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In this paper we examine a small but detailed test of the emergent gravity picture with explicit solutions

in gravity and gauge theory. We first derive symplectic Uð1Þ gauge fields starting from the Eguchi-Hanson

metric in four-dimensional Euclidean gravity. The result precisely reproduces the Uð1Þ gauge fields of the
Nekrasov-Schwarz instanton previously derived from the top-down approach. In order to clarify the role

of noncommutative spacetime, we take the Braden-Nekrasov Uð1Þ instanton defined in ordinary commu-

tative spacetime and derive a corresponding gravitational metric. We show that the Kähler manifold

determined by the Braden-Nekrasov instanton exhibits a spacetime singularity while the Nekrasov-

Schwarz instanton gives rise to a regular geometry—the Eguchi-Hanson space. This result implies that the

noncommutativity of spacetime plays an important role for the resolution of spacetime singularities in

general relativity. We also discuss how the topological invariants associated with noncommutative Uð1Þ
instantons are related to those of emergent four-dimensional Riemannian manifolds according to the

emergent gravity picture.
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I. INTRODUCTION

In order to understand our physical world, it is necessary
to take quantum mechanics to be superordinate to classical
mechanics. The famous two-slit experiment in quantum
mechanics, for example, cannot be explained by simply
extrapolating classical physics to the atomic world. Rather
classical physics must be understood as phenomena emer-
gent from the quantum world when a certain limit is taken
to a classical regime. However, in formulating quantum
mechanics, we often start by working in a purely classical
language that overlays quantum concepts upon the classi-
cal framework, that places quantum mechanics in a some-
what secondary position. Fortunately, the strategy of
beginning with a theoretical description that is classical
and then subsequently including the features of quantum
mechanics has been extremely fruitful for many years
though it may be too conservative to deal with the mea-
surement problem in quantum mechanics.

But it turns out (see, e.g., [1–3] and references therein)
that the complete formulation of the quantum aspects of
spacetime requires a full-fledged quantum theory from the
start. In order to get a correct picture on the quantum origin
of spacetime [4,5], one cannot begin classically and then
undergo quantization in the traditional mold. (A similar
viewpoint for the complete formulation of string/M theory
was emphasized too in Chapter 15 of Ref. [6].) It is a
widely accepted consensus [7,8] that, in a microscopic
scale such as the Planck scale LP � 10�33 cm where the
quantum effects of spacetime become important, space-
time is no longer commuting but becomes noncommuta-
tive (NC), i.e.,

½y�; y�� ¼ i���: (1)

In this paper we will consider only the Moyal-type non-
commutativity where ��� is constant. Although other NC
spaces are of course possible, the Moyal NC space (1) will
be enough for our purpose since we will regard a general
NC space as a (large) deformation of the Moyal NC space
due to NC gauge fields. According to the above philosophy,
one has to regard the Heisenberg algebra (1) as a raw
precursor to the fabric of spacetime which will be coa-
lesced into an organized form that we recognize as space-
time [1]. Unfortunately, the conventional wisdom is to
interpret the NC spacetime (1) as an extra structure (e.g.,
B fields) defined on a preexisting spacetime. This descrip-
tion inevitably brings about the interpretation that the NC
spacetime (1) necessarily breaks the Lorentz symmetry.
This uneasy picture may be originated from the fact that
string theory is not a complete background independent
formulation since our present formulation of string theory
presupposes the existence of space and time within which
strings move about and vibrate. (See Chapter 15 of Ref. [6]
for the vivid prospect of background independent formu-
lation of string/M theory.)
One of the reasons why one should not interpret the NC

spacetime (1) as an extra structure defined on a preexisting
spacetime is ironically coming from the string theory itself.
It is well known [9] that open string theory admits a local
gauge symmetry, the so-called � symmetry, defined by

ðB;AÞ ! ðB� d�; Aþ�Þ (2)

where the gauge parameter � is a 1-form in M. The �
symmetry is present only when B � 0 and so it is a stringy
symmetry in nature. When B ¼ 0, the symmetry (2) is
reduced to A ! Aþ d�, which is the ordinary Uð1Þ gauge
symmetry. The above local gauge symmetry in string
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theory must also be realized as the symmetry of low energy
effective theory. It turns out to be the case [9] that the low
energy effective field theory known as the Dirac-Born-
Infeld (DBI) action really respects the local symmetry (2).
An essential point is that� symmetry (2) can be considered
on par with diffeomorphisms. This fact can be understood
as follows [10,11]. Suppose that the B field in Eq. (2) is a
symplectic structure on M, i.e., a nondegenerate, closed
2-form. For that case the symplectic structure B defines a
bundle isomorphism B:TM ! T�M by X � � ¼ ��XB
where �X is an interior product with respect to a vector field
X 2 �ðTMÞ. Then the � transformation in Eq. (2) can be
represented by B0 ¼ B� d� ¼ BþLXB where LX is a
Lie derivative along the flow of X. This means that the �
transformation can be identified with a coordinate trans-
formation generated by the vector field X. [See Eq. (23) in
Ref. [2] for an explicit verification.] This fact elucidates
why � symmetry (2) can be regarded as another indepen-
dent diffeomorphism symmetry [1,12,13]. However this
level of symmetry can be achieved only when the B field
is present and so theB field greatly enhances the underlying
local gauge symmetry, which is unprecedented in theories
of particle physics such as the standard model. Therefore it
should be interesting to ponder on a physical consequence
for the enhancement of local gauge symmetry since a
similar symmetry enhancement also arises in the presence
of gravity.

It will be necessary to carefully contemplate our con-
ventional wisdom imbued with any physical theory, all of
which describe what happens in a given spacetime. In this
mundane picture, the NC spacetime (1) is interpreted as an
extra structure induced by B fields condensed on a preex-
isting spacetime and so necessarily breaks the Lorentz
symmetry. But, as we emphasized before, the presence of
B fields rather introduces a local diffeomorphism symmetry
(2) which is not present in ordinary field theories (withoutB
fields). Hencewe have to ruminate on what has happened in
theNC spacetime (1). Indeed the enhanced gauge symmetry
when B � 0 gives us a hunch that there will be a radical
change of physics—a new physics in NC spacetime.
Recently it was shown [1–3] that the electromagnetism in
NC spacetime can be realized as a theory of gravity and the
symplectization of spacetime geometry is the origin of
gravity. Remarkably the so-called emergent gravity reveals
a novel picture about the origin of spacetime, dubbed
emergent spacetime, which is radically different from the
orthodox picture in general relativity. See also relatedworks
in Refs. [14–21].

We believe that such a fallacy about NC spacetime
hinders the view of the revolutionary aspects of emergent
spacetime. In order to appreciate the notion of emergent
gravity and correctly contrive quantum gravity based on it,
it would be worthwhile to explicitly show with some ex-
amples how the emergent gravity works. In this paper we
will examine a tiny yet circumstantial test of the emergent

gravity picture with explicit solutions in gravity and gauge
theory. As a bottom-up approach of emergent gravity re-
cently formulated by us in Ref. [22], we will derive sym-
plectic Uð1Þ gauge fields starting from the Eguchi-Hanson
metric [23,24] in four-dimensional Euclidean gravity and
show that they precisely reproduceUð1Þ gauge fields of the
Nekrasov-Schwarz instanton [25] derived in Refs. [26,27].
As a top-down approach of emergent gravity, we take
the Uð1Þ instanton found by Braden and Nekrasov [28]
and derive a corresponding gravitational metric. We will
study the geometrical properties of the four-manifolds
determined by the Uð1Þ instantons.
The paper is organized as follows. In Sec. II, we briefly

explain how the emergent gravity picture arises from the
commutative description of NC gauge theory via the
Seiberg-Witten (SW) map [29]. This section is mostly de-
voted to fixing the notations which will be used in later
sections. In Sec. III, we consider both the bottom-up and
top-down approaches of emergent gravity as stated above.
We show that the gravitational metric of the Braden-
Nekrasov instanton exhibits a spacetime singularity although
it becomes a regular solution from the gauge theory point of
view after a Kähler blowup [28]. In Sec. IV, we display an
analysis of the relationship between topological invariants
associated with Uð1Þ instantons and those of emergent
four-dimensional Riemannianmanifolds. In Sec. V, we sum-
marize the results obtained in this paper and prove the
formula (56) for genericNCgauge fields. In two appendixes,
we present the definition and several identities for ’t Hooft
symbols [30–32] and the explicit forms about the spin con-
nections and curvature tensors of a Riemannian metric we
use in this paper.

II. EMERGENT GRAVITY

It was shown in Refs. [29,33–36], for slowly varying
fields on a single D-brane, that the dual description of the
NC DBI action through the exact SW map is simply given
by the ordinary DBI action expressed in terms of open
string variables:Z

d4y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðGop þ �ð�þ F̂ÞÞ

q

¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð1þ F�Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðGop þ �ð�þ FÞÞ

p
þOðls@FÞ; (3)

where � � 2��0 ¼ 2�l2s and

F��ðxÞ �
�

1

1þ F�
F

�
��
ðxÞ (4)

with the ordinary Uð1Þ field strength defined by

F��ðxÞ ¼ @�A�ðxÞ � @�A�ðxÞ: (5)

Here slowly varying fields on a D-brane means symplectic
gauge fields are defined by the commutative description of
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NC gauge fields and the field strength of symplectic gauge
fields is given by

F̂��ðyÞ ¼ @�Â�ðyÞ � @�Â�ðyÞ þ fÂ�; Â�g�ðyÞ: (6)

By comparing both sides of Eq. (3), one can immedi-
ately get the relation between commutative and NC
fields given by

F̂��ðyÞ ¼
�

1

1þ F�
F

�
��
ðxÞ; (7)

d4y ¼ d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð1þ F�Þ

p
ðxÞ; (8)

where

x�ðyÞ � y� þ ���Â�ðyÞ: (9)

An interesting point is that the SW equivalence (3)
between commutative and NC DBI actions1 can be derived
using only an elementary property, known as the Darboux
theorem or the Moser lemma [10,11], in symplectic ge-
ometry. Indeed the derivation is based on several important
pictures for emergent gravity. First of all, the � symmetry
(2) enforces the gauge invariant quantity as the form F ¼
Bþ F where F ¼ dA. Consequently the dynamical gauge
fields A�ðxÞ fluctuating on a symplectic manifold ðM;BÞ
manifest themselves only as a deformation of the under-
lying symplectic structure B. The Darboux theorem or the
Moser lemma in symplectic geometry then implies that it is
always possible to find a local coordinate transformation to
eliminate the electromagnetic force F ¼ dA in the total
field strength F ¼ Bþ F. In other words, as long as the
spaceM admits a symplectic structure, one can find a local
coordinate transformation 	: x � y ¼ yðxÞ on U � M
[12] such that

ðBab þ FabðxÞÞ @x
a

@y�
@xb

@y�
¼ B��: (10)

By taking the inverse of Eq. (10), one can rewrite Eq. (10)
in the form

�abðxÞ �
�

1

Bþ F

�
abðxÞ ¼ ��� @x

a

@y�
@xb

@y�
¼ fxa; xbg�ðyÞ:

(11)

Using the representation (9) for the coordinate transforma-
tion xa ¼ xaðyÞ, Eq. (11) reads

�abðxÞ ¼ ð�� �F̂�ÞabðyÞ , F̂��ðyÞ ¼
�

1

1þ F�
F

�
��
ðxÞ:

(12)

Then Eq. (8) is simply the Jacobian J¼j@y@xj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þF�Þp

of the coordinate transformation x � y ¼ yðxÞ which
can be derived from Eq. (10) by taking the determinant
on both sides.
Consequently one can see that the SW map in Eqs. (7)

and (8) can be obtained by the coordinate transformation
(10) that locally eliminates the electromagnetic force F ¼
dA [1,13,36]. In fact, the coordinate transformation (10)
can be understood as the� transformation or B-field trans-
formation, B ! B0 ¼ B� d�, with � ¼ �A in Eq. (2).
As we emphasized in Sec. I, the B-field transformation can
be realized as a diffeomorphism	:M ! M generated by a
vector field X obeying A ¼ �XB and so F ¼ dA ¼ LXB.
Hence the coordinate transformation (10) forms a one-
parameter group of diffeomorphisms generated by the
flow along X [10,11]. In the end there exists a novel form
of the equivalence principle [1,13] such that the electro-
magnetic force can always be eliminated by a local coor-
dinate transformation as long as Uð1Þ gauge theory is
defined on a symplectic manifold ðM;BÞ. A striking picture
then comes out [1–3] that gravity can emerge from NC
Uð1Þ gauge theory as a natural result of the equivalence
principle for the electromagnetic force.
Now we will illuminate how the emergent gravity pic-

ture stems from the SW equivalence (3) which will also
serve to set up the notations used later. We assume the open
string metric Gop

�� ¼ 
�� for simplicity. One can expand

both sides of Eq. (3) into power series of �. At Oð�2Þ one
can get the following identity:

1

4

Z
d4yTrðF̂þ�Þ2 ¼ 1

4

Z
d4x

ffiffiffiffi
G

p
TrðFþ�Þ2; (13)

where TrðABÞ ¼ A��B�� and we introduced an effective

metric

G�� � 
�� þ ðF�Þ��;

G�� � ðG�1Þ�� ¼
�

1

1þ F�

�
��

(14)

determined by Uð1Þ gauge fields. The ‘‘effective metric’’
(14) emergent from Uð1Þ gauge fields is in general not
symmetric because G�GT ¼ F�� �F � 0. In four
dimensions, the six-dimensional vector space �2T�M of
2-forms splits canonically into the sum of

1If the two descriptions are equivalent, the NC action defined by
the left-hand side of Eq. (3) must also respect two local gauge
symmetries which correspond to a NC version of the diffeomor-
phism symmetry and the � symmetry (2). The diffeomorphism
symmetry may be more accessible by writing the determinant in

the action (3) as detGop exp ½P1
n¼1

ð�1Þnþ1ð2��0Þn
n TrF̂ n� where

F̂ �
� � ð�þ F̂Þ��G

��
op . It is obvious that TrF̂ n transforms as

Tr� ? F̂ n ?��1 under diffeomorphism � 2 DiffðMÞ and so it
is invariant under the integral. Thus the square root of the deter-
minant in the action (3) has the transformation property of a scalar
density under NC diffeomorphisms [37]. The� symmetry (2) can

be realized with a 1-form �̂ ¼ �̂�ðyÞdy� given by the trans-

formation ð�; ÂÞ ! ð�� D̂ �̂�i�̂ ^ �̂; Âþ �̂Þ where D̂ �̂ �
d�̂� iðÂ ^ �̂þ �̂ ^ ÂÞ and the star product is implicitly as-
sumed for all formulas. The NC Uð1Þ gauge transformation then
corresponds to a special case of the NC � symmetry with �̂� ¼
D̂��̂ while ignoring nonlinear terms ½�̂�; �̂��?.
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three-dimensional vector spaces of self-dual and anti-self-
dual 2-forms and also the six-dimensional vector space
�2TM of bivectors splits similarly. So let us take the
following decompositions:

F�� ¼ fðþÞi�i
�� þ fð�Þi ��i

��; (15)

��� ¼ �ðþÞi�i
�� þ �ð�Þi ��i

��; (16)

where �i
�� and ��i

��ði ¼ 1; 2; 3Þ are self-dual and anti-self-
dual ’t Hooft symbols, respectively. See Appendix A for
the definition and the properties of the ’t Hooft symbols. A
general condition for the metric (14) to be symmetric is
given by

"ijkfðþÞj�ðþÞk ¼ 0 ¼ "ijkfð�Þj�ð�Þk; 8 i ¼ 1; 2; 3: (17)

This means that F�� and �
�� being the second rank tensors

of SOð4Þ ¼ SUð2ÞL � SUð2ÞR are parallel to each other in
the vector space of suð2ÞL and suð2ÞR Lie algebras. In this
case the metric (14) becomes symmetric, i.e. G ¼ GT , and
so it can be regarded as a usual Riemannian metric. Wewill
implicitly assume the condition (17); otherwise we will
simply consider the effective metric (14) as a notation for a
specific form of Uð1Þ gauge fields.

In the usual NC description with � ¼ 0, the identity
(13) takes the form [35,36]

1

4

Z
d4yF̂��F̂

�� ¼ 1

4

Z
d4x

ffiffiffiffi
G

p
G��G
�F��F�
; (18)

while, in the background independent prescription
with � ¼ �B [29,38], the identity (13) can be written in
the form

1

4

Z
d4yfC�;C�g2� ¼

1

4

Z
d4x

ffiffiffiffi
G

p
G��G
�B��B�
; (19)

where C�ðyÞ � B��x
�ðyÞ ¼ B��y

� þ Â�ðyÞ and we used

the relation

fC�;C�g� ¼ �B�� þ F̂��: (20)

One can see that the dual description of NC Uð1Þ gauge
theory via the SW map can be interpreted as the ordinary
Maxwell theory coupling to the effective metric (14) de-
termined by Uð1Þ gauge fields [14]. In particular, the
background independent description (19) clearly shows
that the fluctuations of NC photons around the background
B field are mapped through the SW map to the fluctuations
of spacetime geometry.

The field strength of NC Uð1Þ gauge fields is defined by
quantizing the semiclassical version (6) and it is given by

F̂�� ¼ @�Â� � @�Â� � i½Â�; Â��?: (21)

Since the NC field strength is nonlinear due to the commu-
tator term, one can consider a nontrivial solution of the
following self-duality equation [25,39–43]:

F̂��ðyÞ ¼ � 1

2
"��

�
F̂�
ðyÞ: (22)

A solution of the self-duality equation (22) is called a NC
Uð1Þ instanton whereas it will be called a symplectic Uð1Þ
instanton for the semiclassical limit where the Uð1Þ field
strength is defined by Eq. (6). But we can apply the commu-
tative description to NC Uð1Þ instantons using the identity
(18). Using the property F�� ¼ �F��, it is easy to rewrite

the right-hand side of Eq. (18) in the Bogomol’nyi form [44]

SC ¼ 1

8

Z
d4x

ffiffiffiffi
G

p �
F�� 	 1

2
"��

�
F�


�
2

� 1

8

Z
d4x"���
F��F�
: (23)

TheBogomol’nyi form (23) immediately shows that the first
term is positive definitewhile the second term is topological,
i.e. a boundary term, and thus does not affect the equations of
motion. Hence the minimum of the action SC is achieved in
the configurations satisfying the self-duality equation [26]

F��ðxÞ ¼ � 1

2
"��

�
F�
ðxÞ: (24)

Note that the above equation is directly obtained by applying
the exact SW map (7) (in the semiclassical limit) to the NC
self-duality equation (22). A solution obeying the self-
duality equation (24) was dubbed above a symplectic Uð1Þ
instanton as a commutative limit of the NC Uð1Þ instanton.
We will take the NC space (1) as self-dual, which means

�ð�Þi ¼ 0 in Eq. (16). It is always possible to rotate �ðþÞi

into ð0; 0; �ðþÞ3Þ such that ��� ¼ �
2�

3
��. In that case the

condition (17) can be satisfied if fðþÞ1 ¼ fðþÞ2 ¼ 0 and the
Uð1Þ field strength (15) then takes the form

F�� ¼ fðþÞ3�3
�� þ fð�Þi ��i

��: (25)

SuchUð1Þ gauge fields result in a usual Riemannian metric
[26,27]. Therefore one can view the right-hand side of
Eq. (18) as Uð1Þ gauge theory defined on a Riemannian
manifold whose metric is given by Eq. (14).2 Hence one
can derive the Bogomol’nyi bound for the right-hand side
of Eq. (18) exactly in the same way as a gauge theory
defined on a curved manifold:

SC ¼ 1

8

Z
d4x

ffiffiffiffi
G

p
G��G�


�
F�� 	 1

2

"����ffiffiffiffi
G

p G��G��F��

�

�
�
F�
 	 1

2

"���
ffiffiffiffi
G

p G��G
�F�


�

� 1

8

Z
d4x"���
F��F�
: (26)

2However, it should not be interpreted as a gauge theory
defined on a fixed background manifold because the four-
dimensional metric (14) depends in turn on dynamical Uð1Þ
gauge fields.
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Accordingly, the self-duality equation for the action SC is
now given by [13]

F�� ¼ � 1

2

"���
ffiffiffiffi
G

p G��G��F�
: (27)

This equation suggests that symplecticUð1Þ instantons can
be interpreted as (anti-)self-dual Uð1Þ connections on a
four-manifold whose metric is given by (14). Actually if
we introduce vierbeins of the metric (14) such that

ds2 ¼ G��ðxÞdx� 
 dx� ¼ Ea 
 Ea; (28)

the above self-duality equation (27) can be written as

F ¼ � � F (29)

where F ¼ 1
2FabE

a ^ Eb and * denotes the Hodge dual

operation on forms. Or, in the component form, Eq. (29)
reads as

Fab ¼ � 1

2
"ab

cdFcd: (30)

It is easy to show that Eq. (30) is equivalent to Eq. (27)
using the definition Fab ¼ E�

a E�
bF��.

A similar argument can be applied to the background
independent description (19) although the action (19) di-
verges in general. One can introduce a regularized action
by subtracting the most divergent piece and define the
theory with the action

SR ¼ 1

4

Z
d4x

ffiffiffiffi
G

p
G��G
�B��B�
 � 1

4

Z
d4xB2

��: (31)

Note that the subtraction does not affect the equations of
motion and the above regularized action becomes finite.
One can then implement the Bogomol’nyi bound to the
regularized action (31) and the result is simply given by

SR ¼ 1

8

Z
d4x

ffiffiffiffi
G

p
G��G�


�
B�� 	 1

2

"����ffiffiffiffi
G

p G��G��B��

�

�
�
B�
 	 1

2

"���
ffiffiffiffi
G

p G��G
�B�


�

� 1

4

Z
d4x

�
B�� 	 1

2
"��

�
B�


�
B��: (32)

This procedure thus leads to another form of the self-
duality equation

B�� ¼ � 1

2

"���
ffiffiffiffi
G

p G��G��B�
 (33)

which is equivalent, in terms of form language, to

B ¼ � � B (34)

with B ¼ 1
2BabE

a ^ Eb. Note that the second term in

Eq. (32) is a total derivative term because B ¼ dAð0Þ with
Að0Þ
� ¼ � 1

2B��x
� and so a boundary term on S3 ¼ @R4 at

jxj ! 1. At the asymptotic region, jxj ! 1, where the

metric G�� reduces to 
��, the self-duality equation (33)

reduces to B�� ¼ � 1
2"��

�
B�
 and so the last term in SR
identically vanishes.
As was shown before, the SW equivalence (3) is based

on a novel form of the equivalence principle for the elec-
tromagnetic force. The quantization of the symplectic
manifold ðM;BÞ brings about the NC spacetime (1) and
results in NC Uð1Þ gauge theory. Consequently, the
equivalence principle for the electromagnetic force guaran-
tees that (quantum) gravity can emerge from NC Uð1Þ
gauge theory [1]. If so, a natural question is what kind of
four-manifold arises from a solution of the self-duality
equation (22) known as NC Uð1Þ instantons [25]. In this
paper we will focus on its commutative limit satisfying the
self-duality equation (24) called symplectic Uð1Þ instan-
tons. We showed that the self-duality equation of symplec-
ticUð1Þ instantons can be written in the form (27) since the
metric (14) for the solution of Eq. (24) is symmetric [26,27].
It was shown [26,27,45] that the Eq. (24) describes gravi-
tational instantons obeying the self-dual equations [46,47]

Rabef ¼ � 1

2
"ab

cdRcdef; (35)

where Rabcd is a Riemann curvature tensor. More precisely,
if one identifies from the effective metric (14) a gravita-
tional metric defined by

G��ðxÞ ¼ 1

2
ð
�� þ g��ðxÞÞ; (36)

the metric g��ðxÞ describes a Ricci-flat Kähler manifold

obeying Eq. (35). In other words, the four-manifold whose
metric is given by

ds2 ¼ g��ðxÞdx� 
 dx� ¼ ea 
 ea (37)

is a hyper-Kähler manifold [45]. In the next section we
will verify the emergent gravity picture with explicit
solutions from both the bottom-up and the top-down
approaches.

III. FOUR-MANIFOLDS AND Uð1Þ GAUGE FIELDS

In Sec. II, we explained why the Riemannian metric (37)
can arise from Uð1Þ gauge fields on a symplectic manifold
ðM;BÞ and how it can be determined by solving the
equations of motion for the Uð1Þ gauge fields. But the
emergent gravity picture can be inverted, as recently
formulated in Ref. [22], such that one getsUð1Þ gauge fields
using the relation (14) whenever a Riemannian metric
ðM;gÞ is given. Now we will illustrate how the emergent
gravity works for both the top-down and the bottom-up
approaches. For that purpose, we will take an explicit
solution in general relativity whose metric is assumed to
be of the form

ds2 ¼ A2ðrÞðdr2 þ r2
2
3Þ þ B2ðrÞr2ð
2

1 þ 
2
2Þ (38)

and so the covectors (vierbeins) are given by
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e1 ¼BðrÞr
1; e2 ¼BðrÞr
2;

e3 ¼AðrÞr
3; e4 ¼AðrÞdr: (39)

We have introduced a left-invariant coframe f
i: i ¼
1; 2; 3g for S3 defined by [46]


i ¼ � 1

r2
�i
��x

�dx� (40)

where r2 ¼ x21 þ � � � þ x24. They obey the following struc-
ture equations:

d
i ¼ �"ijk
j ^ 
k: (41)

In Appendix B, we present the explicit results for the
spin connections and curvature tensors determined by the
metric (38).

We will assume that the metric (38) is asymptotically
locally Euclidean (ALE), i.e., AðrÞ ¼ BðrÞ ! 1 as r ! 1.
In that case, it will be useful to introduce the Hopf map
�:S3 ! S2 which can be represented in terms of R4

variables as [26]

T1 ¼ �ðx1x3 þ x2x4Þ; T2 ¼ x1x4 � x2x3;

T3 ¼ 1

2
ðx21 þ x22 � x23 � x24Þ

(42)

and

X3
i¼1

TiTi ¼ r4

4
: (43)

The following relations may be useful for later purpose
[see Eq. (3.32) in Ref. [26]]:

��i
��@�T

i ¼ 3�3
��x

�; ��i
��x

�Ti ¼ r2

2
�3
��x

�: (44)

A. Uð1Þ instanton from Eguchi-Hanson metric

The Eguchi-Hanson metric [23,24] describes a noncom-
pact, self-dual, ALE space on the cotangent bundle of
two-sphere T�S2 with SUð2Þ holonomy group. The explicit
form of the metric is given by

ds2 ¼ f�1ð�Þd�2 þ �2ð
2
1 þ 
2

2 þ fð�Þ
2
3Þ (45)

where fð�Þ ¼ 1� t4

�4 and �4 ¼ r4 þ t4. Thus the Eguchi-

Hanson metric takes the form (38) with

A2ðrÞ ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ t4

p ¼ B�2ðrÞ: (46)

In order to write the metric in terms of the Cartesian
coordinates fx�g,3 let us plug Eq. (40) into Eq. (45). The
result can be written as

ds2 ¼ g��ðxÞdx�
dx�

¼
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4þ t4
p

2r2
ðfðrÞþ1Þ
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þ t4

p

r4
ðfðrÞ�1Þð�3 ��iÞ��T

i

#
dx�
dx� (47)

after using the identity

x�x� þ �3
���

3
�
x

�x
 ¼ r2

2

�� � ð�3 ��iÞ��T

i (48)

which can be checked by a straightforward calculation.
Later we will also use the following identity:

�3
��x

�x� � �3
��x

�x� ¼ r2

2
�3
�� þ ��i

��T
i (49)

which can be derived from Eq. (48) by multiplying �3
��.

Now it is straightforward to identify Uð1Þ gauge fields
from the Eguchi-Hanson metric (47). Combining Eqs. (14)
and (36) leads to the relation

g��ðxÞ ¼ 
�� þ 2ðF�Þ��: (50)

For our choice ��� ¼ �
2�

3
�� where we put � ¼ 1 for

simplicity, the metric (47) leads to the Uð1Þ field strength

F��ðxÞ ¼ t4

�2r4
��i
��T

i � ð�2 � r2Þ2
2�2r2

�3
��

¼ t4

r6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t4

r4

q ��i
��T

i �

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t4

r4

q
� 1

�
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t4

r4

q �3
��: (51)

The above result is exactly the same as the field strength of
symplectic Uð1Þ gauge fields [see Eq. (3.25) in Ref. [26]]
determined by solving the self-duality equation (24). It was
shown in Refs. [26,29] that the result (51) can be obtained
from the commutative description of theNekrasov-Schwarz
instanton. Therefore, starting from the Eguchi-Hansonmet-
ric (45) in four-dimensional Euclidean gravity, we precisely
derivedUð1Þ gauge fields of the Nekrasov-Schwarz instan-
ton and thus checked the bottom-up approach of emergent
gravity [22]. This fact can be further confirmed by calculat-
ing the Uð1Þ field strength (6) using the exact SW map (7):

F̂��ðxÞ ¼ 4

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t4

r4

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t4

r4

q
þ 1

��i
��T

i (52)

which clearly satisfies the self-duality equation (22) with
a� sign. In the end the bottom-up approach nicely verifies
the result in Ref. [26] that the Eguchi-Hanson metric (45)
comes from the NC Uð1Þ instanton satisfying the self-
duality equation (22).
In Sec. II, we observed that the self-duality equation (22)

for NCUð1Þ instantons can be written in several equivalent
forms, Eqs. (24), (27), and (33), in the commutative de-
scription after the SW map. Considering the fact that they

3In order to avoid confusion, we want to point out that the
Cartesian coordinates fx�g in the 1-form (40) and the Hopf map
(42) should be regarded as the coordinates on the flat space R4.
Therefore it is not necessary to worry about raising and lowering
the indices �; �; . . . in the 1-forms ð
i; dr ¼ x�dx�

r Þ and the Hopf
coordinates Ti.
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look quite different at first sight, the existence of such
equivalent statements is an interesting property. In order
to check the identities, first note the relation (36) where the
metric g�� refers to Eq. (47) and so the metric (14) is

represented by

G�� ¼

G1 0 G3 G4

0 G1 �G4 G3

G3 �G4 G2 0

G4 G3 0 G2

0
BBBBB@

1
CCCCCA (53)

where

G1¼P�QT3; G2¼PþQT3; G3¼QT1; G4¼�QT2

and

P ¼ ðr2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ t4

p
Þ2

4r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ t4

p ; Q ¼ t4

2r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ t4

p :

In a compact notation, the metric (53) can be written as

G��ðxÞ ¼ P
�� þQð�3 ��iÞ��T
i: (54)

The next thing is to calculate the square root of detG��

which reads as

ffiffiffiffi
G

p ¼ G1G2 � ðG2
3 þG2

4Þ ¼ P2 � r4

4
Q2: (55)

It is now straightforward to check the self-duality equation
(27) (with� sign) using the results in Eqs. (51) and (53). It
is amusing to see that the symplectic Uð1Þ gauge fields
derived from the Eguchi-Hanson metric manifestly be-
come anti-self-dual with respect to the metric (14) gener-
ated by themselves while they are neither self-dual nor
anti-self-dual with respect to the flat metric on R4 as one
can see from Eq. (51).

Note that Eq. (27) takes exactly the same form as the
self-duality equation defined on a Riemannian manifold
with the metric (14). Indeed we showed that Eq. (27) can
be cast into the form (30) whenwe defineFab ¼ E

�
a E�

bF��.

In order to properly understand Eq. (30), we have to point
out a caveat. So far it was not necessary to distinguish
between the world (curved space) indices �; �; . . . and
frame (tangent space) indices a; b; . . . . (See footnote 3.)
Now, if one intends to interpret Eq. (27) as the form (30), the
�, � indices in F�� ¼ Ea

�E
b
�Fab have to be regarded as the

world indices and so they must be raised and lowered using
the metric G�� as in general relativity. If we adopt this

interpretation, we get a remarkable picture about NC gauge
fields. A naive observation is the following. The self-duality
equation (27) says that the commutative field strength F��

is (anti-)self-dual with respect to the metric G��. If we

introduce a local basis fEag for the tangent bundle TM
and the dual basis fEa 2 T�Mg defined by Eq. (28), the
self-duality equation (27) can bewritten in the form (30) in a
locally inertial frame where Fab becomes (anti-)self-dual

with respect to the flat metric 
ab. We know that F̂�� in

Eq. (52) is anti-self-dual with respect to the flat metric 
��

and so it is natural to identify Fab with Eq. (52). This
reasoning implies an intriguing relation

Fab ¼ Ea
�F��E

�
b ¼ F̂ab (56)

where F̂ab is given by Eq. (52) with the replacement
ð�; �Þ ! ða; bÞ. Now we will prove the above identity.
It is easy to find the vierbeins E�

a and the inverse

vierbeins Ea
� from the metric (54):

E�
a ¼ C
�

a þDð�3 ��iÞ�aTi; (57)

Ea
� ¼ �G�1=4ðC
a

� �Dð�3 ��iÞa�TiÞ; (58)

where
ffiffiffiffi
G

p
is given by Eq. (55) and

C2 ¼ 1

2
ðP�G1=4Þ; D2 ¼ 2

r4
ðP	G1=4Þ: (59)

Here we understand the above matrix products as
ðABÞ�a ¼ A��B

�a and ðABÞa� ¼ Aa�B
��. We define

Eqs. (A6) and (A7) with the matrix product and used them
to derive the above results. Since G��¼
��þðF�Þ�� in

Eq. (54), one can represent the Uð1Þ field strength as
F�� ¼ 2ðQ ��i

��T
i þ ð1� PÞ�3

��Þ: (60)

It is then straightforward to derive the fancy formula (56)
using Eqs. (58) and (60).
One can similarly understand the self-duality equation

(33). Let us define

B ¼ 1

2
BabE

a ^ Eb ¼ � 1

�
�3
abE

a ^ Eb � � 2

�
� (61)

where we used the relation Bab ¼ � 2
� �

3
ab. Then the

self-duality equation (33) is automatically satisfied since
Eq. (61) can be written in the form (33) (withþ sign). That
is, if we understand the background B field as B�� �
� 2

� E�
a�3

abE
b
�, a straightforward calculation shows that

B��ðxÞ ¼ 2ð�P�3
�� þQ ��i

��T
iÞ ¼ �2ðG�3Þ��ðxÞ

¼ �2�3
�� þ F��ðxÞ (62)

where we used Eq. (60). It is obvious that B ¼
1
2B��ðxÞdx� ^ dx� is a closed 2-form, i.e. dB ¼ 0 as

long as dF ¼ 0 (the Bianchi identity). Then Eq. (61)
implies that � is the Kähler form of the metric (28) and
(1,1)-formwith respect to the complex structure Jab ¼ �3

ab

[27,45]. In the end, we got a very nice interpretation of
the self-duality equations (27) and (33) consistent with
general relativity.
It is straightforward to generalize the bottom-up ap-

proach to a space with the metric (38). After a little algebra
we find that the metric (38) can be written as
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g��ðxÞ¼ 1

2
ðA2þB2Þ
��� 1

r2
ðA2�B2Þð�3 ��iÞ��T

i (63)

and so the Uð1Þ field strength in Eq. (50) is given by

F��ðxÞ ¼ f1ðrÞ�3
�� þ f2ðrÞ ��i

��T
i (64)

where

f1ðrÞ¼ 1�1

2
ðA2þB2Þ; f2ðrÞ¼� 1

r2
ðA2�B2Þ: (65)

Using the result (64) one can also calculate the inverse
metric

G�� ¼
�

1

1þ F�

�
��

¼ 2þ A2 þ B2

ð1þ A2Þð1þ B2Þ
��

þ 2ðA2 � B2Þ
r2ð1þ A2Þð1þ B2Þ ð�

3 ��iÞ��T
i (66)

and the field strength (6) of symplectic Uð1Þ gauge fields

F̂��ðxÞ ¼ 2

ð1þ A2Þð1þ B2Þ
�
ð1� A2B2Þ�3

��

� 2

r2
ðA2 � B2Þ ��i

��T
i

�
: (67)

It is easy to check the result in Refs. [26,27,45] that
symplectic Uð1Þ instantons are equivalent to gravitational
instantons. First note that the Uð1Þ field strength (67) with
A2B2 ¼ 1 obeys the self-duality equation (22). In this
case the spin connections in Eq. (B2) become anti-self-
dual, i.e., !ab þ 1

2"ab
cd!cd ¼ 0, which leads to curvature

tensors satisfying Rab þ 1
2"ab

cdRcd ¼ 0. For example, the

Eguchi-Hanson metric (45) clearly satisfies A2B2 ¼ 1 for
which the Uð1Þ field strength (67) becomes anti-self-dual.
Therefore the metric (63) with A2B2 ¼ 1 is a gravitational
instanton.

A geometrical meaning of the ’t Hooft symbols defined
in Appendix A is to specify the triple ðI; J; KÞ of complex
structures of R4 for a given orientation. Therefore the
choice of a particular NC parameter in Eq. (16), e.g. ��� ¼
�
2�

3
��, corresponds to singling out a particular complex

structure, for example, J ¼ T3þ in Eq. (A10). And the space
(38) inherits the complex structure J from R4. So let us
consider the fundamental 2-form defined by

! ¼ 1

2
�3
abe

a ^ eb: (68)

Now we will show that the fundamental 2-form ! is
closed, i.e. d! ¼ 0, and so defines the Kähler form of
the metric (38) as far as the Uð1Þ field strength (64) obeys
the Bianchi identity, i.e. dF ¼ 0. In other words, the metric
(38) is always Kähler if and only if dF ¼ 0. Using the
covectors in Eq. (39) and coframes in Eq. (40), the 2-form
! can be written as

!¼ 1

2

�
1

2
ðA2þB2Þ�3

��þ 1

r2
ðA2�B2Þ ��i

��T
i

�
dx�^dx�

(69)

where we used the identity (49) and (A8). After using the
result (64), the 2-form in Eq. (69) finally reduces to

!¼ 1

2
�3
��dx

�^dx��1

2
F��dx

�^dx�¼!ð0Þ �F (70)

where !ð0Þ ¼ 1
2�

3
��dx

� ^ dx�. Consequently, d! ¼ 0 if

and only if dF ¼ 0.4 For the Uð1Þ field strength (64), the
Bianchi identity, dF ¼ 0, is reduced to the first order
differential equation given by

dB2

dr
¼ 2

r
ðA2 � B2Þ: (71)

One may wonder whether one can get Uð1Þ gauge fields
in the same way from the Taub-NUT metric [46] which
takes the form

ds2 ¼ 1

4

�þm

��m
d�2 þ ð�2 �m2Þð
2

1 þ 
2
2Þ

þ 4m2 ��m

�þm

2

3: (72)

A critical difference from the Eguchi-Hanson metric (45) is
that the Taub-NUT metric (72) is locally asymptotic at
infinity to R3 � S1 and so it belongs to the class of asymp-
totically locally flat (ALF) spaces. Therefore the Taub-NUT
metric cannot be represented by the Hopf coordinates (42)
and it is difficult to naively generalize the previous con-
struction to ALF spaces. From the gauge theory point of
view, it may be related to the fact that ALF spaces arise from
NC monopoles [48] whose underlying equation is defined
by an S1 compactification of Eq. (22), the so-called Nahm
equation. We will discuss in Ref. [49] a possible general-
ization to include the Taub-NUT metric (72) in the bottom-
up approach of emergent gravity.

B. Gravitational metric from
Braden-Nekrasov instanton

Braden and Nekrasov [28] considered a deformed
Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction5

on commutativeC2 whose solution gives a resolved moduli

space ~MN;k ¼ ��1ð ~�Þ=UðkÞ in terms of a hyper-Kähler

quotient where ��1ð ~�Þ are UðkÞ hyper-Kähler moment
maps [50,51]. It was shown in Ref. [25] that the same

4One can easily see that the metric (63) can be written as
g��ðxÞ ¼ �!��ðxÞ�3

�� where !��ðxÞ is defined by Eq. (69).
This is nothing but the definition of Kähler form with the
complex structure J�� ¼ �3

��, i.e., !ðX; YÞ ¼ gðX; JYÞ for vec-
tor fields X; Y 2 TM.

5Here we mean the deformed ADHM construction as �z�
y
z �


y
z 
z ¼ 2�R, �z
z ¼ �C whereas we refer the undeformed

ADHM construction as �z�
y
z � 
y

z 
z ¼ 0, �z
z ¼ 0 where
�R ¼ �3 and �C ¼ �1 þ i�2.
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resolved instanton moduli space arises by considering the
standard (undeformed) ADHM construction but instead
assuming the spacetime coordinates have the commutation

relation (1). In this case the deformation parameters ~� in

the UðkÞ hyper-Kähler moment maps ��1ð ~�Þ arise from

�ð�Þi in Eq. (16). Thus it will be interesting to study the
relation between the deformed ADHM construction of an
ordinary commutative gauge theory and the undeformed
ADHM construction of a NC gauge theory. Furthermore,
as we discussed in Sec. I, the NC gauge theory can be
mapped to the ordinary commutative gauge theory by the
SW map. Therefore one may expect that NC Uð1Þ instan-
tons constructed in Ref. [25] would be related by the SW
map to Uð1Þ instantons constructed by the deformed
ADHM data on commutative C2. Interestingly, as already
noted in Ref. [28] (see ‘‘Notes added five years later’’ in
Sec. 6.2), the commutative Uð1Þ instantons are not related
to the NC Uð1Þ instantons by the SW map and the com-
mutative description of the Nekrasov-Schwarz (NS) in-
stanton is indeed different from the Braden-Nekrasov
(BN) instanton as was shown in Ref. [52].

We want to shed light on this puzzle by studying the
geometrical properties of a four-manifold determined by
the BN Uð1Þ instanton in the context of emergent gravity.
We will compare the result with the NS instanton whose
SW map gives rise to a complete regular geometry de-
scribed by the Eguchi-Hanson metric as was shown in
Sec. III A. This analysis reveals that the NC structure of
spacetime is essential for a smooth topology change of
spacetime and a resolution of spacetime singularities [53].
So it will be interesting to consider a full NC deformation
for a complete explanation. A smooth topology changewas
also addressed in Refs. [54,55] for two-dimensional NC
Riemann surfaces. See also a recent review in Ref. [56] for
the significance of NC geometry for the topology change
and singularity resolution in string theory.

It turns out [28] that Uð1Þ instantons constructed from
the deformed ADHM construction on commutative C2 are
still singular, unlike NC Uð1Þ instantons, and so it is
necessary to change the topology of spacetime in order
to make the corresponding Uð1Þ gauge fields nonsingular.
The reason that the Abelian instanton exists is that space-
time is now blown up and there are noncontractible
two-spheres. Then the resulting spacetime is not C2 but
a Kähler manifold X which is a blowup of C2 at a finite
number of points. In the end Uð1Þ gauge fields on X are
well defined and carry a nontrivial first Chern class when
the gauge fields are restricted to exceptional divisors in
addition to a nontrivial second Chern class k. But the
blowup becomes manifest only by gluing local coordinate
patches and performing a proper gauge transformation on
their intersections. For example, one can choose local
coordinates ðt; �Þ on a patch U0 such that z1 ¼ t, z2 ¼
t� where ðz1; z2Þ 2 C2 and other local coordinates ðs; �Þ
on another patch U1 such that z1 ¼ �s, z2 ¼ s. On these

patches U0 and U1, the point 0 ¼ ð0; 0Þ in C2 is re-
placed by the space CP1 of complex lines passing
through the point 0. One can use the local coordinates
to represent Uð1Þ gauge fields on each local chart and
then extend them via a gauge transformation to a safe
region where ðz1; z2Þ � 0 [28].
Now let us undertake a more systematic investigation

of the single Uð1Þ instanton in Sec. 4 of Ref. [28]. The
instanton gauge fields are given by (setting � ¼ 1)

A ¼ 1

2r2ð1þ r2Þ ðz1d�z1 � �z1dz1 þ z2d�z2 � �z2dz2Þ (73)

and

F¼ dz1^d�z1þdz2^d�z2
r2ð1þ r2Þ � 1þ2r2

r4ð1þ r2Þ2
X
i;j

zi �zjdzj^d�zi

(74)

where z1 ¼ x1 þ ix2, z2 ¼ x3 þ ix4 and r2 ¼ jz1j2 þ
jz2j2. The above gauge fields A � 2iA�dx

� (the factor 2

scaling is just for convenience) and F¼dA¼iF��dx
�^

dx� can be represented in terms of the Cartesian coordi-
nates fx�g and can be written as

A�ðxÞ ¼ t2

2r2ðt2 þ r2Þ�
3
��x

� (75)

and

F��ðxÞ¼� t4

2r2ðt2þ r2Þ2�
3
��þ t2ðt2þ2r2Þ

r4ðt2þ r2Þ2 ��i
��T

i; (76)

where the dimensionful parameter t2 ¼ � may be useful
for an accessible comparison with the NS instanton. To get
the expression (76), we used the identity (49). It may be
interesting to compare the asymptotic behaviors (set t ¼ 1)
of the NS instanton (51) and the BN instanton (76) both in
r ! 1

NS:F��ðxÞ ¼ 1

r6

�
1� 1

2r4
þ � � �

�
��i
��T

i

� 1

8r8

�
1� 1

r4
þ � � �

�
�3
��;

BN:F��ðxÞ ¼ 2

r6

�
1� 3

2r2
þ � � �

�
��i
��T

i

� 1

2r6

�
1� 2

r2
þ � � �

�
�3
��; (77)

and in r ! 0

NS:F��ðxÞ ¼ 1

r4

�
1� 1

2
r4 þ 3

8
r8 þ � � �

�
��i
��T

i

� 1

2r2

�
1� 2r2 þ 3

2
r4 þ � � �

�
�3
��;

BN:F��ðxÞ ¼ 1

r4
ð1� r4 þ 2r6 þ � � �Þ ��i

��T
i

� 1

2r2
ð1� 2r2 þ 3r4 þ � � �Þ�3

��: (78)
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One can see [28] that the asymptotic behaviors for two
instantons are almost the same except that the BN instanton
is slightly slowly decaying at r ! 1.

Note that the instanton gauge field (75) was obtained
through the ADHM construction. Nevertheless, as was ob-
served inEq. (3.14) inRef. [28], the completeness relation of
ADHM data fails at a finite number of points which brings
about the field strength (76) being neither self-dual nor anti-
self-dual. A notable point is that the commutative descrip-
tion of the NS instantons also shares this feature as shown in
Eq. (51). But Eq. (52) verifies that theNS instanton becomes
(anti-)self-dual in theNCdescription. Thus onemaywonder
whether the same property can be realized even for the BN
instanton. To see what happens in the NC description of the
BN instanton, let us apply the SWmap (7) to the Uð1Þ field
strength (76). The result is given by Eq. (67) with

A2ðrÞ ¼ r2ðr2 þ 2t2Þ
ðr2 þ t2Þ2 ; B2ðrÞ ¼ r4 þ r2t2 þ t4

r2ðr2 þ t2Þ : (79)

Explicitly it takes the form

F̂��ðxÞ¼ 2t2

ð2r4þ2r2t2þ t4Þð2r4þ4r2t2þ t4Þ
�
�
2ðr2þ t2Þð2r2þ t2Þ

r2
��i
��T

i� r2t2�3
��

�
: (80)

The result (80) shows that the BN instanton is neither self-
dual nor anti-self-dual even in the NC description. It can be
understood as follows. First note that the field strength (76)
takes the form (64) and the resultantNCfield strength is then
given by Eq. (67) where A and B are given by (79). But the
coefficients in Eq. (76) do not satisfy the relation A2B2 ¼ 1,
which leads to the former conclusion. This presents a sharp
contrast to the NS instantonswith (anti-)self-dual curvatures
in NC spacetime.

It may be interesting to check whether the identity (56) is
true for the BN instanton. That is, one can ask whether the

NC field strength (80) can be written as F̂ab ¼ Ea
�F��E

�
b

with the commutative field strength (76) where the vier-
beins are defined by G�� ¼ 
�� þ ðF�Þ�� ¼ Ea

�E
a
�. We

checked that the identity (56) still holds for the BN instan-
ton though the field strength is neither self-dual nor anti-
self-dual. The proof goes through the same way as the NS
instanton case. We will present in Sec. V a proof of the
identity (56) for general Uð1Þ gauge fields with the sym-
metric metric (14).

We analyzed before the asymptotic behavior of the BN
instanton and found that the leading behavior is exactly
the same as the NS instanton. An interesting question is
then whether a four-dimensional manifold determined by
the BN instanton also exhibits a similar geometrical coun-
tenance. In order to investigate the geometrical properties
of the four-manifold, let us consider the metric ds2 ¼
g��ðxÞdx�dx� ¼ ea 
 ea defined by Eq. (50) with the

solution (76). But we want to express the metric in the
form (38) using the left-invariant 1-forms in Eq. (40). To

implement this form, one can employ the reverse proce-
dure of Sec. III A to arrive at the result

ds2 ¼ r2ðr2þ2t2Þ
ðr2þ t2Þ2 ðdr2þ r2
2

3Þþ
r4þ r2t2þ t4

r2þ t2
ð
2

1þ
2
2Þ
(81)

and so A2 and B2 are given by Eq. (79). This metric form
would indicate that the four-manifold described by Eq. (81)
might be akin to the Eguchi-Hanson metric (45). For ex-
ample, the metric (81) also contains a nontrivial two-cycle
S2 at the origin (r ¼ 0) where the metric is degenerated to
the two-dimensional sphere with the metric t2ð
2

1 þ 
2
2Þ.

The identification of topological invariants discussed in
Sec. IV indicates that the two-sphere in Eq. (81) is related
to the Kähler blowup for the BN instanton at the origin of
C2. In order to understand the engrossing feature, let us
recapitulate a corresponding aspect for the NS instanton
[13]. The Eguchi-Hanson metric (45) has a curvature that
reaches a maximum at the ‘‘origin’’ � ¼ t (recall that �4 ¼
r4 þ t4), falling away to zero in all four directions as the
radius � increases. Since the radial coordinate runs down
only as far as � ¼ t, there is a minimal two-sphere S2 of
radius t described by the metric t2ð
2

1 þ 
2
2Þ. This degen-

eration of the generic three-dimensional orbits to the two-
dimensional sphere is known as a ‘‘bolt’’ [57]. But, � ¼ t
corresponds to the origin r ¼ 0 of the embedding coordi-
nates in field theory and so this nontrivial topology is not
visible in the gauge theory description. However, as we
showed in Sec. III A, the emergent gravity approach where
a Riemannian manifold is emerging from dynamical gauge
fields reveals a nontrivial topology of NCUð1Þ gauge fields.
As one can see from Eq. (50), if F ¼ 0, the corresponding
spacetime becomes R4 without any nontrivial cycles but, if
the instanton gauge fields in Eq. (51) are developed, the
spacetime evolves to the Eguchi-Hanson space which con-
tains a noncontractible two-sphere dubbed as the bolt.
Therefore the emergent gravity verifies the topology change
of spacetime due to Uð1Þ instantons. Exactly the same
phenomenon happened for the BN instanton. But more
detailed analysis brings some surprise.
It is straightforward to calculate the spin connections

and curvature tensors of the metric (81) using the results of
Appendix B. We present the explicit result for the reader’s
convenience:

!12 ¼ � r6 þ 2r4t2 þ 4r2t4 þ 2t6

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2t2

p
ðr4 þ r2t2 þ t4Þ e

3;

!34 ¼ r4 þ 3r2t2 þ 4t4

r2ðr2 þ 2t2Þ3=2 e3;

!13 ¼ �!42 ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2t2

p

r4 þ r2t2 þ t4
e2;

!14 ¼ �!23 ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2t2

p

r4 þ r2t2 þ t4
e1;

(82)
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and

R12 ¼ Xe1 ^ e2 � 2Ye3 ^ e4;

R34 ¼ �2Ye1 ^ e2 þ Ze3 ^ e4;

R13 ¼ �R42 ¼ Yðe3 ^ e1 � e2 ^ e4Þ;
R14 ¼ �R23 ¼ Yðe2 ^ e3 � e1 ^ e4Þ;

(83)

where the vierbeins ea are given by Eq. (39) with the result
(79) and X, Y, Z are given by

X ¼ 4t4ð2r2 þ t2Þ
ðr4 þ r2t2 þ t4Þ2 ;

Y ¼ t4ð4r4 þ 7r2t2 þ 4t4Þ
ðr2 þ 2t2Þðr4 þ r2t2 þ t4Þ2 ;

Z ¼ 4t4ð2r2 þ 3t2Þ
r2ðr2 þ 2t2Þ3 :

(84)

Using the result (83), one can easily read off the Ricci
tensor Rab � Racbc and the Ricci scalar R � Raa. We
present only the diagonal Ricci tensors which read

R11 ¼ R22 ¼ 6r2t6

ðr2 þ 2t2Þðr4 þ r2t2 þ t4Þ2 ;

R33 ¼ R44 ¼ � 6t6ð3r8 þ 8r6t2 þ 6r4t4 � 2t8Þ
r2ðr2 þ 2t2Þ3ðr4 þ r2t2 þ t4Þ2 :

(85)

Therefore the Ricci scalar is given by

R ¼ � 24t6ðr4 þ r2t2 � t4Þ
r2ðr2 þ 2t2Þ3ðr4 þ r2t2 þ t4Þ : (86)

Some remarks are in order. We proved in Eq. (70) that
the metric (38) becomes Kähler if the Uð1Þ field strength
(64) satisfies the Bianchi identity dF ¼ 0. Note that the
metric (81) was derived from the Uð1Þ field strength (74)
which satisfies the Bianchi identity dF ¼ 0. Therefore the
metric (81) must be Kähler. Indeed it is easy to check that
the coefficients in Eq. (79) obey the differential equation
(71). If one looks at the curvature tensors in Eq. (83), one
can see that the four-manifold generated by the BN in-
stanton is neither self-dual nor anti-self-dual though it is
close to an anti-self-dual manifold. This is consistent with
the gauge theory result. Moreover it has a nontrivial Ricci
scalar which is divergent at the origin. This indicates that
the classical geometry emergent from the BN instanton
contains a spacetime singularity at the origin. To see that
this is a true singularity, one must look at quantities that are
independent of the choice of coordinates. An obvious
candidate is of course the Ricci scalar R which is already
singular in our case. But it may identically vanish for some
solutions, for example, the Schwarzschild black hole. For
such cases, another important quantity is the Kretschmann
invariant which is defined by K ¼ R���
R

���
. The ex-

istence of the singularity can be verified by noting that
either the Ricci scalar R or the Kretschmann scalar K is
infinite. For example, the famous Schwarzschild black hole

exhibits such a spacetime singularity for which the
Kretschmann scalar K is given by

K ¼ R���
R
���
 ¼ 48G2M2

r6
(87)

which blows up at r ¼ 0 indicating the presence of a
spacetime singularity. Thus one can calculate the
Kretschmann scalarK for the metric (81) in order to further
confirm the spacetime singularity and the result is given by

K

64t8
¼ ð2r2 þ 3t2Þ2

r4ðr2 þ 2t2Þ6 þ
ð2r2 þ t2Þ2

ðr4 þ r2t2 þ t4Þ4

þ ð4r4 þ 7r2t2 þ 4t4Þ2
ðr2 þ 2t2Þ2ðr4 þ r2t2 þ t4Þ4 : (88)

One can clearly see that the first term becomes divergent at
the origin although the next two terms are regular every-
where as long as t2 ¼ � � 0. And so Eq. (88) again verifies
the spacetime singularity at the origin.
Let us try to understand why the classical geometries

generated by the BN instanton and the NS instanton are so
dissimilar, especially, in view of the singularity structure.
From the gauge theory point of view, both instantons are
constructed by solving the ADHM data for the rank 1

gauge group. The hyper-Kähler moment maps ��1ð ~�Þ
are deformed, i.e. ~� � 0, for both cases. But the origin is
different. (See footnote 5.) For the BN instanton case, the
ADHM data are defined on commutative C2 and the non-

vanishing deformation parameters ~� are assumed from the
beginning. But, for the NS instanton case, the nonvanishing

deformation parameters ~� are not introduced by hand.
Instead the ADHM data are defined on noncommutative
C2 obeying the Heisenberg algebra

½zi; zyj � ¼ �R
ij; i; j ¼ 1; 2; (89)

where �R ¼ 1
2�

3
���

��. The deformation parameter �R ap-

pears in the moment maps ��1ð ~�Þ due to the NC algebra
(89). Furthermore the NC space (89) resolves the singular-
ities of instanton moduli space coming from pointlike
instantons which shrink to zero size [25]. Therefore the
NC instantons are well defined and nonsingular. However,
this feature is lacking if the deformed ADHM data are
defined over a commutative space. The completeness rela-
tion fails at a finite number of points, called ‘‘freckles.’’ As
a result, the ADHM gauge fields are no longer (anti-)self-
dual as one can see from Eq. (76) [see also Eq. (3.14) in
Ref. [28]]. The spacetime singularity in Eqs. (86) and (88)
arises at the freckle where the instanton is placed. This
argument implies [53] that, in order to describe the topol-
ogy change of spacetime and the resolution of spacetime
singularity, it is not enough to deform only the ADHM data
leaving spacetime to be commutative. The NC structure of
spacetime is essential to resolve the spacetime singularities
in general relativity. Consequently it is necessary to take
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the NC space (1) at the outset and then consider the
commutative description of NC gauge theory.

IV. TOPOLOGICAL INVARIANTS OF Uð1Þ
GAUGE FIELDS

The emergent gravity raises an intriguing question about
topological invariants in gravity andUð1Þ gauge theory. On
the gravity side, there are two topological invariants asso-
ciated with the Atiyah-Patodi-Singer index theorem for an
elliptic complex in four dimensions [46,47], namely the
Euler characteristic �ðMÞ and the Hirzebruch signature
�ðMÞ, which can be expressed as integrals of the curvature
of a four-manifold. But there is no natural topological
invariant in ordinary Uð1Þ gauge theory. For example, the
second Chern class of Uð1Þ bundle on R4 is trivial and it is
easy to show that a nontrivial instanton charge is incom-
patible with the vanishing of F ¼ dA at infinity. The
second Chern class of Uð1Þ bundle can be well defined
only for NCUð1Þ instantons [25,39]. An interesting point is
that the commutative limit of NC Uð1Þ instantons is
equivalent to gravitational instantons [1,45]. Hence the
emergent gravity implies that the commutative limit of
NC Uð1Þ gauge fields has to carry the same topological
invariants as four-dimensional Riemannian manifolds.
Thus a natural question is how to construct the two topo-
logical invariants of four-manifolds in terms of Uð1Þ gauge
fields in the context of emergent gravity.

First it will be interesting to compare the instanton
number for the NS and BN instantons. Using the results
(51) and (76), one can get

NS:F ^ F ¼ � 2

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ t4

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ t4

p
� r2Þ2d4x; (90)

BN:F ^ F ¼ � 8t2

r2ðr2 þ t2Þ3 d
4x (91)

and so the instanton number is given by6

NS: I ¼ 1

4�2

Z
F ^ F ¼ � t4

4
; (92)

BN: I ¼ 1

4�2

Z
F ^ F ¼ �1: (93)

It is amusing to notice that the instanton number for the NS
instanton depends on t4 ¼ �2 while the BN instanton does
not. Actually this fact for the former case was observed in
Ref. [29] and was interpreted as a nonperturbative break-
down of the SW map due to a finite radius of convergence.
But the BN instanton solution (73) was directly obtained
by solving the ADHM equations where the instanton

number k ¼ jIj specifies the dimension of the vector space
CNþ2k. Thus k should be an integer number for consis-
tency. For the same reason, the instanton number for NC
Uð1Þ instantons satisfying the self-duality equation (22)
must be an integer k 2 Z [42,43,58] which is defined by

I ¼ 1

8�2

Z
F̂ ^ F̂ 2 Z (94)

where F̂ ¼ dÂ� iÂ ^ Â. The commutative description of
NS instantons is rather puzzling because the instanton
number is not quantized and so the topology ofUð1Þ gauge
fields becomes obscure. But, as we argued above, the
commutative limit of NC Uð1Þ gauge fields carries the
topological information in the form of four-dimensional
Riemannian manifolds. In a deep NC space where the
continuum description in terms of smooth geometries be-
comes bad, the NC Uð1Þ gauge bundle whose invariant is
given byEq. (94)will take over the topological information.
We will now investigate with explicit examples in

Sec. III how the topological information of Uð1Þ gauge
fields is reflected in a four-dimensional Riemannian mani-
fold. The topological invariants for four-manifolds have a
local expression due to the Atiyah-Singer index theorem
[46,47]. For a general Riemannian manifold M, the Euler
number �ðMÞ for the de Rham complex and the signature
�ðMÞ for the Hirzebruch signature complex are defined by

�ðMÞ¼ 1

32�2

Z
M
"abcdRab^Rcd

þ 1

16�2

Z
@M

"abcd
�
vab^Rcd�2

3
vab^vce^ved

�
;

(95)

�ðMÞ ¼ � 1

24�2

Z
M
TrR ^ R

� 1

24�2

Z
@M

Trv ^ Rþ �Sð@MÞ; (96)

where vab is the second fundamental form of the boundary
@M. It is defined by

vab ¼ !ab �!0ab; (97)

where !ab are the actual connection 1-forms and !0ab are
the connection 1-forms if the metric were locally a product
form near the boundary [46]. The connection 1-form !0ab

has only tangential components on @M and so the second
fundamental form vab has only normal components on
@M. And �Sð@MÞ is the � function given by the eigenval-
ues of a signature operator defined over @M and depends
only on the metric on @M [46]. The topological invariants
are also related to nuts (isolated points) and bolts (two
surfaces), which are the fixed points of the action of one
parameter isometry groups of gravitational instantons [57].
Using the gauge theory formulation that Einstein gravity
can be formulated as a gauge theory of Lorentz group
SOð4Þ ¼ SUð2ÞL � SUð2ÞR where spin connections play
the role of gauge fields and Riemann curvature tensors

6Here we are considering the anti-self-dual instantons with real
F and adopt the normalization 1=4�2 in Ref. [28] for the instanton
number I which is different from 1=8�2 in Eq. (94). Since
F ^ F ¼ dðA ^ FÞ and F ! 0 as r ! 1, it is obvious that the
contribution to the instanton number I is localized at the origin.
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correspond to their field strengths, it is possible to express
the topological invariants in terms of SUð2ÞL and SUð2ÞR
gauge fields [59–61]

�ðMÞ ¼ 1

4�2

Z
M
ðFðþÞi ^ FðþÞi � Fð�Þi ^ Fð�ÞiÞ

þ 1

4�2

Z
@M

ðaðþÞi � að�ÞiÞ ^ ðFðþÞi þ Fð�ÞiÞ

þ 1

12�2

Z
@M

"ijkðaðþÞi � að�ÞiÞ ^ ðaðþÞj � að�ÞjÞ
^ ðaðþÞk � að�ÞkÞ; (98)

�ðMÞ ¼ 1

6�2

Z
M
ðFðþÞi ^ FðþÞi þ Fð�Þi ^ Fð�ÞiÞ

þ 1

12�2

Z
@M

ðaðþÞi � að�ÞiÞ ^ ðFðþÞi � Fð�ÞiÞ
þ �Sð@MÞ; (99)

where the fundamental 1-form (97) is decomposed accord-
ing to the Lie algebra splitting soð4Þ ¼ suð2ÞL � suð2ÞR as

vab � aðþÞi�i
ab þ að�Þi ��i

ab (100)

and the volume forms are defined by e1 ^ e2 ^ e3 ^ e4 �ffiffiffi
g

p
d4x and e1 ^ e2 ^ e3j@M � ffiffiffi

h
p

d3x.
We showed in Sec. III that Uð1Þ gauge fields for the NS

and BN instantons can be written in the form (64).
Accordingly, given Uð1Þ gauge fields of the form (64),
one can calculate the gravitational metric that is given by
Eq. (63) or equivalently Eq. (38). Then, using the results of
Appendix B, it is straightforward to calculate the Euler
density ��ðMÞ in Eq. (B5). The results for the NS and BN

instantons are, respectively, given by

NS:��ðMÞ ¼ � 24t8

ðr4 þ t4Þ3 ; (101)

BN:��ðMÞ ¼ 16t8ð4r4 þ 8r2t2 þ 3t4Þ
r2ðr2 þ 2t2Þ3ðr4 þ r2t2 þ t4Þ2

þ 8t8ð4r4 þ 7r2t2 þ 4t4Þ2
ðr2 þ 2t2Þ2ðr4 þ r2t2 þ t4Þ4 : (102)

As expected, the Euler density for the NS instanton is
regular everywhere while the Euler density for the BN
instanton is singular at the origin due to the first term in
Eq. (102). But the remarkable fact is that the singular
behavior of the Euler density is much milder, i.e. 1=r2,
than the Kretschmann scalar (88) which is 1=r4. Actually
the (1=r2) singularity in the Euler density (102) is not

harmful when we calculate the Euler characteristic (95)
because the volume factor

ffiffiffi
g

p
d4x will safely cancel the

singularity. Indeed we will get a finite bulk contribution for
the Euler characteristic �ðMÞ of the BN instanton. To be
specific, the bulk part of the Euler characteristic �ðMÞ is
given by

�bulkðMÞ ¼ 1

2�2

Z
M
��ðMÞe1 ^ e2 ^ e3 ^ e4 (103)

and we get the same value �bulkðMÞ ¼ 3
2 for both cases.

Here we used the fact that both the NS instanton and the
BN instanton satisfy the ALE boundary condition R4=Z2

because they share the same asymptotic behaviors as was
shown in Eqs. (77) and (78) and so

R
RP3 
1 ^ 
2 ^ 
3 ¼

�2. Now let us look at the boundary terms in Eq. (95). The
first boundary term will not contribute because the curva-
ture tensor will rapidly vanish (� t4=r6) at infinity. But the
second boundary term will contribute and the explicit
computation [59] gives the value

�boundaryðMÞ ¼ 1

2�2

Z
RP3


1 ^ 
2 ^ 
3 ¼ 1

2
: (104)

Note that the boundary contribution for the NS and BN
instantons is also the same because they satisfy the same
asymptotic boundary condition. In the end we get the same
Euler characteristic (95) given by

�ðMÞ ¼ 3

2
þ 1

2
¼ 2 (105)

for both instantons.
The Hirzebruch signature �ðMÞ can be calculated simi-

larly using the result in Eq. (B6). But it is not necessary to
separately calculate the bulk part of the Hirzebruch signa-
ture �ðMÞ for the NS instanton. One can easily check that
the spin connections in Eq. (B2) for the solution (52) are
anti-self-dual, i.e., !ab ¼ � 1

2"ab
cd!cd, which automati-

cally leads to anti-self-dual curvature tensors. It should be
the case because the NS instanton is equivalent to the
Eguchi-Hanson space which is an ALE gravitational in-

stanton. This means that FðþÞi ¼ 0, 8 i in Eqs. (98) and
(99) and so the relation ��ðMÞ ¼ � 2

3��ðMÞ is deduced.

For the BN instantons, one can directly calculate ��ðMÞ in
Eq. (B6) using the result (83). The result can be summa-
rized as follows:

NS:��ðMÞ ¼ � 2

3
��ðMÞ ¼ 16t8

ðr4 þ t4Þ3 ; (106)

BN:��ðMÞ ¼ 2t8ðr4 þ 2r2t2 þ 2t4Þð4r4 þ 7r2t2 þ 4t4Þð4r6 þ 9r4t2 þ 6r2t4 þ 2t6Þ
r2ðr2 þ 2t2Þ4ðr4 þ r2t2 þ t4Þ4

þ 2t8ð4r4 þ 7r2t2 þ 4t4Þð4r4 þ 9r2t2 þ 4t4Þ
ðr2 þ 2t2Þ2ðr4 þ r2t2 þ t4Þ4 : (107)
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As the Euler density (102), the signature density ��ðMÞ in
Eq. (107) is also singular at the origin due to the first
term but it is not a harmful singularity either because we
will get a finite bulk contribution for the Hirzebruch sig-
nature �ðMÞ. To verify it, consider the bulk part of the
Hirzebruch signature �ðMÞ given by

�bulkðMÞ ¼ 1

2�2

Z
M
��ðMÞe1 ^ e2 ^ e3 ^ e4 (108)

and we get the same value �bulkðMÞ ¼ �1 for both instan-
tons. The first boundary term in �ðMÞ vanishes for the same
reason as in the Euler characteristic �ðMÞ. And the eta-
invariant�Sð@MÞ is identically zero for the Eguchi-Hanson
space because �Sð@MÞ for k self-dual gravitational instan-
tons is given by [62]

�Sð@MÞ ¼ � 2�

3k
þ ðk� 1Þðk� 2Þ

3k
(109)

where � ¼ 0 for ALE boundary conditions and � ¼ 1 for
ALF boundary conditions. Although we did not explicitly
calculate the eta-invariant �Sð@MÞ for the BN instanton, it
is reasonable to expect that it will also vanish because the
metric (81) for the BN instanton shows exactly the same
asymptotic behavior as the Eguchi-Hanson space and
it also satisfies the ALE boundary condition. Thus we
conclude that

�ðMÞ ¼ �1þ 0 ¼ �1 (110)

for both NS and BN instantons.
Let us discuss some possible implications for the topo-

logical invariants of Uð1Þ gauge fields. Our result (105) for
the BN instanton strongly supports the topology change of
spacetime speculated by Braden and Nekrasov [28]. Recall
that the Euler characteristic �ðMÞ can be determined by the
set of nuts and bolts through the fixed point theorem [see
Eq. (4.6) in Ref. [57]]

�ðMÞ ¼ 2]ðboltsÞ þ ]ðnutsÞ: (111)

Therefore the result (105) implies that the BN instanton
contains a noncontractible two-sphere S2 which is realized
as a bolt in the gravitational solution (81) as we observed
before. After such a blowup of C2 with S2, the resulting
space becomes Kähler and we showed before that the
metric (81) is indeed Kähler. Thus the emergent gravity
approach provides a more accessible realization for the
topology change of spacetime through Uð1Þ instantons.

It might be emphasized again that symplectic Uð1Þ
gauge fields carry exactly the same topological invariants
as four-manifolds. But those invariants are exotic from the
gauge theory point of view because they are represented by
higher derivative terms of Uð1Þ field strength F��.

(Actually this issue was posed before at the end of Sec. 5
in Ref. [26].) Nevertheless, their properties are rather
natural when we recall that the ALE space is an orbifold
resolution and the Chern classes of orbifold bundles are

typically rational numbers. If one works with ‘‘stacky’’
boundary conditions on the ALE space (by compactifying
with an orbifold line at infinity as in the work of Nakajima
[63]), then such properties actually arise and are in fact
desired to match with corresponding orbifold calcula-
tions.7 Another interesting point is that there exist two
independent topological invariants, �ðMÞ and �ðMÞ, for
four-manifolds while the second Chern class c2ðEÞ is a
unique topological invariant for the vector bundle E of
gauge fields. Only for self-dual four-manifolds satisfying
Eq. (35), two invariants are related to each other. For
example, closed half-flat manifolds satisfy the relation
�ðMÞ ¼ 3

2 j�ðMÞj whereas noncompact half-flat manifolds

obey �ðMÞ ¼ j�ðMÞj þ 1 [59,61]. But, for general four-
manifolds, �ðMÞ and �ðMÞ are independent of each other.
In addition, our explicit computation verifies that it is
necessary to include not only bulk terms but also boundary
contributions in order to get integer-valued topological
invariants. All these features are unusual and interesting
from the gauge theory perspective and so further studies
are required.

V. DISCUSSION

The symplectic structure of spacetime is arguably the
essence of emergent gravity realizing the duality between
general relativity and NC Uð1Þ gauge theory. Our circum-
stantial test of the emergent gravity picture reveals that
the NC spacetime (1) must be taken seriously as a pillar
for quantum gravity. Moreover, we have to regard the NC
algebra (1) as a raw precursor to the fabric of spacetime
that is coalesced into an organized form that we recognize
as spacetime. Our analysis comparing the NS instanton
and the BN instanton indicates that a spacetime singular-
ity in general relativity can be resolved through the
topology change of spacetime as far as a microscopic
spacetime is NC.
From the viewpoint of emergent gravity, the topology of

spacetime is determined by the topology of Uð1Þ gauge
fields on NC spacetime. As is now well known, the topol-
ogy of NC Uð1Þ gauge fields is nontrivial and rich [64,65].
NC Uð1Þ instantons are the pith of the nontrivial topology
of NCUð1Þ gauge fields. In this paper we observed that the
nontrivial topology of NC Uð1Þ instantons faithfully ap-
pears in the emergent gravity description. For example, NC
Uð1Þ instantons give rise to the ALE-type four-manifolds
[45,66] whose nontrivial topology is encoded in bolts
(noncontractible two-cycles) while NC Uð1Þ monopoles
may be realized as the ALF-type four-manifolds whose
nontrivial topology is encoded in nuts (isolated points).
The nice formula (111) for the Euler characteristic clearly
illuminates this aspect of four-manifolds emergent from
symplectic (or NC) Uð1Þ instantons or monopoles.

7We are indebted to an anonymous referee for this remark.
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Then a natural question is about the status of spacetime
singularity in NC spacetime. It is worthwhile to notice that
the NC space (1) is mathematically akin to the Heisenberg
algebra ½xi; pj� ¼ iℏ
i

j in quantum mechanics where �

plays the role of ℏ. Thus one can expect that the NC effect
will be significant in a strongly gravitating regime, typi-
cally near the spacetime singularities. From the analogy
between the NC spacetime and quantum mechanics, one
can expect that there will be a vital spacetime uncertainty
relation as an analogue of the famous Heisenberg’s uncer-
tainty relation �x�p 
 ℏ. This spacetime uncertainty re-
lation gives rise to UV/IR mixing in NC gauge theory [67]
and is responsible for the holographic principle in gravity
[68,69]. Therefore, in NC space, it is not possible to
localize a vast amount of energy to a point due to the
spacetime exclusion. The best way to realize a localized
object in NC spacetime is to make a stable topological
object such as NC instantons [25,39] or Gopakumar-
Minwalla-Strominger solitons [70]. But the topological
objects in NC spacetime are regular solutions without
any singularity and carry a nontrivial topology [64,65].
As a result, if spacetime geometry is emergent from NC
gauge fields, the spacetime singularity in general relativity
may be a fake effect caused by our naive way of working in
a purely commutative space.

The relation in Eq. (56) suggests that NC gauge fields
can be interpreted as the field variables defined in a locally
inertial frame and their commutative description corre-
sponds to the field variables in a laboratory frame repre-
sented in terms of general curvilinear coordinates. It
presents a very beautiful picture about NC gauge fields.
Since this property holds even for the BN instanton which
is neither self-dual nor anti-self-dual, it is reasonable to
suspect that the formula (56) can be applied to generic NC
gauge fields. Now wewill show that the identity (56) is true
for general Uð1Þ gauge fields if the metric (14) is symmet-
ric, i.e. G�� ¼ G��. Let us start with the SW map (18):

1

4

Z
d4yF̂��ðyÞF̂��ðyÞ ¼ 1

4

Z
d4x

ffiffiffiffi
G

p
G��G�
F��F�


(112)

which can be simply deduced from the SW maps (7) and
(8). Using the 1-form basis defined by Eq. (28) and the
definition Fab � E�

a E�
bF��, one can rewrite the right-hand

side of Eq. (112) as

1

4

Z
d4x

ffiffiffiffi
G

p
G��G�
F��F�
 ¼ 1

4

Z
d4x

ffiffiffiffi
G

p
FabðxÞFabðxÞ:

(113)

Here we consider the coordinates x� ¼ x�ðyÞ as the
dynamical variables defined by Eq. (9). After using the
formula (8), the SW map (112) then reduces to the follow-
ing identity:

1

4

Z
d4yF̂��ðyÞF̂��ðyÞ ¼ 1

4

Z
d4yFabðyÞFabðyÞ: (114)

Incidentally the coordinates y� correspond to geodesic
normal coordinates in a Riemannian manifold with the
metric (28). We note that the identity (114) is nothing but
the SWequivalence between commutative and NC descrip-
tions because it was originally derived from the SW map
(112). Since both sides are using the same coordinate
system and positive definite, we can deduce a local form
from Eq. (114) which is the identity (56).
We remark that the emergent gravity formulated by

using the SW map as in Sec. II cannot be applied to a
general Riemannian metric for the following reason. First
of all, the effective metric defined by Eq. (14) is not
symmetric in general. To have a symmetric Riemannian
metric from symplectic gauge fields, the condition (17) has
to be obeyed. This condition is reduced to the form (25) in
a frame with ��� ¼ �

2�
3
�� [that can always be achieved by

performing an SOð4Þ rotation]. Then some metric compo-
nents in Eq. (14) in this frame identically vanish, e.g.
G12 ¼ G34 ¼ 0. One can check that the Taub-NUT metric
(72), for example, does not belong to such a class of
metrics. Therefore we need a generalization in order to
extend the bottom-up approach of emergent gravity [22] to
a general class of metrics.
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APPENDIX A: ’t HOOFT SYMBOLS

Since we heavily use several properties of the ’t Hooft
symbols, we reproduce here the Appendix A in Ref. [32]
for the reader’s convenience. The explicit components
of the ’t Hooft symbols �i

�� and ��i
�� for i ¼ 1, 2, 3 are

given by

�i
�� ¼ "i4�� þ 
i�
4� � 
i�
4�;

��i
�� ¼ "i4�� � 
i�
4� þ 
i�
4�

(A1)

with "1234 ¼ 1. They satisfy the following relations:

�ð�Þi
�� ¼ � 1

2
"��

�
�ð�Þi
�
 ; (A2)

�ð�Þi
�� �ð�Þi

�
 ¼ 
��
�
 � 
�

�� � "���
; (A3)
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"���
�
ð�Þi

� ¼ 	ð
���

ð�Þi
�� þ 
���

ð�Þi
�� � 
���

ð�Þi
�� Þ;

(A4)

�ð�Þi
�� �ð	Þj

�� ¼ 0; (A5)

�ð�Þi
�� �ð�Þj

�� ¼ 
ij
�� þ "ijk�ð�Þk
�� ; (A6)

�ð�Þi
�� �ð	Þj

�� ¼ �ð�Þi
�� �ð	Þj

�� ; (A7)

"ijk�ð�Þj
�� �ð�Þk

�
 ¼ 
���
ð�Þi
�
 � 
�
�

ð�Þi
�� � 
���

ð�Þi
�


þ 
�
�
ð�Þi
�� ; (A8)

where �ðþÞi
�� � �i

�� and �ð�Þi
�� � ��i

��.

If we introduce two families of 4� 4 matrices defined
by

½Tiþ��� � �i
��; ½Ti���� � ��i

��; (A9)

the matrices in Eq. (A9) provide two independent spin
s ¼ 3

2 representations of suð2Þ Lie algebra. Explicitly,

they are given by

T1þ ¼

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA; T2þ ¼

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

0
BBBBB@

1
CCCCCA; T3þ ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

0
BBBBB@

1
CCCCCA; (A10)

T1� ¼

0 0 0 �1

0 0 1 0

0 �1 0 0

1 0 0 0

0
BBBBB@

1
CCCCCA; T2� ¼

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

0
BBBBB@

1
CCCCCA; T3� ¼

0 1 0 0

�1 0 0 0

0 0 0 �1

0 0 1 0

0
BBBBB@

1
CCCCCA (A11)

according to the definition (A1). The matrices in Eqs. (A6) and (A7) immediately show that Ti� satisfy suð2Þ Lie
algebras, i.e.,

½Ti�; T
j
�� ¼ �2"ijkTk�; ½Ti�; T

j
	� ¼ 0: (A12)

APPENDIX B: SPIN CONNECTIONS AND CURVATURE TENSORS

In this appendix, we calculate the spin connections and curvature tensors for the metric (38). The spin connections are
determined by solving the torsion free condition

Ta � dea þ!a
b ^ eb ¼ 0: (B1)

Explicitly they are given by

!14¼B0rþB

A

1; !12¼A2�2B2

B2

3; !24¼B0rþB

A

2; !31¼�A

B

2; !34¼A0rþA

A

3; !23¼�A

B

1; (B2)

where 0 � d
dr . The curvature tensor is then defined by

Ra
b ¼ d!a

b þ!a
c ^!c

b: (B3)

The explicit results are given by
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R12 ¼ 1

r2B2

�
4� 3

�
A

B

�
2 �

�
B0rþ B

A

�
2
�
e1 ^ e2 þ 2

rAB3
ðAB0 � A0BÞe3 ^ e4;

R31 ¼ 1

r2B2

��
A

B

�
2 � ðA0rþ AÞðB0rþ BÞB

A3

�
e3 ^ e1 � 1

rAB3
ðAB0 � A0BÞe2 ^ e4;

R14 ¼ rA0B0 þ A0B� 2AB0 � rAB00

rA3B
e1 ^ e4 þ 1

r2B2

�
A0rþ A

A
� B0rþ B

B

�
e2 ^ e3;

R23 ¼ 1

r2B2

��
A

B

�
2 � ðA0rþ AÞðB0rþ BÞB

A3

�
e2 ^ e3 � 1

rAB3
ðAB0 � A0BÞe1 ^ e4;

R24 ¼ rA0B0 þ A0B� 2AB0 � rAB00

rA3B
e2 ^ e4 þ 1

r2B2

�
A0rþ A

A
� B0rþ B

B

�
e3 ^ e1;

R34 ¼ � 2

r2B2

�
A0rþ A

A
� B0rþ B

B

�
e1 ^ e2 þ 1

rA4
ðrðA0Þ2 � rAA00 � AA0Þe3 ^ e4;

(B4)

where 00 � d2

dr2
.

Using the above results, one can calculate the following quantities:

��ðMÞ � 1

64
"abcd"efghRabefRcdgh

¼ 1

2
ðR2

1234 þ R2
1423 þ R2

2431 þ R1212R3434 þ R3131R2424 þ R1414R2323Þ

¼ 1

2r4A6B6
½rB2ð3A4 � 4A2B2 þ B2ðBþ rB0Þ2Þð�rðA0Þ2 þ AðA0 þ rA00ÞÞ

þ 2rBðA5 � B3ðAþ rA0ÞðBþ rB0ÞÞð�2AB0 þ A0ðBþ rB0Þ � rAB00Þ þ 6r2A4ðAB0 � A0BÞ2�; (B5)

and

��ðMÞ � 1

48
"cdefRabcdRabef

¼ 1

3
ðR1212R1234 þ R1313R2431 þ R1414R1423 þ R2323R2314 þ R2424R2431 þ R3434R1234Þ

¼ 2ðAB0 � A0BÞ
3r3A5B7

½rA2B2ð�rðB0Þ2 þ BðB0 þ rB00ÞÞ � 4A4ðA2 � B2Þ þ rB4ðrðA0Þ2 � AðA0 þ rA00ÞÞ�: (B6)
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