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Postcollision space-times of the Cartesian product form M0 �M00, where M0 and M00 are two-

dimensional manifolds, are known with M0 and M00 having constant curvatures of equal and opposite

sign (for the collision of electromagnetic shock waves) or of the same sign (for the collision of

gravitational shock waves). We construct here a new explicit postcollision solution of the Einstein-

Maxwell vacuum field equations with a cosmological constant for which M0 has constant (nonzero)

curvature and M00 has zero curvature.
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I. INTRODUCTION

The space-time following the head-on collision of two
homogeneous, plane, electromagnetic shock waves was
found by Bell and Szekeres [1] and is a solution of the
vacuum Einstein-Maxwell field equations. The metric ten-
sor is that of a Cartesian product of two 2-dimensional
manifolds of equal but opposite sign constant curvatures
and is the Bertotti-Robinson ([2,3]) space-time. Recently
we have shown ([4,5]) that the Nariai-Bertotti ([2,6])
space-time, with metric that of a Cartesian product of
two 2-dimensional manifolds of equal constant curvatures,
coincides with the space-time following the head-on
collision of two homogeneous, plane, gravitational shock
waves and is a solution of Einstein’s vacuum field equa-
tions with a cosmological constant. We construct here
a metric for a space-time that is a Cartesian product of
two 2-dimensional manifolds, one having nonzero constant
curvature and one having zero curvature, and show that the
metric is (I) that of the postcollision region of space-time
following the head-on collision of two plane lightlike
signals each consisting of combined gravitational and
electromagnetic shock waves, with one signal specified
by a real parameter a and the second signal specified by
a real parameter b and (II) is a solution of the vacuum
Einstein-Maxwell field equations with a cosmological con-
stant� ¼ 2ab. The appearance of a cosmological constant
term on the left-hand side of the Einstein field equations is
equivalent to the appearance of an energy-momentum
stress tensor for a perfect fluid for which the sum of the
matter proper density and the isotropic pressure vanishes.
Thus our space-time consists of an anticollision region
which is a vacuum and a postcollision region which is a

nonvacuum in this sense. Vacuum and nonvacuum regions
of space-time are familiar from solving the field equations
for so-called interior and exterior solutions.

II. CARTESIAN PRODUCT SPACE-TIME

We consider a pseudo-Riemannian space-time M of the
form M ¼ M0 �M00, where M0 is a two-dimensional
manifold of nonzero constant curvature and M00 is a two-
dimensional flat manifold. So that the four-dimensional
manifold M has the correct Lorentzian signature, we con-
sider the two cases in which (i) M0 is pseudo-Riemannian
andM00 is Riemannian and (ii)M0 is Riemannian andM00 is
pseudo-Riemannian. In either case, take �, x as local
coordinates on M0 and �, y as local coordinates on M00.
With a, b real constants, we take ab < 0 for case (i) and
write the line element of M as

ds2 ¼ d�2 � cos 2ð2 ffiffiffiffiffiffiffiffiffiffi�ab
p

�Þdx2 � d�2 � dy2: (2.1)

In terms of the basis 1-forms #1 ¼ d� and #2 ¼
cos ð2 ffiffiffiffiffiffiffiffiffiffi�ab

p
�Þdx, the single nonvanishing Riemann curva-

ture tensor component on the dyad defined by this basis, for
the manifold M0, is

R1212 ¼ 4ab; (2.2)

indicating that the pseudo-Riemannian manifold M0 has
nonzero constant Riemannian curvature (see, for example,
[7]) �4ab > 0. Clearly the manifold M00 is Riemannian
and flat. For case (ii), we take ab > 0 and write the line
element of M as

ds2 ¼ �d�2 � cos 2ð2 ffiffiffiffiffiffi

ab
p

�Þdx2 þ d�2 � dy2: (2.3)

Now M0 is Riemannian. In terms of the basis 1-forms

#1 ¼ d� and #2 ¼ cos ð2 ffiffiffiffiffiffi

ab
p

�Þdx, the nonvanishing
component of the Riemann curvature tensor for M0, on
the dyad defined by the basis 1-forms, is
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R1212 ¼ �4ab; (2.4)

indicating that the Riemannian manifold M0 has nonzero
Gaussian curvature K ¼ �R1212 ¼ 4ab > 0. In this case
the manifold M00 is pseudo-Riemannian and flat. Now for
case (i), we make the transformation

� ¼ au� bv
ffiffiffiffiffiffiffiffiffiffiffiffiffi�2ab

p ; � ¼ auþ bv
ffiffiffiffiffiffiffiffiffiffiffiffiffi�2ab

p ; (2.5)

while for case (ii) we make the transformation

� ¼ au� bv
ffiffiffiffiffiffiffiffiffi

2ab
p ; � ¼ auþ bv

ffiffiffiffiffiffiffiffiffi

2ab
p : (2.6)

In both cases the line elements (2.1) and (2.3) become

ds2 ¼ �cos 2f ffiffiffi

2
p ðau� bvÞgdx2 � dy2 þ 2dudv: (2.7)

We can write this line element in the form

ds2 ¼ �ð#1Þ2 � ð#2Þ2 þ 2#3#4 ¼ gab#
a#b; (2.8)

with the basis 1-forms given, for example, by #1 ¼
cos f ffiffiffi

2
p ðau� bvÞgdx, #2 ¼ dy, #3 ¼ dv, #4 ¼ du.

Thus the constants gab are the components of the metric
tensor on the half-null tetrad defined via the basis 1-forms.
The components Rab of the Ricci tensor on this tetrad
vanish except for

R11¼�4ab; R33¼�2b2; R34¼2ab; R44¼�2a2:

(2.9)

With

F ¼ 1

2
Fab#

a ^ #b ¼ a#1 ^ #4 þ b#3 ^ #1; (2.10)

and � ¼ 2ab, we have here a solution of the Einstein-
Maxwell vacuum field equations with a cosmological
constant,

Rab ¼ �gab þ 2Eab; (2.11)

and

dF ¼ 0 ¼ d�F; (2.12)

where d denotes the exterior derivative, �F ¼ a#2 ^ #4 þ
b#2 ^ #3 is the Hodge dual of the Maxwell 2-form (2.10)
with components Fab on the tetrad given by (2.10)
and Eab ¼ FacF

c
b � 1

4 gabFcdF
cd is the electromagnetic

energy-momentum tensor. Tetrad indices are raised with
gab, where gabgbc ¼ �a

c . In Newman-Penrose [8] notation,
the Weyl tensor has components

�0¼b2; �1¼0; �2¼1

3
ab; �3¼0; �4¼a2;

(2.13)

which is type D in the Petrov classification and the
Maxwell tensor, given by (2.10), has components

�0 ¼ b; �1 ¼ 0; �2 ¼ a: (2.14)

III. COLLISION OF LIGHTLIKE SIGNALS

To demonstrate that the space-time with line element
(2.7) and the Maxwell field (2.10) describes the gravita-
tional and electromagnetic fields following the head-on
collision of two homogeneous, plane, lightlike signals,
each composed of an electromagnetic shock wave accom-
panied by a gravitational shock wave, we replace u, v in
the argument of the cosine in (2.7) by uþ ¼ u#ðuÞ, vþ ¼
v#ðvÞ, where #ðuÞ is the Heaviside step function that is
equal to unity for u > 0 and is zero for u < 0 [and similarly
for #ðvÞ] so that the line element we now consider reads

ds2¼�cos2f ffiffiffi

2
p ðauþ�bvþÞgdx2�dy2þ2dudv: (3.1)

Writing this line element in the form (2.8) with basis

1-forms now given by #1 ¼ cos f ffiffiffi

2
p ðauþ � bvþÞgdx,

#2 ¼ dy, #3 ¼ dv, #4 ¼ du, we find that the components
Rab of the Ricci tensor on the tetrad defined by this basis of
1-forms vanish except for

R11 ¼�4ab#ðuÞ#ðvÞ;
R33 ¼ b

ffiffiffi

2
p

�ðvÞ tan ð ffiffiffi

2
p

auþÞ� 2b2#ðvÞ;
R34 ¼ 2ab#ðuÞ#ðvÞ;
R44 ¼ a

ffiffiffi

2
p

�ðuÞ tan ð ffiffiffi

2
p

bvþÞ� 2a2#ðuÞ:

(3.2)

This Ricci tensor can be written in the form

Rab ¼ �gab þ 2Eab þ Sab; (3.3)

with � ¼ 2ab#ðuÞ#ðvÞ, Eab the tetrad components of the
electromagnetic energy-momentum tensor calculated with
the Maxwell field given by the 2-form

F ¼ b#ðvÞ#3 ^ #1 þ a#ðuÞ#1 ^ #4; (3.4)

and Sab the components of the surface stress-energy tensor
[9] concentrated on the portions of the null hypersurfaces
u ¼ 0, v > 0 and v ¼ 0, u > 0 and given by

Sab ¼ b
ffiffiffi

2
p

�ðvÞ tan ð ffiffiffi

2
p

auþÞ�3
a�

3
b

þ a
ffiffiffi

2
p

�ðuÞ tan ð ffiffiffi

2
p

bvþÞ�4
a�

4
b: (3.5)

We emphasize that in the postcollision domain (u > 0,
v > 0), the field equations (3.3) can be written in the form

Rab�1

2
gabR¼Tabþ2Eab with Tab¼�2abgab; (3.6)

where R denotes the Ricci scalar. While the term Tab on the
right-hand side here has the form of a cosmological con-
stant term, it is equivalent to the energy-momentum stress
tensor for a perfect fluid for which the sum of the matter
proper density and the isotropic pressure vanishes.
The Newman-Penrose components of the Maxwell field

(3.4) are thus

�0 ¼ b#ðvÞ; �1 ¼ 0; �2 ¼ a#ðuÞ; (3.7)
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while the Newman-Penrose components of the Weyl
tensor are

�0 ¼ � 1
ffiffiffi

2
p b�ðvÞ tan ð ffiffiffi

2
p

auþÞ þ b2#ðvÞ; �1 ¼ 0;

�2 ¼ 1

3
ab#ðuÞ#ðvÞ; �3 ¼ 0;

�4 ¼ � 1
ffiffiffi

2
p a�ðuÞ tan ð ffiffiffi

2
p

bvþÞ þ a2#ðuÞ:

(3.8)

On account of the appearance of the trigonometric
functions in (3.5) and (3.8), we see that the coordinate u has

the range 0 � u < �=2
ffiffiffi

2
p

a on v ¼ 0 and the coordinate v

has the range 0 � v < �=2
ffiffiffi

2
p

b on u ¼ 0. Such restric-
tions are also exhibited in the Bell-Szekeres [1] solution
and are discussed in [10].

We are now in a position to interpret physically what
these equations are describing. First we consider the region
of space-time corresponding to v < 0. Now Rab ¼ 2Eab

with Eab constructed from the Maxwell field a#ðuÞ#1 ^
#4. All Newman-Penrose components of the Weyl tensor
vanish except�4 ¼ a2#ðuÞ. We have here a solution of the
vacuum Einstein-Maxwell field equations for u > 0, cor-
responding to an electromagnetic shock wave accompa-
nied by a gravitational shock wave, each having
propagation direction @=@v in the space-time with line
element

ds2 ¼ �cos 2f ffiffiffi

2
p

auþgdx2 � dy2 þ 2dudv: (3.9)

The wave amplitudes are simply related via the parameter
a, which could be thought of as a form of ‘‘fine tuning.’’
We note that the space-time is flat and the fields vanish
if, in addition to v < 0, we have u < 0. A similar situation
arises in the region of space-time corresponding to u < 0,
with the gravitational shock wave described by �0 ¼
b2#ðvÞ and the electromagnetic shock wave described by

b#ðvÞ#3 ^ #1, each having now propagation direction
@=@u in the space-time with line element

ds2 ¼ �cos 2f ffiffiffi

2
p

bvþgdx2 � dy2 þ 2dudv: (3.10)

The wave amplitudes are again ‘‘fine tuned’’ via the
parameter b. The electromagnetic and gravitational fields
are nonvanishing in the region v > 0 and vanish in the flat
region v < 0. After these two lightlike signals collide at
u ¼ v ¼ 0, we obtain the postcollision region of space-
time u � 0, v � 0. Clearly the subset u > 0, v > 0 is
given by the Cartesian product space-time described in
Sec. II. This space-time includes a cosmological constant
that has been considered in some works [11] as a possible
candidate for dark energy and appears here as a conse-
quence of the collision. On the boundary u ¼ 0, v > 0 of
this region, we see from (3.5) that there is a lightlike shell
of matter with this boundary as history in space-time
(a two-plane of matter traveling with the speed of light,
for example [9]) and from the last equation in (3.8) there is
an impulsive gravitational wave with this boundary as
history in space-time. Similarly, the boundary v ¼ 0,
u > 0 is the history in space-time of a lightlike shell of
matter following from (3.5) and of an impulsive gravita-
tional wave following from the first equation in (3.8).
These products of the collision—the lightlike shells, the
impulsive gravitational waves, and the cosmological con-
stant—can be thought of as a complicated redistribution of
the energy in the incoming lightlike signals. Such phe-
nomena occur in most collisions involving thin shells,
impulsive waves and shock waves and are a consequence
of the interactions between matter and the electromag-
netic and gravitational fields [9]. Additionally, one can
have black hole production from the collision of two
ultrarelativistic particles [12], the mass inflation phe-
nomenon inside a black hole [13,14] and the production
of radiation from the collision of shock waves [15,16].
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