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We calculate the conductivity matrix of a weakly coupled quark-gluon plasma at the leading-log order.

By setting all quark chemical potentials to be identical, the diagonal conductivities become degenerate

and positive, while the off-diagonal ones become degenerate but negative (or zero when the chemical

potential vanishes). This means a potential gradient of a certain fermion flavor can drive backward

currents of other flavors. A simple explanation is provided for this seemingly counterintuitive phenome-

non. It is speculated that this phenomenon is generic even beyond the leading-log order, and it is most

easily measured in cold atom experiments.
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I. INTRODUCTION

Hydrodynamics describes the evolution of a fluid per-
turbed away from thermal equilibrium by long wavelength
fluctuations. The long wavelength physics (long compared
with the mean free path of particle collisions) can be
systematically described by an expansion of space-time
derivatives on classical fields with prefactors called trans-
port coefficients. These transport coefficients encode the
physics of short (compared with the mean free path) dis-
tance and are inputs to hydrodynamics. But they can be
computed, in principle, once the microscopic theory of the
system is known.

We are interested in computing the transport coefficients
in QCD with Nf flavors of massless quarks at finite tem-

perature (T) and chemical potentials (�a, a ¼ 1; 2; . . . ; Nf).

The leading transport coefficients at the first derivative order
include the shear viscosity (�), bulk viscosity (�), and the
conductivity matrix (�).

The shear viscosity of QCD has attracted a lot of atten-
tion recently. Its ratio with the entropy density (s) extracted
from the hot and dense matter created at the Relativistic
Heavy Ion Collider [1–4] just above the phase transition
temperature (Tc) yields 1=ð4�Þ � �=s � 2:5=ð4�Þ at
Tc � T � 2Tc [5], which is close to a conjectured univer-
sal lower bound of 1=ð4�Þ [6] inspired by the gauge/
gravity duality [7–9]. This value of �=s cannot be ex-
plained by extrapolating the perturbative QCD result
[10–13]. The smallest �=s is likely to exist near Tc

[14,15] (see, e.g., Ref. [13] for a compilation and more

references). Also, finite � results suggests that �=s is
smaller at smaller �. This is based on results of perturba-
tive QCD at T � Tc [16] and of a hadronic gas at T � Tc

and small� [17]. It is speculated that the same pattern will
persist at Tc such that the smallest �=s might exist near Tc

with � ¼ 0 [16].
For the bulk viscosity, the sum rule study [18,19] shows

that � increases rapidly near Tc when T approaches Tc

from above. This is consistent with the lattice gluon plasma
result near Tc [20] and perturbative QCD result [21] at
much higher T. This, when combined with pion gas results
below Tc [22–26], suggests that �=s has a local maximum
near Tc (see, e.g., Ref. [13] for a compilation). Unlike �=s,
the perturbative QCD result shows very small � depen-
dence in �=s [16]. Note that, at high �, there are also bulk
viscosities governed by the weak interaction such as the
Urca processes, which have consequences in neutron star
physics [27–32]. These are quite different from the trans-
port coefficients from the strong interaction mentioned
above.
The perturbative QCD calculations of� and � with finite

� were performed at the leading-log (LL) order of the
strong coupling constant (g) expansion in Ref. [16].
Corrections at the leading order is only suppressed by a
factor of log�1g�1, thus our results only hold when T or�
in the calculation is much larger than �QCD, the scale on

which QCD becomes nonperturbative. Also, the calcula-
tion is not applicable to the color superconducting phase at
�=T ! 1, since the vacuum in the calculation has no
symmetry breaking.
In this work, we apply the same perturbative QCD

approach to compute the conductivity matrix � at the LL
order. The conductivity is an important transport coeffi-
cient that plays an essential role in the evolution of
electromagnetic fields in heavy ion collisions [33–37].
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The conductivity in strongly coupled quark gluon plasma
was calculated with lattice QCD in the quenched approxi-
mation [38] or with dynamical quark flavors [39,40] and
the Dyson–Schwinger equation [41].

We first review the constraints from the second law of
thermal dynamics (i.e., the entropy production should be
non-negative) which shows that the particle diffusion, heat
conductivities, and electric conductivity are all unified into
one single conductivity in this system. When Nf > 1, the

conductivity becomes an Nf � Nf matrix. We then show

through the Boltzmann equation that the conductivity
matrix � at the LL order is symmetric and positive definite
(
P

a;b�abX
aXb > 0 for any real, non-vanishing vector X).

The former is a manifestation of the Onsager relation,
while the latter is a manifestation of the second law of
thermal dynamics.

For simplicity, we show the numerical results of � with
all fermion chemical potential to be identical. In this limit,
there are only two independent entries in �. All the diago-
nal matrix elements are degenerate and positive since � is
positive definite. However, the off-diagonal matrix ele-
ments are degenerate but negative at finite �. This means
a gradient r�a can drive a current of flavor a along the
gradient direction, but it will also drive currents of different
flavors in the opposite direction. A simple explanation is
provided for this seemingly counterintuitive backward
current phenomenon. It is speculated that this phenomenon
is generic even beyond the leading-log order, and it is most
easily measured in cold atom experiments.

II. ENTROPY PRINCIPLE IN HYDRODYNAMICS

A. Single-flavor case

Let us start from the hydrodynamical system with only
one flavor of quark of electric charge Q. The energy-
momentum conservation and current conservation yield

@�T
�� ¼ QF��j�; @�j

� ¼ 0; (1)

where T�� is the energy-momentum tensor, j� is the quark
current, and F�� is the electromagnetic field strength ten-
sor. The long wavelength physics can be systematically
described by the expansion of space-time derivatives

T�� ¼ T
��
ð0Þ þ "T

��
ð1Þ þ "2T

��
ð2Þ þ � � � ;

j� ¼ j
�
ð0Þ þ "j

�
ð1Þ þ "2j

�
ð2Þ þ � � � ;

(2)

where we have used the parameter " to keep track of the
expansion and we will set " ¼ 1 at the end. F�� is counted
as Oð"Þ. We will then assume the system is isotropic and
homogeneous in thermal equilibrium so there are no spe-
cial directions or intrinsic length scales macroscopically.
We also assume the underlying microscopic theory satis-
fies parity, charge conjugation, and time reversal symme-
tries such that the antisymmetric tensor "���� does not
contribute to T�� and j�. Also, we assume the system is

fluidlike, describable by one (and only one) velocity field
(the conserved charged is assumed to be not broken spon-
taneously; otherwise, the superfluid velocity needs to be
introduced as well). Also, at Oð"0Þ, the system is in local
thermal equilibrium; i.e., the system is in equilibrium in
the comoving frame in which the fluid velocity is zero.
With these assumptions, we can parametrize

T��
ð0Þ ¼ ð	þ PÞu�u� � Pg��; j�ð0Þ ¼ nu�;

T
��
ð1Þ ¼ �ðu�u� � g��Þ þ ��� þ h�u� þ h�u�;

j
�
ð1Þ ¼ ��;

(3)

where g�� ¼ diagðþ;�;�;�Þ and 	, P, and n are the
energy density, pressure, and number density, respectively.

The fluid velocity u� ¼ ðu0; uÞ ¼ ð1;vÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
and

u�u� ¼ 1. �, ���, h� and �� are the bulk viscous

pressure, shear viscous tensor, heat flow vector, and diffu-
sion current. They satisfy the orthogonal relations,
���u� ¼ ��u� ¼ h�u� ¼ 0.

The covariant entropy flow is given by [42,43]

S� ¼ �Pu� þ �T��u� � ��j�

¼ su� þ �h� � ����; (4)

where � ¼ 1=T and s ¼ �ð	þ P��nÞ is the entropy
density. Taking the space-time derivative of S�, then using
the Gibbs–Duhem relation d	 ¼ Tdsþ�dn and the con-
servation equations (1), we obtain the equation for entropy
production,

@�S
� ¼ ���½@�ð��Þ þ�QE�� þ h�ð@��þ�u�@�u�Þ

þ����@h�u�i ���@ � u; (5)

where the symmetric traceless tensor @h�u�i is defined by

@h�u�i ¼ 1

2

�
������ þ������ � 2

3
������

�
@�u� (6)

and where ��� ¼ g�� � u�u� and E� � F��u� is the
electric field in the comoving frame.
At Oð"Þ, @�T�� ’ @�T

��
ð0Þ ¼ 0. This equation yields

@��þ �u�@�u� ¼ n

	þ P
½@�ð��Þ þ �QE��; (7)

where we have used the thermodynamic equation
dP ¼ �ð	þ PÞdT þ nTdð��Þ. This identity simplifies
Eq. (5) to

@�S
� ¼ �

�
�� � n

	þ P
h�

�
½@�ð��Þ þ �QE��

þ ����@h�u�i � ��@ � u: (8)

The second law of thermodynamics requires @�S
� 	 0.

It can be satisfied if, up to terms orthogonal to @ � u, @h�u�i
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and [@�ð��Þ þ �QE�], �, ���, h�, and �� have the

forms at Oð"Þ,

��� ¼ 2�@h�u�i;

� ¼ ��@ � u;
�� � n

	þ P
h� ¼ ����½@�ð��Þ þ �QE��

(9)

where ��� is inserted because ��u� ¼ h�u� ¼ 0. The

coefficients �, � , and � are transport coefficients with
names of shear viscosity, bulk viscosity, and conductivity,
respectively. The second law of thermodynamics requires
these transport coefficients to be non-negative.

On the right-hand side of Eq. (9), the three vectors @��,
@��, and E� form a unique combination and share the
same transport coefficient � [42]. It is obtained by assum-
ing @�T

��
ð0Þ ¼ 0 and T

��
ð0Þ has the ideal fluid form described

in Eq. (3). In general, we do not expect this to be true in
all systems (e.g., a solid might not have the ideal fluid
description), and hence there could be more transport
coefficients. Conventionally, the transport coefficients
corresponding to @��, @��, and E� are called particle
diffusion, heat conductivity, and electric conductivity,
respectively.

In hydrodynamics, the choice of the velocity field is not
unique. One could choose u to align with the momentum

density T0iî or the current j, or their combinations.
However, the system should be invariant under the trans-
formation u� ! u0� ¼ u� þ "
u� as long as u02� ¼ 1 is

maintained [or u�
u� ¼ 0 at Oð"Þ]. Under this transfor-
mation, h� ! h0� ¼ h� þ ð	þ PÞ
u� and �� ! �0

� ¼
�� þ n
u�. However, the entropy production equation (8)

remains invariant under this transformation.
In this paper, we will be working in the Landau frame

with u proportional to the momentum density T0iî such
that T0i ¼ 0 in the comoving frame. Then,

h ¼ 0; � ¼ �½�rð��Þ þ �QE� (10)

from Eq. (9). � is positive; the sign makes sense for particle
diffusion and electric conduction because the diffusion is
from high to low density, and positively charged particles
move along the E direction. However, heat conduction
induces a flow from low to high temperature. This result
is counterintuitive. This is because rT induces a momen-
tum flow h. If we choose to boost the system to the Landau
frame in which h ¼ 0, then the physics is less transparent.
For particle diffusion and electric conduction, this is not a
problem because one could have particles and antiparticles
moving in opposite directions and still keep the net
momentum flow zero.

The physics of heat conduction becomes clear in the
Eckart frame in which u is proportional to the current j and
we have

� ¼ 0; h ¼ � 	þ P

n
�½�rð��Þ þ �QE�: (11)

In this frame, the direction of heat conduction is correct
(while the physics of particle diffusion and electric con-
duction become less transparent). As expected, h stays
finite when � ¼ Q ¼ 0 but r� � 0.

B. Multiflavor case

When the flavor of massless quarks is increased
to Nf, then there are Nf conserved currents j

�
a (the con-

served electric current is just a combination of them). The
hydrodynamical equations become

@�T
�� ¼ XNf

a¼1

QaF
��ja;�;

@�j
�
a ¼ 0; a ¼ 1; 2; . . . ; Nf:

(12)

Then, the entropy production yields

@�S
� ¼ � XNf

a¼1

�
��
a � na

	þ P
h�

�
½@�ð��aÞ þ �QaE��

þ ����@h�u�i � ��@ � u 	 0: (13)

Working in the Landau frame, we have

�a ¼
XNf

b¼1

�ab½�rð��bÞ þ �QbE�: (14)

Our task is to compute the �matrix, which can be achieved
by setting rð��bÞ � 0 but E ¼ 0. The second law of
thermodynamics dictates � being a positive definite matrix.

III. EFFECTIVE KINETIC THEORY

We will use the Boltzmann equation to compute our LL
result of �. It has been shown that the Boltzmann equation
gives the same leading-order result as the Kubo formula in
the zcoupling constant expansion in a weakly coupled �4

theory [44,45] and in hot QED [46], provided the leading T
and � dependence in particle masses and scattering am-
plitudes are included. This conclusion is expected to hold
in perturbative QCD as well [47].
The Boltzmann equation of a quark-gluon plasma

describes the evolution of the color- and spin-averaged

distribution function ~fipðxÞ for particle i (i ¼ g, qa, �qa
with a ¼ 1:2 . . .Nf for gluon, Nf quarks, and Nf

antiquarks),

d~fipðxÞ
dt

¼ ~Ci; (15)

where ~fipðxÞ is a function of space-time x� ¼ ðt;xÞ and
momentum p� ¼ ðEp;pÞ.
For the LL calculation, we only need to consider

two-particle scattering processes denoted as c1c2 ! c3c4.
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The collision term has the form

Cc1c2!c3c4 �
Z
k1k2k3

d�c1c2!c3c4½~fc1k1 ~f
c2
k2
~Fc3
p ~Fc4

k3

� ~Fc1
k1
~Fc2
k2
~f
c3
p
~fc4k3�; (16)

where ~Fg ¼ 1þ ~fg and ~Fqð �qÞ ¼ 1� ~fqð �qÞ and

d�c1c2!c3c4 ¼
1

2Ep

jMc1c2!c3c4 j2
Y3
i¼1

d3ki
ð2�Þ32Eki

� ð2�Þ4
ð4Þðk1 þ k2 � k3 � pÞ; (17)

where jMc1c2!c3c4 j2 is the matrix element squared with all

colors and helicities of the initial and final states summed
over. The scattering amplitudes can be regularized by hard
thermal loop propagators, and, in this paper, we use the same
scattering amplitudes as in Ref. [11] (see also Table I of
Ref. [16]). Then, the collision term for a quark of flavor a is

Nq
~Cqa ¼

1

2
Cqaqa$qaqa þ Cqa �qa$qa �qa

þ 1

2
Cgg$qa �qa þ Cqag$qag

þ XNf�1

b;b�a

ðCqaqb$qaqb þ Cqa �qb$qa �qb þ Cqb �qb$qa �qaÞ;

(18)

where Nq ¼ 2� 3 ¼ 6 is the quark helicity and color

degeneracy factor and the factor 1=2 is included when
the initial state is formed by two identical particles.
Similarly,

Ng
~Cg ¼ 1

2
Cgg$ggþ

XNf

a¼1

ðCgqa$gqa þCg �qa$g �qa þCqa �qa$ggÞ;

(19)

where Ng ¼ 2� 8 ¼ 16 is the gluon helicity and color

degeneracy factor. In equilibrium, the distributions are

denoted as fqað �qaÞ and fg, with

fgp ¼ 1

eu�p=T � 1
; (20)

fqað �qaÞp ¼ 1

eðu�p
�aÞ=T þ 1
; (21)

where T is the temperature, u is the fluid four velocity, and
�a is the chemical potential for the quark of flavor a. They
are all space-time dependent.

The thermal masses of gluon and quark/antiquark for
external states (the asymptotic masses) can be computed
via [47,48]

m2
g ¼

X
i

NiCi

2g2

dA

Z d3p

ð2�Þ32Ep

fip; (22)

m2
q ¼ m2

�q ¼ 2CFg
2
Z d3p

ð2�Þ32Ep

ð2fgp þ fqp þ f �q
pÞ; (23)

where dA ¼ 8, Cg ¼ CA ¼ 3, and Cqð �qÞ ¼ CF ¼ 4=3.

This yields

m2
g ¼ CA

6
g2T2 þ XNf

a¼1

CF

16
g2
�
T2 þ 3

�2
�2

a

�
; (24)

m2
qa ¼

1

4
CFg

2

�
T2 þ�2

a

�2

�
; (25)

where we have set Ep ¼ jpj in the integrals on the right-

hand sides of Eqs. (22) and (23). The difference from
nonvanishing masses is of higher order. In this work, we
only need the fact that the thermal masses are proportional
to g2 for the LL results.

A. Linearized Boltzmann equation

Matching to the derivative expansion in hydrodynamics,
we expand the distribution function of particle i as a local
equilibrium distribution plus a correction,

~fipðxÞ ¼ fip � "fipð1
 fipÞ�i; (26)

where the upper/lower sign corresponds to the femion/
boson distribution. Inserting Eq. (26) into Eq. (15), we
can solve the linearized Boltzmann equation by keeping
linear terms in space-time derivatives. Here, we neglect the
viscous terms related to @�u� in �i and consider only the

rð��aÞ terms.
At the zeroth order,Oð"0Þ, the system is in local thermal

equilibrium, and the Boltzmann equation (15) is satisfied,
~C½fip� ¼ 0. At Oð"Þ, the left-hand side of the Boltzmann

equation yields

dfgp

dt
¼ ��fgpF

g
p

XNf

a¼1

�
naT

	þ P
p � rð��aÞ

�
; (27)

and

dfqað �qaÞp

dt
¼ ��fqað �qaÞp Fqað �qaÞ

p

� XNf

b¼1

�
nbT

	þ P

 T

Eqað �qaÞ
p


ab

�
p � rð��bÞ: (28)

To derive this result, we have used @�u
0 ¼ 0 in the local

fluid rest frame, in which u� ¼ ð1; 0; 0; 0Þ and @�T
��
ð0Þ ¼ 0

and @�j
�
að0Þ ¼ 0, which yields

@	

@t
¼ �ð	þ pÞr � u @u

@t
¼ � rP

	þ p
(29)

and
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@na
@t

¼ �nar � u: (30)

And then, by applying thermodynamic relations, we can
replace the time derivatives of T, �, and u with spatial
derivatives:

@T

@t
¼ �T

�
@P

@	

�
n
r � u;

@�

@t
¼ �

�
�

�
@P

@	

�
n
þ

�
@P

@n

�
	

�
r � u;

@u

@t
¼ ��rT � XNf

a¼1

naT

	þ p
r
�
�a

T

�
:

(31)

Those relations lead to Eqs. (27) and (28).
To get the right-hand side of the Boltzmann equation at

Oð"Þ, we parametrize �i of Eq. (26) as

�i ¼ �
XNf

a¼1

AiaðpÞ � rð��aÞ; AiaðpÞ ¼ AiaðjpjÞp̂:

(32)

The matrix Aia is ð2Nf þ 1Þ � Nf. We will see there are

ð2Nf þ 1Þ � Nf equations to constrain them.

For each Boltzmann equation, we have a linear combi-
nation of Nf terms of rð��aÞ. Since each rð��aÞ is

linearly independent to each other, there are Nf equations

for each Boltzmann equation. Totally, we have 2Nf þ 1

Boltzmann equations; thus, we have ð2Nf þ 1Þ � Nf

equations to solve for Aia. These equations are

nap

	þ P
¼ �

1

fgpF
g
p

1

Ng

�
1

2
Ca

gg!gg þ
XNf

c¼1

ðCa
gqc!gqc

þCa
g �qc!g �qc

þCa
qc �qc!ggÞ

�
; (33)

�
na

	þ P
� 1

Eqb
p

ab

�
p

¼ �

fqbp Fqb
p

1

Nq

�
1

2
Ca

qbqb!qbqb þCa
qb �qb!qb �qb

þ 1

2
Ca

gg!qb �qb
þCa

qbg!qbg

þ XNf�1

c;c�b

ðCa
qbqc!qbqc þCa

qb �qc!qb �qc
þCa

qc �qc!qb �qb
Þ
�
;

(34)

and

�
na

	þ P
þ 1

E
�qb
p


ab

�
p

¼ �

f �qb
p F �qb

p

1

Nq

�
1

2
Ca

�qb �qb! �qb �qb
þCa

�qbqb! �qbqb

þ 1

2
Ca

gg! �qbqb
þCa

�qbg! �qbg

þ XNf�1

c;c�b

ðCa
�qb �qc! �qb �qc

þCa
�qbqc! �qbqc

þCa
�qcqc! �qbqb

Þ
�
;

(35)

where

Ca
c1c2!c3c4ðpÞ �

Z
k1k2k3

d�c1c2!c3c4f
c1fc2Fc3Fc4½Ac1aðk1Þ

þAc2aðk2Þ �Ac3aðk3Þ �Ac4aðpÞ�: (36)

Formally, we can rewrite these linearized Boltzmann
equations in a compact form,

jSai ¼ C�jAai; (37)

where jSai and jAai are both vectors of (2Nf þ 1)

components and C� is a ð2Nf þ 1Þ � ð2Nf þ 1Þ matrix.

B. Conductivity matrix

In the kinetic theory, the quark current of flavor a is

j
�
a ¼ Nq

Z d3p

ð2�Þ3
p�

Eqa
ð~fqap � ~f �qa

p Þ: (38)

Expanding this expression to Oð"Þ and matching it to
Eq. (14), we have

�ab ¼
Nq�

3

Z d3p

ð2�Þ3
1

Eqa
ðfqaFqap �Aqab�f �qaF �qap �A �qabÞ:

(39)

Since we are working in the Landau frame, we should
impose the Landau–Lifshitz condition

0 ¼ T0j ¼ �X
i

Ni

Z d3p

ð2�Þ3 f
iFi�ipj: (40)

This implies

X
i

Ni

Z d3p

ð2�Þ3 f
iFip �Aia ¼ 0: (41)

We can use these constraints to rewrite Eq. (39) as
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�ab ¼��

3

�
Ng

Z d3p

ð2�Þ3 f
gFg na

	þP
p �Agb

þXNf

c¼1

Nq

Z d3p

ð2�Þ3 f
qcFqc

�
na

	þP
� 1

Eqa

ca

�
p �Aqcb

þXNf

c¼1

Nq

Z d3p

ð2�Þ3 f
�qcF �qc

�
na

	þP
þ 1

Eqa

ca

�
p �A �qcb

�
:

(42)

This form can be schematically written as

�ab ¼ hAbjSai ¼ hAbjC�jAai; (43)

where we have used Eq. (37) for the second equality. More
explicitly,

�ab ¼ �2

24

�
Dab

gg!gg þ
XNf

c¼1

Dab
qcqc!qcqc þ

XNf

c¼1

Dab
�qc �qc! �qc �qc

�

þ �2

6

XNf

c¼1

ðDab
qc �qc!gg þDab

gqc!gqc

þDab
g �qc!g �qc

þDab
qc �qc!qc �qc

Þ

þ �2

12

XNf

c;d¼1
c�d

ðDab
qcqd!qcqd þDab

�qc �qd! �qc �qd

þ 2Dab
qc �qd!qc �qd

þ 2Dab
qc �qc!qd �qd

Þ; (44)

where

Dab
c1c2!c3c4 �

Z Y4
i¼1

d3pi

ð2�Þ32Ei

ð2�Þ4
4ðk1þ k2� k3� k4Þ

� jMc1c2!c3c4 j2fc1k1f
c2
k2
Fc3
k3
Fc4
k4
½Ac1aðk1Þ

þAc2aðk2Þ�Ac3aðk3Þ�Ac4aðk4Þ� � ½Ac1bðk1Þ
þAc2bðk2Þ�Ac3bðk3Þ�Ac4bðk4Þ�: (45)

From Eq. (37), it is clear that, if

Aia
0 ðpÞ ¼ p; (46)

then, from momentum conservation, this implies

C�jAa
0i ¼ 0: (47)

Those modes are called zero modes [denoted by the sub-
script 0 in Eq. (46)]. They would have been a problem for
Eq. (43) unless hSajAa

0i ¼ 0, but this is guaranteed from

the total momentum conservation at Oð"Þ,
d

dt

X
i

Z
dp3pfipðxÞ ¼ 0; (48)

and Eqs. (27) and (28). Thus, we can just solve for jAai in
Eq. (43) by discarding the zero modes.

From Eqs. (44) and (45), we can see easily that �ab ¼
�ba. This is a manifestation of the Onsager relation, which

appears when particle scattering is symmetric under the
time-reversal transformation. We can also see that � is
positive definite.

IV. LEADING-LOG RESULTS WITH IDENTICAL
CHEMICAL POTENTIALS

Now, we are ready to solve the conductivity matrix �.
Our strategy to solve for �ab is to make use of Eq. (43) to
solve for jAai from �aa (no summation over a). Once all
the jAai are obtained, �ab can be computed. Also, in
solving for �aa, one can use the standard algorithm to
systematically approach the answer from below [13]. The
dependence on the strong coupling constant is similar to
that in shear viscosity—it is inversely proportional to the
scattering rate, which scales as g4 ln g�1 with the ln g�1

dependence coming from regularizing the collinear infra-
red singularity by the thermal masses of quarks or gluons.
� is of mass dimension 2; thus, we will present our result in
the normalized conductivity

~� � ��2g4 ln g�1 (49)

such that ~� is dimensionless and coupling constant
independent.
For simplicity, we will concentrate on the linear re-

sponse of a thermal equilibrium system with all fermion
chemical potentials to be identical, i.e.,�a ¼ � for all a’s,
but each rð��aÞ could be varied independently. This
symmetry makes all the diagonal matrix elements (denoted
as �qq) identical and all the off-diagonal ones (denoted as

�qq0) identical. �qq and �qq0 are even in � (and so are ~�qq

and ~�qq0) because our microscopic interaction (in vacuum)

is invariant under charge conjugation; thus, � should be
invariant under �a ! ��a.
It is easy to diagonalize �. One eigenvalue is

�þ=Nf � �qq þ ðNf � 1Þ�qq0 ; (50)

corresponding to the conductivity of the flavor singlet total
quark current (�þ is the total quark current conductivity)

� ¼ XNf

a¼1

�a ¼ ��þ
XNf

a¼1

rð��aÞ
Nf

: (51)

The other (Nf � 1) eigenvalues are degenerate with the

value

�� � �qq � �qq0 : (52)

They are the conductivities of the flavor nonsinglet currents

��a � �a � �1 ¼ ���r½�ð�a ��1Þ�; (53)

with a ¼ 2; . . . ; Nf.
~�qq and ~�qq0 are shown as functions of ð�=TÞ2 in Fig. 1

for various Nf with Nf � 16 such that the system is

asymptotically free, while ~�þ and ~�� are shown in
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Fig. 2 (note that there is no ~�qq0 or ~�� forNf ¼ 1). The fact

that the matrix � is positive definite makes ~�qq, ~�þ and
~�� positive, but it imposes no constraint on the sign of ~�qq0 .

When ð�=TÞ2 ! 0, we can expand ~�qq ¼ a0 þ
a1ð�=TÞ2 þ � � � , and ~�qq0 ¼ a00 þ a01ð�=TÞ2 þ � � � . We

find a00 ¼ 0 for all Nf, while the values of a0, a1, and a01
for different Nf are tabulated in Table. I. Our result for a0
agrees within 0.1% to that of Arnold, Moore, and Yaffe
calculated up to Nf ¼ 6 listed in Table III of Ref. [10].

The a00 ¼ 0 property is due to a bigger symmetry enjoyed

by the LL results: if we just change all the quarks of flavor a
into antiquarks while the rest of the system stays the same,
then, as far as collision is concerned, the other quarks and
the gluons will not feel any difference. This is because the
LL result only depends on two-particle scattering, and
although this action could change the sign of certain ampli-
tudes, it does not change the collision rate. For example,
the amplitudes of qaqb ! qaqb and �qaqb ! �qaqb (a � b)
have different signs because one of the couplings changes
sign when we change the color into its anticolor, but the

amplitude squared is of the same. This makes the diagonal
terms even in all the chemical potentials,

�aað��1;��2; . . . ;��Nf
Þ ¼ �aað�1;�2; . . . ;�Nf

Þ; (54)

while the off-diagonal term �ab is odd in �a and �b but
even in other chemical potentials,

�abð��1; . . . ;��a; . . . ;��b; . . . ;��Nf
Þ

¼ signð�a�bÞ�abð�1; . . . ;
�a; . . . ;
�b; . . . ; �Nf
Þ:
(55)

Thus, at the LL order, � becomes diagonal when all the
chemical potentials vanish.

To understand the other features of ~�qq and ~�qq0 , we first

turn to ~�þ and ~�� in the ðT=�Þ2 ! 0 limit. In this large
chemical potential limit, the quark contribution dominates
over those of the antiquark and gluon. The Fermi–Dirac
distribution function fqa of quark qa multiplied by its Pauli
blocking factor Fqa can be well approximated by a 

function, fqaFqa ’ T
ðEp ��Þ.
We then first set rð��aÞ ¼ rð��Þ for all a so all the

currents �a become identical. �þ can be rewritten asP
a;b�ab, and Eq. (42) yields

�þ ’ ��

3
Nq

Z d3p

ð2�Þ3 T
ðEp ��Þp �A

� XNf

a;b;c¼1

�
na

	þ P
� 1

�

ca

�
: (56)

The summation gives N2
fð n�

	þP � 1Þ / N2
fTs=ð	þ PÞ /

N2
fT

2=�2 and �þ / N2
fT

2A. On the other hand, Eq. (44)

2/T)µ(
0 5 10 15 20 25

ln
(1

/g
)

4
) 

g
2

/T
qqλ(

=1fN
=2fN
=3fN
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=6fN
=7fN

=8fN
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=10fN
=12fN
=14fN
=16fN

2/T)µ(
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ln
(1

/g
)

4
) 

g
2

/T
qq

’
λ(
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FIG. 1 (color online). The normalized diagonal conductivity
~�qq (upper panel) and off-diagonal conductivity ~�qq0 (lower

panel) as functions of ð�=TÞ2 for different Nf.

TABLE I. The coefficients in the ð�=TÞ2 expansions of ~�qq

and ~�qq0 for small �=T. Our result for �=T ¼ 0 agrees within

0.1% to that of Arnold, Moore, and Yaffe, calculated up to
Nf ¼ 6 [10].

Nf a0 a1 a01
1 14.3676 �0:3077
2 12.9989 1.7347 �5:0372
3 11.8688 2.3969 �3:3569
4 10.9197 2.5757 �2:3922
5 10.1113 2.5680 �1:7906
6 9.4145 2.4791 �1:3909
7 8.8076 2.3600 �1:1117
8 8.2743 2.2319 �0:9090
9 7.8019 2.1076 �0:7572
10 7.3806 1.9880 �0:6404
11 7.0025 1.8766 �0:5487
12 6.6612 1.7731 �0:4754
13 6.3517 1.6791 �0:4159
14 6.0697 1.5917 �0:3668
15 5.8117 1.5121 �0:3260
16 5.5747 1.4384 �0:2916

NEGATIVE OFF-DIAGONAL CONDUCTIVITIES IN A . . . PHYSICAL REVIEW D 88, 085039 (2013)

085039-7



gives �þ / N4
f�

2A2, where N4
f comes from summing the

a, b, c, d indices of Dab
qcqd!qcqd and we have used

fc1k1f
c2
k2
F
c3
k3
Fc4
k4
/ T2 in Eq. (45). These two conditions

yield �þ / N0
fT

4=�2. This is indeed what happens in

Fig. 2 at large � (although the 1=�2 dependence is not
so obvious in this plot, but we have checked this at much
larger �2=T2).

We can perform the similar counting to the scaling of
��. From Eq. (42), �� / Nf�

2A, and from Eq. (44), �� /
N3

f�
2A2. Thus, �� / �2=Nf, which is also observed in

Fig. 2. The main difference in �þ=Nf and �� is the T=�

dependence—�� has no cancellation factor of ð n�
	þP � 1Þ /

T2 in large �.
The different� scaling between �þ and �� at large� is

due to fermion collisions (the contribution from antifer-
mions and gluons can be neglected at large� as mentioned
above), which change the direction of the current and
reduce the conductivity. While both flavor singlet and
nonsinglet fermions can collide among themselves, they
do not collide with each other (the scattering amplitude

vanishes). This can be seen from the fermion scattering
amplitude, which is proportional to D��hfjj�þj��jii, with
D�� the gluon propagator. We have set all the fermion

chemical potentials to be identical; thus, both the initial
and final states are flavor singlet, but the operator j�þj�� is
flavor nonsinglet. Therefore, the amplitude vanishes. On
the other hand, this symmetry does not force the ampli-
tudes from j�þj�þ or j��j�� matrix elements to vanish since
both of the operators have flavor singlet components. More
explicitly, we can work out the Nf ¼ 2 case with u and d

quarks as an example. j�� ¼ �u
�u� �b
�d, jii ¼ jfi ¼
jud� dui= ffiffiffi

2
p

, then hfjj�þj��jii ¼ 0, hfjj�þj�þjii ¼
�hfjj��j��jii � 0. Thus, when �, the flavor singlet chemi-
cal potential, is increased, the flavor singlet current expe-
riences more collisions. Therefore, the flavor singlet
conductivity �þ is reduced. For the flavor nonsinglet cur-
rent, the increase of � does not affect the collision.
However, it will increase the averaged Fermi momentum
such that the induced current and the flavor nonsinglet
conductivity �� will be increased.

Given the large � behavior of ~�þ and ~��, the large �

behavior of ~�qq and ~�qq0 is now easily reconstructed: ~�qq ’
ðNf � 1Þ~��=Nf / ðNf � 1Þ�2=T2N2

f (Nf 	 2) and ~�qq0 ’
�~��=Nf / ��2=T2N2

f. The sign of ~�qq0 can be best

understood from the flavor nonsinglet current effect such
that a gradient of �a induces anti-b currents (b � a) and

yields ~�qq0 < 0. We can then interpolate ~�qq0 to ~�qq0 ¼ 0 at

zero �. There is no nontrivial structure at intermediate �.

For ~�qq, the Nf ¼ 1 curve seems to be at odds with other

Nf curves, but this anomaly disappears when viewed in

the ~�þ plot.
The fact that �qq > 0while �qq0 < 0 at finite� is intrigu-

ing. It means a gradientr�a can drive a current �a along the
�r�a direction, but it will also drive currents of different
flavors in the opposite direction. This backward current
phenomenon seems counterintuitive at first sight. But the
physics behind it is just that the flavor singlet current expe-
riences more collisions in a flavor singlet medium than the
flavor nonsinglet ones. If the medium is flavor nonsinglet,
e.g.,�1 ¼ ��2 � 0 while the other chemical potentials all
vanish, then the flavor nonsinglet current �2 � �1 will expe-
rience more collisions than the flavor singlet current. (Using
the same Nf ¼ 2 example from above, the states are now

ji0i ¼ jf0i ¼ Cdjii ¼ Cdjfi, with Cd a charge conjugation

operator acting only on the d quarks. Then, hf0jj�þj��ji0i ¼
hfjCy

dj
�
þj��Cdjii ¼ hfjj��j�þjii ¼ 0, and hf0jj�þj�þji0i ¼

hfjj��j��jii ¼ �hf0jj��j��ji0i ¼ �hfjj�þj�þjii � 0. Again,
the flavor singlet and nonsinglet fermions can collide among
themselves but not to each other.) Therefore, we will have
�12 > 0. This is consistent with Eq. (55) derived from the
symmetry of the LL order along. Thus, the simple explana-
tion based on collisions that we presented above seems quite
generic. It might happen in other systems such as cold atoms
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FIG. 2 (color online). The normalized conductivities ~�þ
(upper panel) and ~�� (lower panel) as functions of ð�=TÞ2 for
different Nf.
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as well. In that case, cold atom experiments might be the
most promising ones to observe this backward current
phenomenon.

V. SUMMARY

We have calculated the conductivity matrix of a
weakly coupled quark-gluon plasma at the leading-log
order. By setting all quark chemical potentials to be
identical, the diagonal conductivities become degenerate
and positive, while the off-diagonal ones become degen-
erate but negative (or zero when the chemical potential
vanishes). This means a potential gradient of a certain
fermion flavor can drive backward currents of other
flavors. A simple explanation is provided for this seem-
ingly counterintuitive phenomenon. It is speculated that
this phenomenon is generic even beyond the leading-log

order, and it is most easily measured in cold atom
experiments.
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