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Compared to the other neutrino mixing angles �13 is small. The solar mass splitting is about two orders

smaller than the atmospheric splitting. We show that both could arise from a perturbation of a more

symmetric structure. The perturbation also affects the solar mixing angle and can make alternate mixing

patterns such as tribimaximal, bimaximal, or other variants equally viable. For real perturbations this

can be accomplished only for normal mass ordering with the lightest neutrino mass less than 10�2 eV.

Both mass orderings can be accommodated by going over to complex perturbations if the lightest neutrino

is heavier. The CP-phase in the lepton sector, fixed by �13 and the lightest neutrino mass, distinguishes

between different mixing models.
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I. INTRODUCTION

The recent measurement [1,2] of a nonzero �13, which is
small compared to the other neutrino mixing angles, has
created a stir in the world of particle physics.

The Daya Bay collaboration after 127 days exposure has
obtained for �13 [1]

sin 22�13 ¼ 0:089� 0:010ðstatÞ� 0:005ðsystÞ ðDaya BayÞ
(1)

and from the RENO experiment with 229 days data [2] one
has

sin 22�13 ¼ 0:113� 0:013ðstatÞ � 0:019ðsystÞ ðRENOÞ
(2)

The Double Chooz [3], MINOS [4], and T2K [5] experi-
ments have also determined sin 22�13, all consistent with
the above but with larger uncertainties.
Earlier there already was in place a strong upper bound

on this angle [6]. The measured value is close to this limit,
leading to �13 getting referred to occasionally as ‘‘large.’’
In terms of the three known mixing angles �12, �23, �13 and
a phase � the Pontecorvo, Maki, Nakagawa, Sakata
(PMNS) mixing matrix is usually parametrized as

U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCA: (3)

As it is now realized that in the lepton sector, as for
the quarks, all three mixing angles are nonzero, the
door has been opened for CP-violation.1 Many alternative
strategies are being considered to explore leptonic
CP-violation as well as mixing and the future prospects
are rich.

The other face of the neutrino sector is the mass
spectrum. Indeed, from the several oscillation studies
at accelerators and reactors complementing the solar
and atmospheric neutrino measurements the mass
splittings are now very well established though the
absolute mass remains an unknown. From global fits
the currently favoured values of the neutrino mixing
parameters are [7,8]:

�m2
21 ¼ ð7:50þ0:18

�0:19Þ � 10�5 eV2; �12 ¼ ð33:36þ0:81
�0:78Þ�;

j�m2
31j ¼ ð2:473þ0:070

�0:067Þ � 10�3 eV2;

�23 ¼ ð40:0þ2:1
�1:5 � 50:4� 0:13Þ�

�13 ¼ ð8:66þ0:44
�0:46Þ�; �¼ ð300þ66

�138Þ�: (4)

Note that the atmospheric mixing angle, �23, is no
longer consistent with maximal mixing (�23 ¼ �=4) at
1�. There are best fit values in both the first and second
octants; determining the �23 octant is one of the priorities
of future experiments. In this work, to simplify the dis-
cussion and minimize parameters we will nonetheless
take �23 ¼ �=4. We comment on the effect of the small
departure from maximality on the results. In the global fit
�12 is also large but not maximal, while �13 is the smallest
of the three.
For the solar sector the splitting, �m2

21, is known in
magnitude and sign while for the atmospheric neutrinos
only the magnitude, j�m2

31j, has been determined, the
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sign remaining unknown.2 Thus two options are left
open, the normal and the inverted ordering of the mass
spectrum depending upon whether this undetermined sign
is positive or negative. One noteworthy feature here is that
the solar splitting is about two orders of magnitude smaller
than the atmospheric splitting: Rmass ¼ j�m2

21=�m
2
31j ¼

ð3:03� 0:16Þ � 10�2.
The nonzero value of �13 close to its upper bound

(‘‘large’’) and yet small compared to the other mixing angles
has attracted a great deal of attention from diverse angles.We
list a sampling of this body of literature. For example, the
role of �� � symmetry [9], see-saw models [10], charged
lepton contributions [11], and renormalization group effects
[12] are among the avenues explored. A perturbative ap-
proach has been espoused in [13]. Other attempts have been
based on diverse discrete symmetries [14,15].

In this work we seek to address the following question: Is
it possible that at some level the small quantities, the ratio
Rmass and �13, are vanishing

3 and that a single perturbation
induces the observed nonzero values for both? The answer
is in the affirmative. To our knowledge, this result was
pointed out for the first time through a specific example
in [17]. Here, wemake an exhaustive analysis and show that
the existence (or not) of a viable solution depends on two
factors: the ordering of the neutrino masses and the mass of
the lightest neutrino, m0. For normal ordering, for a large
choice of parameters the requirements can be met.4 The
perturbation can be real or complex. In the latter case,
CP-violation is present. The inverted ordering is less fa-
vored if the perturbation is real. In this case one would have
to admit significant differences in the sizes of the matrix
elements of the perturbation to get satisfactory solutions.

Our paper is structured as follows. In the next section we
set up the framework for our discussion and list some of the
commonly considered neutrino mixing schemes, e.g.,
tribimaximal mixing. In the following section we elaborate
on the degenerate perturbative mechanism which we
will adopt. Next we discuss to what extent the global
fits of the mixing parameters constrain the choice of
the perturbation. Our main results are presented in the
following section where we show the allowed ranges of
the perturbation matrix for the two mass orderings and the
predictions for CP-violation. We then briefly indicate how
the perturbation can arise from a mass model. We end with
the conclusions and discussions.

II. NEUTRINO MASS AND MIXING SCENARIOS

We restrict ourselves to the case of three flavors of
neutrinos. We also work in a basis where the charged

lepton mass matrix is diagonal. In this basis the entire
lepton mixing resides in the neutrino mass matrix.
Our starting point will be the unperturbed Majorana

neutrino mass matrix, M0, which is always symmetric.
We choose a form such that the solar splitting is absent;
i.e., in the mass basis one has

M0
mass ¼ diagðmð0Þ

1 ; mð0Þ
1 ; mð0Þ

3 Þ: (5)

For a specific mass ordering, the lightest neutrino mass,

m0, determines mð0Þ
1 and mð0Þ

3 . It is useful to define5

m� ¼ ðmð0Þ
3 �mð0Þ

1 Þ. m� is positive (negative) for normal

(inverted) mass ordering.
In the flavor basis the mass matrix becomes:

M0
flavor ¼ U0

mð0Þ
1

mð0Þ
1

mð0Þ
3

0
BBB@

1
CCCAU0T; (6)

where U0 is the lowest order leptonic mixing matrix. The
columns of U0 are the unperturbed flavor eigenstates.
Neutrino mass models lead to predictions for U0 of which
three often-discussed variants are the tribimaximal (TBM),
bimaximal (BM), and the ‘‘golden ratio’’ (GR) forms. Each
of these imply �13 ¼ 0 and �23 ¼ �=4. They differ only in
�12. We will consider them in turn along with a further
option where there is no solar mixing to start with.
Our goal is to check whether in each case a perturbation

mass matrix, M0 (also symmetric), can be identified which
will add corrections to M0 and U0 leading to mass split-
tings and mixing angles in agreement with observations, in
particular that the correct �m2

21 and �13 are realized.

A. General parametrization

In general as long as �13 ¼ 0 and the atmospheric
mixing is maximal (�23 ¼ �=4) the leptonic mixing matrix
can be parametrized as6:

U0 ¼
b a 0

�a=
ffiffiffi
2

p
b=

ffiffiffi
2

p ffiffi
1
2

q
a=

ffiffiffi
2

p �b=
ffiffiffi
2

p ffiffi
1
2

q

0
BBBB@

1
CCCCA; (7)

with

a2 þ b2 ¼ 1: (8)

For the above U0, the solar mixing angle is given by
tan�012 ¼ a=b. The experimentally determined range of

�12 in Eq. (4) corresponds to 0:539 � a � 0:561 at 1�.
2In [7] for inverted ordering a best-fit value of �m2

32 has been
given. It is consistent to within 1� with the best-fit value of
j�m2

31j we have cited from their normal ordering fits.
3This may arise from a symmetry such as Oð2Þ [16].
4An earlier work relating �13 to the solar oscillation parame-

ters which favored normal mass ordering can be found in [18].

5We take mð0Þ
i (i ¼ 1, 3) to be real and positive. This can be

accomplished by a suitable choice of the Majorana phases.
6This form has appeared earlier in the literature, e.g. [19].
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B. Tribimaximal mixing

The preferred values of the mixing angles are reasonably
close to a mixing matrix of tribimaximal form [20],

U0 ¼

ffiffi
2
3

q ffiffi
1
3

q
0

�
ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2

q
ffiffi
1
6

q
�

ffiffi
1
3

q ffiffi
1
2

q

0
BBBBBB@

1
CCCCCCA; (9)

which predicts the third mixing angle �13 to be exactly
vanishing.

C. Bimaximal mixing

For bimaximal mixing, the matrix is [21]

U0 ¼

ffiffi
1
2

q ffiffi
1
2

q
0

� 1
2

1
2

ffiffi
1
2

q
1
2 � 1

2

ffiffi
1
2

q

0
BBBBBB@

1
CCCCCCA; (10)

which also has a vanishing �13.

D. Golden ratio mixing

A third form of the mixing matrix also appearing in the

literature involves the golden ratio � ¼ ð1þ ffiffiffi
5

p Þ=2 [22],

U0 ¼

ffiffiffiffiffi
�ffiffi
5

p
q ffiffiffiffiffiffiffi

1ffiffi
5

p
�

q
0

� 1ffiffi
2

p
ffiffiffiffiffiffiffi
1ffiffi
5

p
�

q
1ffiffi
2

p
ffiffiffiffiffi
�ffiffi
5

p
q ffiffi

1
2

q
1ffiffi
2

p
ffiffiffiffiffiffiffi
1ffiffi
5

p
�

q
� 1ffiffi

2
p

ffiffiffiffiffi
�ffiffi
5

p
q ffiffi

1
2

q

0
BBBBBBB@

1
CCCCCCCA
; (11)

which too gives �13 ¼ 0.

E. No solar mixing

Finally, we also examine the possibility that the
unperturbed mixing matrix has a ¼ 0. This would imply
one degenerate state decoupled and the other maximally
mixed to the third (nondegenerate) state. For this choice
�012 ¼ 0. Another case with one decoupled degenerate state
is b ¼ 0 for which �012 ¼ �=2. These cases give identical
physics results.

In Table I we list the allowed range of a from the global
fit and its values in the TBM, BM, and the GR models. As
noted, the unperturbed matrix, M0, is such that the solar
splitting is absent and two eigenvalues are degenerate.
Due to this degeneracy the two corresponding eigenstates
are non-unique. The perturbation M0, which splits the

degeneracy, determines the actual eigenstates which
will be rotated with respect to the first two columns of
U0—Eq. (7)—by an angle � also determined by M0.
Therefore, on inclusion of the perturbation we have a
resultant solar mixing angle given by �12 ¼ �012 þ � .

III. PERTURBATION STRATEGY

We will work in the mass basis unless explicitly
mentioned otherwise. Our discussion will involve only
first-order perturbative corrections. The perturbation
M0 is a (3� 3) symmetric matrix which could be real or
complex. These two cases will be treated sequentially.
The former provides a good starting point for the
latter.
After removing an irrelevant constant part, the perturba-

tion M0 can be written as:

M0 ¼ mþ
0 	 


	 � �


 � 


0
BB@

1
CCA: (12)

A. Real perturbation

In this case all entries in the matrix M0 are real. For
perturbation theory to be acceptable, the dimensionless
entities �, 
, 	, 
, � should be small compared to unity.
Taken together with the unperturbed M0—Eq. (5)—at
lowest order the perturbation will induce the solar
oscillation parameters through � and 	; �13 will be deter-
mined by 
 and �; while 
will result in a small correction

to mð0Þ
3 .

B. Complex perturbation

IfM0 is complex symmetric then it is not Hermitian.7 In
such an event one takes the Hermitian combination ðM0 þ
M0ÞyðM0 þM0Þ and considers M0yM0 as the unperturbed
term and ðM0yM0 þM0yM0Þ as the lowest order perturba-
tion. The unperturbed eigenvalues will now be ðmð0Þ

i Þ2 and
the perturbation matrix

TABLE I. The limits on the mixing parameter a � sin �012 as
obtained from the global fit. The values of a for the TBM, BM,
and GR forms are also shown.

Global

fit 1�
Global

fit 3�
Mixing

parameter amin amax amin amax TBM BM GR

a 0.539 0.561 0.515 0.585 0.577 0.707 0.526

7M0 is Hermitian by construction.
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ðM0yM0 þM0yM0Þ ¼ mþ
0 2mð0Þ

1 Reð	Þ mþ Reð
Þ � im� Imð
Þ
2mð0Þ

1 Reð	Þ 2mð0Þ
1 Reð�Þ mþ Reð�Þ � im� Imð�Þ

mþ Reð
Þ þ im� Imð
Þ mþ Reð�Þ þ im� Imð�Þ 2mð0Þ
3 Reð
Þ

0
BBB@

1
CCCA: (13)

The imaginary parts of �, 
, and 	 do not appear in
Eq. (13). However, they do contribute at higher order via
the M0yM0 term.

IV. RELATING ELEMENTS OF M0 TO THE DATA

We look for solutions that are consistent with the
global neutrino parameter fits up to 1�. In particular,
the solar mass splitting and �13 must both emerge from
the perturbation. We discuss these aspects now.

A. The solar mixing angle

To lowest order, the solar mass splitting is obtained via
the (2� 2) submatrix of the perturbation, M0, in the space
of the first two generations. For real M0 in terms of
r ¼ 	=� from Eq. (12) this submatrix is:

M0
ð2�2Þ ¼ mþ�

0 r

r 1

 !
for RealM0: (14)

If M0 is complex then r ¼ Reð	Þ=Reð�Þ and
ðM0yM0 þM0yM0Þð2�2Þ

¼ 2mþmð0Þ
1 Reð�Þ 0 r

r 1

 !
for ComplexM0: (15)

If r ¼ 0 then M0 will produce a mass splitting but will not
change the solar mixing. For r nonzero, the eigenstates are
rotated from those in U0 through an angle � given by

� ¼ 1

2
tan�1ð2rÞ; (16)

independent of the prefactor of the matrix. As noted, the
tribimaximal, bimaximal, and golden ratio mixing models
do not satisfy the currently measured value of �12 within
1�. Therefore, for these cases we choose r � 0 in such a
manner that when the mass degeneracy is removed the
mixing angle is tweaked to within the allowed range. In
Table II we show the ranges of r for each of the three
models that result in �12 values consistent with

observations. It is noteworthy that r is small in every
case (but for the �012 ¼ 0 alternative). Since it is a ratio
of two elements of the perturbation matrix it could, in
principle, be Oð1Þ. The smallness can be traced to the
fact that as r ! 0 the mass matrix in the flavor basis
exhibits a Z2 � Z2 symmetry8 of the unperturbed model
generated by

U1 ¼ 1� 2

a2 ab=
ffiffiffi
2

p �ab=
ffiffiffi
2

p

ab=
ffiffiffi
2

p
b2=2 �b2=2

�ab=
ffiffiffi
2

p �b2=2 b2=2

0
BB@

1
CCA and

U2 ¼ 1� 2

b2 �ab=
ffiffiffi
2

p
ab=

ffiffiffi
2

p

�ab=
ffiffiffi
2

p
a2=2 �a2=2

ab=
ffiffiffi
2

p �a2=2 a2=2

0
BB@

1
CCA: (17)

Before closing this subsection it is worth noting that to
lowest order in degenerate perturbation theory the first two
eigenstates are

jc 1i ¼ cos �

2
4 b

�a=
ffiffiffi
2

p
a=

ffiffiffi
2

p
0
@

1
A� �


0
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
0
@

1
A
3
5

� sin �

2
4 a

b=
ffiffiffi
2

p
�b=

ffiffiffi
2

p
0
@

1
A� ��

0
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
0
@

1
A
3
5; (18)

jc 2i ¼ sin �

2
64

b

�a=
ffiffiffi
2

p

a=
ffiffiffi
2

p

0
BB@

1
CCA� �


0

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

0
BB@

1
CCA
3
75

þ cos �

2
64

a

b=
ffiffiffi
2

p

�b=
ffiffiffi
2

p

0
BB@

1
CCA� ��

0

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

0
BB@

1
CCA
3
75; (19)

with � defined in Eq. (16) and

�
 ¼
�
mþ

m�

�

; �� ¼

�
mþ

m�

�
� for RealM0; (20)

and

�
 ¼
�
mþ

m�

�
Reð
Þ þ i Imð
Þ;

�� ¼
�
mþ

m�

�
Reð�Þ þ i Imð�Þ for ComplexM0:

(21)

TABLE II. The range of the off-diagonal entry, r ¼ 	=�, in
the 2� 2 submatrix of the perturbation [see Eqs. (14) and (15)]
for the TBM, BM, and GR alternatives that produces a �12
consistent with the global fits at 1�. The �012 ¼ 0 alternative is

also noted.

TBM BM GR �012 ¼ 0
Parameter rmin rmax rmin rmax rmin rmax rmin rmax

r (� 102) �4:59 �1:95 �23:1 �19:9 1.54 4.18 108 125
8This is often a subgroup of a larger symmetry such as Að4Þ.
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B. The solar mass splitting

The solar mass splitting is determined by the eigenval-
ues of the submatrix in Eqs. (14) and (15).

For real M0 the first order corrections to the degenerate
eigenvalues are

mð1Þ
2;1 ¼ mþ �

2

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2

p i
: (22)

Identifying the heavier eigenvalue with m2, as required by
the solar data, one has

m2
2 �m2

1 ¼ 2mþmð0Þ
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2

p
: (23)

Up to small perturbative corrections mþm� gives the
atmospheric mass splitting. Hence,

Rmass ¼ jðm2
2 �m2

1Þ=ðm2
3 �m2

1Þj ¼ 2
mð0Þ

1

jm�j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2

p
:

(24)

For complex M0 the corrections are to the squared masses
and one directly obtains Eqs. (23) and (24) but for the
replacement � ! Reð�Þ.

We will return to this equation when we discuss
numerical estimates of the element �.

C. Generating �13 � 0

Using first order degenerate perturbation theory the
corrected wave function jc 3i is given by

jc 3i ¼
0

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

0
BB@

1
CCAþ �
�

b

�a=
ffiffiffi
2

p

a=
ffiffiffi
2

p

0
BB@

1
CCAþ ���

a

b=
ffiffiffi
2

p

�b=
ffiffiffi
2

p

0
BB@

1
CCA:
(25)

To minimize the number of free parameters we will
restrict ourselves to only those perturbations which leave
the atmospheric mixing angle �23 fixed at the maximal
value9 of �=4. This gives the relationship:� �


��

�� ¼ b

a
: (26)

Since a and b are real Eq. (26) implies that �
 and �� and
hence 
 and � have the same phase. Comparing with
Eq. (3) one then has

sin �13e
�i� ¼ ½b �
� þ a ���	 ¼

�
�

b
; (27)

where we have used ða2 þ b2Þ ¼ 1.
For real M0 one has � ¼ 0. Hence, from Eq. (20)


 ¼
�
m�

mþ

�
b sin �13: (28)

In the next section, these formulas will be used to relate
M0 to the neutrino masses and mixings.

V. RESULTS

We now have all the ingredients in place to determine
the full perturbation matrix and extract the consequences.
Once the neutrino mass ordering is chosen and the lightest
neutrino mass, m0, specified, the unperturbed mass spec-
trum is fixed. The matrix element � is determined from the
solar splitting through Eq. (24). The element 
 makes a
small contribution (a few percent) to the atmospheric
neutrino splitting and does not affect the physics at hand
and so will not be pursued any further in this section. 	 is
fixed by the ratio r (see Table II). Finally, 
 and � are
determined through Eqs. (26)–(28). The question to be
examined, for each of the popular mixing patterns for
both mass ordering options, is for what range of m0 are
these matrix elements of acceptable magnitude as a
perturbation?

A. Real perturbation

First we consider M0 real, which amounts to � ¼ 0 and
CP-conservation. In this case one can determine the
dependence of � on m0 using Eq. (24). Since 
 and �
are proportional to each other—see Eq. (26)—presenting
any one of them is adequate. Here we present 
 [which is
larger than (equal to) � for the TBM and GR (BM)
mixing models] as a function of m0 as obtained from
Eq. (28).

1. Normal mass ordering

The results for normal ordering are in the left panel of
Fig. 1. � is presented as a function of the lightest neutrino
mass m0. We have shown the case for r ¼ 0. We have
verified that using the small values of r required to fit the
solar mixing angle �12 for the popular models—see
Table II—in Eq. (24) causes no perceptible change10 in
�. r is larger for the �012 ¼ 0 model and this effectively

reduces � by a factor of around 2. As expected, � diverges
as m0 tends to zero.
In the inset we show 
 as a function of m0 for the 1�

limits of �13. In these plots b ¼
ffiffi
2
3

q
corresponding to

tribimaximal mixing. For the other commonly considered
alternatives—bimaximal (b ¼ 1ffiffi

2
p ) and ‘‘golden ratio’’

(b ¼
ffiffiffiffiffi
�ffiffi
5

p
q

) mixing—the ordinate should be scaled

appropriately. For the �012 ¼ 0 model one must use

b ¼ 1.
At this stage one can identify a favored region of m0 by

requiring that the elements of M0—such as 
 and �—
should be of similar order. For this purpose, we plot in
Fig. 2 the ratio j
=�j as a function of m0 (green solid

9We remark about deviations from maximal mixing at the end. 10The corrections are Oðr2Þ.
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curves). For easy identification we have shown where this
ratio corresponds to the values 3 and 1

3 (dot-dashed black

lines), two limits separated by an order of magnitude.
Notice that for normal ordering the ratio is within the
above limits only if 2:3� 10�3 eV � m0 � 3:7�
10�2 eV. If from other experiments a larger value
of m0 is determined, then that could be an indication that
M0 must be complex, as we discuss in the following
section. We remind the reader that these curves are for
tribimaximal mixing. For the bimaximal (‘‘Golden ratio’’)
case the 
=� curves will be lowered (raised) by about
13.35% (4.28%). For the �012 ¼ 0 model � is reduced by

a factor of about 2 while 
 is enhanced by 25%. As an
upshot 
=� is 2.5 times larger, squeezing allowed m0 to
smaller values.

2. Inverted mass ordering

The results for inverted ordering appear in the right
panel of Fig. 1. As before, � as a function of m0 is shown
for r ¼ 0 while 
 for the 1� range of �13 is given in the
inset. As for normal ordering, inclusion in Eq. (24) of the
small values of r required to achieve the best-fit �12 in
the TBM, BM, and GRmodels causes essentially no change
in �. For the �012 ¼ 0 model � is roughly halved. Once

again, we have used the TBM value b ¼
ffiffi
2
3

q
for the calcu-

lation of 
. In this case 
 turns out to be negative. The two
curves in the 
 panel correspond to the 1� limits of �13.

The noteworthy difference from normal ordering is
that � is about an order of magnitude smaller than j
j for
most of the range of m0. The brown dotted curves in
Fig. 2 depict the ratio j
=�j for inverted ordering. It is
seen that they lie outside the range of 1=3 to 3 for all m0

considered. Thus the inverted ordering case would be a less
favored alternative for this picture if the perturbation
is real.

B. Complex perturbation

We now turn to the case of complex M0. If perturbation
theory is to be meaningful then we should expect the
magnitudes of the different dimensionless complex
elements of M0 to be small compared to unity. Barring
fine-tuning, they should also be of roughly similar order.
Below, we take a conservative stand and set

�¼ � exp ði��Þ; 	¼ �exp ði�	Þ; 
¼ � exp ði�
Þ:
(29)

The dimensionless quantity � sets the scale of the
perturbation. The phases ��, �	, and �
 are left

arbitrary.11
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FIG. 2 (color online). The ratio j
=�j is plotted as a function
of the lightest neutrino mass m0 for both mass orderings when
the perturbation M0 is real. The area between the two curves of
the same type is allowed when �13 is varied over its 1�
range. Also indicated are the values 1

3 and 3 for j
=�j—black

dot-dashed lines.

 0.1

 0.2

 0.3

 0.4

 0  0.02  0.04  0.06  0.08  0.1

α 

m0 in eV

Normal Ordering, M´ Real

 0.04

 0.08

 0.12

 0  0.04  0.08  0.12  0.16  0.2

ξ 
m0 in eV  0.004

 0.008

 0.012

 0.016

 0.02

 0  0.04  0.08  0.12  0.16  0.2

α 

m0 in eV

Inverted Ordering, M´ Real

−0.12

−0.08

−0.04

 0  0.04  0.08  0.12  0.16  0.2

ξ 

m0 in eV

FIG. 1 (color online). � and 
 (inset) as a function of the lightest neutrino mass m0 for real M
0. The left (right) panel is for normal

(inverted) mass ordering. In the insets the region between the two curves is allowed when �13 is varied over its 1� range. The results

for 
ð/ bÞ are for tribimaximal mixing (bTBM ¼
ffiffi
2
3

q

 0:816). The corresponding plots for bimaximal (bBM ¼ 1ffiffi

2
p ¼ 0:707), ‘‘golden

ratio’’ mixing (bGR ¼
ffiffiffiffiffi
�ffiffi
5

p
q


 0:851), and the �012 ¼ 0 model (b ¼ 1) can be obtained by scaling.

11The magnitude of � is determined through Eq. (26). 
 and �
have the same phase.
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It is seen from Eq. (21) that

tan� ¼ tan� �
 ¼
�
m�

mþ

�
tan�
; (30)

where � �
 is the phase of �
.

As we elaborate in the following, the phase freedom still
leaves room for some flexibility. In particular, we will
mostly focus on those ranges of m0 which are disfavored
for real M0 as they do not satisfy the chosen criterion 3 �
j
=�j � 1=3. We show that suchm0 are accommodated for
complex M0.

The choice of � is not entirely arbitrary. In particular,
Eq. (21) implies:

��������m
þ

m�

��������� � j �
j � �: (31)

These limits are presented in the left (right) panel of Fig. 3
for the normal (inverted) mass ordering. The upper and
lower limits on � are shown as the green dashed and blue
solid curves. The two curves of each type show how the
limit changes as �13 is allowed to vary over its 1� range.
Tribimaximal mixing has been assumed for these plots.

In addition, from Eq. (24) one has

� �
�������� m�

2mð0Þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2

p
��������Rmass: (32)

The lower limit from this equation is indicated by the
dotted maroon curves in the two panels of Fig. 3. This
limit is independent of both (a) the choice of �13 and
(b) whether the mixing is of the tribimaximal, bimaximal,
or Golden ratio nature. We have checked that the depen-
dence on r is insignificant for the physics calculations. It
can be seen from the left (right) panel of Fig. 3 that for the
normal ordering (inverted ordering) for most values of m0

(for all values m0) the lower limit on � from �
 is more

restrictive. Guided by these results, in the following we
choose � ¼ 0:1, 0.05, and 0.025.

1. Normal mass ordering

From Fig. 2 it is seen that for real M0 and normal mass
ordering, j
=�j is outside the chosen range for m0 �
0:04 eV. If M0 is complex, � in Eq. (24) is replaced by
Reð�Þ. Demanding that the solar splitting is correctly
obtained fixes �� when � is chosen. The results are shown
in the left panel of Fig. 4 for � ¼ 0:1, 0.05, and 0.025.
One can conclude from Fig. 1 that asm0 increases Reð�Þ

approaches zero. This is reflected in Fig. 4 (left panel)
where �� tends to �=2 asymptotically for all choices of
�. For a particular � the lightest neutrino mass m0 has a
lower limit set by Eq. (31) where the curves have been
terminated. The corresponding �� can be read off from
Fig. 3—cos�� is the ratio of the value of the dot-dashed
maroon curve to that of the blue solid curve at this m0. For
these plots we have taken r ¼ 0; the small corrections
Oðr2Þ for the TBM, BM, and GR models are insignificant.
In the �012 ¼ 0model Reð�Þ is reduced to about half and so
�� tends closer to �=2. One should bear in mind that we
have used the central value of Rmass which has a �5%
uncertainty.
As presented in Table II, in the TBM, BM, and GR

models the ratio r ¼ Reð	Þ=Reð�Þ ¼ cos�	= cos�� is

tightly constrained from the solar mixing angle �12. Thus
�	 also tends to �=2 asm0 increases and since r is small it

does so faster than ��. This can be seen from the inset in
Fig. 4.
� is not a free parameter in this model. Rather, picking

a value for �13 amounts to fixing j �
j from Eq. (27). Now,
by choice j
j ¼ �, hence from Eq. (21) one can get �
.

This in turn determines the phase of �
 which equals �.
The results so obtained are presented in the left panel of
Fig. 5 for the TBM (red solid), BM (violet dashed), and
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FIG. 3 (color online). The limits on the scale of the perturbation � for normal (left panel) and inverted (right panel) mass orderings
as a function of the lightest neutrino mass m0. The upper (lower) limits from Eq. (31) for tribimaximal mixing are the green dashed
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GR (green dot-dashed) models for � ¼ 0:1. The brown
dotted curves are for a ¼ 0, b ¼ 1. For each model the
two curves correspond to the 1� upper and lower limits
of �13. It is worthwhile to point out that the procedure
for extracting � using j �
j leaves a twofold uncertainty
� $ �þ �. Keeping this in mind we have shown � in
the first quadrant in Fig. 5 even though the 1� range of
the global fit—Eq. (4)—would prefer the partner �þ �
solution.

In the right panel of Fig. 5 we restrict to the case of
tribimaximal mixing and show the dependence of � on the
scale of perturbation �. The conclusion that can be drawn
from these panels is that � is largely independent of the
lightest neutrino mass and varies over a limited region as
�13 covers its 1� range or � is varied.

A reparametrization invariant measure of CP-violation
is the Jarlskog parameter, J [23]. For arbitrary mixing it
turns out to be

J ¼ Im½Ue1U�2U
�
e2U

�
�1	

¼ 1

4b
½ðb2 � a2Þ sin 2� þ 2ab cos 2�	Imð �
Þ; (33)

where in the last step only the lowest order perturbation
effect is retained. In the inset of the right panel of Fig 5 we
show this CP-violation measure as a function of m0. Note
that J changes sign under � ! �þ �. We remark at this
stage that for the b ¼ 0 case J ¼ 0.

2. Inverted mass ordering

The analysis procedure for inverted mass ordering
is essentially the same. In the right panel of Fig. 4 we
show �� (with �	 in the inset) as a function of m0. The

difference from normal ordering arises due to the appear-

ance of mð0Þ
1 in Eq. (24) which is larger in this case.

Hence, �� and �	 remain closer to �=2 for all m0.

 0

 20

 40

 60

 80

 100

 0  0.04  0.08  0.12  0.16  0.2

φ α
  i

n 
de

gr
ee

s

m0 in eV

Normal Ordering

 89

 90

 91

 92

 93

 0  0.04  0.08  0.12  0.16  0.2

φ γ
  i

n 
de

gr
ee

s

m0 in eV

 0

 20

 40

 60

 80

 100

 0  0.04  0.08  0.12  0.16  0.2

φ α
  i

n 
de

gr
ee

s

m0 in eV

Inverted Ordering

 89

 90

 91

 92

 93

 0  0.04  0.08  0.12  0.16  0.2

φ γ
  i

n 
de

gr
ee

s

m0 in eV

FIG. 4 (color online). �� (�	) for a complex M0 is shown as a function of m0 for normal mass ordering in the left panel
(left panel inset) for three values of �: in decreasing order of line-thickness 0.1, 0.05, and 0.025. In the right panel the same plots are
displayed for inverted mass ordering.

 0

 20

 40

 60

 80

 100

 0  0.04  0.08  0.12  0.16  0.2

δ 
in

 d
eg

re
es

m0 in eV

Normal Ordering, ε =0.10

Bimaximal
Tribimaximal
Golden Ratio

No solar mixing

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.04  0.08  0.12  0.16  0.2

δ 
in

 d
eg

re
es

m0 in eV

TBM, θ13=8.66o

 0.01

 0.02

 0.03

 0.04

 0  0.04  0.08  0.12  0.16  0.2

J

m0 in eV

FIG. 5 (color online). In the left panel � for different models is plotted for the 1� limiting values of �13, namely, 9.1� (thick curves)
and 8.2� (thin curves). � has been taken to be 0.1. The right panel is for the TBM model. Three values of � are chosen—in decreasing
order of thickness � ¼ 0:1, 0.05, 0.025—and �13 is taken at the best-fit value. In the inset is shown the Jarlskog parameter J for the
chosen � and the 1� limits of �13. Both panels are for normal mass ordering. For inverted ordering � ! ð�� �Þ and J is unchanged.

SOUMITA PRAMANICK AND AMITAVA RAYCHAUDHURI PHYSICAL REVIEW D 88, 093009 (2013)

093009-8



The determination of � using Eqs. (27) and (30), on the

other hand, involves only m� and not mð0Þ
i . Consequently,

it can be seen from Eq. (30) that for any m0 the CP-phase
in the inverted and normal mass orderings are simply
related by � $ ð�� �Þ. J remains unchanged. So, �
and J for the inverted mass ordering can be read off
from Fig. 5.

VI. MASS MODELS

The discussion thus far has not been tied to any specific

model for neutrino masses. We restrict ourselves to just a

few remarks here. The perturbation matrix in the flavor

basis12 corresponding to the general form of the mixing

matrix in Eq. (7) is

M0
flavor ¼ mþ

a2� � � ffiffiffi
2

p
ab�þ �

� ðb2�þ 
Þ=2 ð�b2�þ 
Þ=2
� ffiffiffi

2
p

ab�þ � ð�b2�þ 
Þ=2 ðb2�þ 
Þ=2

0
BB@

1
CCA; (34)

where use has been made of Eq. (26) and we have set
� ¼ ðab�þ b
þ a�Þ= ffiffiffi

2
p

.
Attempting to relate the above matrix in its general

form to the popular mass models will take us beyond the
scope of this paper. Rather, we indicate here a limit when
it can arise from a Zee-type model [24]. The required
condition is


 ¼ �ð2� 3b2Þ: (35)

It is seen using Eq. (8) that for this choice the diagonal
elements of M0

flavor become equal and can be subsumed in

the unperturbed matrix. The remaining terms can be
obtained from a Zee-type model.13 In these models
ðM0

flavorÞij is proportional to (M2
i �M2

j ), Mi (i ¼ 1, 2, 3)

being the charged lepton masses. Since m� � m� � me,

without unnatural fine-tunings, one would prefer �
to be much smaller than the other elements of the matrix.
This was already noted earlier [17]; further details and
references can be found therein. An explicit Að4Þ-based
model which exhibits most of these features is given
in [15].

For tribimaximal mixing, i.e., a ¼ 1ffiffi
3

p and b ¼
ffiffi
2
3

q
,

Eq. (35) amounts to taking 
 ¼ 0. For bimaximal mixing
(a ¼ b ¼ 1ffiffi

2
p ) it is accomplished with the choice 
 ¼ �=2.

For the ‘‘golden ratio’’ mixing (a ¼
ffiffiffiffiffiffiffi
1ffiffi
5

p
�

q
, b ¼

ffiffiffiffiffi
�ffiffi
5

p
q

) the

choice 
 ¼ �ð�� 2Þ=ð2�� 1Þ brings M0
flavor to the Zee

form.

VII. CONCLUSION

The neutrino mass spectrum and the mixing angles
exhibit two noteworthy features: the mixing angle �13 is
small compared to the other two angles, namely, �12
and �23, and the solar mass splitting is two orders of

magnitude smaller than the atmospheric splitting,
Rmass ¼ j�m2

21=�m
2
31j ’ 10�2. We show that both of these

small quantities could be the result14 of a perturbation
of a simpler partially degenerate neutrino mass matrix

(mð0Þ
1 ¼ mð0Þ

2 ) along with a mixing matrix, U0, which has

�13 ¼ 0.
The perturbation matrix can be chosen to be real only if

the neutrino mass ordering is normal and the lightest
neutrino mass, m0, less than about 0.04 eV. In this case
there will be no CP-violation in the lepton sector.
For larger values of m0 the perturbation M0 has to be

complex. We show that depending on the overall scale of
the perturbation, which we have indicated by �, the
CP-phase, �, is calculable and could be near maximal
(� ¼ �=2, 3�=2) in some cases. CP-violation varies for
the different popular models—e.g., tribimaximal, bimax-
imal, ‘‘golden ratio,’’ etc. It depends significantly on �—a
smaller perturbation resulting in a smaller �—but is essen-
tially independent of m0. It also varies with �13—in
the tribimaximal model the current 1� (3�) range of �13
translates to about 10� (35�) variation in �.
In this work we have taken the atmospheric mixing to be

maximal (�23 ¼ �=4). The current best-fit values are in the
two adjoining octants, both more than 1� away from
maximality. We have repeated the analysis using these
two best-fit values of �23. We find that the CP-violation
effects are changed by less than 10% in both cases.15

As they stand, none of the popular mixing models are
consistent with the current value of �12 at 1�. We ensure
that for every model the perturbation takes care of this
shortcoming. In passing, we also consider the possibility
that in the unperturbed case �12 ¼ 0 in addition to the
vanishing �13. In such a scenario, both these angles arise
from the perturbation. In this case � is the smallest among
all models.

13An alternate derivation of �13 � 0 using the Zee model can
be found in [25].

14An attempt to generate the solar splitting and �13 at low
energies starting from a partially degenerate mass spectrum and
�13 ¼ 0 at a high scale through renormalization group effects in
a supersymmetric model has been made in [26].

12As noted, 	 is small compared to the scale of the perturbation
fixed by �, 
, and �. In this section, we neglect 	.

15Models have been proposed where the deviation of �23 from
maximality is correlated with the value of �13 [27].
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Neutrino mass matrices which exhibit the features of the

unperturbed mass matrix are common in the literature. The

perturbative contribution can arise from a subdominant

loop contribution from a Zee-type model.
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