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We report on a search for a dijet resonance in events with only two or three jets and a large imbalance in

the total event transverse momentum. This search is sensitive to the possible production of a new particle

in association with aW or Z boson, where the boson decays leptonically with one or more neutrinos in the

final state. We use the full data set collected by the CDF II detector at the Tevatron collider at a proton-

antiproton center-of-mass energy of 1.96 TeV. These data correspond to an integrated luminosity of

9:1 fb�1. We study the invariant mass distribution of the two jets with highest transverse energy. We find

aDeceased.
bVisitor from University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
cVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
dVisitor from University of California Irvine, Irvine, CA 92697, USA.
eVisitor from Institute of Physics, Academy of Sciences of the Czech Republic, 182~21, Czech Republic.
fVisitor from CERN, CH-1211 Geneva, Switzerland.
gVisitor from Cornell University, Ithaca, NY 14853, USA.
hVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.
iVisitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.
jVisitor from University College Dublin, Dublin 4, Ireland.
kVisitor from ETH, 8092 Zürich, Switzerland.
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good agreement between data and standard model background expectations and measure the combined

cross section forWW,WZ, and ZZ production to be 13:8þ3:0
�2:7 pb. No significant anomalies are observed in

the mass spectrum, and 95% credibility level upper limits are set on the production rates of a potential new

particle in association with a W or Z boson.

DOI: 10.1103/PhysRevD.88.092004 PACS numbers: 12.15.Ji, 12.38.Qk, 14.70.�e, 14.80.�j

I. INTRODUCTION

A study of the dijet invariant mass (mjj) distribution in

events with jet pairs produced in association with a W
boson was performed by the CDF collaboration using p �p
collision data corresponding to an integrated luminosity of
4:3 fb�1 [1]. That analysis focused on W boson decays to
‘� (‘ ¼ e or �), where the presence of an identified
electron (e) or muon (�) was required in the event selec-
tion. Reference [1] reported evidence for a discrepancy
with the standard model (SM) expectations, interpretable
as an excess of events in the mass range of
120–160 GeV=c2 corresponding to a significance of 3.2
standard deviations. In that study, the excess could be
modeled with a Gaussian distribution, centered at
145 GeV=c2 with a rms width of 14:3 GeV=c2, corre-
sponding to the expected experimental mjj resolution of

the CDF II detector. The acceptance and selection efficien-
cies for events associated with such a dijet resonance were
estimated by simulating Higgs boson (H) production in
association with a W boson for a Higgs boson mass of
150 GeV=c2. Based on the assumption that the observed
excess originated from a hypothetical new particle X with a
branching fraction to quark pairs of one, the excess corre-
sponded to a measured production cross section for
�ðp �p ! WXÞ of 3:1� 0:8 pb [2].

In this article, we present a search for a dijet resonance
produced in association with a vector boson by studying
themjj distribution from the two highest energy clusters of

particles (jets) in events with only two or three detected
jets and large imbalance in total event transverse momen-
tum, indicative of the presence of undetected particles. We
veto events containing one or more identified high-pT

leptons, in order to ensure that the sample is statistically
independent from those used in other studies. The resulting
final states are sensitive to WX ! ‘�jj and ZX ! � ��jj
production and decay, where ‘ represents a hadronically
decaying � lepton or an unidentified e or �. We use the
entire CDF p �p collision data set corresponding to an
integrated luminosity of 9:1 fb�1.

The production of both WX and ZX states is of interest
since many of the theoretical models proposed to explain
the excess at 145 GeV=c2 allow the hypothetical particle X
to be produced in association with either a W boson or a Z
boson. While studies on WX production are presented in
Refs. [1,3,4], no studies focusing on ZX production
have been reported to date. The search for WX and ZX
production in events with jets and an imbalance of trans-
verse energy is analogous to the search for WH and ZH

production in the same final state [5], which has compa-
rable sensitivity to that for the WH process reconstructed
in the final state with a lepton and jets, but is based on an
independent event sample.

II. DATA SAMPLE AND EVENT PRESELECTION

The data were collected by CDF II [6], a general-
purpose detector used to study Tevatron p �p collisions at
a center-of-mass energy of 1.96 TeV. CDF II features a
charged-particle tracking system consisting of a cylindrical
open-cell drift chamber and silicon microstrip detectors
immersed in a 1.4 T magnetic field parallel to the beam
axis. Electromagnetic and hadronic calorimeters surround-
ing the tracking system measure the energies of charged
and neutral particles. Drift chambers and scintillators
located outside the calorimeter identify muons.
The calorimeter system consists of lead-scintillator

sampling electromagnetic and iron-scintillator sampling
hadronic calorimeters. The calorimeters comprise central
barrel (j�j � 1:1) and plug (1:1 � j�j � 3:6) sections in
pseudorapidity (�) space [7]. Calorimeter modules are
arranged in a projective-tower geometry. Individual towers
in the central barrel subtend 0.1 in j�j and 15� in � [7].
The sizes of the towers in the end plug calorimeter vary
with j�j, subtending 0.1 in j�j and 7.5� in � at j�j ¼ 1:1,
and 0.5 in j�j and 15� in � at j�j ¼ 3:6.
Jets are reconstructed from energy deposits in contigu-

ous groups of calorimeter towers, using the JETCLU

clustering algorithm [8] with a fixed cone size of �R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p ¼ 0:4. Jet energies are corrected [9] for

nonuniformities of the calorimeter response as a function
of �, energy contributions from multiple p �p interactions
within the event, and the nonlinear response of the calo-
rimeters. In contrast with the analysis described in Ref. [1],
additional corrections are applied to the reconstructed jets
in simulated events to more accurately model the energy
scales of particle showers initiated by quarks and gluons.
These corrections are obtained by comparing predicted and
observed distributions of the transverse energy balance,
pTðZ=�Þ � ETðjetÞ, from independent Zþ 1 jet and
�þ 1 jet event samples [10].
We consider events selected online due to the presence

of large missing transverse energy [11]. We inclusively
select events with 6ET > 45 GeV and also the additional
events with 6ET > 30 GeV that contain two reconstructed
jets. The event missing transverse energy is corrected off-
line for the presence of muons, which typically deposit
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only a fraction of their energy in the calorimeter, and
reconstructed charged-particle tracks pointing at inactive
regions of the detector. To only retain events for which the
online selection is fully efficient, we require those selected
for further analysis to have a corrected 6ET > 50 GeV.

We additionally require events to contain two or three
reconstructed jets, where the two with the highest trans-
verse energies [12], j1 and j2, meet minimal threshold
requirements of ETðj1Þ> 35 GeV and ETðj2Þ> 25 GeV.
Both jets are required to be reconstructed within the range
j�ðjiÞj< 2 and at least one of the two within j�ðjiÞj< 0:9.
We also require the two jets to be separated by
�Rðj1; j2Þ> 1. Events containing only one additional jet
with ET > 15 GeV and j�j< 2:4 are not rejected, in order
to increase acceptance for signal events with an extra jet
originating from an initial- or final-state radiation or a
hadronically decaying � lepton in the final state. Events
containing an identified electron or muon with pT >
20 GeV=c are rejected to maintain orthogonality with
other search samples. Those events that satisfy all of the
above criteria form the preselection sample used for this
analysis.

III. BACKGROUND MODELING

We model SM background processes using a variety of
Monte Carlo simulation programs. The diboson processes
(WW, WZ, and ZZ) are generated with PYTHIA [13],
incorporating �� contributions to the Z boson components
for masses above 2 GeV=c2. The normalization of simu-
lated samples is extrapolated from next-to-leading-order
calculations [14,15] with the �� and Z contributions re-
stricted to the mass range between 40 and 140 GeV=c2,
yielding cross sections of 11.7 pb for WW, 3.6 pb for WZ,
and 1.5 pb for ZZ processes, respectively. Top-quark
production is generated assuming a top-quark mass of
172:5 GeV=c2 [16]. Top-quark pair production is gener-
ated with PYTHIA, and its contribution is normalized to the
approximate next-to-next-to-leading-order cross section
[17]. Single top-quark production is modeled using
POWHEG [18] and normalized to the next-to-leading-order

cross sections [19,20]. Production of a W or Z boson in
association with parton jets is modeled by ALPGEN [21]
incorporating PYTHIA to simulate parton showering
and hadronization. Normalizations for predicted event
rates associated with these processes are obtained from
data.

We model multijet events from quantum chromodynam-
ics processes, a major source of background in final states
with jets and 6ET , using a data-driven method. We define the

missing transverse momentum ~6pT , a variable similar to ~6ET ,
as the negative vector sum of charged-particle transverse
momenta from the reconstructed tracks in an event. As

shown in Fig. 1, ~6ET and
~6pT tend to be aligned for processes

with neutrinos in the final state, such as diboson

production, but aligned or antialigned in the data, which
are dominated by multijet production. Because multijet
processes result in final states with no neutrinos, observed
~6ET necessarily originates from jet energy mismeasure-
ments and therefore tends to point either in the same

direction or direction opposite to the reconstructed ~ET of

the mismeasured jet. Conversely, observed ~6pT in these
events is generated from differences in the fractions of
showering particles within each jet that are reconstructable
as charged tracks, a mechanism uncorrelated with calo-
rimeter energy mismesurements. Hence, the directions of

the observed ~6ET and ~6pT in these events are in many cases
different from one another. For events originating from
dijet production, in which the two jets are produced oppo-
site to one another, the azimuthal separation between the
~6ET and ~6pT thus peaks in the regions near 0 or �. Hence,
multijet background can be suppressed by rejecting events

where��ð ~6ET;
~6pTÞ>�=2, and rejected events can be used

to model the multijet background contained within the
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FIG. 1 (color online). Azimuthal separation between the ~6ET

and ~6pT for events that satisfy the preselection requirements.
(a) The data distribution, for which 94% of events are estimated

to originate from multijet production with observed ~6ET and ~6pT

that tend to be either aligned or antialigned. (b) Modeled dis-
tributions for the contributing SM processes leading to events

containing final state neutrinos with observed ~6ET and ~6pT that
tend to be aligned.
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selected data sample defined by ��ð ~6ET;
~6pTÞ<�=2. The

applicability of this model is confirmed in data control
regions [22] and supported by other measurements
[5,23,24].

IV. ANALYSIS METHOD

Event preselection yields over 2 million candidate
events, of which 94% are estimated to originate from

multijet production. Requiring��ð ~6ET;
~6pTÞ<�=2 reduces

the multijet contribution by roughly a factor of 2. To further
reduce this background contribution, we require the azi-

muthal separation between the ~6ET and each jet to satisfy

��ð ~6ET; jiÞ> 0:8. We also require ~6pT > 20 GeV and large

6ET significance ( 6ET=
ffiffiffiffiffiffiffiffiffiffiffiffiP

ET

p
> 3:5 GeV1=2, where

P
ET is

the scalar sum of transverse energies deposited in the
calorimeter), as well as HT= 6ET < 1:2, where HT is the
magnitude of the negative vector sum of jet transverse
energies. These additional selections reduce the multijet

background by more than 99% and increase S=
ffiffiffiffi
B

p
to 11.7

from 3.3, where S is the predicted number of SM diboson
events and B is the predicted number of events from other
SM processes in the selected samples.

To study the features of the mjj distribution in the final

event sample, we fit the observed distribution in data to the
modeled distributions for the contributing background
processes. Any contribution from WX and ZX production
would appear as an additional narrow structure overlapping
the expected, resonant contribution from SM diboson
production. First, we extract a measurement of diboson
production by fitting the mjj distribution for the relative

event contributions from known SM processes and com-
pare the result with theoretical predictions. We then allow
for an additional Gaussian contribution from WX and ZX
production and set 95% credibility level (C.L.) upper limits
on the cross section for such processes using various
theoretical constructs. The fits used to extract cross sec-
tions and upper limits are based on the Bayesian marginal
likelihood method [25].

In the final fits, contributions from top-quark production
are constrained based on theoretical predictions. Initial
normalizations for the W=Zþ jets and multijet back-
ground contributions are obtained by fitting the 6ET

distribution, which provides good discrimination between
signal-like and backgroundlike processes, using a 	2 mini-
mization technique. Figure 2 shows the fitted 6ET distribu-
tion, where the W=Zþ jets and multijet contributions are
initially treated as unconstrained and determined from the
fit. The resulting uncertainties on the multijet and W=Zþ
jets contributions originating from this procedure are 19%
and 3%, respectively. Table I summarizes predicted event
contributions to the final event sample from diboson pro-
duction and other SM background processes, which are
taken as inputs to the final fits performed on the observed
mjj spectrum. Figure 3 shows comparisons of predicted

and observed distributions for ETðj1Þ, ETðj2Þ, and
��ðj1; j2Þ, variables strongly correlated with dijet invari-
ant mass, from events in the final sample.
When performing the maximum likelihood fits, we con-

sider several sources of systematic uncertainties, included
as constraints in the likelihood. Sources that affect pre-
dicted event yields for modeled background contributions
are referred to as rate uncertainties. Dominant rate uncer-
tainties include those on the normalizations obtained from
data to constrain multijet (19%) and W=Zþ jets (3%)
contributions. Uncertainties associated with theoretical
cross section calculations (6–7%) and the sample luminos-
ity measurement [26] (6%), which affect predicted back-
ground process event rates taken directly from simulation,
are also included. In addition, uncertainty sources such as
jet energy scale [9] (1.4–13%), parton density functions
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FIG. 2 (color online). Missing transverse energy distribution
of events satisfying all selection criteria with fitted SM contri-
butions overlaid. The last bin includes overflow events with
~6ET > 300 GeV.

TABLE I. Predicted number of events from each contributing
SM process in the final event sample and the total number of
observed events, where the normalization of W=Zþ jets and
multijet background processes are obtained from a fit to the 6ET

distribution. Uncertainties include statistical and systematic
contributions.

Process Yield

WW 1850� 170
WZ 670� 60
ZZ 380� 30
Top quark 2040� 190
W þ jets 46170� 1390
Zþ jets 19710� 590
multijet 6280� 1190
Total expected 77100� 2320
Data 77149
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(2%), efficiency of lepton veto requirements (2%), and
measured trigger efficiencies (0.4–1.5%) that affect simu-
lated detector event acceptances are incorporated on both
the signal and background contributions.

We also incorporate the effects of systematic uncertainty
sources, which result in variations in the shapes of modeled
mjj distributions for the contributing processes. For those

processes modeled via simulation, we account for potential
variations in the shape of the mjj distribution originating

from jet energy scale uncertainties. Uncorrelated uncer-
tainties on the simulated energy scales for jets originating
from quarks (3%) and gluons (6%) are considered sepa-
rately. In the case of the W=Zþ jets background contribu-
tion, shape uncertainties resulting from factor of 2 changes
to the nominal Q2 scale used in the perturbative expansion
for calculating matrix elements in the ALPGEN generator
are also incorporated. Finally, for the modeled mjj distri-

bution from multijet production, we obtain shape uncer-
tainties by varying the normalization of the modeled
contributions from other processes, which are subtracted
from the data distribution obtained from events with
��ð6ET; 6pTÞ>�=2.

V. RESULTS

A. Diboson measurement

We fit the distribution of mjj from the two highest-

energy jets in events passing all selection criteria to extract
a cross section measurement for diboson production. We
take SM values for the relative production rates of theWW,
WZ, and ZZ processes in order to obtain a single mjj

template corresponding to combined diboson production.
The diboson contribution is allowed to float freely by
assuming a flat, non-negative prior probability for the total
cross section. The unit Gaussian priors of the nuisance
parameters are centered on zero and truncated whenever
the value results in a nonphysical prediction. Figure 4
shows the fitted mjj distribution and a comparison of the

fitted diboson contribution against the data after subtract-
ing the other background contributions obtained from the
fit. The inclusive cross section �ðp �p ! VVÞ, where VV ¼
WW þWZþ ZZ, is measured to be 13:8þ3:0

�2:7 pb for �
� and

Z contributions restricted to the mass range between 40 and
140 GeV=c2, which is in good agreement with the SM
prediction of 16:8� 1:0 pb.

B. Limits on dijet-resonance cross sections

To search for WX and ZX production, we perform a
second fit, normalizing diboson contributions to their theo-
retical expectation and assuming 6% uncertainties on their
theoretical cross sections. We allow for an additional signal
contribution, modeled assuming a Gaussian distribution,
centered at 145 GeV=c2 with a rms width of 14:3 GeV=c2,
in accordance with Ref. [1]. To be consistent with the cross
section reported in Ref. [2], we model the signal accep-
tance from simulated Higgs boson production in associa-
tion with a W or Z boson for a Higgs boson mass of
150 GeV=c2 to extract cross section limits. As the relative
production rate of WX and ZX varies among theoretical
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models, we set upper limits on combined production
(�tot¼�WXþ�ZX) for three scenarios: (1) �WX ¼ 100%
and �ZX ¼ 0%, (2) �WX ¼ 76% and �ZX ¼ 24%, and
(3) �WX ¼ 61% and �ZX ¼ 39%. The second and third
scenarios correspond approximately to the relative SM
rates for WZ=ZZ and WH=ZH production, respectively.

The observed and median expected, assuming the back-
ground only hypothesis, 95% C.L. upper limits on the
combined cross section for WX and ZX production (�tot)
obtained from the fit are shown in Table II for each of the
three scenarios. Figure 5 shows a comparison of these
limits relative to expectations for each scenario based on
the WX production cross section extrapolated from the
observed excess reported in Ref. [1]. The one standard
deviation uncertainties associated with this measured cross
section are indicated by the light (red) dashed lines. In all
scenarios, the most likely value of the combined WX and

ZX production cross section corresponding to the observed
excess is excluded at the 95% C.L. Figure 6 shows the
fitted mjj distribution and a comparison of the combined

fitted contributions of dibosons and WX=ZX production
against the data, with other background contributions as
obtained from the fit subtracted.

TABLE II. Median expected, assuming the background only
hypothesis, and observed 95% C.L. upper limits on the combined
WX þ ZX cross section (�tot) under various hypotheses for the
relative magnitudes of �WX and �ZX.

Signal scenario

Expected

upper limit

on �tot

Observed

upper limit

on �tot

�WX=�tot ¼ 1:00, �ZX=�tot ¼ 0:00 1.31 pb 2.20 pb

�WX=�tot ¼ 0:76, �ZX=�tot ¼ 0:24 1.02 pb 1.72 pb

�WX=�tot ¼ 0:61, �ZX=�tot ¼ 0:39 0.90 pb 1.52 pb
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VI. CONCLUSION

We study the dijet invariant mass distribution in events

with energetic jets and large missing transverse energy

using the full CDF II data set corresponding to an

integrated luminosity of 9:1 fb�1. A fit of the observed

distribution to modeled distributions for the expected

contributions of SM production processes gives a mea-

sured cross section for combined diboson production of

�ðp �p ! VVÞ ¼ 13:8þ3:0
�2:7 pb, in good agreement with the

SM prediction of 16:8� 1:0 pb. In the absence of a sig-

nificant deviation from the background expectation in the

dijet invariant mass spectrum, we set 95% C.L. upper

limits on the combined cross section for the production

of a new particle X in association with a W or Z boson,

under several hypotheses for the relative production rates

ofWX and ZX. For each of these hypotheses, we exclude at
95% C.L. the most likely value of the combinedWX þ ZX
cross section corresponding to the excess observed in

Ref. [1].
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