbq
2Þ

mbq
2ðm2

B � q2Þ ; (F21)

d � �q
10;0ðq2; sÞ ¼ �12m2

Bm
2
K�f?K� ððq2 � sÞ2ðm2

B � q2Þ3Þ�1

�
m2

bQbðm2
bðq2 þ sÞ þ 2sðs� q2ÞÞ log

�
sm2

b

m2
bq

2 � sq2 þ s2

�
� ðm2

b � sÞðs� q2Þð2m2
bðQb �QqÞ þ ðQb þQqÞðs� q2ÞÞ

þm2
bQqðq2 þ sÞðm2

b þ q2 � sÞ
�
� log

�
sðm2

b þ q2 � sÞ
m2

bq
2

���
; (F22)

d � Vq
10;0ðq2Þ ¼

16�2m2
Bm

2
K� ðm2

b � q2Þf?K� ðm2
bQq �Qbq

2Þ
mbq

2ðq2 �m2
BÞ3

; (F23)

�q
4;Tðq2; sÞ ¼ � 3

2
	2

KðmB þmKÞðsm2
Bð2m2

Bq
2 þm4

B � 4sq2 þ ðq2Þ2ÞÞ�1ð2sQbm
2
Bðm4

b þ sðm2
B � sÞÞ�Cd

ðsÞ
þ 2sm2

BQq�Cb
ðsÞðm2

bðm2
B þ q2 � 2sÞ þm4

b þ sðs�m2
BÞÞ þ ðm2

b � sÞðQb �QqÞðm2
bðm2

B þ q2 � 4sÞ
þ sð�3m2

B � q2 þ 4sÞÞÞ; (F24)

Vq
4;Tðq2Þ ¼ � 4�2mb	

2
KQqðmB þmKÞ
m2

Bq
2

; (F25)

fq4;Tðq2; uÞ ¼
2�2

m2
B

ðmB þmKÞ
�
�PðuÞ

�
�uQb

um2
B þ �uq2

� uQq

�um2
B þ uq2

�

þ��ðuÞ
6

�
Qb

uð1þ 2 �uÞm2
B þ 2 �u2q2

uðum2
B þ �uq2Þ2 �Qq

�uð1þ 2uÞm2
B þ 2u2q2

�uð �um2
B þ uq2Þ2

��
; (F26)

�q
8;Tðq2; sÞ ¼

3

2
mbfKðmB þmKÞðs2ðs� q2Þ3Þ�1

�
2s2m4

bQb log

�
sm2

b

m2
bq

2 � sq2 þ s2

�
� 2s2m2

bQqðm2
b þ q2 � sÞ

� log

�
sðm2
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m2
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þ ðm2

b � sÞðQb �QqÞðs� q2Þðm2
bðq2 � 3sÞ þ sðs� q2ÞÞ

�
; (F27)

Vq
8;Tðq2Þ ¼

4�2fKQqðmB þmKÞ
q2

: (F28)
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b. WA formulas q2 ¼ 0

~� q;�
5;VðsÞ ¼

2�2fK�mK�Qq��ðm
2
b

s Þ
s

; Vq;�
5;V ¼ � 2�2QbfK�mK�

m2
b

; (F29)

~� q;�
6;AðsÞ ¼ � 2�2fK�mK�Qqðs��ðm

2
b

s Þ � 2Þ
sm2

B

; Vq;�
6;A ¼ 2�2fK�mK� ðQb � 2QqÞ
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; (F30)
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s Þ
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