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Lepton mixing can originate from the breaking of a flavor symmetry in different ways in the neutrino

and the charged lepton sector. We propose an extension of this framework that allows us to connect the

mixing parameters with masses and, more precisely, with certain types of degeneracy of the neutrino mass

spectrum. We obtain relations between the mixing parameters for the cases of partial degeneracy,

m1 ¼ m2, and complete degeneracy,m1 ¼ m2 ¼ m3. These relations determine also the Majorana phases.

It is shown that relatively small corrections to these lowest-order results can produce the required mass

splitting and modify the mixing without significant changes of the other symmetry results.
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I. INTRODUCTION

Lepton mixing can be a consequence of the breaking of a
flavor symmetry Gf into different residual symmetries, G�

and G‘, for the neutrino and charged lepton mass matrices,
respectively [1]. To a large extent, this approach was
motivated by the peculiar values of the lepton mixing
parameters that seemed to be well approximated by the
so-called tribimaximal (TBM) mixing [2]. TBM mixing
turned out to be difficult to connect with the known ratios
of masses of the charged leptons and neutrinos, and there-
fore, in this approach, the masses of neutrinos and charged
leptons ‘‘decouple’’ from mixing. In other words, TBM
mixing implies the form invariance of the mass matrix—a
situation in which mixing is determined by symmetry
alone. Models that reproduced the TBM mixing and
other interesting mixing patterns were built along these
lines [3–7]. Independent physics (additional symmetries)
was assumed to be responsible for the hierarchy of the
masses of leptons. Indirect relations between mixing and
the mass spectrum appear in some specific models, as a
result of model structure and particle content.

The separate description of mixing and mass hierarchies
(ratios of masses) with different physics involved looks
unsatisfactory. Indeed, the following are true:

(1) In general, masses and mixing have the same origins
following formally from the diagonalization of the
mass matrices. They are generated by the same type
of Yukawa couplings and so should be somehow
related.

(2) In the quark sector, various relations between the
mass rations and mixing parameters have been un-
covered, with the Gatto–Sartori–Tonin relation [8]
being the most appealing one. The latter can be
explained by an Abelian flavor symmetry, e.g., in
the Froggatt–Nielsen approach [9]. There were
some attempts to use discrete symmeries to produce

relations between masses and mixing (see, e.g.,
Ref. [10]). In a number of recent models with dis-
crete flavor symmetries, the sum rules for neutrino
masses (linear relations between masses or their
inverse quantities) have been realized (see, e.g.,
Ref. [11]). However, these relations do not depend
on mixing and turn out to be consequences of spe-
cific restricted model contents and vacuum align-
ments and do not follow from residual symmetries
of the neutrino mass matrix.

(3) The now-established relatively large 1-3 mixing and
the indications of significant deviations of the 2-3
mixing from maximal [12] rule out the exact TBM
mixing and therefore cast doubts about the explanation
of mixing separated frommasses through non-Abelian
symmetries. At the same time, it was shown in
Refs. [13–16] that flavor symmetries can still accom-
modate the recent results on the 1-3 and 2-3 mixings.

In Refs. [14,15], we proposed a formalism for
‘‘symmetry building,’’ which relies on the aforementioned
partial breaking of Gf into two subgroups, G‘ and G�. We

used it to obtain relations between the mixing parameters
without explicit reference to any particular model. It was
shown that consequences of symmetries for mixing, that is,
relations between the mixing parameters or elements of the
mixing matrix (at least at the lowest order) can be obtained
immediately once residual symmetries (transformations)
of the neutrino and charged lepton mass matrices are
known. These symmetry group relations can be obtained
without model building and explicit construction of the
mass matrices and their diagonalizations. Essentially, it is
only assumed that the model is constructed and it leads to
mass matrices with given symmetry properties. The rela-
tions in Refs. [14,15] can be viewed as a tool of symmetry
or/and model building. Once the required relations and the
corresponding residual symmetries are identified, one can
come back and construct the corresponding complete
flavor symmetry and model. After a model is constructed,
one can compute corrections to zero-order structures.
In general, this formalism does not allow us to compute
the latter model-dependent corrections.
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In this paper, we further develop this formalism, which
in Refs. [14,15] was elaborated for mixing only, in order to
also include neutrino masses. Consequently, we obtain
relations between the mixing parameters and certain types
of the neutrino mass spectrum.

The crucial point of the explanation of mixing
decoupled from masses was to use, as G�, the symmetry
of a generic neutrino mass matrixM� with arbitrary eigen-
values. For Majorana neutrinos, the maximal symmetry of
M� is Z2 � Z2, as can be seen immediately in the basis in
which the mass matrix is diagonal.1 This generic symmetry
does not constrain the masses and therefore leads to the
decoupling of mixing. Hence, for the symmetry to predict
both masses and mixings, G� should be enlarged in such a
way that the invariance of the mass matrix is satisfied only
for certain mass spectra.

In this paper, we focus on residual symmetries, G�, that
lead to equalities of the neutrino masses. Indeed, unitary
symmetry transformations can lead either to equalities of
the masses or to zero values of masses.2 In this connection,
we will explore two possiblities: (i) two degenerate neu-
trinos, i.e., equality of two masses, or (ii) three degenerate
neutrinos. The first case can be considered as the lowest-
order approximation to spectra with both normal and in-
verted mass hierarchies. Then, corrections are required that
lead to splitting between the masses. In the case of normal
mass hierarchy with two vanishing masses, the corrections
should generate the mass of at least the second neutrino.

The paper is organized as follows. In Sec. II, we describe
the model-independent method for symmetry building,
applied here to the case of the specific neutrino mass
spectrum. In Sec. III, we consider the case of partial degen-
eracy (equality of two masses). We derive the relations
between mixing parameters, which also include the
Majorana phases. In Sec. IV it is shown that relatively small
corrections to the partially degenerate neutrino mass matrix
can account for the mass splitting and the measured mixing
angles. In Sec. V, we derive constraints on the mixing and
phases in the case of the completely degenerate spectrum.
A discussion and conclusions are presented in Sec. VI.

II. SYMMETRY RELATIONS
FOR MIXING AND MASSES

We assume that neutrinos are Majorana particles.
Working in the flavor basis, the mass terms of the lepton
sector of the Lagrangian read

Lmass ¼ �ERm‘‘L þ 1

2
��c

fLM�U�fL þ H:c:; (1)

where �fL, ‘L, and ER are the leptonic fields:

�fL � ð�e; ��; ��ÞTL, ‘L � ðe;�; �ÞTL, ER � ðe;�; �ÞTR,

and m‘ � diagfme;m�;m�g. The flavor neutrino states

are related to the mass eigenstates, �L � ð�1; �2; �3ÞTL, by
the Pontecorvo–Maki–Nakagawa–Sakata mixing matrix:
�fL ¼ UPMNS�L. Then, the neutrino mass matrix in

the flavor basis, M�U, can be expressed via the diagonal
mass matrix of the neutrino mass eigenvalues, m� �
diagfm1; m2; m3g, and UPMNS as

M�U ¼ U�
PMNSm�U

y
PMNS: (2)

Let G‘ and G�U be the groups of symmetry transforma-
tions that leave invariant the charged lepton and neutrino
mass terms in Eq. (1). The residual flavor symmetries in the
charged lepton and neutrino sectors are, in general, finite
subgroups of these: G‘ � G‘ and G� � G�U. We proceed
to identify G� and G‘ systematically.
For the charged leptons, we have G‘ � Uð1Þ3

corresponding to the electron, muon, and tau lepton
numbers. As in our previous papers [14,15], we assume
that G‘ ¼ Zm. The fact that Zm is generated by one
element implies that it leads to a minimal number of
constraints on the mixing matrix. Analysis of bigger
groups, which lead to stricter conditions UPMNS, is beyond
the scope of this paper.
A representation ofG‘ is given by the matrix T such that

‘L and ER transform as

‘ ! T‘L; ER ! TER; (3)

where

T � diagfei�e ; ei��; ei��g (4)

and

�� � 2�
k�
m

; � ¼ e;�; �: (5)

Invariance of the charged lepton mass matrix m‘ under T
means that the following equality holds: Tm‘T

y ¼ m‘.
According to Eqs. (4) and (5), T satisfies the condition
Tm ¼ I. It is enough to consider a subgroup of SUð3Þ as the
flavor group. This restriction simplifies the considerations
without having any impact in the results of the paper. One
can show that the additional Uð1Þ of Uð3Þ can be factored
out and does not induce any constraint on mixing. Thus, we
impose the equality

�e þ�� þ�� ¼ 0

or, equivalently, k� ¼ �ke � k�, that ensures Det½T� ¼ 1.

Considering now the symmetry group G� of the
Majorana mass term of neutrinos, we explore the possibil-
ity of approximate degeneracy of the mass spectrum. In the
neutrino mass basis, the invariance of the mass matrix
under the transformation

�L ! S�L; (6)

where S belongs to the group G�, means that

1A complete scan of the groups with order less than 1536 and
G� ¼ Z2 � Z2 was performed in Ref. [17].

2The possibility of the symmetry leading to vanishing masses
was considered in Ref. [18].
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STm�S ¼ m�: (7)

If S satisfies Eq. (7), the corresponding matrix SU that
leaves M�U invariant, i.e.,

STUM�USU ¼ M�U;

can be found by switching to the flavor basis:

SU ¼ UPMNSSU
y
PMNS: (8)

Hence, the group G�U is obtained from G� by applying a
similarity transformation withUPMNS to all elements ofG�.
The residual symmetry G� is a discrete subgroup of G�U.

Three cases can be distinguished for G� with increasing
symmetry that corresponds to an increasing degree of
degeneracy of m�.

(A) No degeneracy: G� ¼ Z2 � Z2

The diagonal neutrino mass matrix, m�, with
arbitrary eigenvalues is invariant under the trans-
formations (6) with

S1¼diagf1;�1;�1g; S2¼diagf�1;1;�1g; (9)

and S3 ¼ S1S2. This case was analyzed in
Refs. [14,15], and G� ¼ Z2 or G� ¼ Z2 � Z2 are
possible.

(B) Two degenerate neutrinos: G� ¼ SOð2Þ � Z2

In addition to the matrices in Eq. (9), the neutrino
mass matrix is invariant under rotations of the plane
of mass degeneracy.3 Taking into account the mea-
sured neutrino mass differences, the approximate
degeneracy must be betweenm1 andm2. Therefore,
we take

m�3 ’
m

m

m0

0
BB@

1
CCA; (10)

which is invariant under the transformation

S � S� ¼
c� �s�

s� c�

1

0
BB@

1
CCA; (11)

where c� � cos � , s� � sin � . Analogously to the

case of charged leptons, we imposeG� ¼ Zn so that
Sn� ¼ I and � ¼ 2�l=n. In the flavor basis, Eq. (8),

we must also have

SnU ¼ I:

(C) Three degenerate neutrinos: G� ¼ SOð3Þ
In this case, we have

m� ’ mI; (12)

and S can be any orthogonal 3� 3 matrix. We note
that, according to the Euler rotation theorem, any
three-dimensional (3D) rotation is a one-dimensional
rotation around a certain axis. Thus, any matrix S
that is a symmetry of m� can be written as

S � S�O ¼ OS�O
T; (13)

where O is an orthogonal matrix. The Euler rotation
theorem implies that a basis in the neutrino sector
can be always selected such that the matrix S in this
basis has the form S� . Turning the argument around,

imposing only a Zn symmetry generated by S�O
is not enough to force the three neutrinos to be
degenerate. The most general mass matrix that is
left invariant by a Zn subgroup of Oð3Þ has only
two equal eigenvalues. Thus, if G� imposes full
degeneracy of the neutrino mass matrix, it must be
one of the non-Abelian subgroups of Oð3Þ with 3D
representations, i.e., A4, S4, or A5.

4

As it was shown in Ref. [14], the relations between
mixing matrix elements follow from the condition that
the symmetry transformations of the charged leptons and
neutrinos in the flavor basis belong to the same discrete
group Gf. That is, the product

WU � SUT (14)

must also belong to Gf. Furthermore, since Gf is finite,

there must exist an integer p such that

Wp
U ¼ ðSUTÞp ¼ I: (15)

The relations

SnU ¼ Tm ¼ Wp
U ¼ I (16)

form a presentation of Gf and define the von Dyck group

Dðn;m; pÞ.
Equation (15) is a constraint on the mixing matrix [14].

To see this, notice that the eigenvalues ofWU are three p th

roots of unity, �ðpÞ
1 , �ðpÞ

2 , and �ðpÞ
3 . Defining

a � Tr½WU� ¼ �ðpÞ
1 þ �ðpÞ

2 þ �ðpÞ
3 ;

we have from Eq. (15) that

Tr½UPMNSSU
y
PMNST� � Tr½W� ¼ a: (17)

3A model for two degenerate neutrinos based on the group
DN—a discrete subgroup of Oð2Þ—has been proposed in
Ref. [19], in which a relation that connects 	13, the electron
mass, and the CP phases was obtained. The approach in
Ref. [19] differs from ours in that DN is the symmetry of whole
leptonic sector, introduced to explain small observed parameters
that describe masses and mixing.

4For an early A4 model predicting a nearly degenerate neu-
trino spectrum, see Ref. [20].
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Since the pth roots of unity are a finite set, the rhs of this
equation takes values from a finite set of known complex
numbers. For known a, and given S and T, Eq. (17) is a
complex condition that the entries of UPMNS must satisfy.

Although we will proceed below in all generality, the
case analysis of n, m, and p is significantly reduced after
the following consideration. It is a known fact [14] that in
order for the von Dyck group to be finite, one of n, m, or p
must be equal to 2. In Refs. [14,15], we took n ¼ 2 con-
sistent with G� ¼ Z2. However, to enforce degeneracy in
the neutrino mass matrix, it must be n � 3. Assuming also
that all charged leptons have different charges under T, i.e.,
m � 3, we obtain that due to the finiteness of the group, it
must be p ¼ 2.

Equation (15) can then be written as

W2
U ¼ ðUPMNSSU

y
PMNSTÞ2 ¼ I;

and the eigenvalues of WU must be equal to þ1 or �1.
Moreover, taking into account that det ½WU� ¼ 1, the
eigenvalues ofWU must be f1;�1;�1g, ifWU is not trivial.
Hence, we obtain

a ¼ Tr½WU� ¼ Tr½UPMNSSU
y
PMNST� ¼ �1: (18)

The condition in Eq. (18) is appropriate when a residual
symmetry in the neutrino sector forces the neutrino mass
matrix to be of the form B or C.
In what follows, we find explicitly the constraints

imposed on UPMNS and compare them with experimental
data. For UPMNS, we will use the standard parametrization
given by

UPMNS ¼ U23ð	23Þ�
U13ð	13Þ��

U12ð	12Þ�M (19)

UPMNS ¼
c12c13 s12c13 e�i
s13

�s12c23 � ei
c12s23s13 c12c23 � ei
s12s23s13 s23c13

s12s23 � ei
c12c23s13 �c12s23 � ei
s12c23s13 c23c13

0
BB@

1
CCA�M; (20)

where Uij are the matrices of rotations in the ij planes
on the angles 	ij,

�
 � diagf1; 1; ei
g; �M � diagf1; ei�; ei�g; (21)

and c12 � cos 	12, s12 � sin 	12, etc.

III. CONSTRAINTS ON MIXING FOR THE
PARTIALLY DEGENERATE SPECTRUM

For the partially degenerate spectrum, the neutrino
mass matrix and the corresponding symmetry are given
by Eqs. (10) and (11), respectively, with � ¼ 2�l=n. The
matrix m� can be a good lowest-order approximation to
both normal and inverted mass hierarchies. Corrections
could then produce small splitting between the degenerate
states and modify mixing angles when needed.

Setting S ¼ S� , we have from Eq. (18) the symmetry

relation

Tr ½SUT� ¼ Tr½UPMNSS�U
y
PMNST� ¼ �1:

Explicit computation of SU [see Eq. (8)] gives

ðSUÞ�� ¼ c� þ 2s2�=2jU�3j2 þ i2s� ImðU�2U
�
�1Þ; (22)

where s�=2 � sin ð�=2Þ. It is convenient to introduce the

real and imaginary parts of ðSUÞ�� ¼ R� þ iI�:

R� ¼ c� þ 2s2�=2jU�3j2; I� ¼ 2s� ImðU�2U
�
�1Þ: (23)

Notice that the index 3 in the real part of ðSUÞ�� is related
to the nondegenerate third mass eigenstate. According to
Eq. (17), the trace of WU equals

Tr ðWUÞ ¼ ðSUÞeeei�e þ ðSUÞ��e
i�� þ ðSUÞ��ei�� ¼ a;

and, consequently, from the real and imaginary parts of this
equation, we obtain using Eq. (23)X

�

ðR�cos���I� sin��Þ¼Re½a�; �¼e;�;�; (24)

X
�

ðR� sin���I�cos��Þ¼ Im½a�; �¼e;�;�: (25)

These are the conditions imposed on mixing by the
symmetry in the case of partial degeneracy. Explicit
equations for the mixing angles and phases in Eq. (20)
can be found by substituting R� and I� from Eq. (23) in
Eqs. (24) and (25).
As an example, we consider the case in which

�e ¼ 0, �� ¼ ��� � c , so that the charged lepton

transformation matrix has the form

T ¼ diagf1; eic ; e�ic g: (26)

Equations (24) and (25) are then reduced to

Re þ cc ðR� þ R�Þ þ sc ðI� � I�Þ ¼ Re½a�; (27)

Ie þ cc ðI� þ I�Þ þ sc ðR� � R�Þ ¼ Im½a�; (28)

and inserting Eq. (23) in Eqs. (27) and (28), we obtain

jUe3j2�2xIm½U�2U
�
�1�U�2U

�
�1�þx2¼1þRe½a�

4s2c =2s
2
�=2

; (29)

D. HERNANDEZ AND A. YU. SMIRNOV PHYSICAL REVIEW D 88, 093007 (2013)

093007-4



2 Im½Ue2U
�
e1� � yðjU�3j2 � jU�3j2Þ ¼ Im½a�

s�
: (30)

Here, we have introduced parameters

x � cot
c

2
cot

�

2
; y � cot

c

2
tan

�

2
; (31)

which depend only on the group properties. From Eq. (31),

xy ¼ cot 2 c
2 and x=y ¼ cot 2 �

2 , and, consequently, x and y

should have the same sign.
Equations (29) and (30) can be immediately generalized

to the cases in which the lepton that has zero charge under
T is the muon or the tau. The general equations are

jU�3j2 � 2x Im½U1U
�
2 �U�1U

�
�2� þ x2 ¼ 1þ Re½a�

4s2c =2s
2
�=2

;

(32)

2 Im½U�1U
�
�2� � yðjU�3j2 � jU3j2Þ ¼ Im½a�

s�
: (33)

Here, ð�;; �Þ is ðe;�; �Þ or any other combination with a
cyclic permutation of these flavor indices. Equations (29)
and (30) correspond to the case � ¼ e. Notice that
Eqs. (32) and (33) represent yet another generalization of
the results of Ref. [14], which can be reproduced by setting
� ¼ �.

When there is partial degeneracy in the neutrino mass
matrix, only a ¼ �1 [see Eq. (18)] leads to finite
groups. The explicit conditions on mixing imposed by
the symmetry are then reduced to

ðjU�3j	xÞ2¼2xðIm½U1U
�
2�U�1U

�
�2�	jU�3jÞ; (34)

2 Im½U�1U
�
�2� ¼ yðjU�3j2 � jU3j2Þ: (35)

The set of solutions of Eqs. (34) and (35) is very
restricted. To show this, we will use the standard parame-
trization, Eq. (20), for jU�ij2 and consider for definiteness
the case � ¼ e. Notice, nonetheless, that our results do not
lose generality since, for any choice of �, there exists a
parametrization such that the equations have the form to be
discussed below.

We distinguish two cases, x > 0 and x < 0, which imply
y > 0 and y < 0, respectively. In the standard parametri-
zation and for jUe3j ¼ sin 	13 � 0, Eqs. (34) and (35) can
be written as

ðsin 	13 	 xÞ2 ¼ 2xðA1 þ A2Þ; (36)

sin 2	12 sin� ¼ y cos 2	23: (37)

Here, � is the Majorana phase defined in Eq. (20), and the
minus (plus) sign corresponds to x > 0 (< 0). A1 and A2

are given by

A1 ¼ � 1

2
ð1þ sin 2	13Þ cos 2	23 sin 2	12 sin�; (38)

A2 ¼ sin 	13½ðcos� sin
� cos
 sin� cos 2	12Þ
� sin 2	23 	 1�: (39)

Substituting cos 2	23 from Eq. (37) into Eq. (38), we
obtain

A1 ¼ � 1

2y
ð1þ sin 2	13Þsin 22	12sin

2�; (40)

so that A1 
 0 for x > 0 and A1 � 0 for x < 0 (recall that x
and y have the same sign). Since

j cos� sin
� cos
 sin� cos 2	12j 
 1;

from Eq. (39), we have A2 
 0 for x > 0 and A2 � 0 for
x < 0. We can combine these two results:

Ai 
 0; x > 0;

Ai � 0; x < 0; ði ¼ 1; 2Þ:
(41)

Let us consider the case x > 0 and therefore y > 0.
Since both Ai are negative, see Eq. (41), the equality in
Eq. (36) can be satisfied only if

sin	13 ¼ x; A1 ¼ 0; A2 ¼ 0: (42)

Then, according to Eq. (40), there are two types of
solutions of equation A1 ¼ 0:
(1) � ¼ 0. In this case, we find from Eq. (39)

A2 ¼ sin	13ðsin
 sin 2	23 � 1Þ ¼ 0, which gives

 ¼ �=2 and 	23 ¼ �=4. There are no constraints
on 	12.

(2) 	12 ¼ 0ð�=2Þ. Then, from Eq. (39), we have
A2 ¼ sin	13½sin ð
	 �Þ sin 2	23 � 1� ¼ 0, which
is satisfied if 	23 ¼ �=4 and 
	 � ¼ �=2. Here,
the minus (plus) sign corresponds to 	12 ¼ 0 (�=2).
Thus, only one combination of the two phases is
determined in this case.

In particular, we stress that there exists a mixing matrix
that satisfies the constraints for every value of 	12, which is
in this sense undetermined.
Similarly, one can consider the case of x < 0 that leads to

sin	13 ¼ �x and changes the signs of the phases. So, for
both signs of x, the first class of solutions can be written as

sin	13¼�x; 	23¼�

4
; 
¼��

2
; �¼0; (43)

where 	12 and the second Majorana phase � are undeter-
mined. This type of solution can provide a good first
approximation to the mixing matrix.
For the second type, we can take 	12 ¼ 0 for

definiteness. Then, the solution is given by
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sin 	13 ¼ �x; 	23 ¼ �

4
;

	12 ¼ 0; 
� � ¼ ��

2
:

(44)

Clearly, the vanishing value of 	12 (or 	12 ¼ �=2)
contradicts observation. However, since m1 ¼ m2, small
perturbations that produce splitting can also generate large
1-2 mixing (see Sec. IV).

There is a simple interpretation of the two cases consid-
ered above in terms of the UPMNS in Eq. (24) and the
neutrino mass matrix in the flavor basis, Eq. (2). If
� ¼ 0, then �M ¼ diagð1; 1; ei�Þ, so that U12 and �M com-
mute. After permutation of these matrices in Eq. (2), U12

turns out to be attached to the degenerate mass matrix.
Consequently, it can be omitted, and we obtain

UPMNS ¼ U23�
U13�
�

�M: (45)

It is evident that the same result, Eq. (45), can be obtained
for the second case in which 	12 ¼ 0ð�=2Þ. Thus, the two
solutions, we have found, correspond to the elimination of
the U12 matrix.

The two types of solutions can be represented in the
form of immediate relations between the mixing parame-
ters and mass ratios. In the first case, Eq. (43), we have

sin 22	23 ¼ � sin
 ¼ cos� ¼ m1

m2

¼ 1; (46)

and in the second one,

sin 22	23 ¼ cos 2	12 ¼ � sin ð
� �Þ ¼ m1

m2

¼ 1: (47)

In both cases, 	13 is not related to masses. Although the
relations (46) and (47) are obtained post factum, their
appearance is not accidental; symmetry that led to certain
values of mixing angles and phases encodes information
about masses (mass spectrum).

It is not hard to understand why 	12 should be
undetermined in the solution of type 1. Indeed, for
the partially degenerate spectrum, we have the additional
freedom to perform an arbitrary rotation in the 1-2 plane,
O12 ¼ O12ð	Þ. In this case, the mixing matrix has the
general form

UPMNS ¼ U23�
U13�
�

U12�MO12:

If � ¼ 0, as is the case in the type 1 solution, then �M ¼
diagf1; 1; ei�g, so that �MO12 ¼ O12�M. Consequently, the
additional 1-2 rotation is reduced to

U12ð	12Þ ! U12ð	12 þ 	Þ;
where 	 is arbitrary and therefore the 1-2 mixing is un-
determined. On the other hand, for the type 2 solution, �
can be different from zero. Thus, the freedom to redefine
	12 no longer exists, and it is natural that a precise value for
	12 is predicted, 	12 ¼ 0 or �=2 in this case.

The solutions we obtained correspond to zero values
of the left- and right-handed parts of Eqs. (34) and (35)
separately. They can be written in a parametrization-
independent form as

jU�3j ¼ �x; (48)

Im ½U1U
�
2 �U�1U

�
�2� ¼ �x; (49)

Im ½U�1U
�
�2� ¼ 0; (50)

jU3j2 ¼ jU�3j2; (51)

being valid for any choice of flavor index �. The relation
(51) leaves only � ¼ e for a plausible explanation of the
experimental data.
Let us compute the group parameter x, which determines

	13 [see Eq. (43)]. The combinations of numbers ðm; nÞ ¼
ð3; 3Þ, (3, 4) (4, 3), ð3; 5Þ, and (5, 3), which determine the
angles c ¼ 2�k=m and � ¼ 2�l=n, exhaust the finite von
Dyck groups. We find that the experimental value of 	13 is
best approximated by choosing ðm; nÞ ¼ ð5; 3Þ or (3, 5),
which corresponds to the groupA5. In this case, for k ¼ 2,
l ¼ 1 we obtain

sin	13 ¼ cot
�

3
cot

2�

5
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
1� 2ffiffiffi

5
p

�s
’ 0:187: (52)

This value, 	13 � 11, is a good first approximation to the
measured one [12].
As another example, we take ðm; nÞ ¼ ð3; 3Þ with k ¼ 1

and l ¼ 1. This corresponds to an A4 group and leads to

sin 	13 ¼ cot 2
�

3
¼ 1

3
; (53)

which has interesting theoretical implications for the case
of complete degeneracy, as we see in Sec. V, despite being
rather far from the experimental value.

IV. CORRECTIONS TO SYMMETRY RESULTS

The mixing and mass splitting we have obtained in the
previous sections as consequences of symmetry do not
agree with experimental data. In particular, the 1-2 mass
splitting is zero; the 1-2 mixing is zero, �=2, or undefined;
and the 2-3 mixing is maximal, which is somewhat disfa-
vored by present data. In what follows, we will show that
actually the obtained mass and mixing patterns can be
considered as zero-order structures. For this, we prove
that relatively small corrections to the neutrino mass
matrix (and not to the mixing) can fix the problems listed
above.
For definiteness, we will consider the effect of a pertur-

bation on the first solution, Eqs. (43) and (45)—the second
solution can be considered similarly. In this case, the
mixing matrix is given by
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U0
PMNS ¼ U23ð45Þ��=2U13���=2

¼ 1ffiffiffi
2

p
ffiffiffi
2

p
c13 0 �i

ffiffiffi
2

p
s13

�is13 1 c13
�is13 �1 c13

0
B@

1
CA: (54)

In what follows, it will be convenient to consider the
Majorana phase attached to the third mass eigenvalue. That
is, we start with a zeroth-order mass matrix,

m0
�d � diagfm;m;m0

�g; (55)

with

m0
� � m0e�i2�:

Let us introduce a perturbation of Eq. (55),

m�d ¼ m0
�d þ 
m�d;

where 
m�d is assumed to take a simple form,


m�d � diagð0; �; 0Þ:
This perturbation yields the 1-2 mass splitting

�m2
21 ¼ 2m�þ �2 (56)

and makes the 1-2 rotation physical. Using Eqs. (2) and
(54), we obtain in the flavor basis

m� ¼ m0
� þ 
m�; (57)

where the zeroth-order matrix

m0
� ¼ U0�

PMNSmdU
0y
PMNS ¼ m

1� s213ð1þ rÞ i 1ffiffi
2

p s13c13ð1þ rÞ i 1ffiffi
2

p s13c13ð1þ rÞ
� � � c213

2 ð1þ rÞ c213
2 ð1þ rÞ � 1

� � � � � � c213
2 ð1þ rÞ

0
BBBB@

1
CCCCA (58)

and

r � m0

m
e�i2�: (59)

The matrix in Eq. (58) has the features that correspond to
maximal 	23 and vanishing 	12, i.e., m0

e� ¼ m0
e� and

m0
�� ¼ m0

��. The partial degeneracy is encoded in a more

complicated relation between the elements: m0
��ðm0

ee �
m0

�� þm0
��Þ ¼ m0

e�
2. Violation of these equalities leads

to generation of the 1-2 mixing and splitting as well as
deviation of the 2-3 mixing from the maximal.

The matrix of corrections 
m� in Eq. (57) can be
written as


m� ¼ �V � VT; (60)

where V is the second column of the PMNS matrix:

VT �
�
s12c13;

1ffiffiffi
2

p ðc12 þ is12s13Þ; 1ffiffiffi
2

p ð�c12 þ is12s13Þ
�
:

Here, we left all the parameters unchanged except for the
introduction of nonzero 1-2 mixing. From Eq. (56), we
obtain

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21 þm2
q

�m: (61)

In the case of strong normal mass hierarchy, m � � and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

q
. On the other hand, for a strongly degenerate

spectrum, we have � ¼ �m2
21=2m. The latter expression is

also obtained in the case of strong inverted mass hierarchy

when m �
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

31

q
. In this case,

�

m
� �m2

21

2�m2
31

� 1:6� 10�2:

Comparing the zeroth-order values of the elements of
the mass matrix, Eq. (58), with the corrections in Eq. (60),
we arrive at the following conclusions:
(1) For the ee element, 
mee=m

0
ee � 2 for the normal

mass hierarchy when m � �. The ratio goes below
0.4 when m2 � �m2

21.
(2) For the off-diagonal elements in the case of normal

mass hierarchy, we obtain 
me�=m
0
e� � 1=2s13,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m2
21=�m

2
31

q
� 0:4 for m � �. If m2 � �m2

21,

the ratio is less than 0.15.
(3) In the case of inverted mass hierarchy for r � 1, the

corrections equal 
mee=m
0
ee � �=3m � 5� 10�3

and 
me�=m
0
e� ¼ �=ðm sin 2	13Þ � 5� 10�2. The

corrections for the elements of the �� � block are
of the order �=m.

Thus, except for the ee elements in the case of strong
normal mass hierarchy, the relative corrections to the mass
matrix required to generate 1-2 mass splitting and 1-2
mixing are small, less than 0.2. At the same time, other
parameters—the masses, 1-2 and 1-3 mixing, and the CP
phase—can remain unchanged. The latter, however,
implies correlations among the corrections to different
elements of the mass matrix, which might be difficult to
achieve.
If generic corrections of order �� 0:2m are introduced

in the mass matrix, all the mass and mixing parameters will
be modified. Let us prove that these modifications can be
small. For this, we will take the simple perturbation matrix
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mdem ¼ �

3
��D�� ¼ �

3

1 1 �1

� � � 1 �1

� � � � � � 1

0
BB@

1
CCA; (62)

whereD is the democratic matrix with all elements being 1
and �� ¼ diagð1; 1;�1Þ.5

Let us compute the masses and mixing parameters for
m0

� ¼ m0
� þ 
mdem, where m

0
� is given in Eq. (58). For the

mass eigenvaluesm0
i ofm

0
�, and neglecting contributions of

order s213, we obtain

m0
1¼m; m0

2¼mþ1

3
ð2þc213Þ’mþ�; m0

3’m0: (63)

To find the corresponding mixing angles, we first make the
zeroth-order rotation in Eq. (45), which yields

U0T
PMNSðm0

�þ
mdemÞU0
PMNS

¼�

3

c213þ3m=�
ffiffiffi
2

p
c13 �is13c13

��� 2þ3m=� �i
ffiffiffi
2

p
s13

��� ��� �s213þ3mr=�

0
BB@

1
CCA: (64)

The matrix above can be subsequently diagonalized by a
rotation,

U0 ¼ ��=2U
0
13U

0
23U

0
12���=2: (65)

Up to order s213 corrections and other small angles correc-

tions, this gives sin 2	012 � 1=3 in good agreement with the
data. Furthermore, if we assume for simplicity that � ¼ 0
so that r is real, and multiply Eq. (64) by ��=2, which

follows from Eq. (65), we obtain

tan 	013 � � �

3m0 s13c13 
 s13
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

2�m2
31

s
� 0:05s13;

and

tan	023 � � 1ffiffiffi
2

p 2s13
3

�

m0 �
0:02ffiffiffi
2

p ;

i.e., less than 2%. Thus, the PMNS matrix including
corrections can be written as

UPMNS ¼ U0
PMNSU

0

¼ U23ð45Þ��=2U13ð	13 þ 	013ÞU0
23U

0
12���=2

¼ U0
PMNSð	13 þ 	013Þ��=2U

0
23U

0
12���=2: (66)

The PMNS matrix is determined by Eq. (66) up to a phase
matrix, which can be attached from the right, and we will
use this to reduce Eq. (66) to standard parametrization
form. We can now compute the elements of the matrix in
Eq. (66) explicitly and identify them with the elements
of the mixing matrix in the standard parametrization

(subscripts s). The e2 element equals cs13s
s
12 ¼ c13s

0
12 �

s13c12s
0
23; that is, the correction to the equality 	

s
12 ¼ 	012 is

of the order s13s
0
23. To determine other angles and the

Dirac CP phase, it is enough to consider the third column
of Eq. (66),

ðUPMNSÞT�3 ¼ ð�is13c
0
23e

�i�=2; �ei�; �e�i�Þ; (67)

where

� ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c213c

02
23 þ s0223

q
� 1ffiffiffi

2
p ; tan� ¼ � 1

c13
tan	023

(68)

or � � �	023. The phase of theU�3 element in Eq. (67) can

be removed (as it should be in the standard parametriza-
tion) by acting on the right-hand side of Eq. (66) with the
additional phase matrix diagð1; 1; e�i�Þ. This means that
the CP phase is modified to 
 ¼ �=2þ �.
Thus, we have shown that a simple correction matrix can

generate an acceptable 1-2 mixing, the required mass
splitting, and produces only small (few percent) correc-
tions to the other mixings and to the CP-violation phase.

V. CONSTRAINTS ON MIXING FOR THE
COMPLETELY DEGENERATE SPECTRUM

As we remarked in Sec. II, M�U can be forced to be
completely degenerate, if a non-Abelian discrete subgroup
of Oð3Þ with three-dimensional representations is imposed
as G�. The possible groups are thus restricted to A4, S4,
andA5. These can be generated by two matrices, S� and P,
which satisfy

Sn� ¼ P2 ¼ ðS�PÞr ¼ I: (69)

We take a basis for the neutrinos such that S� is given by

Eq. (11). The second matrix, P, can be represented as

P ¼ OTPDO; (70)

where

PD ¼ diagf1;�1;�1g; (71)

and O ¼ Oð�12; �13; �23Þ is a generic orthogonal matrix
of rotations on the angles �ij.

In the charged lepton sector, we take, as before,
G‘ ¼ Zm. The generator T must now satisfy conditions like

Eq. (15) with both SU and PU ¼ UPMNSPU
y
PMNS. Hence, the

complete presentation for the flavor group Gf is given by

SnU ¼ Tm ¼ P2
U ¼ I; ðSUPUÞr ¼ ðS�PÞr ¼ I; (72)

ðSUTÞ2 ¼ ðPUTÞq ¼ I: (73)

Notice that this presentation does not guarantee that Gf is

finite. Following the same argument exploited in case B,
we obtain that Eqs. (72) and (73) impose a set of conditions
on matrices UPMNS and O,

5This matrix is close to the correction matrix in Eq. (60) and
can be motivated by symmetry arguments.
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Tr ½UPMNSS�U
y
PMNST� ¼ �1; (74)

Tr ½OS�O
TPD� ¼ ar; (75)

Tr ½UPMNSO
TPDOUy

PMNST� ¼ aq; (76)

where arðaqÞ is the sum of three rth (qth) roots of unity.

The solutions of Eq. (74), which coincides with condition
of the previous case, are given in Eqs. (43) and (44). Two
other equations are new; Eq. (75) is the one for the matrix
O, instead of UPMNS, and it can be solved in a similar way.
Using a parametrization for matrix O similar to Eq. (20)
with vanishing CP phases, we get

sin 2�13 ¼ ar þ 1

2ð1þ cos �Þ ; (77)

where �13 is the angle in O equivalent to 	13 in Eq. (20).
Substituting Eqs. (43) and (77) in Eq. (76), we obtain a new
equation for the remaining parameters ofUPMNS that either
has no solution—and the group representation in question
does not exist—or fixes the Majorana phase �.

For the values of the parameters in Eqs. (43) and (52),
Eq. (76) has no solutions. For the pattern with the 1-3
mixing from Eq. (53), Eq. (76) does have a solution if
r ¼ 3 and q ¼ 3. For these values of r and q, the flavor
group is G� ¼ A4. We obtain for the second Majorana
phase, �,

� ¼ 3�

2
: (78)

A few comments are in order. It is easy to check that T
can be written as a combination of PU, and SU, so that it is
not an independent generator. Since Gf ¼ A4, this theory

corresponds to a case in which the flavor groupGf remains

unbroken in the neutrino sector while it is broken to a Z3

subgroup in the charged lepton sector.
Out of six parameters that appear in UPMNS, three are

unphysical in the fully degenerate case [21]. This seems to
be in contradiction with the fact that we have determined
five parameters f	13; 	23; 
; �; �g by means of the symme-
try. Actually, some of these parameters have been fixed, not
by the symmetry but by our choice of basis. Indeed, to
perform the analysis, we assumed that the group Gf ¼ A4

included the 1-2 rotation S� as one of the generators.

However, for fully degenerate neutrinos, rotations around
any axis could serve as symmetries of the neutrino mass
matrix. Hence, if SU, PU, and T satisfy Eqs. (74) and (75)
for some UPMNS, then also T and the new matrices S0U and
P0
U defined as

S0U ¼ VSUV
T; P0

U ¼ VPUV
T (79)

satisfy Eqs. (74) and (75) for a mixing matrix U0
PMNS

given by

U0
PMNS ¼ UPMNSV

T: (80)

Here, V is any orthogonal matrix. Thus, the mixing
parameters found are written in basis-dependent form.
One can only say that there exists a basis in which the
UPMNS angles and phases have the values in Eqs. (43) and
(78). In general, according to Eq. (80), three parameters are
unphysical out of the six that appear in UPMNS in the
standard parametrization.
The basis-independent physical quantities are combina-

tions of the elements of UPMNS that are invariant under
orthogonal rotations of the neutrino fields and the usual
phase redefinitions of leptons. These functions are nothing
else but the absolute values of the elements of the matrix
U ¼ UT

PMNSUPMNS. It is easy to see that since U is sym-

metric and unitary, only three out of the nine elements
jUijj are independent as expected according to the analy-

sis above. Furthermore, the matrixU is proportional to the
mass matrix in the flavor basis, which has physical mean-
ing; e.g., its ee element determines the amplitude on
neutrinoless double-beta decay.

VI. CONCLUSIONS

In this paper, we further developed the formalism of the
symmetry building in such a way that it includes both
mixing parameters and neutrino masses. More precisely,
the formalism connects partially and completely degener-
ate neutrino spectra with the mixing angles and CP phases.
These are the only possibilities (along with zero mass) that
can be obtained as consequences of the unitary residual
symmetries.
The case of partial degeneracy, m1 ¼ m2, follows when

a Zn subgroup of SOð2Þ with n � 3 is preserved in the
neutrino sector. It can be a good lowest-order approxima-
tion to the spectrum of normal (inverted) mass hierarchy.
This case is very restrictive, leading to four conditions on
the mixing parameters. For m1 ¼ m2, we have found two
types of solutions with fourmixing parameters fixed. Both
solutions show maximal 2-3 mixing and 1-3 mixing deter-
mined directly by the group parameters. They differ by the
values of the 1-2 mixing and CP-violation phases. In the
first solution, 	12 is undefined, but both phases are fixed:

 ¼ �=2 and � ¼ 0. The second solution has 	12 equal to
zero or �=2 and one condition on the phases: 
	 � ¼
�=2. In the case that gives the best approximation to the
measured values, the symmetry group isA5, and we obtain
sin	13 ¼ 0:187.
These solutions should be considered as a lowest-

order approximation. Relatively small corrections can
produce the mass splitting and fix 	12 in one case and
generate 	12 in another. Corrections may also give better
agreement of the 1-3 and 2-3 mixings with observations.
We show that in the first case, the corrections proportional
to the ‘‘democratic’’ matrix can produce the 1-2 mass
splitting and mixing in agreement with observations while
giving rise to very small corrections to the other mixing
parameters and CP phases.
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A completely degenerate spectrum is achieved if the re-
sidual symmetry in the neutrino sector is eitherA4,S4, orA5.
In this case,UPMNS has only three physical parameters, all of
which are determined by the symmetry. In our formalism,
this is made explicit by the fact that, in a particular basis, all
the angles and CP phases of the mixing matrix—except for
	12, which remains undefined—are fixed.

The values of the charged lepton masses are not involved
in this consideration. In fact, the inclusion of charged
leptons may produce corrections that will make the scheme
with degeneracy to be viable. At the same time, it will be

probably difficult to immediately extend this consideration
to the quark sector and treat two light families as being
degenerate in the first approximation.
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