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We analyze three-jet production in the central-forward and forward rapidity regions in proton-proton

and proton-lead collisions at LHC energies. Our calculation relies on high-energy factorization with

a single off-shell gluon obeying small x evolution equation which includes saturation. The calculations

are made using two independent Monte Carlo codes implementing tree-level gauge invariant off-shell

matrix elements. We calculate differential cross sections for azimuthal decorrelations and unbalanced jet

transverse momenta and discuss them in the context of differences in the evolution of the unintegrated

gluon densities.

DOI: 10.1103/PhysRevD.88.094001 PACS numbers: 13.87.�a, 12.38.�t, 24.85.+p

I. INTRODUCTION

Jet production processes are an excellent testing ground
for perturbativeQCD,notably because their analysis doesnot
require a knowledge of fragmentation functions which are
subject to large errors. The only nonperturbative input that
enters theoretical calculations are thus parton distribution
functions (PDFs). They are defined by a particular factoriza-
tion scheme; for instance, for the collinear factorization (see
[1] for a review) the PDFsundergo linearDokshitzer-Gribov-
Lipatov-Altarelli-Parisi evolution equations. It is however
known that at high energies reachable nowadays at LHC,
certain types of logarithms occurring in the perturbative
calculations can spoil the procedure. The general method is
to resume those logarithms giving rise to new types of
evolution equations, for instance the linear Balitski-Fadin-
Kuraev-Lipatov (BFKL) equation [2,3], Catani-Ciafaloni-
Fiorani-Marchesini (CCFM) [4–6], the nonlinear Balitsky
and Kovchegov equation [7,8], or the nonlinear extension
of the CCFM–the Kutak-Golec-Biernat-Jadach-Skrzypek
equation [9,10].

An example of a situation that requires the resummation
of high-energy logarithms is the production of forward jets
[11–14]. Large energies and rapidities of forward jets allows
us to probe the small x regime and thus it is an excellent
testing ground for various resummation schemes and gluon
saturation phenomenon which should occur at high-energy
densities [15,16]. Forward jets are even more attractive
nowadays as it is possible to study them experimentally at
LHC. Thanks to dedicated forward calorimeters, the ATLAS
and CMS detectors allow us to reconstruct large-transverse-
momentum jets up to about five units of rapidity. This gives
an opportunity to study small x effects experimentally and
possibly access the kinematic region where gluon saturation
may enter the game. There are indeed hints that saturation

actually happens [17–20]. Various studies of forward jets
were done in Refs. [21–25]. For the recent experimental
studies see [26–28].
In the present paper we study three-jet production at the

LHC within the high-energy factorization framework,
which shall be reviewed in Sec. II. Multijet processes are
interesting particularly due to a bigger phase space—by
applying various cuts different properties of gluon den-
sities can be studied. For instance by restricting two of
the jets to balance each other on the transverse plane, the
third jet can access the gluon transverse space directly.
The detailed kinematics of the processes we consider is
described in Sec. III. We present numerical results and
discuss their possible interpretation in Sec. IV. Finally,
we give overall summary in Sec. V.

II. FACTORIZATION AT HIGH ENERGIES

Let us now briefly recall some of the existing formalisms
that may be attempted to describe the observables at high
energies. Before doing so, let us, however, make some
important remarks. First of all, the full control over the
calculation, in particular over its limitations, can be achieved
only when working within well-established factorization
theorems of QCD. Besides the well-known collinear
factorization there are so-called transverse-momentum-
dependent (TMD) factorization theorems. They do work in
certain processes (see [1]) but fail in some others. In general,
they are expected to fail in hadron-hadron collisions
([29,30], see also the short summary in [31]). The TMD
factorizations involve transverse-momentum-dependent
gluon distribution functions, similar to those that are often
used in high-energy phenomenology. The problem is, how-
ever, that the former are not universal (this is the reason
the factorization is violated) whereas the latter are often
conjectured to be universal. Let us thus comment on the
factorization at the kinematic limit we consider in the paper,
namely, the ‘‘small x’’ regime. It deals with dense hadronic
matter (especially for collisions with heavy ions) for which
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the formalism of the color glass condensate (CGC) [32]
proves to be very successful [18]. Basically the TMD facto-
rizations do not deal with the small x limit, although it
was shown in [33] that the universality of TMD PDFs is
also violated in that limit. On the other hand, in Ref. [34]
it is argued that an ‘‘effective’’ factorization within CGC
(for dilute-dense collisions) can be seen as an instance of
TMD factorization in the case of dijets production in the
limit of small unbalanced transverse momentum. The facto-
rization formula is then stated as a convolution of a few
universal transverse-momentum-dependent gluon densities
and matrix elements which are on shell, but use off-shell
kinematics. In the large Nc limit those different gluon PDFs
can be expressed in terms of two fundamental quantities:
the Weizsäcker-Williams gluon density [35,36] and the
‘‘dipole’’ gluon density (see, e.g., [37,38] and references
therein; for the possible theoretical issues of those gluon
densities as seen from the TMD factorization point of view
see [39,40]). Both densities are related to certain two-point
Green functions. In the more general case of multiparticle
production, higher correlators are needed (within CGC
they are expressed by means of certain averages of the
Wilson lines). However, as shown in Ref. [41] in case of
dilute-dense collisions and the largeNc limit only two-point
and four-point Green functions are needed. For recent
applications to multiparticle production see also [42].

We see that the theoretical picture of the processes at
very large densities (very small x) is complicated. Unless
one is outside the saturation regime (i.e., in the BFKL or
CCFM domain), only simple cases like inclusive gluon
production can be described in terms of single transverse-
momentum-dependent gluon density [43,44].

In the present paper we mainly concentrate on the
proton-proton collisions within the kinematic region
accessible by contemporary experiments. The nonlinear
effects—although present—are actually rather weak.
Therefore, we shall use simple kT factorization with a
single type of unintegrated gluon density, incorporating,
however, the nonlinear evolution (when necessary we shall
compare the results to the BFKL evolution with sub-
leading corrections included [45]). Although simplified,

such an approach was proved to be very interesting
phenomenologically [20].
As a reference for the kT factorization we take the works

of Catani, Ciafaloni, and Hautmann (CCH) [46–51] (the
following type of factorization formula appeared also
much earlier in [15]). Originally it was stated for heavy
quark pair production at tree level; however, we shall
assume that one can extend it for more complicated final
states including gluons, with the complications explained
below. The factorization is expressed by the following
formula [see Fig. 1(a)]; for some partonic final state X
and two initial state hadrons A, B we have

d�AB!X ¼
Z d2kTA

�

Z dxA
xA

Z d2kTB
�

Z dxB
xB

F g�=AðxA;kTAÞ
�F g�=BðxB;kTBÞd�̂g�g�!XðxA;xB;kTA;kTBÞ;

(1)

whereF g�=H are transverse-momentum-dependent densities

of the off-shell gluons g� inside H (to be discussed below)
and �̂g�g�!X is the high-energy hard cross section for the

process g�ðkAÞg�ðkBÞ ! X. The momenta of the off-shell
gluons that enter the hard cross section are defined to be

k�A ¼ xAp
�
A þ k�TA; k�B ¼ xBp

�
B þ k�TB; (2)

where pA � kT ¼ pB � kT ¼ 0. The hard amplitude with the
external off-shell gluons is defined by means of certain
high-energy (or eikonal) projectors, i.e., the off-shell leg
(including the propagator) with momentum kA, kB is con-

tracted with j ~kTAjp�
A , j ~kTBjp�

B respectively [see Fig. 1(b)].

As already mentioned, in the original CCH works the
production of a heavy quark pair was considered. In that
case the corresponding off-shell amplitude is gauge invari-
ant, fundamentally due to the form of the projectors. This
is, however, not true for the off-shell amplitudes with
gluons in the final state. There are several ways to deal
with this problem. First, Lipatov’s effective action [52]
and the resulting Feynman rules [53] can be used. This is
because the kinematics (2) corresponds to quasi-multi-
Regge kinematics in the terminology of [53] (for recent

FIG. 1 (color online). (a) Factorization of a hadronic collision into unintegrated PDFs (top and bottom blobs after ‘‘squaring’’) and a
parton-level subprocess (middle blob). (b) The hard subprocess is defined by off-shell matrix elements with incoming off-shell gluon
propagators contracted with high-energy projectors (explained on the rhs). In order to make this amplitude gauge invariant, additional
contributions are needed (see the main text).
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LHC-related calculations in that framework we refer, e.g.,
to [54–56]). A second approach developed recently in [57]
is suitable for automatic calculation of large final state
multiplicities and uses a manifestly gauge invariant method
of embedding the off-shell process in a larger on-shell
process without compromising high-energy kinematics.
Finally, there is one more approach [58] suitable in a
simplified situation described later in this section.

In the CCH approach, the transverse-momentum-
dependent gluon densities F g�=H were originally assumed

to undergo the BFKL evolution. As we have remarked
above, we shall use the formula (1) with F g�=H incorpo-

rating more subtle effects, in particular gluon saturation.
In the present paper we shall use the nonlinear Balitsky
and Kovchegov equation, extended with a consistency
constraint, a nonsingular piece of the gluon splitting func-
tion and running a strong coupling constant [59,60]. The
strength of the nonlinearity is adjusted by a parameter that
can be interpreted as a radius of a hadron, either proton or
nuclei (e.g., in Ref. [20] it was applied for a lead target).
Let us remark that since there is a conjecture that the
integration of F g�=H over the transverse momentum is

related to a collinear PDF, we shall often refer to F g�=H
as the unintegrated gluon density. The relation between
both quantities reads

Z
dk2TAF g�=AðxA; kTAÞ ¼ xAfg=AðxAÞ: (3)

Suppose now that we deal with asymmetric kinematics,
i.e., xB � xA, which is a characteristic feature of forward
scattering (see the next section). Then the gluon originating
from hadron B is probed near the mass shell and F g�=B
should be replaced by its collinear equivalent fg=B.

Moreover, the valence quarks play an important role.
Thus, the proper formula in such a setup is given by

d�AB!X¼
Z d2kTA

�

Z dxA
xA

Z
dxB

X
b

F g�=AðxA;kTAÞfb=BðxBÞ

�d�̂g�b!XðxA;xB;kTAÞ; (4)

where b runs over gluon and all the quarks that can
contribute to the production of multiparticle state X (see
also Ref. [21] and the Appendix of [46] for the collinear
limit in the high-energy factorization). In the formula
above, any scale dependence was suppressed. The off-shell
gauge invariant process g�b ! g . . . g can be calculated
along the lines of Ref. [58]. The case with quarks is
actually straightforward, as in the axial gauge any gauge
contribution due to Slavnov-Taylor identities vanishes.

Let us summarize our basic assumptions. We use the
kT-factorized, hybrid (i.e., collinear PDF is mixed with the
unintegrated one, see also [61] for the CGC approach) form
given in Eq. (4) with the inclusion of nonlinear effects in
the evolution of the unintegrated gluon PDF. The hard
matrix elements are calculated fully off shell at tree level;
they are gauge invariant, and all of them are convoluted

with the same gluon density given in fundamental color
representation, as given in [20].

III. PROCESS DEFINITION AND KINEMATICS

Let us now give a detailed description of the process we
are interested in. We want to study exclusive three-jet
events, namely,

AðpAÞBðpBÞ ! J1ðp1ÞJ2ðp2ÞJ3ðp3Þ; (5)

where A ¼ fpþ; Pbg, B ¼ pþ, and JiðpiÞ denotes the jet
with momentum pi. We work in the c.m. frame throughout
the paper. This frame corresponds to LAB frame for pþpþ
collision, but not for the pþPb collisions. In our frame we
define

p
�
A ¼ ðE; 0; 0;�EÞ; p

�
B ¼ ðE; 0; 0; EÞ; (6)

with E ¼ ffiffiffi
S

p
=2 where S is the total c.m. energy squared. In

the present paper we consider c.m. energies
ffiffiffi
S

p ¼5:02TeV

and
ffiffiffi
S

p ¼ 7:0 TeV.
Let us now discuss the kinematic cuts that are relevant to

the physics we would like to address. To this end let us
decompose the final state momenta as follows:

p�
i ¼ j ~pTijffiffiffi

S
p ðe�ip�

A þ e��ip�
B Þ þ p�

Ti; (7)

where pTi � pA ¼ pTi � pB ¼ 0 and the rapidity �i is
defined as

�i ¼ 1

2
ln
p0
i þ pz

i

p0
i � pz

i

: (8)

Further we note that

p�
Ti ¼ ð0; ~pTi; 0Þ (9)

and

~pTi ¼ ðj ~pTij sin�i; j ~pTij cos�iÞ: (10)

Now let us come back to the kinematic cuts. First of all
we assume that

j ~pTij> pTcut; i ¼ 1; 2; 3: (11)

The actual values of the cuts shall be given in the following
sections when we discuss numerical results. Typically, we
shall order the jets with decreasing j ~pTij values, i.e.,

j ~pT1j> j ~pT2j> j ~pT3j: (12)

Further restriction is given by a jet definition. Here we
work with an anti-kT clustering algorithm [62] with radius
Rcut; thus, the final state momenta cannot be too close in
the �-� space.1 In order to access the small x region we

1Actually for tree-level parton-level processes it is equivalent
to a proper cut on the �-� plane.
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have to impose additional cuts. According to (7) and the
factorization formula [cf. Eq. (2)], the longitudinal frac-
tions of the hadrons’ momenta xA, xB that initiate the hard
scattering are given by

xA ¼ X
i

j ~pTijffiffiffi
S

p e�i ; xB ¼ X
i

j ~pTijffiffiffi
S

p e��i : (13)

Thus, in order to select small, say, xA for the fixed S and
j ~pTij we have to go to large rapidity values, ideally for all
the jets. In the same time xB, would be large; thus, this sort

of kinematics is often referred to as asymmetric kinematics.
If some of the jets appear in the central rapidity region,
we can still access the small x regime provided at least
one of the jets is in the forward region. Those issues
shall be illustrated by a specific calculation in Sec. IVB.
The forward region is defined as

�f0 � �i � �f1; (14)

while the central region is defined as

j�jj � �c; (15)

FIG. 2 (color online). The differential cross section as a function of asymmetry variable xas for the forward-central rapidity region
and two different c.m. energies: left for 5.02 TeV, right for 7.0 TeV.

FIG. 3 (color online). The differential cross section as a function of asymmetry variable xas for the forward-central rapidity region
with the back-to-back cut Dcut ¼ 30 GeV and two different c.m. energies: left for 5.02 TeV, right for 7.0 TeV.

FIG. 4 (color online). The differential cross section as a function of asymmetry variable xas for the purely forward rapidity region
and two different c.m. energies: left for 5.02 TeV, right for 7.0 TeV.
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with specific boundary values�f0,�f1,�c given later. Note,

that we tag the forward jet in the positive rapidity hemisphere
only, both for proton-proton and proton-lead collisions.

There are also additional cuts that might be interesting
for the studies of unintegrated gluon densities. We may
restrict the two leading jets to be back-to-back-like. More
precisely, we can define

pT12 ¼ j ~pT1 þ ~pT2j<Dcut; (16)

with theDcut parameter being not much smaller then pTcut.
Such a study is motivated by the fact that for Dcut ! 0 the
total transverse momentum of the initial state gluons is
transferred to the forward jet.

FIG. 5 (color online). Differential cross section in difference of the azimuthal angles between the leading and forward jets. The band
represents the theoretical uncertainty due to scale variation and statistical errors. The left plot corresponds to c.m. energy 5.02 TeV, the
right to 7.0 TeV.

FIG. 7 (color online). Differential cross section in difference of the azimuthal angles between the leading and forward jets for a
particular choice of the scale �=2. The eft column corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV.

FIG. 6 (color online). The nuclear modification factor as a function of the difference of the azimuthal angles between the leading and
forward jets. The band represents the theoretical uncertainty due to scale variation and statistical errors. The left plot corresponds to
c.m. energy 5.02 TeV, the right to 7.0 TeV.
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IV. NUMERICAL RESULTS AND DISCUSSION

A. Preliminary remarks

The numerical calculations were performed using two
new Monte Carlo programs and were cross-checked
against each other. The first program is a C++ code using
the FOAM algorithm [63] and based on the method for
the off-shell matrix elements described in Ref. [58]. The
working name of the program is LxJet.2 The second
independent code is a FORTRAN program based on [57].
Since we want to study some small x properties of the jet
observables within high-energy factorization itself, we
do not interface the program with any parton shower in
the present calculation. The final state parton shower can
be added using, e.g., PYTHIA [64] and shall be done in
the future. Another shortcoming comes from neglecting
multiple parton interactions (MPIs). Contrary to dijet
production, where MPIs lead to a change of the overall
normalization of angle distributions [65], the situation for
three-jet production is more complicated and is left for
further study.

Let us now summarize the inputs we have used. For the
unintegrated parton densities F g�=H we take the ones

described in the previous section and fitted to HERA
data in [20]. These include the nonlinear PDFs for proton,
lead, and additionally the proton PDF with linear evolu-
tion [45]. For the collinear PDFs fa we take the CTEQ10
next-to-leading order set [66]. The consistent strong cou-
pling constant is also taken from the same source. Since
our calculations are essentially tree level as far as the
parton-level amplitude is concerned, there is a large de-
pendence on the choice of the scales. In order to estimate
the theoretical uncertainty we do the following standard
procedure. First, we set the renormalization and collinear
factorization scales to be equal�f ¼ �r � � and choose

� ¼ E1 þ E2 þ E3: (17)

Our error estimate is then given by the band constructed
from the two outputs with the two choices of the scale
(including statistical errors): �=2 and 2�. In all calcula-
tions we choose the radius of the anti-kT algorithm to be
Rcut ¼ 0:5.
We consider two rapidity configurations:

FIG. 8 (color online). Differential cross section in difference of the azimuthal angles between the leading and forward jets with the
additional restriction that the two leading jets are back-to-back-like. The band represents the theoretical uncertainty due to scale
variation and statistical errors. The left plot corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV.

FIG. 9 (color online). The nuclear modification factor as a function of the difference of the azimuthal angles between the leading and
forward jets, with the additional restriction that the two leading jets are back-to-back-like. The band represents the theoretical
uncertainty due to the scale variation and statistical errors. The left plot corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV.

2The program shall be publicly available.
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(i) central-forward region: we demand that the two
hardest jets (with indices 1, 2) are in the central
region defined by �c ¼ 2:8, while the softest jet
(with index 3) is in the forward region defined by
�f0 ¼ 3:2, �f1 ¼ 4:7,

(ii) forward region; all three jets are within the region
defined by �f0 ¼ 3:2, �f1 ¼ 4:9.

B. Asymmetry distributions

In order to check if the region of the longitudinal frac-
tions xA, xB we access is consistent with our assumptions
leading to Eq. (4) let us we define the following variable:

xas ¼ jxA � xBj
xA þ xB

: (18)

It has the support in [0, 1] and measures the asymmetry of
the event (for xas ! 1 we have totally asymmetric events).
We expect that within our kinematic cuts the cross section
is dominated by asymmetric events, being thus in agree-
ment with Eq. (4). This point shall be verified by explicit
calculations below.
In Figs. 2–4 we present differential cross sections in xas

for three different scenarios: the forward-central rapidity
region, the forward-central region with two leading jets

FIG. 11 (color online). Differential cross section in difference of the azimuthal angles between the leading and forward jets for the
forward rapidity region. The band represents the theoretical uncertainty due to scale variation and statistical errors. The left plot
corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV.

FIG. 10 (color online). Differential cross section in difference of the azimuthal angles between the leading and forward jets, with the
additional restriction that the two leading jets areback-to-back-like.The left columncorresponds toc.m. energy5.02TeV, the right to7.0TeV.
The top plots are made for the scale �=2 and 0<�13 < 2� while the bottom for the scale 2� and 0<�13 <�.
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being close to back to back, and the purely forward region.
The rapidity regions were defined in the previous
section. Further details are given in the plots. We see
that the collisions in the forward region (Fig. 4) are
completely asymmetric as one should expect. However,
most of the events in the forward-central region are also
asymmetric, as seen in Fig. 2. We have observed, that—
as far as the forward-central collisions are concerned—
lowering the pTcut spoils the asymmetry of the events; thus,
one cannot go to as low pTcut as for purely forward
collisions.

C. Azimuthal decorrelations

1. Central-forward jets

Let us now present the results for azimuthal decorrela-
tions for central-forward jet configuration. There are many
azimuthal observables that can be studied within this
context. In this paper we study distributions in the azimu-
thal angle between the leading jet (with index 1) and the
softest jet (with index 3)

�13 ¼ j�1 ��3j; �13 2 ½0; 2�Þ: (19)

FIG. 13 (color online). Differential cross section in difference of the azimuthal angles between the leading and forward jets for the
forward rapidity region. The left column corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV. The top plots are made for the scale
�=2 and 0<�13 < 2� while the bottom for the scale 2� and 0<�13 <�.

FIG. 12 (color online). The nuclear modification factor as a function of the difference of the azimuthal angles between the leading
and forward jets for the forward rapidity region. The band represents the theoretical uncertainty due to scale variation and statistical
errors. The left plot corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV.
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Note that this angle is always calculated in one direction
and is not just the smallest angle between the jets. This is
important; if we assume that the direction of the leading
jet divides the azimuthal plane into two half-planes, the
events with the forward jet lying on the left half-plane
and the right half-plane (with the same smallest angle to
the leading jet) are not symmetric. Let us note that in the
collinear factorization at leading order the momentum
conservation requires that �=2<�13 < 3�=2. Thus, the
shapes given in the plots discussed below are a character-
istic feature of the high-energy factorization.

In Figs. 5–7 we present a sample of our result for the
differential cross section in the variable �13. We observe
that indeed the whole region ð0; 2�� is covered by events;
however, the ‘‘collinear’’ region�=2<�13 < 3�=2 domi-
nates. The results for the nonlinear evolution described
in the Sec. II for proton and lead, as well as the BFKL
with subleading corrections are similar and the nuclear
modification ratio is consistent with unity, as seen in
Fig. 6.
Let us now turn to the case when the two leading

jets are restricted to be back-to-back-like. In the present

FIG. 15 (color online). The nuclear modification factor for central-forward jets as a function of the unbalanced pT for the region
close to zero. The band represents the theoretical uncertainty due to scale variation and statistical errors. The left plot corresponds to
c.m. energy 5.02 TeV, the right to 7.0 TeV.

FIG. 14 (color online). Differential cross section in the unbalanced pT for central-forward jets. The band represents the theoretical
uncertainty due to scale variation and statistical errors. The left plots correspond to c.m. energy 5.02 TeV, the right to 7.0 TeV.
The bottom plots zoom the low �pT region [note the distributions are differential in ln ð�pTÞ there].
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FIG. 16 (color online). Differential cross section for central-forward jets in the unbalanced pT for a particular choice of the scale
�=2. The left column corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV. The bottom plots zoom the top plots for the low �pT

region but are calculated for the scale 2� [note the distributions are in ln ð�pTÞ there].

FIG. 17 (color online). Differential cross section in the unbalanced pT for forward jets. The band represents the theoretical
uncertainty due to scale variation and statistical errors. The left plots correspond to c.m. energy 5.02 TeV, the right to 7.0 TeV.
The bottom plots zoom the low �pT region [note the distributions are in ln ð�pTÞ there].

A. VAN HAMEREN, P. KOTKO, AND K. KUTAK PHYSICAL REVIEW D 88, 094001 (2013)

094001-10



FIG. 18 (color online). The nuclear modification factor for forward jets as a function of the unbalanced pT for regions close to zero.
The band represents the theoretical uncertainty due to scale variation and statistical errors. The left plot corresponds to c.m. energy
5.02 TeV, right to 7.0 TeV. The bottom plots zoom the region close to zero.

FIG. 19 (color online). Differential cross section for forward jets in the unbalanced pT for a particular choice of the scale �=2.
The left column corresponds to c.m. energy 5.02 TeV, the right to 7.0 TeV. The bottom plots zoom the top plots for the low �pT region
[note the distributions are in ln ð�pTÞ there].
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calculation we choose Dcut ¼ 30 GeV. We have checked
empirically that in order to observe any significant differ-
ence comparing to the forward-central case discussed
above we should use Dcut <pTcut. Our result are presented
in Figs. 8–10. The main properties of the distributions are
the following. First, the relative magnitude between
the collinear region and the ‘‘noncollinear’’ region is
decreased comparing to the previous case. This indicates
that we enter the region which is small x sensitive. We see
(right of Figs. 8 and 10) that for the c.m. energy of 7 TeVand
the large energy scale, the distributions are different for
linear and nonlinear evolution and the difference is most
significant in the noncollinear region. The nuclear modifi-
cation factor (Fig. 9) is, however, still consistent with unity.

2. Forward jets

Let us move to the case where all of the jets are in the
forward rapidity region. As discussed in Sec. IVB, in this
region we can safely go to relatively low values of pTcut;
thus we set pTcut ¼ 20 GeV. We present the results in
Figs. 11–13. We observe significant differences between
the three scenarios (nonlinear proton, nonlinear Pb, and
linear proton) in the middle region of�13 distributions, i.e.,
in the collinear region. It is also nicely illustrated by the
nuclear modification ratios (Fig. 12) which now have two
dips in that region, indicating that the region is sensitive to
the nonlinear effects. The qualitative behavior is the same
for both considered c.m. energies.

D. Unbalanced jet transverse momentum

Let us now switch to an analysis of the cross section as a
function of the following quantity:

�pT ¼ j ~pT1 þ ~pT2 þ ~pT3j; (20)

which in the prescription given by the Eq. (4) corresponds
to the transverse momentum of the off-shell gluon, i.e.,

�pT ¼ j ~kTAj.
Let us remark that the distributions we are going to

present can be much more affected by the final state parton
shower, than the decorrelation distribution presented above.
Nevertheless, it is very interesting to study the influence of
different evolution equations for the multiparticle produc-
tion purely within the high-energy factorization.

1. Central-forward jets

We present the results in Figs. 14–16. The first immedi-
ate observation is that the distributions possess a maximum
around 1 GeV (bottom of Figs. 14 and 16) which corre-
sponds to the maximum of the unintegrated gluon densities
(see Ref. [20]) used in the calculations. The region below
1 GeV is sensitive to the different evolutions; the most
significant difference is between linear and nonlinear evo-
lution. However, the nuclear modification factor is slightly
suppressed for �pT < 2:5 GeV.

The scenariowith the two leading jets being back-to-back-
like is not especially interesting for the unbalanced transverse
momentum distributions due to the kinematics involved.
It turns out that the region of �pT that is smaller then a
few GeV is kinematically forbidden. Although back-to-back
forward-central jets actually probe the high transverse
momenta in the unintegrated gluon density, we did not see
any conclusive features of tails in our distributions.

2. Forward jets

Finally we turn to the forward rapidity region. Again we
note the significant differences in the distributions for differ-
ent evolution scenarios (Figs. 17–19). They are most promi-
nent in the low unbalanced transverse momentum region
�pT < 5GeV (see the bottom plots in Figs. 17–19). We
note the suppression of the distributions with nonlinear
evolution, with, however, lead being suppressed much
more. This is also reflected in the nuclear modification ratios
as is evident from Fig. 18. Interestingly, the nuclear modi-
fication factor is not so much sensitive to the scale variation.

V. SUMMARY

In the present work we have studied three-jet production
at LHC for proton-proton and proton-lead collisions. As
we pointed out, the trijet final state is an ideal tool to
perform scans of small x unintegrated gluon density and
to discriminate between different evolution scenarios. In
our work we have used two independent Monte Carlo
programs which implement high-energy kT factorization
with a single off-shell gluon and gauge invariant matrix
elements. We have studied three scenarios for the evolution
of the unintegrated gluon density: nonlinear evolution for
proton and lead according to Refs. [59,60] and its linear
version. From numerous observables that can be con-
structed for a three-jet process, we have chosen azimuthal
decorrelations and the unbalanced transverse momentum
of the jets. We considered two rapidity regions accessible
experimentally: the forward-central region and the purely
forward region. In addition we have considered the
situation when the two central jets are back-to-back-like.
Our findings can be briefly summarized as follows.
Forward-central collisions with a relatively high cut on
the transverse jet momenta are not sensitive to different
kinds of gluon evolution, although they reflect some key
features of the high-energy kinematics. The situation
changes, when the two leading jets are approximately
back to back as the distributions start to be sensitive to
the region of a relatively large transverse momentum in
the unintegrated gluon density. For the case of forward
scattering, we observe a significant difference between all
three kinds of evolution, in particular the shape of the
nuclear modification factors (Figs. 12 and 18) suggest
strong suppression due to saturation effects, which is
visible both in the azimuthal decorrelations and the unbal-
anced pT distributions.
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