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The processes with oppositely charged spinor particles in initial and/or final states in homogeneous

magnetic field B are subject to focusing effects in their relative motion, which yield the amplifying factors

in probabilities growing as eB. In addition the increasing energy of some Landau levels influences the

phase space. As a result, some processes in the proper spin states can be enlarged as� eB
�2 , where �

2 is the

characteristic phase space factor available for perpendicular to B motion. Several examples, including

neutron � decay, positronium decay, and eþe� pair production, are quantitatively considered.

DOI: 10.1103/PhysRevD.88.093001 PACS numbers: 13.40.�f

I. INTRODUCTION

The motion of charged particles in magnetic field (m.f.)
is a standard topic of textbooks [1–3], and the behavior of
atomic and nuclear systems in the framework of QED is
extensively studied [4,5]. Recently the hadronic systems
in m.f. have attracted a lot of attention as well [6–16].
In particular, the role of m.f. in chiral symmetry breaking
was stressed both analytically [6] and on the lattice [7]
(see [8] for a review and references), and the corresponding
phenomenon was coined magnetic catalysis.

The dynamical origin of magnetic catalysis in QCD was
studied recently in [8–17] and shown to be an example of a
more general phenomenon—the magnetic focusing, which
assembles together particles of opposite charges.

The study of relativistic QCD systems (quarks, gluons,
hadrons) in m.f. has made it necessary to create and
exploit the relativistic formalism, based on the path inte-
grals with interaction as in Wilson loops, which allows us
to write down simple form Hamiltonians incorporating
electromagnetic and strong interactions [9].

This formalism was used recently to calculate spectra of
mesons in m.f. [10–12], including the Nambu-Goldstone
mesons [13] and meson magnetic moments [14].

In the course of these studies it was found that m.f. plays
a very important role in ‘‘assembling’’ opposite charges
near one another, i.e., the ‘‘focusing effect,’’ contributing to
hyperfine (hf) splitting�jc ð0Þj2, growing as eB in hydro-
gen [15], as well as in relativistic q �q systems [16], making
it necessary to introduce the smearing effect to consider hf
as a perturbation. Moreover, it was found in [17], that the
characteristic growth of quark condensate jh �qqijwith eB is
again due to the fact that it is proportional to jc ð0Þj2 � eB,
i.e., the focusing inside the q �q pair.

It is clear that the focusing mechanism is of a general
character and should show up in all cases, where such a
factor jc ð0Þj2 for the wave function of relative coordinates
of two oppositely charged particles appears. From the
general scattering theory [18] it was shown that this factor
(for orbital momentum zero) always appears whenever the
reaction has two strongly different ranges, rext � rint

dw ¼ jc ðfÞ
extðrintÞj2dwintjc ðiÞ

extðrintÞj2; (1)

where superscripts f, i refer to final, initial states. These
effects of initial state interaction or final state interaction
(FSI) were carefully studied for the combination of
Coulomb and nuclear forces [19].
In the case of m.f., the following two differences appear:
(1) m.f. induces a two-dimensional discrete spectrum in

external motion, hence the sum over the spectrum
should enter in (1) instead of a simple factor
jc extð0Þj2.

(2) The masses of this discrete spectrum are generally
growing with eB and strongly influence the avail-
able phase space, making in some cases the process
impossible.

However, for some lowest Landau levels (LLL),

En? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2n? þ 1� �ÞeBþ p2

z

q
; (2)

with n? ¼ 0, where spin (magnetic moment) contribution

� ¼ 1 exactly cancels the radial motion, E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z

q
,

one can gain in the resulting energy and phase space. One
obtains, for the creation of a pair, the factor of growth

�ðeBÞ ¼ wðeBÞ
wð0Þ ¼ eB

�2
; (3)

where �2 is the characteristic phase space available for the
perpendicular relative motion of two charges.
Our subsequent discussion in Sec. II will be on using

the relativistic Hamiltonians in m.f. and the resulting
eigenfunctions and energies, obtained in [9–14] and appli-
cable in QED and QCD, augmented by the appropriate
interaction terms. We shall proceed in Sec. III with the
simple example of eþe� production by � in some reaction,
and then compare it with the pair creation in the constant
electric field.
In Sec. IV we turn to the three-body final state and

consider the neutron � decay in m.f.
Other possible systems are discussed in Sec. V. In

Sec. VI we give a short summary and prospectives.
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The Appendix contains a short derivation of Eq. (1) using
Jost solutions for external interaction.

II. RELATIVISTIC AND NONRELATIVISTIC
DYNAMICS IN STRONG MAGNETIC FIELD

Our final goal is to demonstrate how m.f. changes the
relative motion of oppositely charged particles and leads to
the enhancement of the corresponding wave function at
small distances, thus yielding the amplification factor
for annihilation or production of such particles—the
phenomenon of magnetic focusing.

To this end we are writing the relativistic Hamiltonian
for a pair of particles with charges e1 ¼ �e2 � e, which
was already derived and exploited in [10–12] and rederived
in the framework of the new path integral representation
in [9]. For particles with massesm1,m2 in m.f.B along the
z axis, the Hamiltonian has the form (after the proper
pseudomomentum factorization [9–11])

H ¼ P2

2ð!1 þ!2Þ þ
�2

2 ~!
þ 1

2 ~!

e2

4
ðB� �Þ2

þ X
i¼1;2

m2
i þ!2

i � ei�iB

2!i

þ V̂: (4)

Here � ¼ r1 � r2, � ¼ @
i@� ¼ !1k1�!2k2

!1þ!2
, ~! ¼ !1!2

!1þ!2
,

and V̂ is the sum of all interaction terms, including photon
or gluon exchange VCoulomb � Vcð�Þ, confining interaction
Vconf for quarks, and spin-dependent and self-energy
corrections (for details see [16]).

The eigenfunction �ð!1; !2Þ and eigenvalues Mj �
Mn?;nzð!1; !2Þ depend on !1, !2, and the actual energy

eigenvalue Mð0Þ
j is obtained from Mjð!1; !2Þ by the

stationary value procedure,

Mð0Þ
j ¼ Mjð!ð0Þ

1 ; !ð2Þ
2 Þ; @Mjð!1; !2Þ

@!i

��������!i¼!ð0Þ
i

¼ 0:

(5)

This scheme is discussed in detail in [9].
For nonrelativistic approximation the dominant terms

are
m2

iþ!2
i

2!i
, which automatically give !ð0Þ

i ¼ mi.

For strong m.f., when one can neglect V̂ in (4), i.e.,
for eB � � in hadron systems and eB � ðme�Þ2 in
atomic systems, one immediately obtains the c.m. values

of Mð0Þ
j ,

Mð0Þ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ �2
z þ eBð2n? þ 1� �1zÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ �2
z þ eBð2n? þ 1þ �2zÞ

q
; (6)

and the eigenfunction for n? ¼ 0 is (neglecting the
Coulomb interaction)

�ðz;�?Þ ¼ ei�zzffiffiffiffi
L

p ’n?ð�?Þ; ’n?ð�?Þ ¼ e
��2?

2r2?ffiffiffiffi
�

p
r?

;

r? ¼
ffiffiffiffiffiffi
2

eB

s
; ’2

0ð0Þ ¼
eB

2�
:

(7)

Note that ’2
0ð0Þ grows linearly with eB, the property,

which is the basis for the magnetic focusing phenomenon.
As will be seen, another property is important: the energy

eigenvalue Mð0Þ
n?¼0ð�1z ¼ þ1; �2z ¼ �1Þ does not grow

with (and does not depend on) eB. Thus the LLL with
n? ¼ 0 and �1z ¼ ��2z ¼ 1 (we shall call it the ‘‘zero
level’’) ensures the enhancement of probability of produc-
tion or annihilation of the pair without increase of the
spectrum, which would otherwise stop the process.

III. THE ELECTRON-POSITRON PAIR
PRODUCTION IN M.F.

Consider the process Aþ B ! Cþ ðeþe�Þ, where
eþe� is produced by a virtual photon. The amplitude for
the process without m.f. can be written as

M ¼C	

1

Q2
ð �c�	c Þ; c ¼ uffiffiffiffiffiffi

V3

p eikþx; �c ¼ �ue�ik�xffiffiffiffiffiffi
V3

p ;

(8)

and one should have in mind that both eþ and e� are
created at one point, x. The probability can be written as

dw¼
��������C	

ð �u�	uÞ
Q2

��������2d3kþd3k�
ð2�Þ6 
ð4ÞðQ�kþ�k�Þð2�Þ4

¼
��������C	

ð �u�	uÞ
Q2

��������2d3kþ
ð2�Þ2
ðQ0�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþÞ2þm2

e

q
Þ; (9)

where we have assumed that Q ¼ 0.
We now turn to the case of nonzero m.f. Now the energy

of eþe� in m.f. B can be written, using (6), as

En?ð�z; BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ �2
z þ eBð2n? þ 1� �þzÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ �2
z þ eBð2n? þ 1þ ��zÞ

q
; (10)

where �z ¼ kþz�k�z

2 ¼ kþz and �þz and ��z are doubled

spin projections of eþ and e�, respectively, and we take
into account that eþ ¼ �e� � e.
For the probability one can write

dw ¼
��������C	

ð �u�	uÞ
Q2

��������2d�z

2�

X
n?¼0


ðQ0 � En?ð�zÞÞ’2
n?ð0Þ;

(11)

and again ’2
0ð0Þ ¼ eB

2� , as in (7).

It is important that for the lowest energy state at
eB ! 1, both terms (1� �1z) and (1þ �2z) should van-
ish, in which case the term with n? ¼ 0 always survives in
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(11), since E0 does not contain eB. Looking at the structure
�u�	u and taking into account that uþ ¼ C �u, C ¼ �2�4,

one comes to the conclusion, that for �	 ¼ �3 the cancel-

lation mentioned above is possible, while for �	 ¼ �1, �2,

�4 both �þz and ��z have the same sign. Therefore for
eB ! 1, only the term with �3 survives and one obtains
the behavior

dw ffi eB

2�

��������C3

ð �u�3uÞ
Q2

��������2d�z

2�

ðQ0 � E0ð�zÞÞ; (12)

which demonstrates the linear growth of the pair
production with eB.

In the standard calculation of the eþe� pair production
in m.f. (see, e.g., Sec. 91 of [3], and original papers [20]),
the probability was calculated using crossing relations
with the process e� ! e� þ � in m.f. and therefore the
magnetic focusing effect was not taken into account.

It is interesting to apply our results to the process of
eþe� pair creation in the constant electric field
(in Minkovski space-time).

In the proper-time formalism [21], (see also Chap. 4 of
[4]), the pair probability is

wðxÞ ¼ Re tr
Z 1

0

ds

s
e�isðm2�i"ÞhxjðeisD̂2 � eis@̂

2Þjxi (13)

and D	 ¼ @	 � ieA	ðxÞ, A3ðxÞ ¼ �Et, t ¼ x0, A? ¼
1
2 ðB� xÞ, when B is along the z axis.

According to our discussion above, only in this situation,

when EkB, does the factor �3 in Â generate zero levels
and the magnetic focusing produce the factor eB

2� for

each pair without increasing the effective mass of the
eþe� pair. The explicit form of the pair-production rate
per volume per time was found in [22] for parallel E and B
(remember �3 reasoning above),

w ¼ ðeEÞðeBÞ
ð2�Þ2 coth

�
�B

E

�
exp

�
��m2

eE

�
; (14)

where for �B � E one can see a linear growth of w with
increasing eB. See more on pair creation in [4].

Now comparing (9) and (11) one finds the
correspondence

d2�?
ð2�Þ2 ! Xn?ðmax Þ

n?¼0

’2
n?ð0Þ: (15)

At this point one can compare our results with the
statistical weight argument suggested in [1,2], where
the substitution should be performed with inclusion of
the magnetic field

Z d3p

ð2�Þ3 fðEÞ !
jejB
2�

dpz

2�

X1
n?¼0

ð2
n?oÞfðEðBÞÞ; (16)

and the sum over spin projections is assumed. One can see
a close correspondence between (11) and (16); however,

(16) has to be attributed to any final particle, and only
quasiclassical arguments are used for (16) in [1,2].
It is interesting how the form (11) goes over into (9)

when eB ! 0. To this end wewrite, generalizing’2
n?ð0Þ toj’n?ðrintÞj2,

’n?ðrintÞ ¼
Z

~’n?ð�Þ d2�

ð2�Þ2 exp ði�rintÞ

and

Xn?ðmax Þ

n?¼0

j’n?ðrintÞj2

¼ Xn?ðmax Þ

n?¼0

ZZ d2�

ð2�Þ2
d2�0

ð2�Þ2 ~’n?ð�Þ~’�
n?ð�0Þeið���0Þrint :

(17)

For large n?ðmax Þ � 1 one can use the property of
completeness of the set f~’n?ð�Þg, which yields

X1
n?¼0

~’n?ð�Þ~’�
n?ð�0Þ ¼ ð2�Þ2
ð2Þð� � �0Þ (18)

and

Xn?ðmax Þ

n?¼0

j’n?ðrintÞj2 ffi
Z �ðmax Þ

0

d2�

ð2�Þ2 : (19)

In this way we are proving the correspondence (15) and
(13), for any rint; note, however, that we have accounted
only for the final state interaction (FSI) in m.f. and have
shown that it can be equivalently written in the form of a
modified statistical weight. However, in the sum over n?,
the factor j’n?ðrintÞj2 does not reduce to eB

2� , when

eB > 1
r2
int

.

IV. FORMALISM FOR THREE-BODY
FINAL STATES

In this section we consider an example of the neutron �
decay, n ! pþ e� þ ��e, in the presence of the homoge-
neous magnetic field B along the z axis
Writing the matrix element as

Mif ¼ G cos�ð �c pðxÞOð1Þ
	 c nðxÞÞð �c eðxÞOð2Þ

	 c �Þ; (20)

where OðiÞ
	 ¼ �	ð1� �i�5Þ, and G cos� � �G ¼ 1:0�10�5

m2
p

,

�1 ¼ 1, 262, �2 ¼ 0 and for B ¼ 0 c kðxÞ ¼ ueipkxffiffiffiffi
V3

p , one

obtains for the decay probability,
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dw ¼ �G2jð �u0iuÞð �u0iuÞj2
� Y
k¼2;3;4

d3k

�

� 
ð4Þðp1 � p2 � p3 � p4Þ
ð2�Þ5

¼ �G2jð �u0iuÞð �u0iuÞj2 ðMn � "2 � "3Þ"2d"2"3d"3
ð4�Þ3 ;

(21)

and "i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

i

q
, i ¼ 2, 3 refers to the proton and

electron, respectively.
The integration in (21) proceeds inside the phase space

of the ep system.
We now want to apply the m.f. to our system, and to this

end we realize that it will act only on the relative coordi-
nate �? of the (ep) system, perpendicular to the B direc-
tion, and we must separate out the �? dependence both in
the (ep) wave function and in the phase space integration.

One can consider (20) as a matrix element of the operator T̂

between initial and final states (see Appendix) Mif ¼
h�þ

f jT̂j�ii, and both �f and �i enter at one space-time

point in the limit of large W mass.
Therefore �fðxÞ ¼ c pðxÞc eðxÞ ! �epðxÞ, and the

latter wave function is defined by the m.f. Hamiltonian (4).
According to [5], the Hamiltonian for the neutral (ep)

system can be written as in (4) with !1 ¼ !p � mp,

!2 ¼ !e 	 mp.

Noting that !1 � !p � mp � !2 � !e, one obtains

Eð0Þ
ep � Eepð!ð0Þ

p ; !ð0Þ
e Þ

ffi P2

2mp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ �2
z þ eBð2n? þ 1� �pzÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ �2
z þ eBð2n? þ 1� �ezÞ

q
: (22)

Now the phase space can be rewritten as follows,

d3ppd
3pe

ð2�Þ6 ¼ d3Pd3�

ð2�Þ6 ¼ d3Pd�z

ð2�Þ4
d2�?
ð2�Þ2 ; (23)

and

d� � d3p�d
3ppd

3pe

ð2�Þ5 
ð4Þðpn � pp � pe � p�Þ

¼ d3Pd�zd
2�?

ð2�Þ5 
ðmn � jPj � Eð0Þ
epÞ

¼ P2d�z

2�2ð1þ P
mp
Þ
d2�?
ð2�Þ2 : (24)

Writing Eð0Þ
ep ffi mp þ "e, "e � ", one can express (24) in

the form

d� ¼ ð�m� "Þ2
4�3

d�z�?d�?

¼ ð�m� "Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 �m2

e

p
2�3

"d";

� ¼
Z

d� ffi 1:63

2�2
m5

e (25)

�m ¼ 1:29 MeV, and finally

w ¼ G2ð1þ 3�2Þ�; � � gA=gV � 1:262: (26)

In the presence of m.f., the values of �? are quantized in
the Hamiltonian (4), so that one should substitute as in
(15), and finally the decay probability becomes

dw ¼ g2jð �u0iuÞð �u0iuÞj2 P2d�z

4�2ð1þ P
mp
Þ

Xn?ðmax Þ

n?¼0

’2
n?ð0Þ; (27)

and n?ðmax Þ is defined by the condition mn ¼
Pþ Eð0Þ

epðn?Þ.
As was shown in (19) for eB ! 0, one has the

answer (21).
In the opposite limit, when eB is large, eB * m2

e and

n?ðmax Þ ¼ 0, one can read in (22) that Eð0Þ
ep is

Eð0Þ
epðeB ! 1Þ ffi mp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ �2
z

q
; �ez ¼ �1 (28)

and

�m � mn �mp ¼ Pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ �2
z

q
; (29)

which defines allowable phase space for ðP;�zÞ. In this
case for n? ¼ 0, one has the amplifying factor as in (7),

’2
0ð0Þ ¼ jeBj

2� , which can be much larger thanR
�?ðmax Þ d2�?

ð2�Þ2 ¼
�2
?ðmax Þ
4� 
 ð�mÞ2�m2

e

4� for eB � ð�mÞ2 �
m2

e (see [23,24]).
Inserting the values of �m ¼ 2:53me, one obtains the

amplifying factor for eB � m2
e, when only one term n? ¼

0 should be kept in (26), wnðeBÞ
wnð0Þ ¼ eB

�2 , and �2 � m2
e. Exact

calculation in [23] yields wnðeBÞ
wnð0Þ ¼ 0:77 eB

m2
e
.

Note, however, that for small �?ðmax Þ and hence small
�2, this ratio can be arbitrarily large.
For more discussion of this subject and additional

references, see [25].

V. OTHER INTERACTIONS AND
OTHER SYSTEMS

One immediate application of the magnetic focusing is
the hyperfine interaction in all systems. In hydrogene, this
effect was studied in [15] and it was shown that in the
standard form of the hyperfine shift,

�Ehf ¼ 32�

3
gp	B	nj�ð0Þj2; (30)
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where gp ¼ 2:79, 	B ¼ jej
2me

, and 	n ¼ jej
2mp

, the wave

function of the ground state can be chosen as

�0ð�?; zÞ ¼ N exp

�
��2

?a
2

2
� z2b2

2

�
(31)

where j�ð0Þj2 ¼ a2b
�3=2 , and a, b are fitting parameters; for

the free electron a ¼ eB
2me

, and for large eB > ðme�Þ2, a2b
grows with eB almost linearly, which gives the possibility
to study this effect experimentally.

The same effect was found in relativistic hadronic sys-
tems in [16], where again the hf shift has the same form as
in (25), namely,

hVhfi ¼ 8��sð�1�2Þ
9!1!2

j�q �qð0Þj2; (32)

and one can show that (32), when !1, !2 are decreasing
and �1�2 ¼ �3 leads to the absurd result of the negative
pseudoscalar masses at large eB, contradicting the stability
theorem, proved in [16], which tells us that energy eigen-
values in magnetic and vacuum Euclidean fields cannot be
negative and, hence, Vhf cannot be treated perturbatively,
when !i ! 0 and hVhfi ! 1. Consequently, the relativis-

tic smearing must be introduced, replacing 
ð3Þð�Þ in Vhf

by ð 1
	

ffiffiffi
�

p Þ3 exp ð�	2�2Þ, 	 � ð1� 2Þ GeV.
In any case, the behavior (32) signifies the strong in-

crease of the hyperfine splitting for hadrons in magnetic
field, which is stabilized by the smearing [16].

The calculations of hadron masses, subject to strong
hf interaction have been done in [10–13]. In the case of
�0, �0 mesons, the large eB asymptotics correspond to
the h�1�2j ¼ hþ � j state for �0 and the h� þ j state for
�0, and the strong hf interaction splits the masses, creating
a deep minimum for the �0 mass. However, this calcula-
tion in [10] refers to the purely q �q components of �0,
whereas the chiral dynamics in m.f. needs a special treat-
ment, which was performed in [13] and again showed a
decreasing with eB �0 mass, with a minimum.

The calculation in [13] was done based on the unified
theory of chiral dynamics with q �q degrees of freedom,
developed earlier in [26]. In its turn in [17] it was shown
that the chiral condensate grows with m.f., first quadrati-
cally for eB < � and then for eB � � linearly with eB.
This behavior found in [17] agrees quantitatively with the
lattice data of [7], the first reference that contradicts chiral
perturbative theory. In this way one can conclude that the
standard chiral theory can be applied only for eB & m2

�, as
was noticed before in [27].

The subsequent analysis of Nambu-Goldstone mesons in
m.f. was done in [13], where it was shown that Gell-Mann-
Oakes-Renner relations are valid for neutral Nambu-
Goldstone mesons but are violated for the charged ones,
and the �þ mass was calculated in agreement with lattice
data from [28]. One should stress that the phenomenon of
‘‘magnetic catalysis,’’ discussed in [6,8] and implying the

growth of chiral condensate h �qqi in m.f. in our treatment,
occurs due to magnetic focusing, as was shown in [17],
since h �qqi � c 2ð0Þ � eB.
We now turn to other processes, where the oppositely

charged particles appear in the initial state. One example is
the 	� þ p ! nþ �. In the case when the process occurs
from the ground state of the ð	�pÞ atom, one can use the
form (26) with r?, rz obtained in [15], which are reduced

by the ratio me

~m	
, m̂	 ¼ m	mp

m	¼mp
.

Since the probability w	 � wð	� þ p ! nþ �Þ is

proportional to j�	pð0Þj2, one can obtain the amplification

coefficient

�ðBÞ � w	ðBÞ
w	ð0Þ ¼

r2?ð0Þrzð0Þ
r2?ðBÞrzðBÞ

; �ð0Þ ¼ 1: (33)

Using the data from Fig. 2 of [15], one easily obtains for
H ¼ eB

~m2
	�

2 , 0 
 H 
 2,

�ðH ¼ 1Þ ffi 1:05; �ðH ¼ 2Þ ¼ 3:35:

One can see that in this case one needs much larger fields

[ð ~m	

me
Þ2 times larger] to produce the same kind of effect as in

the electron case.
Let us turn now to the case of the positronium annihila-

tion in m.f. Since the latter does not conserve the spin, but
only total spin projection Sz, it is convenient to discuss
separately case (a) of Sz ¼ 0 parapositronium and ortho-
positronium and (b) Sz � 1 orthopositronium. In the first
case, as in the q �q case, both states are a mixture of � ¼
ð�z ¼ þ1; �z ¼ �1Þ � hþ� j and � ¼ h�þ j, and par-
apositronium in strong m.f. tends to be a pure � state,
whereas orthopositronium is a pure � state (see [10,12] for
a similar discussion in the q �q case). For case (b) Sz ¼ �1,
in orthopositronium the corresponding ground state masses

in strong m.f. grow as� ffiffiffiffiffiffi
eB

p
with additional amplification

due to the strong hf contribution. As a result the decay
phase space increases with eB and the decay probability in
case (b) is growing both due to phase space and as in (33),
where in m.f. ~m	 ! 1

2me. The same happens in the � state

of orthopositronium, since the total energy in the � state

also grows as � ffiffiffiffiffiffi
eB

p
.

However, in the � state of parapositronium the mass is
slightly decreasing, while the jc ð0Þj2 factor is growing as
eB, and we expect the same situation, as in the example of
ðeþe�Þ pair creation in m.f., discussed in Sec. II. At this
point it is necessary also to stress the difference between
the two examples: for positronium annihilation the factor
�ðBÞ is proportional to jc ðranÞj2, where ran is of the order
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2? þ r2z

q
, while the ðeþe�Þ pair creation occurs at one

point and brings about factor jc ð0Þj2. The resulting differ-
ence is expected to be of the order of unity for eBr2z & 1.
However, for large eB > ðme�Þ2, one expects the be-

havior to be wþ�ðBÞ �
R jcþ�ðranÞj2wð0Þd, where

wð0Þd is the phase space integration (depending on B)
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with the two-photon annihilation amplitude Að2Þ, wð0Þ ¼
jAð2Þj2. Note that both hþ � j and h� þ j states can be
superpositions of S ¼ 1 and S ¼ 0 states. As a result one
obtains the distributions wþ�ðBÞ and w�þðBÞ as functions
of eB and notice that the linear growth for eB � ðme�Þ2 is
saturated for larger m.f., as was discussed previously.

In [29] the authors have used the Gaussian form of
positronium wave function and found the almost linear
growth of two-photon annihilation with eB for
eB & 1013 G: wðH ¼ 1Þ ¼ 3:35� 1012 s�1, wðH ¼ 3Þ ¼
12:3� 1012 s�1, wðH¼10Þ¼5:09�1013 s�1, wðH ¼
44Þ ¼ 11:8� 1013 s�1, where H ¼ B

1012
G. One can see

that for B ¼ 1013 G, the growth of w is weakening.

VI. SUMMARYAND DISCUSSION

We have demonstrated that the acting of m.f. on the
system of two opposite charges in the initial or final state
produces an amplifying factor, which can grow linearly
with eB for eB in the range ðeBÞmin & ðeBÞ & ðeBÞmax .

In particular, for the ðe;�eÞ continuum production the
relative probability wðeBÞ=wð0Þ ’ jc contðrðintÞj2=�2 can

grow as eB
�2 , where �2 is the effective phase space for the

perpendicular motion in the B ¼ 0 case. In this case
ðeBÞmin is also of the order of �2, while ðeBÞmax is defined
by the ðeBÞmax � 1=r2int, where rint refers to the range of the
internal production process (e.g., rint � 1=mW for neutron
� decay).

We have illustrated this behavior by the processes of the
eþe� pair creation and the neutron� decay; in the last case
this amplification was known and calculated by many
authors (see, e.g., [23–25]) using QPS in m.f. as in [1,2].

We have shown that the FSI method of our paper gives
the same result as QPS for rint ¼ 0 or for eB 	 1=r2int;
however, for eB� 1=r2int the QPS prediction overestimates

the probability.
For the ðe;�eÞ bound state production, the amplification

factor is proportional to jc b:s:ðrintÞj2, and for rint ¼ 0 it
grows linearly with eB only for eB � r2b:s:, where rb:s: is
the bound state radius at zero m.f., e.g., for positronium
rb:s: ¼ 2

me�
.

The same arguments can be applied, in principle, to the
effect of constant m.f. in the initial state, as it is illustrated
above in the paper by the example of the two-photon
positron annihilation (see, e.g., [29]). However, in this
case one should distinguish different physical situations;
in astrophysics these processes are part of a set of
reactions in m.f. at finite temperature and chemical po-
tential, while in experiment one should take into account
boundary conditions of the experimental device.

Incidentally, one should stress that all above derivations
disregarded the Coulomb potential role in initial state
interaction and FSI.

As it is known, the latter gives the factor for the ðe;�eÞ
system jc coulð0Þj2 ¼ 2��

0 exp ð�2��Þþ1 , � ¼ e2

v , which may

bring an additional amplification of the magnetic focusing
effect, discussed above. As it is, strictly speaking, we can
discuss the Coulomb amplification for 2�� � 1 and
eB 	 �2. However, the explicit amplification factor in
the case when both Coulomb interaction and m.f. are acting
is still not available and should be derived using solutions
when both interactions are present.
Finally, probably the most important conclusion of

our paper is that for ðe;�eÞ systems in continuum, there
occurs an amplification factor eB

�2 , which does not depend

on the masses of the charges and their sizes Ri (provided
eB < 1=R2) and, therefore, can be important for stimulat-
ing different reactions in atomic, molecular, nuclear, or
hadronic reactions.

APPENDIX: INITIAL AND FINAL INTERACTION
FACTORS IN PROCESS PROBABILITY

One can use the standard formalism [18] to define the
matrix element of a transition from the state � to �,
generated by the interaction V in the total Hamiltonian,

H ¼ K þUþ V; (A1)

where K is the kinetic term and U and V have different
ranges, rU, rV , correspondingly. To the first order in V one
can write

f�� ¼ ð’�
�V’

þ
� Þ þOðV2Þ; (A2)

where ’�
� , ’

þ
� are ingoing and outgoing solutions of the

operator K þU,

’�
� ¼ �� þ 1

E� K � i"
U’�

� ; (A3)

and for ’þ
� one should replace � ! �, " ! �".

Introducing for the orbital momentum l ¼ 0 the internal
amplitude due to V only as finðEÞ, one can write (see [18]
for a detailed derivation)

f�� ¼ finðEÞð�JostÞ�2; (A4)

where �Jost ¼ �ð0Þ, and �ðrÞ is the Jost solution of the
external problem, satisfying the condition

lim
r!1 exp ð�ikrÞ�ðrÞ ¼ 1; (A5)

while for the Coulomb type interaction one should replace
�ikr ! �ikrþ i�

v ln 2kr.

�Jost can be expressed via the regular solution �ðrÞ of the
external potential with the asymptotics

�exðrÞ � sin ðkrþ 
extÞei
ext

kr
; r ! 1; (A6)

and the connection is

lim
r!0

�ðrÞ ¼ ��1
Jost: (A7)

As a result one has (see [18])
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f��ðEÞ ¼ finðEÞð�exð0ÞÞ2
1þ finðEÞgðE; 0Þ ; (A8)

where gðE; rinÞ is expressed via Green’s functions,

gðE; rÞ ¼ G0ðr; rinÞ �Gexðr; rinÞ: (A9)

In particular, for the Coulomb external problem, one
finds [19]

�Jost ¼ exp

�
��

2

�
=�ð1þ i�Þ ¼ j�Jostj exp ð�i�0Þ;

(A10)

exp ð2i�0Þ ¼ �ð1þ i�Þ
�ð1� i�Þ ; (A11)

j�Jostj�2 � C2
0 ¼

2��

exp ð2��Þ � 1
; (A12)

where � ¼ ze2	
k , and � ¼ �j�j for the oppositely charged

system. Note, however, that (A4) and (A12) refer to the
combination of the short-range (nuclear) and Coulomb
(external) interactions, and the latter acts both in the
initial and final states [’�

� and ’þ
� in (A2)]. In the more

general case, when initial and final states are different
(i.e., short-range reaction with different particles and in-
teractions in the initial and final states), one should keep
track of indices � and �, which are different, and ’�

�

and ’þ
� satisfy equations of the form (A3) for ’�

� with

U � U�, K ¼ K�, and ’þ
� satisfies

’þ
� ¼ �� þ 1

E� K� þ i"
U�’

þ
� : (A13)

To clarify this situation we consider, as in [18],
the second reference, a simple model for the internal
interaction

Vðr; r0Þ ¼ �g�ðrÞg�ðr0Þ; (A14)

and as a result the reaction amplitude becomes

f�� ¼ �I�I�; I� ¼
Z

’��
� g�d

3r: (A15)

Taking into account different radii of internal and exter-
nal motion, one can approximate

I� ¼ ’��
� ð0Þ

Z
g�d

3r; I� ¼ ’þ
� ð0Þ

Z
g�d

3r: (A16)

A generalization of f�� to the case of � � � is (to the first
order in fin)

f�� ¼ ð�ð�Þ�
Jost Þ�1finðEÞð�ð�Þ

JostÞ�1: (A17)

We are especially interested in the case when both
Coulomb interaction and external magnetic field are
present simultaneously. The first interaction is effective
when � ¼ j Z�v j � 1, and for � 	 1 one can retain only

m.f. effects. In this case both ’�
� and ’þ

� are products of a

plane wave in the z direction and a bound state eigenfunction
in the ðx; yÞ plane,

’�
� ¼ ’þ

� ¼ eikzzffiffiffiffi
L

p ’n?ðx?Þ: (A18)

[1] L. D. Landau and E.M. Lifshitz, Quantum Mechanics:
Non-Relativistic Theory (Pergamon, New York, 1991),
3rd ed.

[2] L. D. Landau and E.M. Lifshitz, Statistical Mechanics
(Clarendon Press, Oxford, 1938).

[3] V. B. Berestetskii, E.M. Lifshitz, and L. P. Pitaevskii,
Electrodynamics (Pergamon, Oxford, 1982), 2nd ed.

[4] C. Itzykson and J.-B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980).

[5] J. S. Schwinger, Particles, Sources and Fields (Addison-
Wesley, Reading, MA, 1988), Vol. 2.

[6] V. Gusynin, V. Miransky, and I. Shovkovy, Phys. Rev. Lett.
73, 3499 (1994).

[7] G. S. Bali, F. Bruckmann, G. Endroedi, Z. Fodor,
S. D. Katz and A. Schaefer, Phys. Rev. D 86, 071502
(2012); P. Buividovich, M.N. Chernodub, E. V.
Luschevskaya, and M. I. Polikarpov, Phys. Lett. B 682,
484 (2010); M. D’Elia and F. Negro, Phys. Rev. D 83,
114028 (2011).

[8] I. Shovkovy, Lect. Notes Phys. 871, 13 (2013).
[9] Yu. A. Simonov, Phys. Rev. D 88, 025028 (2013).

[10] M.A. Andreichikov, B. O. Kerbikov, and Yu.A. Simonov,
arXiv:1210.0227.

[11] M.A. Andreichikov, V. D. Orlovsky, and Yu.A. Simonov,
Phys. Rev. Lett. 110, 162002 (2013).

[12] M.A. Andreichikov, B. O. Kerbikov, V.D. Orlovsky,
and Yu.A. Simonov, Phys. Rev. D 87, 094029
(2013).

[13] V. D. Orlovsky and Yu.A. Simonov, J. High Energy Phys.
09 (2013) 136.

[14] A.M. Badalian and Yu.A. Simonov, Phys. Rev. D 87,
074012 (2013).

[15] M.A. Andreichikov, B. O. Kerbikov, and Yu.A. Simonov,
arXiv:1304.2516.

[16] Yu. A. Simonov, Phys. Rev. D 88, 053004 (2013).
[17] Yu. A. Simonov, arXiv:1212.3118.
[18] M. L. Goldberger and K.M. Watson, Collision Theory

(John Wiley and Sons, Inc., New York, 1964), Chap. 5;
A.M. Badalian, L. P. Kok, M. I. Polikarpov, and Yu.A.
Simonov, Phys. Rept. 82, 32 (1982).

[19] G. Breit, E. Condon, and R. Present, Phys. Rev. 50,
825 (1936); G. Breit, B. Thaxton, and L. Eisenbud,

MAGNETIC FOCUSING IN ATOMIC, NUCLEAR, AND . . . PHYSICAL REVIEW D 88, 093001 (2013)

093001-7

http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1016/j.physletb.2009.11.017
http://dx.doi.org/10.1016/j.physletb.2009.11.017
http://dx.doi.org/10.1103/PhysRevD.83.114028
http://dx.doi.org/10.1103/PhysRevD.83.114028
http://dx.doi.org/10.1007/978-3-642-37305-3
http://dx.doi.org/10.1103/PhysRevD.88.025028
http://arXiv.org/abs/1210.0227
http://dx.doi.org/10.1103/PhysRevLett.110.162002
http://dx.doi.org/10.1103/PhysRevD.87.094029
http://dx.doi.org/10.1103/PhysRevD.87.094029
http://dx.doi.org/10.1007/JHEP09(2013)136
http://dx.doi.org/10.1007/JHEP09(2013)136
http://dx.doi.org/10.1103/PhysRevD.87.074012
http://dx.doi.org/10.1103/PhysRevD.87.074012
http://arXiv.org/abs/1304.2516
http://dx.doi.org/10.1103/PhysRevD.88.053004
http://arXiv.org/abs/1212.3118
http://dx.doi.org/10.1103/PhysRev.50.825
http://dx.doi.org/10.1103/PhysRev.50.825


Phys. Rev. 55, 1018 (1939); A. Sommerfeld, Atombau und
Spektralinien (F.Vieweg and Sohn, Braunschweig, 1921);
G. Gamov, Z. Phys. 51, 204 (1928); A.D. Sakharov, Zh.
Eksp. Teor. Fiz. 18, 631 (1948).

[20] A. I. Nikishov and V. I. Ritus, Sov. Phys. JETP 19, 529
(1964).

[21] J. S. Schwinger, Phys. Rev. 82, 664 (1951).
[22] A. I. Nikishov, Zh. Eksp. Teor. Fiz. 57, 1210 (1969); Nucl.

Phys. B21, 346 (1970).
[23] J. J. Matese and R. F. O’Connell, Phys. Rev. 180, 1289

(1969).
[24] L. Fassio-Canuto, Phys. Rev. 187, 2141 (1969).
[25] L. Korovina, Izv. Vuzov. Fizika 6, 86 (1964); I. Ternov, B.

Lysov, and L. Korovina, Moscow Univ. Phys. Bull. 5, 58
(1965); V. Zakhartsev and Y. Loskutov, Moscow Univ.
Phys. Bull. 26, 24 (1985); A. Studenikin, Sov. J.

Astrophys. 28, 639 (1988); Sov. J. Nucl. Phys. 49, 1031
(1989); K.A. Konzakov and A. I. Studenikin, Phys. Rev. C
72, 015502 (2005).

[26] Yu. A. Simonov, Phys. At. Nucl. 60, 2069 (1997); 67, 846
(2004); 67, 1027 (2004); S.M. Fedorov and Yu.A.
Simonov, JETP Lett. 78, 57 (2003); Yu. A. Simonov,
Phys. Rev. D 65, 094018 (2002).

[27] N. O. Agasian and I. Shushpanov, Phys. Lett. B 472, 143
(2000); J. High Energy Phys. 10 (2001) 006; N. O.
Agasian, Phys. Lett. B 488, 39 (2000); Phys. At. Nucl.
64, 554 (2001).

[28] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D.
Katz, S. Krieg, A. Schäfer, and K.K. Szabó, J. High
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