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We consider a lattice formulation of the four-dimensional N ¼ 1 Wess-Zumino model in terms of the

Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. The lattice action

is invariant under a deformed supersymmetric transformation, which is nonlinear in the scalar fields, and

it is determined by an iterative procedure in the coupling constant to all orders in perturbation theory.

We also show that the corresponding Ward-Takahashi identity is satisfied at fixed lattice spacing.

The calculation is performed in lattice perturbation theory up to order g3 (two loops), and the

Ward-Takahashi identity (containing 110 connected nontadpole Feynman diagrams) is satisfied at fixed

lattice spacing thanks to this exact lattice supersymmetry.
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I. INTRODUCTION

Nonperturbative dynamics play an important role in the
theory of supersymmetry breaking needed in order to
produce a low-energy four-dimensional effective action
with a residual N ¼ 1 supersymmetry. For this reason,
much effort has been dedicated to formulating a lattice
version of supersymmetric theories (see Refs. [1–6]).

The major obstacle in formulating a supersymmetric
theory on the lattice is that the supersymmetry is a part
of the super Poincaré group, which is explicitly broken by
the lattice. Ordinary Poincaré invariance is also broken by
the lattice, but the operators that violate Poincaré symme-
try are all irrelevant (i.e., go to zero in the continuum limit,
a ! 0). In the case of a supersymmetric theory, these
operators are relevant, and a fine-tuning is needed in order
to eliminate their contribution. This is the case of the
Wilson fermion approach, for the N ¼ 1 super Yang—
Mills theory, in which the only operator that violates the
N ¼ 1 supersymmetry is a fermion mass term [7]. By
tuning the fermion mass to the supersymmetric limit, one
recovers supersymmetry in the continuum limit (see, for
example, Refs. [8–11]). Alternatively, using domain-wall
fermions [12,13] this fine-tuning is not required. See also
Refs. [14,15]. This is in contrast with lower-dimensional
models (with extended supersymmetry) in which the lattice
symmetries can eliminate the need for such a fine-tuning.
Basically, the strategy here is to realize part of the super-
charges as an exact symmetry on the lattice. This exact
supersymmetry is expected to play a key role to restore
continuum supersymmetry without (or with less) fine-
tuning [16–22].

In this paper, we consider the N ¼ 1 four-dimensional
lattice Wess-Zumino model introduced in Refs. [23–25]
and studied in Refs. [26,27] (for a numerical approach,
see Refs. [28–30]). Although it is a toy model, the main
difficulties of lattice supersymmetry are already present
(we do not consider gauge fields here). A necessary

condition to have exact lattice supersymmetry is that the
associated Ward-Takahashi identity (WTi) has to be
exactly satisfied on the lattice. This exact symmetry is
responsible for the restoration of supersymmetry in the
continuum limit without the fine-tuning of the parameters
of the action.
Here, we extend the formulation introduced in

Ref. [26] and show that it is possible to define a deformed
lattice supersymmetric transformation, which leaves the
full action invariant at fixed lattice spacing, to all orders in
perturbation theory. This transformation is nonlinear in
the scalar fields. The action and the transformation are
written in terms of the Ginsparg-Wilson operator and
reduce to their continuum expression in the naive contin-
uum limit [26]. Since in the presence of any exact sym-
metry all the WTi are fulfilled, we did check that the
simplest nontrivial one, i.e., the one-point WTi, is exactly
satisfied on the lattice for both one-(order g) and
two-(order g3) loops. Although in a one-point WTi cal-
culation, the order g3 is a nontrivial zero, it shows can-
cellations between fermion and scalar field contributions
as required by the supersymmetry. This result extends to
two-loop order the results already obtained in Ref. [27]
for a different WTi, i.e., the one-loop (two-points) WTi
(order g2). In this case, the exact lattice supersymmetry
determines the finite part of the scalar and fermion renor-
malization wave function, which coincide in the contin-
uum limit, and leads to the restoration of the continuum
supersymmetry.
In the following, we briefly review the N ¼ 1 four-

dimensional lattice Wess-Zumino model based on the
Ginsparg-Wilson fermion operator and show how to build
up a lattice supersymmetry transformation, which is an
exact symmetry of the lattice action, to all orders in per-
turbation theory. In the remaining part, we derive the WTi
and explicitly check that the one-point WTi up to two loops
is exactly satisfied at fixed lattice spacing.
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II. THE LATTICE WESS-ZUMINO MODEL

We formulate the lattice Wess-Zumino model in four
dimensions introducing a Dirac operatorD that satisfies the
Ginsparg-Wilson relation [31]:

�5DþD�5 ¼ aD�5D: (1)

This relation implies a continuum symmetry of the fermion
action, which may be regarded as a lattice form of the
chiral symmetry [32,33] and protects the fermion masses
from additive renormalization. Although our analysis is
valid for all Ds that satisfy Eq. (1), we use the solution
given by Neuberger [34,35],

D ¼ 1

a

�
1� X

1ffiffiffiffiffiffiffiffiffiffi
XyX

p
�
; X ¼ 1� aDw; (2)

Dw ¼ 1

2
��ðr?

� þr�Þ � a

2
r?

�r�; (3)

where r��ðxÞ andr?
��ðxÞ, are the forward and backward

lattice derivatives, respectively. Plugging Eq. (3) in Eq. (2),
we find it convenient to isolate in D the part containing the
gammamatrices [26], and writeD asD ¼ D1 þD2, where
D1 ¼ 1

4 TrðDÞ and D2 ¼ 1
4�� Trð��DÞ. More explicitly,

we have

D1 ¼ 1

a

�
1�

�
1þ a2

2
r?

�r�

�
1ffiffiffiffiffiffiffiffiffiffi
XyX

p
�
; (4)

D2 ¼ 1

2
��ðr?

� þr�Þ 1ffiffiffiffiffiffiffiffiffiffi
XyX

p � ��D2�: (5)

In terms of D1 and D2, the Ginsparg-Wilson relation (1)
becomes [26]

D2
1�D2

2¼
2

a
D1; and

�
1�a

2
D1

��1
D2

2¼�2

a
D1: (6)

The action of the four-dimensional Wess-Zumino model
on the lattice was introduced in Refs. [23–25]. In our
notation,

SWZ ¼ X
x

�
1

2
��

�
1� a

2
D1

��1
D2�� 2

a
�yD1�

þ Fy
�
1� a

2
D1

��1
Fþ 1

2
m ���

þmðF�þ ðF�ÞyÞ þ g ��ðPþ�Pþ þ P��yP�Þ�
þ gðF�2 þ ðF�2ÞyÞ

�
;

where � and F are scalar fields and � is a Majorana
fermion that satisfies the Majorana condition, �� ¼ �TC,
and C is the charge conjugation matrix that satisfies

CT ¼ �C and CCy ¼ 1. Moreover, C��C
�1 ¼ �ð��ÞT ,

and C�5C
�1 ¼ ð�5ÞT . In the continuum limit, i.e., a ! 0,

SWZ reduces to the continuum Wess-Zumino action,

S ¼
Z �

1

2
��ð6@þmÞ�þ�y@2�þ FyF

þmðF�þ ðF�ÞyÞ þ g ��ðPþ�Pþ þ P��yP�Þ�
þ gðF�2 þ ðF�2ÞyÞ

�
:

If one defines the real components by � ! 1ffiffi
2

p ðAþ iBÞ
and F ! 1ffiffi

2
p ðF� iGÞ (where now F is real), the Wess-

Zumino action can be written as a free part or kinetic term,
S0, plus the superpotential term, Spot, SWZ ¼ S0 þ Spot, as

S0 ¼
X
x

�
1

2
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1� a
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��1
D2�� 1

a
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2
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�
1� a

2
D1

��1
Fþ 1

2
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1� a

2
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��1
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�
;

Spot ¼
X
x

�
1

2
m ���þmðFAþGBÞ þ 1ffiffiffi

2
p g ��ðAþ i�5BÞ�

þ 1ffiffiffi
2

p g½FðA2 � B2Þ þ 2GðABÞ�
�
:

III. THE SUPERSYMMETRIC
TRANSFORMATION

As was discussed in Ref. [23] and then shown in
Ref. [26], S0 is invariant under a lattice supersymmetric
transformation,

�A ¼ �"� ¼ ��"; �B ¼ �i �"�5� ¼ �i ���5"

�� ¼ �D2ðA� i�5BÞ"� ðF� i�5GÞ"
�F ¼ �"D2�; �G ¼ i �"D2�5�;

(7)

which is similar to the continuum one except for
replacing the continuum derivative with the lattice one,
D2�. Indeed [26], the variation of S0 under this transfor-

mation is

�S0 ¼
X
x

�
��

�
1� a

2
D1

��1
D2½�D2ðA� i�5BÞ"

� ðF� i�5GÞ"� � 2

a
��"D1Aþ 2i

a
���5"D1B

þ ð �"D2�Þ
�
1� a

2
D1

��1
F
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�
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2
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G

�
:

Using the Ginsparg-Wilson relation (6) and integrating by
parts (details can be found in Ref. [26]), we get
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As discussed in Refs. [26,27], the variation of Spot under

the supersymmetric transformation (7) does not vanish due
to the failure of the Leibniz rule at finite lattice spacing [36].
To discuss the symmetry properties of the lattice Wess-
Zumino model, one possibility would be to modify the
action by adding irrelevant terms that make the full action
invariant [37]. Another possibility is to modify the super-
symmetric transformation (7) so that Spot has an exact

symmetry for a � 0. We shall see that this procedure is
only possible if we use fermions that satisfy Eq. (1). Since
the transformation (7) leaves S0 invariant, the modification
should vanish for g ¼ 0. The supersymmetric transforma-
tion that leaves invariant SWZ is similar to Eq. (7), where the
only difference is in the variation of the fermion field [26],

�� ¼ �D2ðA� i�5BÞ"� ðF� i�5GÞ"þ gR"; (8)

where R is a function to be determined order by order in
perturbation theory, imposing the condition �SWZ ¼ 0.
Expanding R in power of g [26],

R ¼ Rð1Þ þ gRð2Þ þ g2Rð3Þ þ � � � ; (9)

and imposing the symmetry condition order by order in
perturbation theory, we find [26]

Rð1Þ ¼
��
1� a

2
D1

��1
D2 þm

��1
�L; (10)

where

�L � 1=
ffiffiffi
2

p f2ðAD2A� BD2BÞ �D2ðA2 � B2Þ
þ 2i�5½ðAD2Bþ BD2AÞ �D2ðABÞ�g: (11)

For n � 2,

RðnÞ ¼ � ffiffiffi
2

p ��
1� a

2
D1

��1
D2 þm

��1ðAþ i�5BÞRðn�1Þ:

Notice that the operator ðð1� a
2D1Þ�1D2 þmÞ�1 is the free

fermion propagator, and Eq. (8), as a function of R, is
nonlinear in the scalar fields. Inserting these results in
Eq. (9), the function R to be used in Eq. (8), resummed to
all order in pertubation theory, is

R¼
��

1�a

2
D1

��1
D2þmþ ffiffiffi

2
p

gðAþi�5BÞ
��1

�L: (12)

Thanks to the Ginsparg-Wilson relation [encoded in
Eq. (6)], we are able to resum Eq. (9) to obtain Eq. (12),

which contains all orders in perturbation theory and is a
closed form that can possibly be used for numerical simu-
lations. In the limita ! 0, Eq. (8) becomesEq. (7) since�L
vanishes in this limit. �L is different from zero due to
the breaking of the Leibniz rule at finite lattice spacing.
This resummation would not be possible using Wilson
fermions [38].
Now we want to show that the full Wess-Zumino action,

SWZ, is invariant under the supersymmetric tranformation
[with Eq. (8)] and include all orders in perturbation theory.
Indeed, its variation is

�SWZ ¼ X
x

�
g ��

��
1� a

2
D1

��1
D2RþmR

�
"

� gffiffiffi
2

p ½2 ��ðAþ i�5BÞD2ðA� i�5BÞ"

� ��D2ðA� i�5BÞ2"� þ
ffiffiffi
2

p
g2 ��ðAþ i�5BÞR"

�
:

Using Eq. (12), after some algebra, we get indeed zero:

�SWZ ¼ X
x

�
g ���L"� gffiffiffi

2
p ½2 ��ðAþ i�5BÞD2ðA� i�5BÞ

� ��D2ðA� i�5BÞ2"�
�
¼ 0:

IV. ONE-POINT WARD-TAKAHASHI IDENTITY
TO TWO LOOPS

Before going to two loops (order g3), we first want to
show how to obtain a WTi. This will be useful for the more
involved calculation to two loops. TheWTi is derived from
the generating functional, which is given by Z½�; J� ¼R
D�exp�ðSWZ þ SJÞ, where SJ is the source term,

SJ ¼ P
xJ� �� � P

xfJAAþ JBBþ JFF þ JGGþ ���g.
Using the invariance of both the Wess-Zumino action and
the measure with respect to the lattice supersymmetric
transformation (8), the WTi reads hJ� � ��iJ ¼ 0, where
�� is given in Eq. (8).
We start with the simplest (one-point) WTi, which is

generated by taking the derivative with respect to �� and
setting to zero all the sources, that is

hD2ðA� i�5BÞi þ hFi � i�5hGi � ghRi ¼ 0: (13)

The order OðgÞ of this WTi is given by

hD2ðA� i�5BÞið1Þ þ hFið1Þ
� i�5hGið1Þ � ghRð1Þið0Þ ¼ 0; (14)

where the notation hOiðnÞ indicates the n-order (in g)
contribution to the expectation value ofO. From the action,
SWZ, the free propagators are
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hAAi ¼ hBBi ¼ �M�1D�1
1

hFFi ¼ hGGi ¼ 2

a
M�1D1 ¼ �M�1D�1

1 D2
2

hAFi ¼ hBGi ¼ mM�1

h� ��i ¼ ðD�1
1 D2 þmÞ�1 ¼ �M�1ðD�1

1 D2 �mÞ;

(15)

where D�1
1 �ð1�a

2D1Þ�1 andM�1�½2aD1ð1�a
2D1Þ�1þ

m2��1 and the Ginsparg-Wilson relation (6) has been used
to rewrite the auxiliary fields propagators. Despite the
appearance of the operator ð1� a

2D1Þ�1, there are no

would-be doublers, and the propagators are regular (see
Appendix A of Ref. [27] for details). For a nonperturbative
approach that shows the localization of this operator, see
Refs. [28,29].

Using Eq. (15), it is easy to see that this WTi is satisfied,
which means that when we insert all the terms into the
WTi (14), the result is zero (notice that hAAi ¼ hBBi and
hAFi ¼ hBGi). For instance,

hD2Axið1Þ ¼ gffiffiffi
2

p D2xy

�
hAyFuiðhAuAui � hBuBuiÞ

þ 2hAyAui
�
hAFiu þ hBGiu � 1

2
Trh ���iu

��

¼ 0:

Similarly, hGið1Þ ¼ 0 because of Trð��Þ ¼ 0 and

hFxið1Þ ¼ gffiffiffi
2

p
�
hFxFuiðhAAiu � hBBiuÞ þ 2hFxAui

�
�
hAFiu þ hBGiu � 1

2
Trh�u ��ui

��

¼ 0:

Finally, the term including R is given by,

ghRð1Þ
x ið0Þ ¼ gh�u ��uið2D2ylhAyAli � 2D2ylhByBli

�D2ylhAAil þD2ylhBBilÞ
¼ 0:

Now we are ready to verify that the two-loop order, g3,
in a one-point WTi is satisfied at fixed lattice spacing.
The calculation is not trivial and contains 110 connected
nontadpole Feynman diagrams (from F and the operator

R). The tadpole contributions cancel out separately. We
start from Eq. (13):

hD2ðA� i�5BÞið3Þ þ hFið3Þ � i�5hGið3Þ � ghRð1Þið2Þ
� g2hRð2Þið1Þ � g3hRð3Þið0Þ ¼ 0: (16)

The first term of this WTi is zero because of the
�-momentum conservation and D2ðk ¼ 0Þ ¼ 0. Also,

i�5hGið3Þ is trivially zero. Then, one is left with

hFið3Þ � ghRð1Þið2Þ � g2hRð2Þið1Þ � g3hRð3Þið0Þ ¼ 0: (17)

To calculate the expectation value of F, one has to insert
the interaction term until order g3, as

hFxið3Þ ¼ g3=ð2 ffiffiffi
2

p ÞhFxf½ð�ðAþ i�5BÞ ��Þu þ ðFðA2 � B2Þ
þ 2GABÞu�½ð�ðAþ i�5BÞ ��Þv þ ðFðA2 � B2Þ
þ 2GABÞv�½ð�ðAþ i�5BÞ ��Þw þ ðFðA2 � B2Þ
þ 2GABÞw�gið0Þ;

where u, v, w are dummy indices. For the remaining terms
of the WTi (17) involving the operator R, we have

ghRð1Þ
x ið2Þ ¼g3=2h� ��ixyh�Lyf½ð�ðAþ i�5BÞ ��Þu

þðFðA2�B2ÞÞuþ2ðGABÞu�½ð�ðAþ i�5BÞ ��Þv
þðFðA2�B2ÞÞvþ2ðGABÞv�gið0Þ;

where �L is given in Eq. (11) and Rð1Þ in Eq. (10).

The second term Rð2Þ is given by

g2hRð2Þ
x ið1Þ ¼ �g3hðD�1

1 D2 þmÞ�1
xz ðAz þ i�5BzÞ

� ðD�1
1 D2 þmÞ�1

zu �Lw½ð�ðAþ i�5BÞ ��Þw
þ ðFðA2 � B2ÞÞw þ 2ðGABÞw�ið0Þ:

The last term, Rð3Þ, is given by

g3hRð3Þ
x ið0Þ ¼ 2g3hðD�1

1 D2 þmÞ�1
xy ðAy þ i�5ByÞ

� ðD�1
1 D2 þmÞ�1

yz ðAz þ i�5BzÞ
� ðD�1

1 D2 þmÞ�1
zw�Lwið0Þ:

We now write the contribution of hRð2Þ
x ið1ÞNT and hRð3Þ

x ið0ÞNT,
which contains 19 and 12 connected nontadpole diagrams,
respectively:

g2hRð2Þ
x ið1ÞNT ¼ �g3=

ffiffiffi
2

p fh� ��ixzh� ��izu½hAzFwið4hAuAwiD2uvhAvAwi þ 4hBuBwiD2uvhBvBwi � 2D2uvhAvAwihAwAvi
� 2D2uvhBvBwihBwBviÞ þ hAzAwið4hAuFwiD2uvhAvAwi þ 4hAuAwiD2uvhAvFwi � 4hBuGwiD2uvhBvBwi
� 4hBuBwiD2uvhBvGwi � 2D2uvhAvFwihAwAvi þ 2D2uvhBvGwihBwBviÞ� þ h� ��ixz�5h� ��izu�5½hBzBwi
� ð4hAuFwiD2uvhBvBwi � 4hAuAwiD2uvhBvGwi þ 4hBuBwiD2uvhAvFwi � 4hBuGwiD2uvhAvAwi
� 4D2uvhAvFwihBvBwi þ 4D2uvhAvAwihBvGwiÞ þ hBzGwið�4hAuAwiD2uvhBvBwi � 4hBuBwiD2uvhAvAwi
þ 4D2uvhAuAwihBvBwiÞg

¼ 0; (18)
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and

g3hRð3Þ
x ið0ÞNT ¼ 2

ffiffiffi
2

p
g3h� ��ixyfh� ��iyzh� ��izw½hAyAwiD2wlhAzAli þ hAzAwiD2wlhAyAli �D2wlhAyAlihAzAli�

� h� ��iyz�5h� ��izw�5½hAyAwiD2wlhBzBli þ hBzBwiD2wlhAyAli �D2wlhAyAlihBzBli�
� �5h� ��iyzh� ��izw�5½hAzAwiD2wlhByBli þ hByBwiD2wlhAzAli �D2wlhByBlihAzAli�
þ �5h� ��iyz�5h� ��izw½hByBwiD2wlhBzBli þ hBzBwiD2wlhByBli �D2wlhByBlihBzBli�g

¼ 0: (19)

A similar procedure is used to determined, hRð1Þ
x ið2ÞNT ¼ 0

and hFxið3ÞNT ¼ 0. They contain 32 and 47 diagrams,
respectively.

V. CONCLUDING REMARKS

We showed that the lattice Wess-Zumino model in four
dimensions is invariant under a deformed supersymmetric
transformation to all orders in perturbation theory. As a
nontrivial check, we performed a two-loop calculation of a
one-point WTi, associated with this lattice supersymmetry,
and we showed that it is exactly satisfied at fixed lattice
spacing. This guarantees the restoration of supersymmetry

in the continuum limit without the fine-tuning of the

parameters of the action. Although each term in Eq. (16)

vanishes separately (due to the fact that we are investigat-

ing a one-point WTi), the cancellation involves bosons and

fermion fields in each term of Eq. (16), as it is required in

supersymmetry. Moreover, the expectation value of R is

zero. This result is not in contradiction with the one in

Ref. [27], in which a one-loop (two-point) WTi was inves-

tigated and a finite value of hRi was found. The reason is

that one-point Ward-Takahashi identities do not contribute

to the renormalization of the wave function of scalar and

fermion fields.
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