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Using the field-theory-inspired expression for the pion electromagnetic form factor F�, a good

description of the data in the range �10< s < 1 GeV2 is obtained upon taking into account the

pseudoscalar-pseudoscalar (PP) loops. When the vector-pseudoscalar (VP) and the axial vector–pseudo-

scalar (AP) loops are taken into account in addition to the PP ones, a good description of the BABAR data

on the reaction eþe� ! �þ�� is obtained at energies up to 3 GeV. The inclusion of the VP and AP loops

demands the treatment of the reactions eþe� ! !�0 and eþe� ! �þ���þ��. This task is performed

with the SND data on !�0 production and the BABAR data on �þ���þ�� production, both in eþe�

annihilation, by taking into account �ð770Þ and the heavier �ð1450Þ, �ð1700Þ, and �ð2100Þ resonances.
The problems arising from including the VP and AP loops are pointed out and discussed.
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I. INTRODUCTION

Some time ago we suggested a new expression for the
electromagnetic form factor of the pion F� [1–3], which
describes the data on the reaction eþe� ! �þ�� [4–7]
restricted to the time-like region 4m2

� < s � 1 GeV2. The
expression takes into account the strong resonance mixing
via common decay modes and the �! mixing. It has both
the correct analytical properties and the normalization
condition F�ð0Þ ¼ 1, and can be represented in the form

F�ðsÞ ¼ 1
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; (1.1)

where i (i ¼ 1; 2; 3; . . . ) counts the �-like resonance states
�1 � �ð770Þ, �2 � �ð1450Þ, �3 � �ð1700Þ; . . . , and the
quantity

g�V ¼ m2
V

gV
(1.2)

(V ¼ �1;2;3;..., !) is introduced in such a way that eg�V is

the �V transition amplitude, where e is the electric charge.
As usual, the coupling constant gV is calculated from the
electronic width

�V!eþe� ¼ 4��2mV

3g2V
(1.3)

of the resonance V. The quantities gij=� are the matrix

elements of the matrix G�1 given by Eq. (3.7) below, and
� ¼ detG. Ellipses mean additional states, like �ð2100Þ,
etc. It is assumed that the direct G-parity-violating decay
! ! �þ�� is absent, that is, g!�� ¼ 0. The quantity
��1! is responsible for the �! mixing. See Ref. [1] for

more details concerning Eq. (1.1). We note that an expres-
sion similar to Eq. (1.1) was used earlier [8] for the
description of data in the time-like domain, but it had a
disadvantage in that the normalization condition F�ð0Þ¼1
was satisfied only within an accuracy of 20%.
Using the resonance parameters found from fitting the

data [4–7], the continuation to the space-like region s < 0
was made, and the curve describing the behavior of F�ðsÞ
in the range �0:2 GeV2 < s < 0 GeV2 was obtained [1]
and compared with the data [9] in this interval of the
momentum transfer squared. The space-like interval was
further expanded to s ¼ �10 GeV2 in a subsequent work
[3], and a comparison was made with the data [10–12]
existing in that interval. The basic ingredient in the above
treatment is the inclusion of the pseudoscalar-pseudoscalar
(PP) loops, specifically the �þ�� and K �K ones. These
contributions are dominant at the center-of-mass energy
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ffip
s � 1 GeV. Going to higher energies (up to 3 GeV) of

the reaction eþe�!�þ�� [7] requires the inclusion of the
vector-pseudoscalar (VP) and axial vector–pseudoscalar
(AP) intermediate states. This is the aim of the present
work. The particular VP state !�0 produced in eþe�
annihilation was studied by the SND team in Ref. [13],
while the AP state of the type a1� is the intermediate state
in the reaction eþe� ! �þ���þ�� studied by BABAR
[14]. An attempt to describe these reactions in the frame-
work of the three-channel approach, taking into account
the PP, VP, and AP intermediate states, is also undertaken
in the present work. Furthermore, a suitable scheme with
three subtractions for the nondiagonal polarization opera-
tors is used in the present work, as opposed to Refs. [1–3]
where a scheme with two subtractions was used.

Of course, there are many works in the current literature
devoted to analyzing the pion form factor in models that
are different from that proposed here and in Refs. [1–3]. In
particular, a model with a broken hidden local symmetry
added to the�þ�� andK �K loops at energies

ffiffiffi
s

p � 1 GeV
was used in Refs. [15–17], without attempting to extend
the analysis to higher energies. A subtraction scheme
different from ours was used there for the calculation of
the pseudoscalar-loop contribution. The task of extending
the energy region above 1 GeV was undertaken in
Ref. [18], taking into account the contributions of heavier
rho-like resonances. However, the mixing among these
resonances—necessarily arising due to their common
decay modes—was not taken into account in that work.
A model similar to the K-matrix approach but with
improved analytical properties was proposed in Ref. [19].
As opposed to the above works, the present work uses the
field-theory-inspired approach to the problem which takes
into account relevant PP-, VP-, and AP-loop contributions
and the strong mixing of the �-like resonances arising via
their common decay modes.

The paper is organized as follows. The polarization
operators arising due to the (diagonal and nondiagonal)
vector-pseudoscalar and axial vector–pseudoscalar loops
and the nondiagonal pseudoscalar-pseudoscalar polarization
operator are calculated in Sec. II. The expression for the
pseudoscalar-pseudoscalar diagonal polarization operator
[1–3] is reviewed in the same section. The quantities for
comparison with experimental data are discussed in Sec. III.
The results of the data fitting are represented in Sec. IV. This
section also contains a discussion of the problems that arise
when including the VP and AP loops. Section V contains the
conclusions drawn from the present study.

II. POLARIZATION OPERATORS DUE
TO PSEUDOSCALAR-PSEUDOSCALAR,
VECTOR-PSEUDOSCALAR, AND AXIAL

VECTOR–PSEUDOSCALAR LOOPS

The final states �þ��, !�0, and �þ���þ�� consid-
ered in the present work have the isotopic spin I ¼ 1.

Hence, they are produced in eþe� annihilation via the
unit spin �-like intermediate states �1 � �ð770Þ, �2 �
�ð1450Þ, �3 � �ð1700Þ, etc. These states have rather large
widths and are mixed via their common decay modes. The
finite-width and mixing effects are taken into account by
means of the diagonal and nondiagonal polarization opera-
tors ��i�j

[1]. In particular, the effects of finite width

appear in the inverse propagator of the resonance �i via
the replacement

m2
�i
� s ! m2

�i
� s���i�i

� Di: (2.1)

Indeed, according to the unitarity relation, the particular
contribution to the imaginary part of the diagonal
polarization operator is due to the real intermediate
state ab,

�ðabÞ
�i�i

ðsÞ
s

¼ 1

�

Z 1

ðmaþmbÞ2

ffiffiffiffi
s0

p
��i!abðs0Þ

s0ðs0 � s� i"Þds
0;

Im�ðabÞ
�i�i

ðsÞ ¼ ffiffiffi
s

p
��i!abðsÞ:

(2.2)

Hereafter, the quantity s is the energy squared. As ex-
plained earlier [1], the dispersion relation written for
the polarization operator divided by s automatically guar-
antees the correct normalization of the form factor
F�ð0Þ ¼ 1. In the present work, the states which are taken
into account are the PP states �þ��, KþK� þ K0 �K0 of
the pair of pseudoscalar mesons, the VP states !�0,
K�þK� þ K�0 �K0 þ K��Kþ þ �K�0K0, and the AP
states aþ1 ð1260Þ�� þ a�1 ð1260Þ�þ, K1ð1270Þ �Kþc:c. The
polarization operators due to the PP loops are considered in
detail elsewhere [1].
The following subtraction scheme is used in the

present work. The diagonal polarization operators
��i�i

ðsÞ are regularized by making two subtractions:

at s ¼ 0 and at the respective mass squared s ¼ m2
�i
,

i ¼ 1; 2; . . . ,

Re��i�i
ð0Þ ¼ Re��i�i

ðm2
�i
Þ ¼ 0: (2.3)

The nondiagonal polarization operators ��i�j
ðsÞ, i � j,

are regularized by making three subtractions: at s ¼ 0, at
s ¼ m2

�i
, and at s ¼ m2

�j
i; j ¼ 1; 2; . . . ,

Re��i�j
ð0Þ ¼ Re��i�j

ðm2
�i
Þ ¼ Re��i�j

ðm2
�j
Þ ¼ 0: (2.4)

The corresponding expression, in the case of the two-
particle state ab, is

�ðabÞ
�i�j

ðsÞ ¼ g�iabg�jab��i�j
ðs;m�i

; m�j
; ma;mbÞ; (2.5)

where

N.N. ACHASOVAND A.A. KOZHEVNIKOV PHYSICAL REVIEW D 88, 093002 (2013)

093002-2



��i�j
ðs; m�i

; m�j
; ma;mbÞ

¼ s

m2
�i
�m2

�j

�
ReGðabÞðm2

�i
Þ

m2
�i

ðm2
�j
� sÞ

� ReGðabÞðm2
�j
Þ

m2
�j

ðm2
�i
� sÞ

�
þGðabÞðsÞ; (2.6)

while GðabÞðsÞ � GðabÞðs;ma;mbÞ,

GðabÞðs;ma;mbÞ¼ s3

�g2�iab

Z 1

ðmaþmbÞ2

ffiffiffiffi
s0

p
��iabðs0Þds0

s03ðs0 �s� i0Þ ; (2.7)

with g�iab and ��iab being the coupling constant and the

partial width of the decay �i ! ab, respectively. The

specific expressions for GðabÞ and other necessary quanti-
ties are given below. Note that a different scheme with two
subtractions for the nondiagonal PP polarization operators
was used in Ref. [1–3].

A. Pseudoscalar-pseudoscalar loop

The diagonal polarization operators due to the PP loop
are represented in the form

�ðPPÞ
�i�i

¼ g2�iPP
�ðPPÞ: (2.8)

The function �ðPPÞ is

�ðPPÞ � �ðPPÞðs;mV;mPÞ ¼ �ðPPÞ
0 þ�ðPPÞ

1 ; (2.9)

where

�ðPPÞ
0 ¼ s

48�2

�
8m2

P

�
1

m2
V

� 1

s

�

þ v3
Pðm2

VÞ ln
1þ vPðm2

VÞ
1þ vPðm2

VÞ
�ðmV � 2mPÞ

� 2 �v3
Pðm2

VÞ arctan
1

�vP

�ð2mP �mVÞ
�
;

�ðPPÞ
1 ¼ s

48�2

�
�ðs� 4m2

PÞv3
PðsÞ

�
i�� ln

1þ vPðsÞ
1� vPðsÞ

�

þ 2�ð4m2
P � sÞ�ðsÞ �v3

PðsÞ arctan
1

�vPðsÞ
� �ð�sÞv3

PðsÞ ln
vPðsÞ þ 1

vPðsÞ � 1

�
; (2.10)

and [20]

vPðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

P

s

s
; �vPðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

P

s
� 1

s
;

where � is the step function.

The functionGðPPÞðsÞ [Eq. (2.7)] necessary for the evalu-
ation of the nondiagonal polarization operator due to the
PP loop is

GðPPÞðsÞ ¼ 1

24�2

�
s

4m2
P

�
2

15
þ 2

3
v2
PðsÞ � v4

PðsÞ
�

� 1

2
�ð�sÞv3

PðsÞ ln
vPðsÞ þ 1

vPðsÞ � 1

þ �ð4m2
P � sÞ�ðsÞ �vPðsÞ arctan 1

�vPðsÞ
þ 1

2
�ðs� 4m2

PÞv3
PðsÞ

�
i�� ln

1þ vPðsÞ
1� vPðsÞ

��
:

(2.11)

B. Vector-pseudoscalar loop

The diagonal polarization operators due to the VP loop
are represented in the form

�ðVPÞ
�i�i

¼ g2�iVP
�ðVPÞ; (2.12)

where the function �ðVPÞ � �ðVPÞðs; m�i
; mV;mPÞ is cal-

culated from the dispersion relation

�ðVPÞ

s
¼ 1

12�2

Z 1

ðmVþmPÞ2
q3VPðs0; mV;mPÞffiffiffiffi
s0

p ðs0 � s� i"Þ
�
s0 þm2

�i

s0 þ s0

�
ds0:

(2.13)

The notations are as follows. The quantity

qabðs;ma;mbÞ ¼ ½s2 � 2ðm2
a þm2

bÞ þ ðm2
a �m2

bÞ2�1=2=2
ffiffiffi
s

p

(2.14)

is the momentum of the particle a or b in the rest frame of
the decaying particle with the invariant mass

ffiffiffi
s

p
; m�i

, mV ,

and mP are, respectively, the masses of the resonance �i,
and the vector V and pseudoscalar P mesons propagating
in the loop, and g�iVP is the coupling constant of the

resonance �i with the VP state. It is well known that the
partial width of the decay �i ! VP,

��iVPðsÞ ¼
g2�iVP

12�
q3VPðs;mV;mPÞ;

grows as the energy increases. This growth spoils the
convergence of the integral (2.13). This is the reason for
the appearance of the function ðs0 þm2

�i
Þ=ðs0 þm2

�i
Þ in the

integrand of Eq. (2.13). It suppresses the fast growth of the
partial width and improves the convergence of the above
integral at large s0. However, the integral still remains
logarithmically divergent, and one should perform the

subtraction of the real part Re�ðVPÞ
�i�i

=s at s ¼ m2
�i
.

The expression for �ðVPÞ resulting from Eq. (2.13) can
be represented in the form

�ðVPÞ ¼ 1

96�2
½�ðVPÞ

0 þ�ðVPÞ
1 þ�ðVPÞ

2 �; (2.15)

where
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�ðVPÞ
0 ¼ m2

�i
þ s0

s20
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q
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p
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m2þ þ s0

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2� þ s0
p

9>=
>;;

�ðVPÞ
1 ¼ � s

m4
�i

jðm2þ �m2
�i
Þðm2

�i
�m2�Þj3=2

2
642�ðmþ �m�i

Þ�ðm�i
�m�Þ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�i
�m2�

m2þ �m2
�i

vuut � �ðm�i
�mþÞ

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�i
�m2�

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�i
�m2þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�i
�m2�

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�i
�m2þ

q þ �ðm� �m�i
Þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ �m2

�i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� �m2

�i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ �m2

�i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� �m2

�i

q
3
75;

�ðVPÞ
2 ¼ m2

�i
þ s0

sðsþ s0Þ jðm
2þ � sÞðm2� � sÞj3=2

2
64�ðm2� � sÞ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ � s

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2� � s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ � s

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2� � s
p þ 2�ðs�m2�Þ�ðm2þ � sÞ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2�
m2þ � s

s

þ �ðs�m2þÞ
0
B@i�� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2�

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2�

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2þ

q
1
CA
3
75; (2.16)

while m� ¼ mV �mP, and � is the usual step function. The dependence of Re�ðVPÞ
�1�1

ðsÞ on the energy squared at s0 ¼
0:09 GeV2 is shown in Fig. 1.

The function GðVPÞðsÞ [Eq. (2.7)] necessary for the evaluation of the nondiagonal polarization operator due to the VP
loop is

GðVPÞðsÞ ¼ s2

48�2

�
4mVmP

mþm�

�
3
IðVPÞðsÞ; (2.17)

where

IðVPÞðsÞ ¼
�
s3

16
þ m2þ

4mVmP

ðs�m2�Þ
�
3s2

8
�m2þsðs�m2�Þ

8mVmP

�
�
mþm�
4mVmP

�
2ðm2þ � sÞðs�m2�Þ

��
1

2s3
ln
mV

mP

þ mþm�
4mVmPs

3

�
s2m2�
4mVmP

�
s

24
þm2þðs�m2�Þ

16mVmP

þ sm2�
24mVmP

�
� s3

16
� sm2þðs�m2�Þ

4mVmP

�
3s

8
�m2þðs�m2�Þ

8mVmP

��

þ
�
mþm�
4mVmPs

�
3jðs�m2þÞðs�m2�j3=2 �

2
641

2
�ðm2� � sÞ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ � s

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2� � s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ � s

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2� � s
p

þ �ðs�m2�Þ�ðm2þ � sÞ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2�
m2þ � s

s
þ 1

2
�ðs�m2þÞ

0
B@i�� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2�

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2�

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�m2þ

q
1
CA
3
75: (2.18)

The dependence of Re�ð!�Þ
�1�2

=g!�1�g!�2� on s is shown in
Fig. 2.

C. Axial vector–pseudoscalar loop

The axial vector–pseudoscalar meson state AP ¼
a1ð1260Þ� is considered to be one of the states contribut-
ing to the four-pion production amplitude [21]. For soft
pions, when taking into account the requirements of chiral
symmetry, this amplitude and the corresponding partial
width are very complicated [22–28]. This prevents one

from using the dispersion relation to obtain the contribu-
tion of the four-pion state to the polarization operator of the
state �i. Hence, in the present work, the simplest a1�
dominance model of the four-pion [29] production is
used: eþe� ! �i ! a1� ! 4�. The amplitude of the
transition �i ! a1� is chosen in the simplest form,

Að�iq ! a1k�pÞ ¼ g�ia1�½ð�a1��i
ÞðkqÞ � ð�a1qÞð��i

kÞ�;
(2.19)
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where q, k, and p are, respectively, the four-momenta of
the mesons �i, a1, and �, while �a1 and ��i

denote the

polarization four-vectors of a1 and �i. The expression
(2.19) is chosen on the grounds that it is explicitly trans-
verse in the �i leg.

The diagonal polarization operators due to the AP loop
are represented in the form

�ðAPÞ
�i�i

¼ g2�iAP
�ðAPÞ; (2.20)

where the quantity �ðAPÞ � �ðAPÞðs;m�i
; mA;mPÞ is

calculated from the dispersion relation

�ðAPÞ

s
¼ 1

48�2

Z 1

ðmAþmPÞ2
qAPðs0; mA;mPÞ

ðs0Þ3=2ðs0 � s� i"Þ
� ½ðs0 þm2

A �m2
PÞ2 þ 2s0m2

A� �
�
s0 þm2

�i

s0 þ s0

�
ds0;

(2.21)

where the expression

��i!APðsÞ ¼
g2�iAP

48�s
½ðsþm2

A �m2
PÞ2 þ 2sm2

A�

� qAPðs;mA;mPÞ
�
s0 þm2

�i

s0 þ s

�
(2.22)

for the �i ! AP decay width found from the effective
vertex (2.19) is inserted into the integrand of the dispersion
relation. The result of integration is represented in the form

�ðAPÞ ¼ s

96�2

�
m�
mþ

�
3m2

�i
þ s0

sþ s0

�
JðsÞ�ReJðm2

�i
Þ sþ s0
m2

�i
þ s0

�
;

(2.23)

where m� ¼ mA �mP, and

JðsÞ ¼ sfðsÞ
��

m2þ
s

� 1

�
2 þ 2mA

m�

�
2þ mA

m�

��
m2þ
s

� 1

�

þ 6
m2

A

m2�

�
� s0f2

��
m2þ
s0

þ 1

�
2

� 2mA

m�

�
2þ mA

m�

��
m2þ
s0

þ 1

�
þ 6

m2
A

m2�

�
: (2.24)

The function fðsÞ is

fðsÞ ¼ mþ
sm�

�
ðs�m2�Þmþ

m�
ln
mA

mP

� s

�
m2þ�m2�
2mþm�

ln
mA

mP

�1

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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m2þ� s

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2�� s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ� s

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2�� s
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�2�ðs�m2�Þ�ðm2þ� sÞarctan
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s�m2�
m2þ� s
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B@�i�þ ln
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s�m2�

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s�m2�

p �
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q
1
CA
3
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9>=
>;;

(2.25)
FIG. 2. The dependence of Re�ð!�Þ

�1�2
ðsÞ=g!�1�g!�2� on the en-

ergy squared in the case of m�1
¼770MeV and m�2

¼1450MeV.

FIG. 1. The dependence of Re�ðVPÞ
�1�1

ðsÞ=g2!�1� on the energy
squared; s0 ¼ 0:09 GeV2.
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and

f2 ¼ �mþ
m�

2
4mþ
m�

�
1þm2�

s0

�0@lnmA

mP

� 2m�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ þ s0
m2� þ s0

s

� tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� þ s0
m2þ þ s0

s 1
A�m2þ �m2�

2mþm�
ln
mA

mP

þ 1

3
5:

(2.26)

The dependence of Re�ðAPÞ
�1�1

ðsÞ on the energy squared is
shown in Fig. 3.

The functionGðAPÞðsÞ [Eq. (2.7)] necessary for the evalu-
ation of the nondiagonal polarization operator due to the
AP loop is

GðAPÞðsÞ ¼ s2

48�2

�
4mAmP

mþm�

�
3
IðAPÞðsÞ; (2.27)

where
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þ m2�
32mAmP

�
m2þ
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The dependence ofRe�ða1�Þ
�1�2

=ga1�1�ga1�2� on s is shown in
Fig. 4.

D. Polarization operators used in fits

Although the nature of the higher resonances
�ð1450Þ; �ð1700Þ; . . . is the subject of current and future
studies, the quark-antiquark model relations between their
coupling constants are assumed,

g�iK
�K¼1

2
g�i!�; g�iK1ð1270ÞK¼

1

2
g�ia1ð1260Þ�: (2.29)

Polarization operators which take into account the three
channels described above are the following. The full di-
agonal polarization operators are

��i�i
¼ �ðPPÞ

�i�i
þ�ðVPÞ

�i�i
þ�ðAPÞ

�i�i
: (2.30)

In the present work, we take into account the following
analytically calculated loops. First, we use the PP �þ��
and KþK� þ K0 �K0 loops,

�ðPPÞ
�i�i

¼ g2�i��

�
�ðPPÞðs;m�i

; m�Þ þ 1

2
�ðPPÞðs; m�i

; mKÞ
�
;

(2.31)

with�ðPPÞ given by Eq. (2.9). Second, we use the VP !�0

and K� �Kþ �K�K loops,

�ðVPÞ
�i�i

¼ g2�i!�½�ðVPÞðs; m�i
; m!;m�Þ

þ�ðVPÞðs; m�i
; mK� ; mKÞ�; (2.32)

with �ðVPÞ � �ðVPÞðs;m�i
; mV;mPÞ given by Eq. (2.15).

Third, we use the AP a1ð1260Þþ�� þ a1ð1260Þ��þ,
K1ð1270Þ �K þ c:c: loops,

�ðAPÞ
�i�i

¼ 2g2�ia1�

�
�ðAPÞðs;m�i

; ma1 ; m�Þ

þ 1

2
�ðAPÞðs;m�i

; mK1ð1270Þ; mKÞ
�
; (2.33)

with �ðAPÞ � �ðAPÞðs;m�i
; mA;mPÞ given by Eq. (2.23).

Similar expressions are used for the nondiagonal polar-
ization operators,

��i�j
¼ �ðPPÞ

�i�j
þ�ðVPÞ

�i�j
þ�ðAPÞ

�i�j
; (2.34)

where
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�ðPPÞ
�i�j

¼ g�i��g�j��

�
��i�j

ðs;m�i
; m�j

; m�;m�Þ

þ 1

2
��i�j

ðs;m�i
; m�j

; mK;mKÞ
�
;

�ðVPÞ
�i�j

¼ g�i!�g�j!�½��i�j
ðs; m�i

; m�j
; m!;m�Þ

þ��i�j
ðs;m�i

; m�j
; mK� ; mKÞ�;

�ðAPÞ
�i�j

¼ 2g�ia1�g�ja1�

�
��i�j

ðs;m�i
; m�j

; ma1 ; m�Þ

þ 1

2
��i�j

ðs;m�i
; m�j

; mK1
; mKÞ

�
; (2.35)

with ��i�j
ðs; m�i

; m�j
; ma;mbÞ given by Eq. (2.6), and the

corresponding functions GðabÞðsÞ are given in Eqs. (2.11),
(2.17), and (2.27).

III. QUANTITIES FOR COMPARISON
WITH THE DATA

The following reactions are considered in the present
work:

eþe� ! �þ��; (3.1)

eþe� ! !�0; (3.2)

and

eþe� ! �þ���þ��: (3.3)

The justification of the restriction to these reactions are
given in the Introduction and below in Sec. IV. Let us turn
to the working expressions necessary for comparison with
the experimental data.

A. �þ�� production

In the present case, the relevant quantity is the so-called
bare cross section of the reaction (3.1),

�bare ¼ 8��2

3s5=2
jF�ðsÞj2q3�ðsÞ

�
1þ �

�
aðsÞ

�
; (3.4)

where F�ðsÞ is the pion form factor (1.1), the quantity aðsÞ
takes into account the radiation by the final pions, and
� ¼ 1=137 is the fine-structure constant. The necessary
discussion concerning the quantities in Eq. (3.4) are given
elsewhere [1].

B. !�0 production

The cross section of the reaction eþe� ! !�0 is taken
in the form

�eþe�!!�0 ¼ 4��2

3s3=2
jAeþe�!!�0 j2 � q3!�ðs;m!;m�Þ;

(3.5)

where q!� is given by Eq. (2.14),

FIG. 3. The dependence of Re�ðAPÞ
�1�1

ðsÞ on the energy squared s
for the AP ¼ a1ð1260Þ� and AP ¼ K1ð1270Þ �K loops, demon-

strating the discontinuity of dRe�ðAPÞ
ds at s ¼ ðmA þmPÞ2. The

parameters are m� ¼ 777 MeV, ma1 ¼ 1230 MeV, mK1
¼

1270 MeV, s0 ¼ 0:09 GeV2.

FIG. 4. The dependence of Re�ða1�Þ
�1�2

ðsÞ=ga1�1�ga1�2� on the
energy squared in the case of m�1

¼ 770 MeV and m�2
¼

1450 MeV.
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Aeþe�!!�0 ¼ðg��1
;g��2

;g��3
; . . .ÞG�1�

g�1!�

g�2!�

g�3!�

���

0
BBBBB@

1
CCCCCA (3.6)

is the amplitude of the reaction, and the matrix

G ¼

D1 ��12 ��13 � � �
��12 D2 ��23 � � �
��13 ��23 D3 � � �
� � � � � � � � �

0
BBBBB@

1
CCCCCA (3.7)

is introduced in order to take into account the strong
mixing of the resonances �i [1]. Here, �ij � ��i�j

are

the polarization operators; see Eqs. (2.30) and (2.34). The
nondiagonal i � j terms describe the mixing. The inverse
propagators Di are given by Eq. (2.1).

C. �þ���þ�� production

The width of the decay �i ! 2�þ2�� in the model
(2.19) is represented in the form

��i!2�þ2��ðsÞ ¼ g2�ia1�W�þ���þ��ðsÞ; (3.8)

where

W�þ���þ��ðsÞ ¼ 1

12�

Z ð ffiffi
s

p �m�Þ2

ð3m�Þ2
�a1ðm2Þ

�
�ðsþm2 �m2

�Þ2
2s

þm2

�
� qa1�ðs; m2; m2

�Þdm2; (3.9)

and qa1� is given by Eq. (2.14). The function

�a1ðm2Þ ¼ ma1�a1=�

ðm2 �m2
a1Þ2 þm2

a1�
2
a1

(3.10)

is introduced to take into account the large width of the
intermediate a1 resonance in a minimal way, by taking the
limit of the fixed a1 width. The mass and width of a1ð1260Þ
are determined from fitting the data on the reaction
eþe� ! �þ���þ��.

The cross section of the reaction eþe� ! �þ���þ��
is represented in the form

��þ���þ��

¼ ð4��Þ2
3s3=2

��������������������
ðg��1

; g��2
; g��3

; . . .ÞG�1

g�1a1�

g�2a1�

g�3a1�

� � �

0
BBBBB@

1
CCCCCA

��������������������

2

�W�þ���þ��ðsÞ; (3.11)

where W�þ���þ��ðsÞ [given by Eq. (3.9)] represents the
effective phase-space volume of the four pions via the

smearing [Eq. (3.10)] of the a1� phase-space volume.
The matrix G is the matrix of inverse propagators,
Eq. (3.7).

IV. RESULTS OF DATA FITTING

This section is devoted to the presentation of the results
of fitting the data on the reactions eþe� ! �þ��,
eþe� ! !�0, and eþe� ! �þ���þ��. Two possible
fitting schemes were used.
Scheme 1: Three resonances �ð770Þ þ �ð1450Þ þ

�ð1700Þ and the PP loops of pseudoscalar mesons are taken
into account [1,2].
When adding the VP- and AP-loop contributions to the

pion form factor one should also include the VP and AP
final states. These states manifest, respectively, in the re-
actions eþe� ! !�0 and eþe� ! �þ���þ��, which
should also be treated in the present framework. Since
energies higher than 2 GeVare considered, the third heavy
isovector resonance �ð2100Þ is added. Hence, the scheme
with the resonances �ð770Þ þ �ð1450Þ þ �ð1700Þ þ
�ð2100Þ and the PP, VP, and AP loops in the polarization
operators is used. This is scheme 2:
Scheme 2. The data on the reactions eþe� ! �þ�� [7],

eþe� ! !�0 [13], and eþe� ! �þ���þ�� [14] are
fitted separately in the model, which takes into account
the resonances �ð770Þ þ �ð1450Þ þ �ð1700Þ þ �ð2100Þ
side by side while allowing for the PP, VP, and AP loops
in the polarization operators.
The parameters found from the fitting scheme 2 are

listed in Table I. Let us comment on each of the mentioned
channels.

A. Fitting eþe� ! �þ�� data

When fitting the data on the reaction eþe� ! �þ�� at
energies

ffiffiffi
s

p � 1 GeV in our previous publication [1–3],
the fitting scheme 1 was used. There, the restriction to the
PP loop was justifiable because of the rather low energies
under consideration. Using the resonance parameters
found from fitting the data in the time-like region, the
pion form factor F�ðsÞ in the space-like region s < 0 was
calculated up to�s ¼ Q2 ¼ 0:2 GeV2 and compared with
the NA7 data [9]. A comparison with the data [10–12] in
the wider range up to �s ¼ Q2 ¼ 10 GeV2 was made in
Ref. [3]. In the present work, we give the corresponding
plot in Fig. 5 for the sake of completeness. The continu-
ation to the space-like domain in the fitting scheme 2 is
discussed below.
The cross section of the reaction eþe� ! �þ�� fitted

in scheme 2 is shown in Fig. 6. As far as the �ð770Þ
resonance parameters are concerned, one can observe
that in comparison with the fit in scheme 1 [1–3], the
bare mass of the resonance �1 determined in scheme 2 in
the sensitive channel eþe� ! �þ�� is typically lower.
(Compare Table I here and Table I in, e.g., Ref. [1].)
The same concerns the coupling constant g�1

which

N.N. ACHASOVAND A.A. KOZHEVNIKOV PHYSICAL REVIEW D 88, 093002 (2013)

093002-8



parametrizes the leptonic decay width (1.3). The coupling
constant g�1�� in scheme 2 is greater than in scheme 1. The

above distinction can be qualitatively explained by the
effect of the renormalization of the coupling constants
described in Ref. [1]. Indeed, as was shown in Ref. [1],
the renormalization results in the substitutions

g�1�� ! Z�1=2
� g�1��; g�1

! Z1=2
� g�1

; (4.1)

where

Z� ¼ 1þ dRe��1�1
ðsÞ

ds

��������s¼m2
�1

: (4.2)

Equation (4.1) means that the bare g�1�� obtained from the

fit is related to the ‘‘physical’’ one obtained from the

visible peak, upon multiplying by Z1=2
� , while the opposite

is true for g�1
. The contributions of the VP loop to

dRe��1�1
=ds near s ¼ m2

�1
, as is observed from Fig. 1,

are positive and exceed the negative contribution from the
PP loop; see Fig. 7 in Ref. [1]. The same is true for the AP
loop. As a result, one has Z� > 1.

Although the energy behavior of the cross section up
to

ffiffiffi
s

p ¼ 1:7 GeV is described in the adopted model,

including the dip near 1.5 GeV, one can see that the
structure in the interval 2–2.5 GeV demands, in all appear-
ance, additional �-like resonances and/or intermediate
states in the loops. We tried to include the contribution of
K1ð1400Þ �K þ c:c: states coupled solely to the resonance
�4, with the fitted coupling constant g�4K1ð1400ÞK and mass

mK1ð1400Þ. This slightly improves the agreement in the

interval 1:75<
ffiffiffi
s

p
< 2 GeV but occurs at the expense of

adding two additional free parameters and does not result
in reproducing the peak near

ffiffiffi
s

p ¼ 2:3 GeV.
The continuation to the space-like region s < 0 with

the resonance parameters obtained in the region s > 4m2
�

in fitting scheme 2 with the VP and AP loops added
results in unwanted behavior of F�ðsÞ; see Fig. 7.
Specifically, the curve goes through experimental points
[9] up to s ¼ �0:2 GeV2, but at larger values of
�s ¼ Q2 one encounters infinities arising from the
Landau poles due to the VP and AP loops. As was pointed
out in Ref. [1], the Landau pole is present even in the case

of the PP loop, but its position is at
ffiffiffiffiffiffi
Q2

p 	 90 GeV, that
is, it is far from accessible momentum transfers. In the
case of the VP and AP loops the Landau poles appear in
the region accessible to existing experiments [10–12]

TABLE I. The resonance parameters found from fitting the data on the reactions eþe� !
�þ�� [7], eþe� ! �þ���þ�� [14], and eþe� ! !�0 [13], in the fitting scheme 2 (see
text). The parameter Re�0

!� is responsible for !� mixing; see Ref. [1] for more details. The

parameter g�4
can be found from the sum rule

g�1��
g�1

þ g�2��
g�2

þ g�3��
g�3

þ g�4��
g�4

¼ 1, which provides

the correct normalization F�ð0Þ ¼ 1.

Parameter eþe� ! �þ�� eþe� ! �þ���þ�� eþe� ! !�0

m�1
[MeV] 765:6� 0:1 � 777 � 777

g�1�� 6:336� 0:004 5:78� 0:01 6:63� 0:03
g�1

4:662� 0:002 5:66� 0:02 4:80� 0:02
g�1a1� [GeV�1] 2:37� 0:05 0:26� 0:02 5:61� 0:08
m! [MeV] 782:02� 0:10 � 782:02 � 782:02
Re�0

!� [GeV2] ð4:38� 0:07Þ � 10�3 — —

m�2
[MeV] 1507� 3 1122� 1 1412� 6

g�2�� �6:01� 0:03 �5:45� 0:03 �5:72� 0:08
g�2

78� 2 8:74� 0:04 21:6� :4
g�2!� [GeV�1] 6:66� 0:07 38:2� 0:2 32� 2
g�2a1� [GeV�1] 1:48� 0:11 5:61� 0:03 �1:37� 0:15
m�3

[MeV] 1831� 4 1648� 1 1661� 5
g�3�� �2:800� 0:008 3:681� 0:005 �0:90� 0:03
g�3

8:45� 0:05 4:302� 0:005 4:90� 0:04
g�3!� [GeV�1] 5:32� 0:02 0:98� 0:02 22:0� 0:3
g�3a1� [GeV�1] 0:41� 0:06 �1:692� 0:005 3:1� 0:1
m�4

[MeV] 2154� 15 2390� 5 1969� 7
g�4�� �1:78� 0:03 �4:5� 0:1 �3:11� 0:08
g�4!� [GeV�1] 8:65� 0:12 11:39� 0:05 8:19� 0:10
g�4a1� [GeV�1] 1:63� 0:05 1:004� 0:035 �0:91� 0:02
mK1ð1270Þ [MeV] � 1270 1265� 1 1230� 7
ma1ð1260Þ [MeV] � 1230 1132� 1 1268� 4
�a1ð1260Þ [MeV] — 1028� 3 —

s0 ½GeV�2 4:33� 0:03 0:00037� 0:00001 0:09� 0:03
�2=Nd:o:f: 335=316 400=59 43=20
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because of the large magnitude of the coupling constant
g�1!� ¼ 13:2 GeV�1 [30].

An important feature of the new expression for the pion
form factor obtained in Ref. [1] which was not mentioned
there is that it does not require [3] the commonly accepted
Blatt-Weisskopf centrifugal factor [31]

C�ðkÞ ¼ 1þ R2
�k

2
R

1þ R2
�k

2

in the expression for ����ðsÞ [21]. Here k is the pion

momentum at some arbitrary energy while kR is its value
at the resonance energy. The fact is that the usage of the
R�-dependent centrifugal barrier penetration factor in par-
ticle physics—for example, in the case of the �ð770Þ
meson [21]—results in the overlooked problem. Indeed,
the meaning of R� is that this quantity is the characteristic
of the potential (or the t-channel exchange in field theory)
resulting in the phase 	bg of the potential scattering in

addition to the resonance phase [31]. For example, in
case of the P-wave scattering in the potential

UðrÞ ¼ G	ðr� R�Þ;
where the resonance scattering is possible, the background
phase is

0,01 0,1 1 10
-0,1

0,0

0,1

0,2
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0,5

0,6

0,7

0,8
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1,0

 NA7
 Bebek et al.
 Tadevosyan et al.
 Horn et al.
 PP loops

Q2=-s [GeV2]

|Fπ|
2

FIG. 5. The pion form factor squared in the space-like region
s < 0 evaluated using the resonance parameters of Table I in
Ref. [1] (the BABAR column) using fitting scheme 1 (see text).
The experimental data are from NA7 [9], Bebek et al. [10], Horn
et al. [11], and Tadevosyan et al. [12].

1×10-4

1×10-3

FIG. 6. The cross section of the reaction eþe� ! �þ��. The
data are from Ref. [7] and the curve is drawn using the resonance
parameters of scheme 2. The ��! resonance region is shown
in the insert.

1×10-3

1×10-4

1×10-5

1×10-6

FIG. 7. The same as in Fig. 5, but with the resonance parame-
ters obtained in fitting scheme 2 (see text).
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	bg ¼ �R�kþ arctan ðR�kÞ:
At the usual value of R� 
 1 fm, 	bg is not small.

However, in the �-meson region, the background phase
shift 	bg is negligible and the phase shift 	1

1 is completely

determined by the resonance; see Fig. 8 in Ref. [1].
Therefore, the descriptions of the hadronic resonance dis-
tributions which invoke the parameter R�, have a dubious
character.

B. Fitting eþe� ! �þ���þ�� data

The dynamics of the reaction eþe� ! �þ���þ�� at
energies

ffiffiffi
s

p
< 1 GeV is determined by the chiral-invariant

mechanisms whose amplitudes are too cumbersome to
include into the loop integrations for the purposes of fits.
Hence we restrict ourselves to the energy range 1<

ffiffiffi
s

p
<

3 GeV dominated by the �ð1450Þ; �ð1450Þ; . . . s-channel
production mechanism. The energy dependence of the
eþe� ! �þ���þ�� reaction cross section is shown in
Fig. 8. One can see that at energies

ffiffiffi
s

p
> 1:75 GeV the

chosen scheme with three heavier rho-like resonances
�2;3;4 cannot reproduce the structures in the measured

cross section such as the bizarre sharp turn in the energy
behavior followed by fluctuations. As in the case of the
reaction eþe� ! �þ��, the contributions of the AP
loops a1ð1260Þ� and K1ð1270Þ �K þ c:c: coupled to all �i

resonances (i ¼ 1, 2, 3, 4) were invoked to explain the

features above 1.75 GeV. The structures remain
unexplained.
As is seen from Table I, the coupling constants g�1

and

g�1�� of the �ð770Þ meson found from fitting this channel

differ from those found from fitting the �þ�� one.
Furthermore, the coupling constant g�1a1� found from

fitting the channel eþe� ! �þ���þ�� is suppressed
in comparison with the naive chiral-symmetry estimate
ga1!�1�
1=2f�
5GeV�1 [32], where f�¼92:4MeV

is the pion decay constant. We believe that this difference
is an artifact of the oversimplified a1�model and the price
that comes with the possibility of using the analytical
calculation of the VP and AP loops to simulate the con-
tributions of the multiparticle meson states in polarization
operators [33]. In the meantime, the coupling constants
g�1a1� 	 2:4 and 5:6 GeV�1 found from fitting the

eþe� ! �þ�� and eþe� ! !�0 channels, respectively,
look sensible. For comparison, the estimates of g�1a1� in

the model adopted in the present work are 
6 GeV�1 and

4 GeV�1, as extracted from �a1 	 0:6 GeV and 0.3 GeV

[21], respectively. Note also that �a1!��!3� 
 1 GeV

when evaluated in the generalized hidden local symmetry
chiral model for ma1 	 1:2 GeV [32]. The width of the

visible peak in Fig. 8 is about 0.44 GeV, which should be
compared with ��3

ð ffiffiffi
s

p ¼ m�3
Þ ¼ 0:45 GeV evaluated

with the �þ���þ�� column of Table I.

FIG. 8. The cross section of the reaction eþe� !
�þ���þ��. The data are from Ref. [14] and the curve is
drawn using the resonance parameters of scheme 2.

FIG. 9. The cross section of the reaction eþe� ! !�0 !
�0�0�. The data are from SND13 [13] and curve is drawn using
the resonance parameters of scheme 2.
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C. Fitting eþe� ! !�0 data

Quite recently, new data on the reaction eþe� ! !�0 in
the decay mode ! ! �0� were published by the SND
collaboration [13]. They are analyzed with fitting scheme
2. The resulting curve calculated with the parameters cited
in Table I is shown in Fig. 9.

V. CONCLUSION

The main purpose of the present work is to describe the
pion electromagnetic form factor F�ðsÞ up to the J=c
energy range, using the expression obtained in Ref. [1].
This expression, when restricted to the PP loops in polar-
ization operators, permits a good description of the data of
SND, CMD-2, KLOE, and BABAR on�þ�� production in
eþe� annihilation at

ffiffiffi
s

p
< 1 GeV, describes the scattering

kinematical domain up to �s ¼ Q2 ¼ 10 GeV2, and does
not contradict the data on the �� scattering phase 	1

1. The
goal of extending the description to energies up to 3 GeV in
the time-like domain was reached by the inclusion of the
VP and AP loops in addition to the PP ones. These loops
contain the couplings of the �-like resonances with the VP
and AP states and generate, in turn, the final states!�0 and
�þ���þ�� in eþe� annihilation. Therefore, consistency
demands the treatment of these final states as well. As is
shown in the present work, the energy behavior of the cross
sections of the reactions eþe� ! !�0 and eþe� !
�þ���þ�� obtained in the adopted simplified model
does not contradict the data. The statistically poor descrip-
tion of the cross section of the reaction eþe� !
�þ���þ�� is, probably, an artifact of the oversimplified
model for its amplitude, which ignores both the require-
ments of the chiral symmetry at lower energies and a
complicated intermediate state at higher energies. The
proper treatment of the reaction eþe� ! �þ���þ�� is
beyond the scope of the present work. Nevertheless, we

included this poor description for the consistency of the
presentation.
One should not wonder at the fact that the masses of

heavier �-like resonances quoted in Table I differ from the
values quoted in Ref. [21]. In fact, the values in Ref. [21]
are only educated guesses, and the masses of heavier �-like
resonances quoted by the Particle Data Group fall into
wide intervals; for instance, m�2

¼ 1265–1580 MeV and

m�3
¼ 1430–1850 MeV [21]. Furthermore, the quoted

values are usually obtained from fitting the data with the
help of the simplest parametrization such as the sum of the
Breit-Wigner amplitudes. In the meantime it is known that
the residues of the simple pole contributions do not neces-
sarily reveal the true nature of the resonances involved in
the process [34–36] when the mixings and dynamical
effects like the final-state interaction become essential.
The real problem is that the continuation to the space-

like domain of the expression for F�ðsÞ with the contribu-
tions of the VP and AP loops meets the difficulty of
encountering the Landau poles. By all appearances, this
is the consequence of the chosen parametrization of the
vertex form factor which restricts the growth of the partial
widths as the energy increases in a modest way. A stronger
suppression could effectively suppress the couplings of
rho-like resonances with the VP and AP states and, in
turn, push the Landau zeros to higher space-like momen-
tum transfers. This is the topic of a separate study.
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