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We present a superconformal master action for a class of supergravity models with one arbitrary

function defining the Jordan frame. It leads to a gauge-invariant action for a real vector multiplet, which

upon gauge fixing describes a massive vector multiplet, or to a dual formulation with a linear multiplet and

a massive tensor field. In both cases the models have one real scalar, the inflaton, naturally suited for

single-field inflation. Vectors and tensors required by supersymmetry to complement a single real scalar

do not acquire vacuum expectation values during inflation, so there is no need to stabilize the extra scalars

that are always present in the theories with chiral matter multiplets. The new class of models can describe

any inflaton potential that vanishes at its minimum and grows monotonically away from the minimum. In

this class of supergravity models, one can fit any desirable choice of inflationary parameters ns and r.
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I. INTRODUCTION

The recent cosmological observations by the Planck
probe [1], beside supporting earlier findings of WMAP
[2], suggested that a single scalar field model of inflation
might explain the data. This particular feature, as well as
the actual values of the cosmological observables ns and r
led to a burst of activity recently. One would like to try to
use this information as a hint towards the fundamental
theory behind the observations. The goal of such a
bottom-up approach, initiated in [3] a couple of years
before the anticipated Planck results, was to end up, upon
moduli stabilization, with general potentials capable of
describing any possible outcome of the future data. The
philosophy was to start with the analysis of such models in
supergravity and eventually uplift this information to string
theory and its landscape. These developments, including
the work of some of the present authors [4–6], continued
after the Planck data were released.

The purpose of this paper is to add a new way of thinking
about supergravity in view of recent cosmological data. We
find here that the data from the sky cast in a new light some
supergravity papers from the 1970s and 1980s; see [7–14]
and references therein. Our analysis here will build an
extension of the results obtained in those papers.

For example, in the past a supergravity version of the
Starobinsky model Rþ �R2 [15]1 was developed in the

old-minimal formulation in [9] and in the new-minimal
version of supergravity in [11]. When one tries to implement
inflation in the simplest version of the model described in
[9], one finds a tachyonic Goldstino instability at large
values of the inflaton field. This problem was recently
resolved in [5,6], where several different versions of a stable
supersymmetric generalization of the theory Rþ �R2 ex-
actly reproducing the inflaton potential of [15] have been
constructed. Related approaches were proposed in [18–22].
In particular, a stimulating proposal of [19] was to embed
the Starobinsky model in the no-scale supergravity [23],
which exactly reproduced the inflaton potential of [15] prior
to the moduli stabilization. However, moduli stabilization
required breaking of the no-scale structure of the theory,
which slightly modified the inflationary potential of [19]
(see [21]). In this respect, it is interesting that in the super-
gravity version of the theoryRþ �R2 developed in [11], the
issue of stabilization of the extra moduli does not appear at
all because this theory does not contain any other scalars
except the inflaton [22].
A major step forward in constructing inflationary models

in supergravity was made in [24], where an implementation
of the simplest chaotic inflation model m2�2 [25] was
proposed in the supergravity context. This was significantly
generalized in [3], where a general class of chaotic inflation
models with a nearly arbitrary form of the inflaton potential
was developed using chiral supergravity matter. To provide
consistent cosmological models, certain conditions on the
Kähler potentials were required for stabilization of other
moduli, which can be achieved by the methods developed in
[3]. The setting of this approach becomes now a part of the
full supergravity landscape as new features are emerging.
In this paper, we will show that the landscape of super-

gravity models capable of explaining the Planck data can be
substantially extended.Wepresent a novel set of supergravity

*On leave of absence from Department of Physics and
Astronomy, University of California Los Angeles, CA 90095-
1547, USA.

1The original model [15] was based on the Einstein theory
with conformal anomaly, but later it was modified and cast to its
more familiar form Rþ �R2 [16]. When we talk about the
potential in this model, we will have in mind its dual represen-
tation in terms of the Einstein gravity and a scalar field with the
potential V � ð1� exp ð� ffiffiffiffiffiffiffiffi

2=3
p

’ÞÞ2 [17].
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models where the physical multiplets are not chiral but
vector or linear multiplets in the Higgs phase where they
are massive. We will show a ‘‘master’’ superconformal
gauge-invariant model with a vector or a linear multiplet
both in the old-minimal as well as in the new-minimal
formulation. The model exists in a Higgs phase with a
massive vector or tensor, as well as in a de-Higgsed
(ungauged) phase where the vectors and tensors are
massless but there is a second scalar.

We end up with a cosmological model for a single
scalar with the potential given by one nearly arbitrary
function. There are two constraints on the potential: it
should vanish at its minimum, and it should monotoni-
cally grow away from the minimum. Both of these con-
ditions can be relaxed by considering theories with many
scalar fields, but from the point of view of inflation these
constraints are not really restrictive: potentials of this
type are quite generic and ideally suited for implementa-
tion of a single field chaotic inflation [25]. By tuning the
shape of the potential, one can fit any desirable values of
the observational parameters ns and r consistent with
recent observational data.

On the other hand, in some cases one may encounter the
cosmological attractor mechanism, when a broad class of
different theories make very similar predictions for ns and
r. An example of such mechanismwas recently given [6] in
a class of models using chiral superfields. In this paper, we
will find a similar result for a certain class of models
resembling the model Rþ �R2 in the theories with a
vector multiplet.

Our ‘‘minimal’’ class of models with a single vector
matter multiplet can be generalized by adding other chiral
and vector multiplets as well as any superpotential that
respects R symmetry; see for example [26]. During infla-
tion supersymmetry is broken since at that time the auxil-
iary fieldD does not vanish. However, after inflation, when
the inflaton field is at the minimum of its potential, D ¼ 0
in our minimal model and supersymmetry is restored.
Extension of our inflationary model to a realistic model
with supersymmetry breaking requires separate investiga-
tion of the low-energy scale supersymmetry- (SUSY-)
breaking mechanisms, for example, via hidden sectors
and soft SUSY-breaking terms, which should not affect
the inflationary regime.

This paper is organized as follows: In Sec. II, we define
the ‘‘master’’ supergravity action with chiral compensator
that reduces to supergravity coupled to either a massive
vector multiplet or to a massive linear multiplet upon
integrating out appropriate nondynamical superfields.

In Sec. III, we present models that are dual to those in
Sec. II. Here, the master superconformal action is based on
a linear compensator. In particular, we show how, as in
[11], a special choice of this master action reproduces the
supergravity generalization of the Rþ �R2 action in the
new-minimal formulation.

In Sec. IV we present the simple part of these new
supergravity models relevant to inflation, where only scalars
have nonvanishing vacuum expectation values (VEVs). The
action thus depends on a single scalarC, the first component
of the vector superfield, which has a noncanonical kinetic
term. We rewrite this action in terms of a canonically
normalized field ’ and explain the relation between these
two versions of the model. We present as examples the

simplest model of chaotic inflation m2

2 ’2 [25], more general

chaotic inflation models, and the T-model [6]. We also
present a class of SUð1; 1Þ=Uð1Þ gauged sigma models,
which contains, as particular cases, the supersymmetric
version of the theory Rþ �R2 developed in [11], and its
deformations corresponding to exponents of the kind e�b’

where b is arbitrary instead of being equal to
ffiffiffiffiffiffiffiffi
2=3

p
. Other

interesting inflationary potentials related to brane supersym-
metry breaking and integrable systems have been studied
in [27].
In Appendix A we summarize the result of [11], which

shows the equivalence of new minimal Rþ �R2 gravity
with a massive vector multiplet. In Appendix B, we give an
explicit component proof of the equivalence between the
(bosonic part of) a massive vector Lagrangian and a mas-
sive tensor Lagrangian.
We are using the structures and notation of Ref. [11].

Readers interested only in cosmological applications may
start with Sec. IV, with the understanding that various
embeddings of Eq. (4.1) into supergravity with massive
vectors or tensors are explained in earlier sections.

II. SUPERCONFORMAL MASTER MODEL
WITH CHIRAL COMPENSATOR

The superconformal ‘‘master’’ model depends on two
real vector multiplets, U and V, one linear multiplet L and
a chiral conformal compensator S0,

LðS0; U; L; V; gÞ ¼ �S0 �S0�ðUÞD þ LðU� gVÞD
þ 1

2
½W�ðVÞW�ðVÞ þ H:c:�F: (2.1)

The conformal/chiral weights of these superfields are the
following: for U and V we have w ¼ n ¼ 0, for L we have
w ¼ 2, n ¼ 0. For S0 we have w ¼ 1, n ¼ 1 and for �S0 we
have w ¼ 1, n ¼ �1. There is a single dimensionless
parameter g, a coupling between the linear and vector
multiplets.
Our master model depends on a real function � of a

real vector multiplet. This function has to be strictly
positive, so that it describes gravity, rather than antigravity.
For example, pure supergravity is the case �ðUÞ ¼ 1
We will also need the following relations between
superfields:

� ¼ e�1
3J ; J � �3 log�: (2.2)
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A. Physical vector multiplet (massive or
massless vector field)

By varying the linear multiplet in action (2.1) we find

that U ¼ �þ ��þ gV with � chiral. We find that our
master action becomes

L ¼ �S0 �S0�ð�þ ��þ gVÞD
þ 1

2
½W�ðVÞW�ðVÞ þ H:c:�F: (2.3)

The action has both superconformal symmetry and a gauge
symmetry,

� ! �þ g�; V ! V ��� ��; (2.4)

where � is a chiral superfield.
Note that by defining S � exp ð�Þ and �ðUÞ �

fðSegV �SÞ, this is a particular case of the standard super-
gravity Lagrangian [13]. This special form will play a
most important role in the cosmological applications of

the model. Notice also that J ð�þ ��Þ describes a
Kählerian sigma model invariant under a (gauged) shift
symmetry.

We may decouple the Abelian vector multiplet V from
supergravity by taking the limit g ! 0. In such case we
recover a model of a free massless vector multiplet from
the second term of our superconformal action. From the
first term we recover instead a model of supergravity
interacting with a chiral multiplet without a superpoten-
tial, but with a generic Kähler potential, depending on

�ð�þ ��Þ.
If, however, g � 0, we can use the Abelian gauge

symmetry (2.4) to fix the gauge symmetry by requiring

� ¼ 0: (2.5)

Then the Lagrangian becomes that of a massive vector
field,

L ¼ �S0 �S0�ðgVÞD þ ½W�ðVÞW�ðVÞ þ H:c:�F: (2.6)

We can also gauge-fix the superconformal symmetry by
requiring that

S0 ¼ MP ¼ 1 (2.7)

for the Weyl weight 1 superfield S0. For g ¼ 1 this is
the self-interacting massive vector multiplet action [12]
in the Jordan frame. One can either perform the change
of variables, starting with this action, and find the action
in the Einstein frame as was done in [12], or, alterna-
tively, use the different superconformal superfield gauge

S0 �S0�ðgVÞD ¼ 1; (2.8)

which will lead directly to an Einstein frame action. In
this way, the bosonic part of our superfield action in the

gauge (2.8) corresponds to the bosonic action in [12],
where the gauge coupling g is now restored,2

L ¼ � 1

2
R� 1

4
F��ðBÞF��ðBÞ þ g2

2
J00B�B

�

þ 1

2
J00ðCÞ@�C@�C� g2

2
J02ðCÞ: (2.9)

Here C is the scalar in the vector multiplet, B� is its

vector and 0 is differentiation with respect to C. Our
superfield action (2.1) was defined for an arbitrary func-

tion � ¼ e�1
3J . The arbitrary function JðCÞ in the com-

ponent action in (2.9) is related to a superfield one as
follows,

J ¼ � 1

2
J þ const ¼ 3

2
log�þ const: (2.10)

Note that the Einstein frame was obtained in [12] after

conformal rescaling with the factor e
1
3J on the vierbein,

and on other fields, accordingly, starting from the Jordan
frame action.
A particular example of � was described in detail in

[11]. There it was found that a particular choice of the
Kähler potential reproduces the pure Rþ �R2 theory in
new-minimal supergravity. The derivation is reviewed in
Appendix A. The specific potential is

� ¼ �C expC; J ¼ 3

2
½log ð�CÞ þ C�;

J0 ¼ 3

2
ðC�1 þ 1Þ; J00 ¼ � 3

2
C�2:

(2.11)

Notice that the Kähler potential gives a manifold
SUð1; 1Þ=Uð1Þ, where the gauged symmetry is the transla-
tional isometry. To canonically normalize the scalar, one

needs C ¼ � exp ð ffiffiffiffiffiffiffiffi
2=3

p
’Þ so that the scalar potential be-

comes that of the Starobinsky model [15] (see also a more
recent paper on this [22]),

V ¼ 9

8
g2½1� exp ð�

ffiffiffiffiffiffiffiffi
2=3

p
’Þ�2: (2.12)

In our class of models, the Kähler potential of the
SUð1; 1Þ=Uð1Þ manifold leads to the D-term potential
(2.12). Our models differ from those with chiral multiplets
and F-term potentials. The presence of the vector field in
our models is a condition for the existence of the D-term
potential since the D field is an auxiliary field of the vector
multiplet. Vector fields typically do not play any role
during inflation. However, at the exit from inflation during
reheating and creation of matter, the presence of the vector
field might be important and needs separate study.

2We note that Eq. (2.9) has the correct normalization, since the
vector and scalar square masses are both equal to m2 ¼ �g2J00
at the supersymmetric minimum J0 ¼ 0. The potential in (2.12)
becomes the same as in [22] by sending g ! 2g and ’ ! ffiffiffi

2
p

’.
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Note that the D-term potential g2

2 J
02ðCÞ originates from

the real auxiliary field D of the vector multiplet, where

DðCÞ ¼ J0ðCÞ; (2.13)

and that the positivity of the moduli space metric of the
scalar C requires that

J00ðCÞ< 0; (2.14)

which is satisfied by the function in Eq. (2.11).

B. De-Higgsing, g ¼ 0 limit

Our master model has two phases: one, the Higgs phase,
with a massive vector and a real scalar at g � 0; the other,
the de-Higgsed phase, with one massless vector and one
complex scalar, with g ¼ 0. To retrieve the component
form of our action (2.3), which allows both phases, we
have to define A� ¼ B� þ 1

g @�a, so that

g2

2
J00B�B

� ¼ g2

2
J00
�
A� þ 1

g
@�a

�
2
: (2.15)

This explains how a massive vector ‘‘eats an axion.’’ In the
limit g ! 0, this term leaves us with a kinetic term for the
axion

g2

2
J00B�B

� ! 1

2
J00ð@�aÞ2: (2.16)

It restores the de-Higgsed phase of the model, where in
components we get

L ¼ � 1

2
R� 1

4
F��ðAÞF��ðAÞ þ 1

2
J00ð@�aÞ2

þ 1

2
J00ðCÞ@�C@�C; (2.17)

i.e. a massless vector, two uncharged scalars and no
potential. Thus, the Lagrangian (2.9) at g ! 0 becomes a
�-model Lagrangian of a complex scalar �j�¼0 � z ¼
Cþ ia with Kähler potential � 1

2 Jðzþ�z
2 Þ.

This is in agreement with our analysis of the superfield
action when at g ! 0 the Kähler potential depends on

�þ ��. This is also in agreement with [11].

C. Physical linear multiplet (massive or
massless tensor field)

We start again with the master action (2.1), differentiate
it with respect to U and solve for L to get the dual linear
multiplet action

LðS0; L; V; gÞ ¼
�
S0 �S0F

�
L

S0 �S0

�
� gLV

�
D

þ 1

2
½W�ðVÞW�ðVÞ þ H:c:�F; (2.18)

with

FðUÞ ¼ U�0ðUÞ ��ðUÞ computed at�0ðUÞ ¼ L

S0 �S0
:

(2.19)

Lagrangian (2.18) is in reality independent of V. To
show this, we recall that the linear multiplet is constrained:
it can be expressed via a chiral spinor superfield L� as

L ¼ ðD�L� þ �D _�
�L _�Þ: (2.20)

Therefore, we may integrate by part the term �½gLV�D to
obtain

�½gLV�D ¼ g½L�W� þ �L _�
�W _��F: (2.21)

The action depends on the unconstrained field L� only via
L; therefore, there is a gauge symmetry,

L� ! L� � i

g
W�; if D�W

� ¼ �D _�
�W _�: (2.22)

The action contains the following V-dependent terms:

1

2
½W�ðVÞW�ðVÞ þ gW�ðVÞL� þ H:c:�F: (2.23)

By introducing a chiral Lagrange multiplier M�, this F
term containing V can be rewritten as

� 1

2
½M�M� þM�W�ðVÞ þ igM�L� þ H:c:�F: (2.24)

So, by integrating out M� and using the gauge symmetry
(2.22), the action becomes V independent:

LðS0; L�; gÞ ¼ S0 �S0F

�
L

S0 �S0

�
� g2

2
ðL�L� þ H:c:Þ: (2.25)

After gauge fixing the conformal compensator, this action
produces in components the following massive tensor field
action:

L ¼ � 1

2
R� 1

2
ðJ00Þ�1ð@½�B���Þ2 � 1

4
g2B2

��

þ 1

2
J00ðCÞ@�C@�C� g2

2
J02ðCÞ: (2.26)

This bosonic Lagrangian is equivalent to Eq. (2.9) as it
was shown e.g. in [10] and reviewed in Appendix B.

III. SUPERCONFORMAL MASTER MODEL
WITH LINEAR COMPENSATOR

In principle, all the Lagrangians given in the previous
section can be converted into a ‘‘new-minimal’’ auxiliary
field form since, in the physical linear multiplet language,
the mass term gLV does not depend on the compensator.
In particular, the ‘‘master action’’ can be written in the
new-minimal formulation simply as

FERRARA et al. PHYSICAL REVIEW D 88, 085038 (2013)

085038-4



LðL0; L; U; V; gÞ
¼

�
L0 log ðL0=S0 �S0Þ þ 1

3
L0J ðUÞ þ LðU� gVÞ

�
D

þ 1

2
½W�ðVÞW�ðVÞ þ H:c:�F: (3.1)

By variation of L we recover both the Kählerian gauged
sigma model in the new-minimal formulation, as found in
[11] Eq. (1.7), and the massive vector model, which is the
former in the unitary gauge. By varying with respect to U,
we recover the new-minimal form of the massive linear
multiplet Lagrangian,

LðL0; L
�; gÞ ¼ ½L0 log ðL0=S0 �S0Þ þ L0MðL=L0Þ�D

� 1

2
½g2L�L� þ H:c:�F; (3.2)

where

MðL=L0Þ ¼ 1

3

�
J ðUÞ �U

@J
@U

�
computed at

1

3

@J
@U

¼ �L=L0: (3.3)

In the tensor multiplet formulation, the scalar potential
term comes from the mass term of the linear multiplet
scalar, �, which is the first component of the supermulti-
plet L=L0. From Eq. (3.3) we notice that � ¼ ð2=3ÞJ0ðCÞ.
This explains why the potential is proportional to g2J02.

For the choice of function J =3 ¼ �� logU� 	U,
which reduces to the Starobinsky model given in
Eq. (2.11) for � ¼ 	 ¼ 1, the Lagrangian (3.2) acquires
a particularly simple form. Written in terms of V and L, it
reads

L¼½ð1��ÞL0 logL0þ�L0 log½ðL�	L0Þ=S �S0��gLV�D
þ1

2
½W�ðVÞW�ðVÞþH:c:�F: (3.4)

It is now immediate to show that the Rþ �R2 new-
minimal supergravity can be recovered from Eq. (3.4) for
� ¼ 1 and 	 � 0 arbitrary. By varying with respect to
X � L0 þ L=	, one can solve for the vector superfield as
g	VL ¼ log ðL0 � L=	Þ þ chiralþ antichiral. By substi-
tuting into (3.4), one obtains the Lagrangian [11]

LðL0 � L=	Þ ¼ ½S0 �S0VLe
VL�D

þ 1

2g2	2
½W�ðVLÞW�ðVLÞ þ H:c:�F;

(3.5)

VL � log ½ðL0 � L=	Þ=S0 �S0�; W� ¼ �D�VL: (3.6)

Here � is the chiral projector defined in [8], and the
Lagrangian we obtained is identical with that of [11]
(cf. Appendix A) upon redefining L0 � L=	 ! L0,
1=g2	2 ! �.

IV. FROM SUPERGRAVITY WITH MASSIVE
VECTOR/TENSOR TO INFLATION

During inflation, typically, there is no VEVof the vector
or tensor fields, so we need only the scalar-gravity part of
the action (2.7) or (2.26),

e�1L ¼ � 1

2
Rþ 1

2
J00ð@�CÞ2 � g2

2
ðJ0Þ2; J00ðCÞ< 0;

(4.1)

where 0 denotes as before differentiation over the single
real scalar C. The scalar potential has an extremum at

V0 ¼ g2J00J0 ¼ 0: (4.2)

Since J00 must be nonvanishing and negative, we find that

V 0 ¼ g2J00J0 ¼ 0; ) J0 ¼ D ¼ 0

V 00 ¼ g2½ðJ00Þ2 þ J000J0�jJ0¼0 ¼ g2ðJ00Þ2 > 0;
(4.3)

and supersymmetry is restored at the minimum of the
potential. It is interesting that the potential in this theory
vanishes at its minimum and it must grow monotonically
away from this minimum in the domain of stability of the
theory. Indeed, if the potential grows and then starts de-
creasing, this involves the change of sign of D0 ¼ J00,
which would imply a wrong sign of the kinetic term of
the field C and, consequently, vacuum instability.
We can rewrite the action using a canonical field ’

instead of a noncanonical C and change variables from C
to ’. Let us introduce the following definitions:

DðCÞ � J0ðCÞ; D0ðCÞ � J00ðCÞ: (4.4)

After a change of variables, the action is

e�1L ¼ � 1

2
R� 1

2
ð@�’Þ2 � g2

2
ðDð’ÞÞ2; (4.5)

where

DðCð’ÞÞ � Dð’Þ; (4.6)

and �
d’

dC

�
2 ¼ �D0ðCÞ: (4.7)

From the relation

D0ðCÞ ¼ dD

d’

d’

dC
; (4.8)

one finds ��������
dD

d’

��������¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�D0ðCÞp
: (4.9)

Thus

dD

d’
¼ �d’

dC
: (4.10)
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Note also that the vector mass is always equal to jg dD
d’ j

[see (2.9)]. At the supersymmetric minimum D ¼ 0, it
equals the inflaton mass, as it should.

The rest of the fully supersymmetric action action re-
quires various C-dependent terms like J0, J00, J000, J0000,
which become ’-dependent terms. We may define the
model completely either by giving J0ðCÞ and computing
higher derivatives to specify the full Eq. (3.9) in [12], or we
may codify each model by the choice ofDð’Þ. In such case
we may find the complete action first by defining the
relation between these variables,

Cð’Þ ¼ �
Z

d’

�
dDð’Þ
d’

��1
; (4.11)

and looking for the inverse one, ’ðCÞ, which should allow
us to find J0ðCÞ ¼ Dð’ðCÞÞ for any given Dð’Þ.

The generic case of (4.5) has a positive potential which
is the square of an arbitrary function Dð’Þ, and therefore
offers a possibility to fit any value of the cosmological
observables as long as that potential has a slow-roll regime.
In all previous models of inflation in supergravity, the issue
of stabilization of remaining moduli required a significant
effort; see for example [3], as well as many other papers
on this.

This situation would be perfect sometime ago, but now
we have to fit the data from Planck. There is one obvious
perfect feature of this model: it has exactly one scalar
inflaton, and there is nothing to stabilize despite having a
complete supergravity model. Plank data agree with a
single scalar inflaton model, so let us take it as a starting
point for embedding inflation in supergravity.

A. The simplest chaotic inflation model g2

2 ’
2

Now we are going to investigate the possibility to embed
some well-known inflationary models in the theory dis-
cussed above. The main problem is to make sure that these
inflationary potentials can be cast in the form D2ðCÞ=2
with D0 < 0 as required in this theory. As we will see, this
can be done for a very broad class of inflationary poten-
tials, but some nontrivial restrictions do appear.

We will begin with the simplest chaotic inflation model
of a canonically normalized scalar field ’ with the qua-
dratic potential

Vð’Þ ¼ g2

2
’2: (4.12)

This potential can be represented as g2D2ð’Þ=2, where
Dð’Þ ¼ �’: (4.13)

Then dD
d’ ¼ �1, and therefore

C ¼
Z

d’ ¼ ’: (4.14)

Therefore Dð’Þ ¼ �C so that the condition J00 ¼ D0 < 0
is satisfied, and the potential is given by (4.12).
This potential corresponds to the simplest version of

chaotic inflation [25], with the inflaton mass m identified
with g. It played a very important role in the history of the
development of inflationary cosmology, so the possibility
to obtain this potential in such a simple way in supergravity
is noteworthy. Interestingly, a supergravity model of this
type, with a quadratic potential, was proposed back in 1979
[14], but apparently its usefulness for cosmology was not
appreciated by the very few people who were aware of its
existence. As we will see now, the theory that we are
discussing in this paper can easily incorporate a much
more general variety of inflationary potentials.

B. Generic models of chaotic inflation

The model g
2

2 ’
2 described above represents the simplest

version of chaotic inflation, but it is only marginally com-
patible with the Planck probe data, so we will try to
generalize it now. Consider the following polynomial -
potential, which can be represented as g2D2ð’Þ=2:

Vð’Þ ¼ g2’2

2
ð1� a’þ b’2Þ2; (4.15)

see Fig. 1. This potential is polynomial and positive defi-
nite. It allows chaotic inflation for any values of its pa-
rameters [25]. Observational data provide three main data
points: the amplitude of the perturbations �R, the slope of
the spectrum ns and the ratio of tensor to scalar perturba-
tions r. Tensor perturbations have not been found yet, so
we are talking about the upper bound r & 0:1.
The potential contains exactly three parameters, which

are required to fit these data, so we are not talking about
fine-tuning, where a special combination of many parame-
ters is required to account for explaining a small number of
data points; we are trying to fit three data points by a proper

5 10 15
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10

12

FIG. 1 (color online). Inflationary potential g2’2

2 �
ð1� a’þ b’2Þ2 (4.15), for a ¼ 0:1, b ¼ 0:0035. The field is
shown in Planck units, and the potential V is shown in units g2.
In realistic models of that type, g� 10�5–10�6 in Planck units,
depending on details of the theory, so the height of the potential
in this figure is about 10�10 in Planck units.
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choice of three parameters, g, a and b. The values of ns and
r do not depend on the overall scale of V; they are fully
controlled by the parameters a and b. One can show that by
fixing a proper combination of a and b with a few percent
accuracy, one can cover the main part of the area in the
ns � r plane allowed by observations. After fixing these
two parameters, one can find the proper value of g� 10�5

to fit the observed value of �R � 10�5. We will return to a
detailed discussion of this issue in a separate publication;
for a discussion of ns and r for very similar potentials in
nonsupersymmetric models, see [28]. At present, for illus-
trative purposes, we will consider a particular set of pa-
rameters a ¼ 0:1, b ¼ 0:0035. This will help us to
describe our general strategy by presenting some explicit
potentials.

Our goal is to show that potentials of this type can be a
part of our supergravity model. The potential (4.15) can be
represented as D2ð’Þ=2, with (note the signs)

Dð’Þ ¼ �’ð1� a’þ b’2Þ;
dD

d’
¼ �ð1� 2a’þ 3b’2Þ;

(4.16)

but we want to check that one can consistently express it as
a function DðCð’ÞÞ satisfying the condition D0 < 0, where
the derivative is taken with respect to C. For some infla-
tionary potentials this can be done explicitly, using (4.11)
and finding an inverse function, whereas for some other
models one should use numerical tools. This is a legitimate
approach since one can study inflationary consequences
directly in terms of the canonical variable ’, as long as we
know that the corresponding functions have properties
consistent with our general requirements. The basic idea
is that instead of performing integration in (4.11) and
finding an inverse function, which may be complicated,
one can numerically solve the differential equation for the
function ’ðCÞ, thus finding the inverse function numeri-
cally. The corresponding equation is

d’

dC
¼ dD

d’
; (4.17)

where dD
d’ should be calculated at the as yet undetermined

’ðCÞ. For example, in our case

d’

dC
¼ �ð1� 2a’ðCÞ þ 3b’2ðCÞÞ: (4.18)

The results of our investigation are presented in Figs. 2–4,
which show the functions ’ðCÞ, DðCÞ, and VðCÞ ¼
D2ðCÞ=2. The relation between ’ and C is determined up
to a constant. We have chosen it in such a way as to have
the minimum of the potential at C ¼ 0, similar to what we
had in terms of ’. As we see from the figures, the required
condition D0ðCÞ< 0 is satisfied.

The procedure employed above is applicable for a broad
class of theories where the potential has a minimum with
V ¼ D2=2 ¼ 0 and grows monotonically away from the

minimum. Indeed, the only real constraint of the class of
admissible functions is that D0 < 0 in the domain of stabil-
ity of the inflationary model. In the models where DðCÞ
continuously decreases and passes through its zero, where
the potential vanishes, this requirement is easily satisfied.
In these models the potential, which is proportional to D2,
decreases towards the minimum, and then grows again;
i.e., it grows when one moves away from the minimum in
either direction.
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FIG. 3 (color online). Inflationary potential g2’2

2 �
ð1� a’þ b’2Þ2 (4.15) as a function of the field C.

100 80 60 40 20 C

5

10

15

FIG. 2 (color online). Relation between the canonical variable
’ and the original variable C in the theory (4.15).
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FIG. 4 (color online). The function DðCÞ. As we see, D0 < 0,
so the condition D0ðCÞ< 0 is satisfied.
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However, at the maximum of the potential V ¼ g2D2=2,
the function J00 ¼ D0 vanishes, which leads to vanishing of
the kinetic term of the field C, and then, with the change of
sign ofD0, the kinetic term changes its sign, which leads to
ghosts and vacuum instability in the part of the moduli
space beyond the maximum of the potential. This makes
description of inflation at or beyond the maximum of the
potential problematic. This affects models with metastable
minima of the inflaton field such as old inflation, and also
new, natural and hilltop inflation directly at the top or
beyond the top of the potential. However, the admissible
class of functions DðCÞ is ideally suited for description of
chaotic inflation with potentials monotonically growing in
both directions away from the minimum with V ¼ 0. All
models considered in this section satisfy this condition since
the potential in each of them has only one extremum, the
supersymmetric minimum at D ¼ 0. When the field C (or
’) reaches the minimum, the functionD continues changing
monotonically, so one can have D0 < 0 all the way.

To summarize, our class of models is suitable for de-
scription of any inflationary potential which can be written
as a square of a monotonically changing function DðCÞ (or
Dð’Þ), which vanishes at some point, which correspond to
the minimum of V ¼ D2=2. (Functions DðCÞ which never
vanish are also possible, but in such models the potential
does not have any minimum; such potentials are not nec-
essarily useful for inflation, but they may describe dark
energy.) This class of functions is very general. It is just
slightly more narrow than the class of functions that is
allowed in the inflationary theories based on supergravity
with chiral matter superfields [3]. For example, according
to [3], the inflaton potential can be given by jf2ð’Þj, where
’ is a real part of the scalar field. Here fð’Þ is an arbitrary
real holomorphic function of the field ’. The correspond-
ing potential can have any number of minima and maxima,
unlike the potential discussed in this paper. However, the
existence of many maxima and minima is not very helpful
for describing observational data unless we study effects of
tunneling at N � 60. In this sense the models discussed in
the present paper are minimal, not requiring the existence
of many scalars, while allowing us full functional freedom
in tuning ns and r.

C. Universality class of conformal inflation models,
including the T-model, the Starobinsky model,

and their deformations

In [6] a new broad class of inflationary theories with
spontaneously broken superconformal symmetry was
found. These theories include various potentials which
asymptotically look like

Vð’Þ ¼ V�
�
1�X

ane
�

ffiffiffiffiffiffi
2=3

p
n’

�
(4.19)

for’> 0 and lead to inflation at’ � 1, or similar potentials

V�½1�P
ane

þ
ffiffiffiffiffiffi
2=3

p
n’� for ’< 0. The attractor property of

these models discovered in [6] is the following: the observa-
tional predictions of all these models with arbitrary choice of
V� and an are the same; namely, all these models predict that
in the first approximation in 1=N,

ns ¼ 1� 2=N � 0:967; r ¼ 12=N2 � 3:2� 10�3:

(4.20)

One should note that these numerical estimates depend on
the exact value of N, which in turn depends e.g. on the
details of the postinflationary dynamics, including physics
of reheating. As a result, the exact results for ns and r
may slightly differ from the estimates given above for
N ¼ 60.
A particularly interesting model of this type, which was

called the T-Model, has a potential

V ¼ V�tanh 2ð’= ffiffiffi
6

p Þ; (4.21)

which, asymptotically, behaves as V�ð1�4e�
ffiffiffiffiffiffi
2=3

p
j’jÞ for

j’j � 1. The potential of the T-Model as a function of C
is shown in Fig. 5. It looks similar to the potential in terms
of ’ [6].
The model Rþ �R2 also can be represented as a

member of this class of models, with the inflaton potential

V ¼ V�ð1� e�
ffiffiffiffiffiffi
2=3

p
’Þ2 � V�ð1� 2e�

ffiffiffiffiffiffi
2=3

p
’Þ for ’ � 1

[5,6].
To analyze this class of models, we will limit ourselves

to investigation of the theories (4.19) and (4.21) at ’ � 1.
As long as the coefficient a1 in (4.19) is not anomalously
small, only the first two terms matter in our analysis,

Vð’Þ ¼ V�½1� a1e
�

ffiffiffiffiffiffi
2=3

p
’�: (4.22)

Other terms are exponentially suppressed at large ’; they
give a subdominant contribution suppressed by higher
powers of 1=N, where N ¼ Oð60Þ is the number of
e-folds [6]. The value of V� changes the amplitude of
perturbations; it is easy to adjust it, so we will concentrate
on ns and r. According to [6], the inflationary parameters

20 10 10 20
C

V
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FIG. 5 (color online). The potential of the T-Model as a
function of the field C. The height of the potential is given in
units of V�.
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ns and r do not depend on V� and a1.
3 Thus, any potential

that approaches any positive constant from below as

V�ð1� a1e
�

ffiffiffiffiffiffi
2=3

p
’Þ will belong to the universality class

leading to the same predictions for ns and r in the first
approximation in 1=N as given in (4.20).

One should note that these numerical estimates depend
on the exact value of N, which in turn depends e.g. on the
details of the postinflationary dynamics, including physics
of reheating. As a result, the exact results for ns and r may
slightly differ from the estimates given above for N ¼ 60.

In our new single scalar supergravity with massive vec-
tors/tensors, such models with arbitrary a1 are easy to find,
as we will show below. However, such models are not
exclusive; it is also relatively easy to find supergravity
models that depend on different exponents e�b’. Models
of this type have a long history, starting with [29]. These

models with b � � ffiffiffiffiffiffiffiffi
2=3

p
also lead to ns ¼ 1� 2=N, but

the expression for r changes, r ¼ 8=b2N2, see e.g. [21]. The

exponent with� ffiffiffiffiffiffiffiffi
2=3

p
naturally emerges in the universality

class found in [6]. Let us see that this is not the case here,
and that more general exponents can be easily introduced.

We start with the expected potential using the canonical
field ’ and identify Cð’Þ according to (4.11). We start with
three independent constants, a, b, c, which will be helpful
to compare this model with the geometric version in C
variables, which we will show below,

D ¼ cð1� ae�b’Þ ! dD

d’
¼ cabe�b’; (4.23)

Cð’Þ ¼ �
Z

d’eb’=cab ¼ �eb’=cab2: (4.24)

Thus,

DðCÞ ¼ cþ 1

Cb2
; D0ðCÞ ¼ � 1

C2b2
< 0: (4.25)

Since this corresponds to J00 < 0, the model is a consistent
supergravity model for any value of b. It will be convenient
to set

cab2 ¼ 1; Cð’Þ ¼ �eb’; DðCÞ ¼ cþ 1

Cb2
:

(4.26)

Thus we find a potential

V ¼ g2

2

�
c� 1

b2
e�b’

�
2
: (4.27)

Note that the potentials in the family of cosmological
attractors found in [6] included a broad family of potentials

containing higher terms in e�
ffiffiffiffiffiffi
2=3

p
n’, which did not affect

the cosmological predictions in the leading approximation
in 1=N, as long as a1 was not anomalously small,
ns ¼ 1� 2=N, r ¼ 12=N2.
By using the same methods as in [6], one can show that a

similar conclusion should be valid in the case considered
above for all sufficiently large values of b. Namely, the
predictions of the theory with D ¼ c½1�P

ane
�bn’� do

not depend on an for a broad range of values of these
coefficients,

ns ¼ 1� 2=N; r ¼ 8=b2N2: (4.28)

Indeed, one can show that for’ corresponding toN e-folds
before the end of inflation, in the leading order in 1=N,

e�b’ ¼ ða1b2NÞ�1: (4.29)

As a result, the nth term in the expansion above is
anða1b2NÞ�n, so the higher order terms are suppressed
by higher orders in 1=N. Unless the coefficients an are
anomalously large for n > 1, these terms are subdominant
for a1b

2N � 1, which is an easy condition to satisfy for
N � 60, b 	 Oð1Þ, or a1 is anomalously small.
In terms of the function DðCÞ, this implies that theories

with DðCÞ ¼ cþ 1
Cb2

þOðC�2Þ are expected to have the

same observational predictions, independently of the terms
OðC�2Þ.
The massive vector/tensor supergravity models that we

studied in this paper are codified by an arbitrary function,
and we have not used any symmetries criteria so far to pick
up only some of the potentials or classify them. We leave
this for future work and just give some examples here. It is
important that many bosonic models of inflation have
found a simple supergravity extension in the new frame-
work here.

D. Models with SUð1; 1Þ symmetry

In (2.11) we described the models defined in [11], where
the Kähler potential gives a manifold SUð1; 1Þ=Uð1Þ, and
where the gauged symmetry is the translational isometry. It
might be useful here to investigate our new models using
some symmetry principles. Consider more general models
with SUð1; 1Þ symmetry,

�ðCÞ ¼ ð�CÞ�e	C; C < 0: (4.30)

In the language of the de-Higgsed model with g ¼ 0 and
one complex scalar, these models have a Kähler potential,4

K ¼ �3� ln

�
zþ �z

2

�
� 3

2
	ðzþ �zÞ; (4.31)

3One can absorb the parameter a1 in (4.22) into a redefinition
of the field ’ by making a shift under which the kinetic term is
invariant. However, the potential of the T-Model is not shift-
symmetric, and yet ns and r do not depend on a1 in the first
approximation in 1=N.

4Here the Kähler potential of the Starobinsky model with
� ¼ 	 ¼ 1 has the first term as in no-scale models [23];
however, the term 3

2	ðzþ �zÞ affects the D-term potential and
breaks the no-scale structure.
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and a vanishing superpotential W ¼ 0. This leads to

Kz�z@z@�z ¼ 3�
@z@�z

ðzþ �zÞ2 : (4.32)

This metric corresponds to an SUð1; 1Þ=Uð1Þ symmetric
space with constant curvature R ¼ �2=3�. In (2.11)
we had the case � ¼ 	 ¼ 1. Now we have from
J ¼ 3=2 log� that

J ¼ 3=2½� log ð�CÞ þ 	C�;
J0 ¼ 3=2ð�C�1 þ 	Þ;
J00 ¼ �ð3=2Þ�C�2;

(4.33)

and comparing with (4.26) we find that

3

2
� ¼ 1

b2
;

3

2
	 ¼ c;

�

	
¼ a: (4.34)

So, by setting C ¼ � exp ð ffiffiffiffiffiffiffiffiffiffiffiffi
2=3�

p
’Þ, we find that the

potential is

V ¼ g2

2
ðJ0ðCÞÞ2 ¼ 9

8
g2ð�=Cþ 	Þ2; (4.35)

and

V ¼ 9

8
g2½	� � exp ð� ffiffiffiffiffiffiffiffiffiffiffiffi

2=3�
p

’Þ�2; (4.36)

in complete agreement with earlier derivation starting from
the ’ side of the model. Note that for � ¼ 	 ¼ 1, we
recover the model in [11,15], which is one of the attractor
models in [6]. However, the deviation of � from 1, i.e., a
deviation of b2 from 2=3, leads to a more general model
with different slow-roll parameters away from the attractor
point. Notice that it is necessary to have �> 0 to have a
positive kinetic term for the scalar z and 	> 0 for the
equation J0 ¼ 0 to have a solution.

In this setting we find a geometric meaning of the new
parameters � and 	, which is difficult to see in the ap-
proach that leads to the same final potentials, as given in
(4.27). For instance, the parameter 	 does not enter in the

vector mass g
ffiffiffiffiffiffiffiffiffiffi�J00

p
, because it is a Kähler transformation

as seen in Eq. (4.31).
Meanwhile, the � parameter defines the curvature of the

Kähler manifold, an SUð1; 1Þ=Uð1Þ symmetric space with
constant curvature. If primordial gravity waves from in-
flation are discovered in the future at the level �3� 10�3

in the context of this class of models, one will be able to say
that the Kähler manifold curvature RK is given by

RK ¼ �K�1
z�z @z@�z logKz�z ¼ �2=3; � ¼ 1: (4.37)

But if they are below or above this value, one will be able to
say that the discovery of a particular value of r may be
viewed as a measurement of a Kähler manifold curvature,

RK ¼ �K�1
z�z @z@ �z logKz�z ¼ �2=3�: (4.38)

This shows that our general model with various predictions
may be eventually classified using some geometric sym-
metry criteria.

V. DISCUSSION

For many years there was a certain disconnect between
the development of supergravity and cosmology. The pos-
sibility to have inflation in the theories with potentials as
simple as ’2n [25] without resorting to the cosmological
phase transitions required in old and new inflation was a
turning point in the development of inflationary theory. It
took 17 years until a natural realization of chaotic inflation
with a quadratic potential in supergravity was proposed
[24], and another 10 years to develop a broad class of
supergravity models that allowed nearly arbitrary infla-
tionary potentials [3]. However, in addition to the inflaton
field, these models also required a Goldstino. Some effort
was required to make sure that this field vanishes during
inflation. In each particular case, this problem was solved
by an appropriate choice of the Kähler potential. Also, the
presence of extra scalar fields in supergravity inflation
could be used, if needed, for generation of non-Gaussian
perturbations [30]. However, in the absence of indication
for non-Gaussianity in the Planck data, it would be nice to
have as broad a class of inflationary potentials as the one
developed in [3], but without extra moduli fields requiring
stabilization. This was one of the goals of the present
paper.
In this paper we described a new valley in the supergrav-

ity landscape, designed to fit all cosmological observations.
It is based on a master superconformal gauge-invariant
model, where the Higgs effect, as well as a de-Higgsing,
plays an important role. The single matter multiplet that is
relevant for inflation has to be either vector or linear, but not
chiral. The conformal compensators can be either chiral or
linear; thus, we have a total of four dual models of a new
type. Since these are dual models, they are all defined by a
single function of one real variable. In the Higgs phase,
where we see the relevant cosmological evolution, these
superconformal master models lead to a cosmological
model with a single scalar with an almost arbitrary potential
and a massive vector or dual to it massive tensor.
The final cosmological model of a single scalar is given

by the following expression,

e�1L ¼ � 1

2
R� 1

2
ð@�’Þ2 � g2

2
ðDð’ÞÞ2; (5.1)

where Dð’ðCÞÞ ¼ dJðCÞ
dC and the function JðCÞ ¼ 3

2 �
log�ðCÞ þ const is related in superfield language to the
underlying superconformal version of supergravity by

�½S0 �S0�ðVÞ�D: (5.2)

In the components J is related to Jordan frame supergravity
as follows
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� 1

2
�ðCÞR; (5.3)

where C is the first component of the real vector multiplet
and R is the scalar curvature. This function JðCÞ has to
have a negative second derivative,

d2JðCÞ
d2C

< 0; (5.4)

corresponding to the Kähler cone restriction.
This restriction implies that the inflaton potential should

vanish at its minimum and should grow monotonically
away from the minimum in the domain of stability of the
theory. Apart from that, the class of models developed in
our paper is quite general, and many choices can fit easily
the area in the ns-r plane favored by Planck data. We gave
several examples above. An important advantage of this
approach is that in this class of models, the stabilization of
moduli is not required, because these models have only one
scalar, the inflaton field with the action (5.1). When ob-
servations provide us with more precise values of ns and r,
these newmodels should be capable of fitting them without
additional effort. Thus the new approach developed in this
paper is an efficient and economical way to relate the early
universe cosmology to supersymmetry.
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APPENDIX A: CFPS REDUX

The supergravity Lagrangian of the Rþ �R2 theory in
the new-minimal formulation is given in [11] as

L ¼ �½S0 �S0�ðVLÞ�D þ 1

2
�½W�ðVLÞW�ðVLÞ þ H:c:�F;

(A1)

VL � log ðL=S0 �S0Þ;
�ðVLÞ ¼ �VLe

VL;

W� ¼ �D�VL;

(A2)

where � is the chiral projector.

One can rewrite the Lagrangian introducing two real
vector Lagrange multipliers U, V,

L ¼ �½S0 �S0�ðVÞ�D þ 1

2
�½W�ðVÞW�ðVÞ þ H:c:�F

þUðL� S0 �S0e
VÞ: (A3)

Now, integrating in U we get VL ¼ V, while integrating in

L we get U ¼ �þ ��, with � chiral. Since �ðVÞ ¼
�VeV , and only for this special potential, we can redefine

S0 ! S00 ¼ S0e
�, V ! V 0 ¼ V ��� ��. Then the

Lagrangian becomes that of a massive vector field,

L ¼ �½S0 �S0�ðVÞ�D þ 1

2
�½W�ðVÞW�ðVÞ þ H:c:�F: (A4)

APPENDIX B: FROM MASSIVE VECTOR TO
MASSIVE TENSOR IN COMPONENTS

We derive the component form of the bosonic part of the
massive vector supermultiplet theory and its dual massive
linear multiplet theory.
The bosonic part of the massive vector multiplet action,

following the conventions of [12], is

LðA��; a;H�;C; gÞ
¼ � 1

4
F2
�� � 1

2
J00�1H2

� þH�@
�aþ 1

2
J00�1ð@�CÞ2

þ gH�A� � g2

2
J02: (B1)

Here H� is a Lagrange multiplier. Varying with respect to

H�, we get H� ¼ J00ð@�aþ gA�Þ, which inserted back

into Eq. (B1) gives Lagrangian (2.9). The linear multiplet
Lagrangian is instead obtained by varying Eq. (B1) with
respect to a. This gives the constraint @�H

� ¼ 0, whose

solution is H� ¼ 
����@
�B��. Inserted back into the

Lagrangian and after integrating by part of the term
gA�H

�, we obtain

LðA�; B��; C; gÞ
¼ � 1

4
F2
�� � 1

2
J00�1ð@½�B���Þ2 þ 1

2
J00ð@�CÞ2

� g ~F��B
�� � 1

2
g2J02: (B2)

This is the bosonic part of Lagrangian (2.18). It can be
shown to be independent of A� by replacing F��ðAÞ with
an unconstrained F�� and rewriting the two A�-dependent

terms as follows:

� 1

4
F2
�� � g ~F��B

�� þ V�@� ~F��: (B3)

By integrating out F�� and using the gauge symmetry

B�� ! B�� � 1
g F��ðVÞ, Eq. (B3) gives the mass term of

the tensor B��, and so we reproduce Lagrangian (2.26).
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