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We show that the requirement that a SU(N) Yang-Mills action (gauge fixed in a linear covariant gauge)

is invariant under both the Becchi-Rouet-Stora-Tyutin (BRST) symmetry as well as the corresponding

anti-BRST symmetry, automatically implies that the theory is quantized in the (linear covariant)

background field method (BFM) gauge. Thus, the BFM and its associated background Ward identity

naturally emerge from anti-BRST invariance of the theory and need not be introduced as an ad hoc gauge

fixing procedure. Treating ghosts and antighosts on an equal footing, as required by a BRST-anti-BRST

invariant formulation of the theory, gives also rise to a local antighost equation that together with the local

ghost equation completely resolves the algebraic structure of the ghost sector for any value of the gauge

fixing parameter. We finally prove that the background fields are stationary points of the background

effective action obtained when the quantum fields are integrated out.
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I. INTRODUCTION

Quantization of gauge theories in the presence of back-
ground field configurations [1–12] is known to be a very
useful tool, for it allows one to preserve gauge invariance
with respect to external background sources after a gauge-
fixing choice has been made for the quantum gauge modes
of the theory.

This has led to a number of applications, both at the
perturbative level—ranging from calculations in Yang-
Mills theories [11,13] via the quantization of the standard
model [14] to gravity and supergravity calculations [15]—
as well as at the nonperturbative level—where the method
has been instrumental in devising a gauge invariant
truncation scheme for the Schwinger-Dyson equations of
Yang-Mills theories [16–19].

A common algebraic framework has emerged over the
years in order to tame the dependence of the vertex func-
tional � on the background fields. In [20] it was first
proposed to introduce aBRSTpartner� for the background

field Â. The corresponding extended Slavnov-Taylor (ST)
identity guarantees that the physics (described by the coho-
mology of the linearized SToperator) is not affected by the
introduction of the background. This approach allows one
to acquire an algebraic control over the renormalization of
the theory under scrutiny [21,22] and to prove the so-called
background equivalence theorem [23,24].

Eventually it was recognized in a series of papers [25–27]
that the full dependence on the background field, fixed
by the extended ST identity, is induced through a
canonical transformation with respect to (w.r.t.) the

Batalin-Vilkovisky (BV) bracket of the theory. Such a
canonical transformation is generated by the functional
��=��. Since the latter is in general background depen-
dent, one cannot obtain the finite form of the canonical
transformation by simple exponentiation; rather, one needs
to resort to the Lie series of an appropriate functional
differential operator. The derivation proceeds in close anal-
ogy with the case of parameter-dependent canonical trans-
formations in classical mechanics [27].
In this paper this simple geometrical interpretation of the

background field method will be pushed one step further,
as a very deep connection between the BFM and the
so-called anti-BRST symmetry will be unveiled.
Indeed, since the advent of BRST quantization, it has

been known that a further symmetry exists, induced by an
anti-BRST transformation [28–30] in which the antighost
field takes the place of the ghost in the variation of the
gauge and matter fields of the theory. Though this symme-
try turned out to be a useful tool for constraining possible
terms in the action and in simplifying relations between
Green’s functions, it has however been far from clear if
there is any case in which it is indispensable, and thus its
meaning has remained so far somewhat mysterious.
The anti-BRST symmetry generates an anti-ST identity,

that can be shown to hold together with the ST identity
induced by the BRST transformations. Moreover, the re-
quirement of simultaneous BRST and anti-BRST invari-
ance can be fulfilled, so that both identities hold true for
the vertex functional �, provided that a suitable set of
operators for the BRST-anti-BRST variation of the fields
is introduced through the coupling to appropriate external
classical sources. As wewill see the latter sources coincide
precisely with the background fields introduced in the
BFM. Thus, for example, the BRST partner � of the
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background gauge field Â is seen to be the antifield of the
anti-BRST transformation �sA for the gauge field A, while

Â is the source coupled to the BRST-anti-BRST variation
s�sA of A.

Similar identifications hold true for all the other scalar
and fermionic matter fields of the theory. In particular, we
will show that for spontaneously broken gauge theories
the procedure automatically yields the correct background
’t Hooft gauge fixing.

In addition, in a BRST-anti-BRST invariant theory both
a local ghost and a local antighost equation exist. While the
former equation has been known for a long time, the latter
has been derived up to now only in the background Landau
gauge [31]. However, once the sources required to estab-
lish the ST and the anti-ST identities are introduced, it can
be readily seen that there is nothing special in the Landau
gauge choice and one can indeed construct a local anti-
ghost equation valid for a general R� gauge. The usual

background Ward identity arises then both as a conse-
quence of the validity of the ST identity and the local
antighost equation, as well as of the anti-ST identity and
the local ghost equation.

As our analysis reveals that the background field method
is naturally encoded in every theory which is both BRST
and anti-BRST invariant, one might wonder whether the
ST and the anti-ST identities impose some physical condi-
tion on the backgrounds. For that purpose, it is convenient

to construct an effective action ~� for the background fields,
where the quantum modes have been fully integrated out,
i.e., one keeps connected graphs with external backgrounds

only (and therefore ~� is one-particle reducible w.r.t. the
quantum fields). This approach is motivated by several
applications of the BFM, e.g., in the effective field theory
of the color glass condensate [32–34].

As we will see, the ST and the anti-ST identities imply
then that the background field configurations are a sta-

tionary point for ~�. This leads to some interesting combi-
natorial relations of a novel type between one-particle
irreducible (1-PI) graphs involving external background
sources, whose origin can be ultimately traced back to
the canonical transformation of [27], which dictates the
dependence of � on the backgrounds.

The paper is organized as follows. In Sec. II we discuss
the conventional and the background (R�) gauge fixing for

a pure SU(N) Yang-Mills theory and derive the associated
extended ST identity. In Sec. III the anti-BRST symmetry
is introduced together with the sources required to define
the composite operators of the BRST-anti-BRST algebra.
The equivalence between the BRST-anti-BRST invariance
and the BFM is then established. Next, Sec. IV is dedicated
to the derivation of the local antighost equation in a generic
R� gauge. In addition, we show how the background Ward

identity emerges from both the anti-ST identity combined
with the local ghost equation or the ST identity combined
with the local antighost equation. The local ghost and

antighost equations are then exploited to fully constrain
the ghost two-point sector in any gauge. In Sec. V we
finally construct the background effective action by inte-
grating out all quantum fields, and show that the back-
ground fields are stationary points of this action. Our
conclusions are presented in Sec. VII, with the following
Appendix generalizing (some of) the main equations for
the case in which scalars and fermion fields are present.

II. CONVENTIONAL AND BFM GAUGE FIXINGS

The action of a SU(N) Yang-Mills theory reads

S ¼ SYM þ SGF þ SFPG: (2.1)

SYM represents the Yang-Mills (gauge invariant) action,
which is written in terms of the SU(N) field strength

SYM ¼ � 1

4g2

Z
d4xFa

��F
��
a ;

Fa
�� ¼ @�A

a
� � @�A

a
� þ fabcAb

�A
c
�:

(2.2)

SGF and SFPG represent respectively the (covariant) gauge-
fixing functional and its associated Faddeev-Popov ghost
term. The most general way of writing these terms is
through the expressions

SGF ¼
Z

d4x

�
��

2
ðbaÞ2 þ baF a

�
;

SFPG ¼ �
Z

d4x �casF a:
(2.3)

In the formulas above F represents the gauge-fixing
function, which, for the class of R� gauges considered

throughout this paper, reads

F a ¼ @�Aa
�: (2.4)

In addition, b are auxiliary, nondynamical fields (the
so-called Nakanishi-Lautrup multipliers) that can be elim-
inated through their equations of motion, as a consequence
of the validity of the b equation

��

�ba
¼ ��ba þF a; (2.5)

for the full quantum effective action �. c (respectively, �c)
are the ghost (respectively, antighost) fields, while, finally,
s is the nilpotent BRST operator, which constitutes a
symmetry of the gauge-fixed action Eq. (2.1), with the
BRST transformations of the various fields given by

sAa
� ¼ Dab

� cb; sca ¼ � 1

2
fabccbcc;

s �ca ¼ ba; sba ¼ 0;
(2.6)

and the covariant derivative D is defined according to

Dab
� ¼ @��

ab þ facbAc
�: (2.7)
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We thus see that the sum of the gauge-fixing and Faddeev-
Popov terms can be written as a total BRST variation:

SGF þ SFPG ¼
Z

d4xs

�
�caF a � �

2
�caba

�
: (2.8)

This is of course expected, for it is well known that the
physical observables of a theory admit a mathematical
characterization in terms of the local cohmology of the
BRST operator [35–37], and the latter is not affected by
total BRST variations.

The BRST symmetry of the Yang-Mills action can be
most conveniently exposed through the so-called BV
method, i.e., introducing a set of antifields�� and coupling
them to the BRST variation of the corresponding fields
through the term [38]

SBV ¼
Z

d4x
X

��s�: (2.9)

Then the (tree-level) vertex functional is given by the sum

�ð0Þ ¼ SYM þ SGF þ SFPG þ SBV; (2.10)

and the BRST symmetry of the action is encoded by the ST
identityZ

d4x

�
��

�A�a
�

��

�A
�
a
þ ��

�c�a
��

�ca
þ ba

��

� �ca

�
¼ 0; (2.11)

where now � is the full quantum effective action.
Turning to the case of BFM types of gauges, tradition-

ally one starts by splitting the gauge field into a back-

ground part (Â) and a quantum part (Q) according to

Aa
� ¼ Âa

� þQa
�: (2.12)

Next, one retains the background gauge invariance of the
gauge-fixed action by choosing a gauge-fixing function
that transforms in the adjoint representation of SU(N)
through the general replacements

@��
ab!D̂ab

� �@��
abþfacbÂc

�; Aa
�!Qa

�; (2.13)

that is one has the background R� gauge

F̂ a ¼ D̂ab
� Q

�
b : (2.14)

Finally, in addition to the antifields��, the quantization of
the theory in the BFM requires the introduction of an
additional (vector) anticommuting source �, implement-
ing the equation of motion of the background field at the
quantum level, with [20]

sÂa
� ¼ �a

�; s�a
� ¼ 0: (2.15)

The BRST transformation of the quantum field Q is
given by

sQa
� ¼ Dab

� cb ��a
�: (2.16)

Equation (2.15) ensures that Â and � are paired in a
so-called BRST doublet [35,39] (as already happens for
�c and b), thus preventing the background field from
modifying the physical observables of the theory.
It then follows that the conventional ST identity

Eq. (2.11) gets modified into the extended ST identityZ
d4x

�
��

�A�a
�

��

�Q
�
a
þ ��

�c�a
��

�ca
þ ba

��

� �ca

þ��
a

�
��

�Âa
�

� ��

�Qa
�

��
¼ 0: (2.17)

By ‘‘undoing’’ the shift of the gauge field (2.12) the ST
identity above may be cast in the somewhat more compact
formZ

d4x

�
��

�A�a
�

��

�A�
a
þ ��

�c�a
��

�ca
þ ba

��

� �ca
þ��

a
��

�Âa
�

�
¼ 0:

(2.18)

In particular, this formulation of the BFM in terms of the

field variables A and Â turns out to be the most suitable for
the ensuing analysis.

III. ANTI-BRST SYMMETRYAND THE BFM

In the BRST transformations the role of the ghost field c
is very prominent, as it replaces the gauge transformation
parameter of the conventional gauge transformations and
its behavior can be understood in an intrinsic manner
in terms of the cohomology of the Lie algebra (see, e.g.,
[35,40]). On the other hand, the antighost �c and its doublet
partner b play the role of Lagrange multipliers introduced
to enforce the gauge-fixing condition F ¼ 0 and its BRST
transform sF ¼ 0. In addition, �c obeys an equation of
motion which is different from that of c as the former is
not the Hermitian conjugate of the latter field.
Though all these seemed to rule out the possibility that �c

and c can be interchanged, a nilpotent ‘‘anti-BRST’’ trans-
formation symmetry in which this is exactly what happens
was introduced long ago [28–30]. Indeed, the anti-BRST
transformations can be obtained from the BRST ones of
Eq. (2.6) by exchanging the role of the ghost and antighost
fields; that is, one has

�sAa
� ¼ Dab

� �cb; �s �ca ¼ � 1

2
fabc �cb �cc;

�sca ¼ �ba; �s �ba ¼ 0:
(3.1)

In particular, the anti-BRST transformation of the gauge
field is obtained from the gauge variation of A by replacing
the gauge parameter by the antighost field �c.
In order to close the algebra the transformations aboveneed

to be supplemented with the additional transformations

s �ba ¼ fabc �bbcc; �sba ¼ fabcbb �cc: (3.2)
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On the other hand, as both s and �s are nilpotent, the
additional (natural) requirement that their sum is also
nilpotent (or that fs; �sg ¼ 0) results in the constraint [28]

�ba ¼ �ba � fabccb �cc; (3.3)

which, upon use of the Jacobi identity, is readily seen to be
consistent with Eq. (3.2).

Finally, the nontrivial BRST-anti-BRST transformations
of the fields read

s�sAa
� ¼ Dab

� bb þ fabcðDbd
� cdÞ �cc;

s�sca ¼ s �ba; s�s �ca ¼ ��sba:
(3.4)

At this point it is straightforward to realize that to render
our theory (2.1) simultaneously BRST and anti-BRST
invariant, requires, before gauge fixing, the introduction
of eight sources: the usual antifields A� and c�, the anti-
BRST sources A#, c#, �c#, and b#, and, finally, the BRST-

anti-BRST sources Â and ĉ. Notice that we do not add any
source associated to s �b, for, due to the constraint (3.3),
the BRST transformation of this field can be completely
recovered from the corresponding transformations of b, c,
and �c. One has then that the BRST-anti-BRST invariant
action reads

SI ¼ SYM þXZ
d4xð��s�þ�# �s�þ �̂s�s�Þ; (3.5)

where the sum extends over all the nonzero sources, and
(with the exception of b#)

s�� ¼ �s�� ¼ 0; s�̂ ¼ �#;

s�# ¼ �s�# ¼ 0; �s �̂ ¼ ���:
(3.6)

For the source b# one has instead

sb#a ¼ �c#a; �sb#a ¼ 0: (3.7)

Finally, the ghost charge assignments are

ghð��Þ ¼ �ghð�Þ � 1;

ghð�#Þ ¼ �ghð�Þ þ 1;

ghð�̂Þ ¼ �ghð�Þ;
(3.8)

where we have set ghðc; �cÞ ¼ ð1;�1Þ. Notice that the
usual BV action [38] is recovered by setting the �# and

�̂ sources to zero.
We are now ready to establish the central result of this

paper. Consider, in fact, the BFM covariant gauge-fixing
(2.14) with its associated Faddeev-Popov ghost action; a
straightforward calculation yields

s

�
�caF̂ a � �

2
�caba

�
¼ s

�
�caF a � �

2
�caba

�
þ Â�

a ðDab
� bb þ fabc �cbDcd

� cdÞ
þ��

a ðDab
� �cbÞ

¼ s

�
�caF a � �

2
�caba

�
þ Â�

a ðs�sAa
�Þ þ��

a ð �sAa
�Þ; (3.9)

where F a is now the covariant gauge-fixing (2.4). As a
result of the anticommutation relation fs; �sg ¼ 0 and the
identity

sð �ca@�Aa
�Þ ¼ ��sðca@�Aa

�Þ; (3.10)

we observe that also the first term on the right-hand
side (r.h.s.) of Eq. (3.9) is both BRST and anti-BRST
invariant (the term b2 is obviously invariant under these
transformations).
Then we see that by adding to the BRST-anti-BRST in-

variant action (3.5) the R� gauge fixing and Faddev-Popov

term (2.8) we automatically obtain a theory formulated in the
backgroundR� gauge, provided that the following identifica-

tion is made:

�a
� � A#a

� : (3.11)

From Eq. (3.9) one also sees that the background gauge

field Â is the source of the BRST-anti-BRST variation s�sA
of the gauge field A. Notice however that ĉ cannot be
interpreted as a background for the ghost c, since it has
ghost number�1; it is also clear that it is not a background
for the antighost field, as a shift of the latter field would
lead to totally different couplings w.r.t. the ones that are
generated for the source ĉ.
Thus one arrives at the somewhat surprising conclusion

that requiring the invariance of a SU(N) Yang-Mills action
gauge fixed in an R� gauge under both BRST as well as

anti-BRST symmetry is equivalent to quantizing the theory
in the (R�) BFM:

�ð0Þ ¼SIþSGFþSFPG

¼SYMþ ŜGFþ ŜFPGþSBVþ
Z
d4xðc#a �scaþ ĉas�scaÞ;

(3.12)

where the background gauge-fixing functional and the
background Faddeev-Popov terms are

ŜGF ¼
Z

d4x

�
��

2
ðbaÞ2 þ baF̂ a

�
;

ŜFPG ¼ �
Z

d4x �casF̂ a:
(3.13)

The standard BFM tree-level vertex functional is recovered
by setting c# ¼ ĉ ¼ 0 on the r.h.s. of Eq. (3.12). In this
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sense the BFM is not fundamental, as it is naturally emerg-
ing from the requirement of anti-BRST invariance.

It is interesting to study the case in which (complex)
scalars and/or fermions are added to the theory. Let us start
from the former fields, where one has

s� ¼ icata�; �s� ¼ i �cata�;

s�y ¼ �ica�yta; �s�y ¼ �i �ca�yta;
(3.14)

with ta the generators of the SU(N) representation chosen
for �. The corresponding BRST-anti-BRST transforma-
tion reads

s�s� ¼ ibata�þ �cacbtatb�;

s�s�y ¼ �iba�yta þ �cacb�ytbta;
(3.15)

from which it is immediate to infer that fs; �sg� ¼ 0.
The extra sources one needs to add to render the action

BRSTand anti-BRST invariant in the presence of the scalar
field � are then1Z

d4x½��ys�þ s�y�� þ�#y �s�þ ð �s�yÞ�#

þ �̂ys�s�þ ðs�s�yÞ�̂�: (3.16)

Again by identifying �̂ and �̂y with the background for
the scalars� and�y, respectively, as well as�#, �#y with
their corresponding BRST doublet partners [i.e., s� ¼ �#,
s�y ¼ �#y, as prescribed by Eq. (3.6)], one recovers the

background ’t Hooft gauge after the background field �̂
has acquired an expectation value v.

For fermions c and �c the analysis proceeds in the
same way as in the scalar case, since Eqs. (3.14) and
(3.15) still hold once ta is identified with the generator of
the representation of the fermionic matter field and �
replaced by c , i.e.,

sc ¼ icatac ; �sc ¼ i �catac ;

s �c ¼ �ica �c ta; �s �c ¼ �i �ca �c ta:
(3.17)

Notice that the requirement of anti-BRST invariance gen-

erates unavoidably the sources ĉ and �̂c which correspond
to background fields for the fermions,2 as the action will be
rendered BRST-anti-BRST invariant through the addition
of the termZ

d4x½ �c �sc � ðs �c Þc � þ �c # �sc

� ð�s �c Þc # � �̂c s�sc þ ðs�s �c Þĉ �; (3.18)

where

s�sc ¼ ibatac þ �cacbtatbc ;

s�s �c ¼ �iba �c ta þ �cacb �c tbta:
(3.19)

IV. LOCAL ANTIGHOST EQUATION

The presence of the anti-BRST symmetry leads, as we
will explicitly show below, to the existence of a local
antighost equation. It should be noticed that for a SU(N)
Yang-Mills theory with a conventional R� gauge fixing

only an integrated antighost equation can be derived, while
in the BFM case the existence of a local version of this
equation was established in the background Landau gauge
in [31] and believed to be valid only for that specific gauge-
fixing choice.3

On the other hand, the correspondence just found
between BRST and anti-BRST invariance and the BFM
shows that there should not be anything special neither
when formulating the theory in the BFM nor when choos-
ing � ¼ 0. Indeed as the existence of the anti-BRST sym-
metry puts the ghost and antighost fields on the same
footing, and given that a local ghost equation (sometimes
also referred to as Faddeev-Popov equation) is known to
hold, we would expect a local antighost equation to hold
as well.
To show that this is indeed the case, let us start by setting

to zero the scalar and fermionic matter sector (the complete
case will be discussed in the Appendix); then the tree-level
action (3.5) can be cast in the form

�ð0Þ ¼ SYM þ sX ¼ SYM þ �sY; (4.1)

where

X¼
Z
d4x

�Xðð�1Þghð��Þ���þ�̂ �s�Þþ �caF a��

2
�caba

�
;

Y¼
Z
d4x

�Xðð�1Þghð�#Þ�#�þ�̂s�Þ�caF aþ�

2
caba

�
;

(4.2)

and the sum is intended, as familiar by now, over all
nonzero sources.
To derive the local antighost equation the fastest route

turns out to be to calculate the anticommutator between
the derivative w.r.t. the ghost field and the anti-BRST
operator. Since

�s ¼ XZ
d4x�s’ðxÞ �

�’ðxÞ ; ’ ¼ �;��;�#; �̂;

(4.3)1We assume that a suitable (gauge invariant) action term S�
(and Sc when adding fermions) is added to the classical action
(2.1); its concrete form is however irrelevant for the following
analysis.

2Fermionic backgrounds have been considered, e.g., in [41];
their physical relevance is however unclear to us at the moment.

3Notice that in the case of a ghost-antighost symmetric gauge,
the existence of such a local equation is a direct consequence of
the Sp[2] symmetry (see, e.g., [42]).
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one finds that for any functional F ¼ F½’� with zero
ghost charge�

�

�ca
; �s

�
F ¼ XZ

d4x

�
�

�ca
�s’ðxÞ

�
�F

�’ðxÞ ; (4.4)

and therefore

��

�ca
¼ �

�ca
ð�sYÞ ¼ XZ

d4x

�
�

�ca
�s’ðxÞ

�
�Y

�’ðxÞ � �s
�Y

�ca
:

(4.5)

Then through a lengthy but relatively straightforward
calculation, we arrive at the local antighost equation

�Ga� � ��

�ca
þ fabc

��

�bb
�cc þ �

��

�b#a
� D̂ab

�

��

�A#b
�

� fabcĉb
��

�c#c
� fabcb#b

��

� �c#c

¼ Dab
� A

��
b þ fabcc�bc

c; (4.6)

where D̂ab
� ¼ @��

ab þ facbÂc
�. Notice that all the (possi-

bly present) trilinear terms in the ghost and antighost fields
have canceled out.

In the case of the local ghost equation one computes the
anticommutator of the derivative w.r.t. the antighost field
and the BRST operator s:

��

� �ca
¼ �

� �ca
ðsXÞ ¼ XZ

d4x

�
�

� �ca
s’ðxÞ

�
�X

�’ðxÞ � s
�X

� �ca
:

(4.7)

One then has

Ga�� ��

� �ca
þD̂ab

�

��

�A�b
�

þfabcĉb
��

�c�c

¼Dab
� A#�

b þfabcc#bc
cþfabc �c#b �c

c�fabcb#bb
c: (4.8)

Finally, the b equation assumes the form

��

�ba
¼ D̂ab

� ðA�
b � Â

�
b Þ��ba�fabcb#b �c

c� c#a�fabcĉbc
c;

(4.9)

while the ST and anti-ST identities read respectively4

Z
d4x

�
��

�A�a
�

��

�A�
a
þ ��

�c�a
��

�ca
þ A#a

�

��

�Âa
�

þ c#a
��

�ĉa
þ �c#a

��

�b#a
þ ba

��

� �ca

�
¼ 0; (4.10)

Z
d4x

�
��

�A#a
�

��

�A�
a
þ ��

�c#a

��

�ca
þ ��

� �c#a

��

� �ca

þ ��

�b#a

��

�ba
� A�a

�

��

�Âa
�

� c�a
��

�ĉa

�
¼ 0: (4.11)

The backgroundWard identity follows as a consequence
of the local antighost equation and the ST identity, since

0 ¼ S�ð �Ga��Dab
� A

��
b � fabcc�bc

cÞ þ GaSð�Þ ¼ W a�:

(4.12)

In the above equation S� is the linearized ST operator

S� �
Z

d4x

�
��

�A�a
�

�

�A�
a
þ ��

�A�
a

�

�A�a
�

þ ��

�c�a
�

�ca

þ ��

�ca
�

�c�a
þA#a

�

�

�Âa
�

þ c#a
�

�ĉa
þ �c#a

�

�b#a
þba

�

� �ca

�
;

(4.13)

while the background Ward operator reads

W a � �Dab
�

�

�Ab�

� D̂ab
�

�

�Âb�

þ fabccc
�

�cb

þ fabc �cc
�

� �cb
þ fabcbc

�

�bb
þ fabcc�c

�

�c�b

þ fabcc#c
�

�c#b
þ fabc �c#c

�

� �c#b
þ fabcA�

�c

�

�A�
�b

þ fabcA#
�c

�

�A#
�b

þ fabcĉc
�

�ĉb
þ fabcb#c

�

�b#b
:

(4.14)

In a similar fashion, the background Ward identity can
also be obtained by taking the anticommutator between
the linearized anti-SToperator and the local ghost equation
operatorG and then using the anti-ST identity and the local
ghost equation.

V. BACKGROUND EFFECTIVE ACTION

The requirement of BRST and anti-BRST invariance
in the presence of scalar and fermionic matter leads to
the generalization of the ST and anti-ST identities of
Eqs. (4.10) and (4.11) shown in Eqs. (A1) and (A2) of
the Appendix. The sources of the anti-BRST variations
for the gauge, scalar, and fermionic matter fields are to
be identified with the corresponding background fields.
In order to further elucidate the physical content of the

ST and anti-ST identities, it is convenient to construct

an effective action ~� for the background configurations
by integrating out completely the quantum fields. That is,
one is interested in keeping only connected diagrams with
external background legs.

The functional ~�, which is therefore one-particle reduc-
ible w.r.t. the quantum fields, can be formally obtained as

4From here we see that an alternative way of deriving the local
antighost equation is to take the derivative w.r.t. b of the anti-ST
identity (4.11) and next use the b equation (4.9) to replace the
various terms involving the functional derivative w.r.t. b.
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follows. The connected generating functional W is ob-
tained by taking a Legendre transform w.r.t. �:

W ¼ �þ
Z

d4xJ��; J� ¼ �ð�1Þ�ð�Þ ��
��

;

� ¼ �W

�J�
;

�W

��
¼ ��

��
; � 2 f�̂;��;�#g;

(5.1)

where we use a collective notation, with J� denoting the
source of the quantum field� and �ð�Þ the statistics of the
field � (1 for anticommuting variables, 0 for commuting
ones).

Then one sets

~�½�̂;��;�#� � W½J�; �̂;��;�#�jJ�¼0: (5.2)

Equation (A1) yields the following identity for the
connected functional W:

Z
d4x

�
� �W

�A�a
�

JA�
a
þ�W

�c�a
Jca þ �W

�Jba
J �ca � �W

���yJ�

þ �W

���J�y þ �W

� �c �Jc �
�W

�c �J �c þA#a
�

�W

�Âa�

þc#a
�W

� bca
þ �c#a

�W

�cba��#�W

��̂
þ�#y �W

��̂y�c #�W

�ĉ
þ �c #�W

� �̂c

�
¼0:

(5.3)

By taking a derivative of the above equation w.r.t. any of
the anti-BRST sources �# and then setting all the sources
J� and �# to zero, one finds that

�~�

��̂
¼ �W

��̂

��������J�¼�#¼0
¼ 0: (5.4)

This means that the background field configurations �̂
constitute a stationary point for the background effective

action ~�.
Notice that the same result is obtained if one starts from

the anti-ST identity for the connected generating functional
W, takes one derivative w.r.t. the BRST source ��, and
then sets all the sources J� and �� to zero.

As a physical example, one can consider the effective
field theory of the color glass condensate [33,34], which
describes the physics of high gluon densities and gluon
saturation in the small x regime (x denoting the longitudi-
nal momentum fraction of the parton in the collision).

In this framework, the fulfillment of the ST identity for ~�
is crucial for guaranteeing the consistency of the approx-
imations used, as it shows that the background field con-

figuration Â is still a stationary point of the background
effective action, even in the presence of radiative correc-
tions induced by the integration of certain quantum modes
of the gluon field.

A. Two- and three-point background gauge functions

In order to illustrate the combinatorics behind the
stationary condition (5.4), let us consider the case of the
two- and three-point background gauge functions.

The graphs contributing to the two-point function ~�Â Â

are depicted in Fig. 1. From Eq. (5.1) one sees thatZ
d4z�Aa

�A
c
�
ðx;zÞWJAc�

J
Ab�

ðz;yÞ¼��abg
���4ðx�yÞ: (5.5)

If one replaces the 1-PI functions �ÂA in the second of the

diagrams in Fig. 1(a) by exploiting the background-
quantum identity

�Âa
�A

b
�
¼ ���a

�A
�c
�
�Ab

�A
c
�
; (5.6)

the gauge propagator cancels against one of the 1-PI
2-point gauge functions by Eq. (5.5). The identity

~�Â
a1
�1

Â
a2
�2

¼ 0 (5.7)

then boils down to the usual background-quantum relation

�Â
a1
�1

Â
a2
�2
ðx1; x2Þ ¼

Z
d4z1

Z
d4z2��

a1
�1

A�
c1�1

ðx1; z1Þ
� ��

a2
�2

A�
c2�2

ðx2; z2Þ�Ac1�1
Ac2�2

ðz1; z2Þ:
(5.8)

The identity for the three-point function

~�Â
a1
�1

Â
a2
�2

Â
a3
�3
ðx1; x2; x3Þ ¼ 0 (5.9)

is more involved. The diagrams contributing to Eq. (5.9)
are depicted in Fig. 1(b). They are arranged according to

the number of Â insertions in the 1-PI vertex bubbles. In
order to establish the connection with the 1-PI background-
quantum identities, we notice that the legs involving a
gauge propagator and a mixed background-quantum am-
plitude �ÂA can be reduced with the help of Eq. (5.6) as

follows:

�Âa
�A

b
�
WJ

Ab�
JAc�

¼ ���a
�A

�d
	
�Ad

	A
b
�
WJ

Ab�
JAc�

¼ ��a
�A

�c
�
; (5.10)

where Eq. (5.5) has been used.
After the replacement in Eq. (5.10) has been carried out,

one obtains from Eq. (5.9) a representation for �Â Â Â which

only involves 1-PI amplitudes. It is uniquely determined by
the requirement that the ST identity holds. It can therefore
be obtained by applying the method of canonical trans-
formations presented in [27]. Specifically, by taking the
derivative of the ST identity w.r.t. � and setting � to
zero afterwards, one obtains quite generally an identity
of the form

��

�Âa
�

���������¼0
¼ �

�
��

��a
�

;�

����������¼0
; (5.11)

where f�; �g denotes the BV bracket associated with the ST
identity. Equation (5.11) states that the dependence on the
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background is generated via a canonical transformation
with respect to the BV bracket, induced by the generating

functional ��
�� . The latter in general is Â dependent. As a

consequence, the solution cannot be written by simple

exponentiation of the BV bracket w.r.t. ��
�� , but requires

the introduction of a Lie series of a suitable functional
differential operator [27].

For our purposes it is sufficient to consider the reduced
bracket�

��

��a
�ðxÞ ; �

�
�

Z
d4z

�
���a

�ðxÞA�b
�
ðx; zÞ �

�Ab
�ðzÞ

þ ��a
�A

b
�
ðx; zÞ �

�A�
b�ðzÞ

�
: (5.12)

Then the Lie series generating the background field depen-
dence is obtained by exponentiating the operator

���a
�
ðxÞ �

�
��

��a
�

; �
�
þ �

�Âa
�

; (5.13)

that is, one has

� ¼ E��
ð�0Þ þ � � � ; (5.14)

where the dots denote amplitudes involving at least one

external leg different than A, Â and the mapping E��
is

defined according to

E��
ð�0Þ �

X
n�0

1

n!

Z
1
. . .

Z
n
Â1 . . . Ân½���1

. . . ���n
�0�Â¼0:

(5.15)

In the above equation �0 denotes the 1-PI vertex functional
where fields and sources have been set to zero, with the

FIG. 1. The cancellations encoded in the stationary condition (5.4) in the case of the two- and three-point functions of the
background gauge field. Small circles attached at the end of lines indicate the background gluons.
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only exception of A, A�; finally, the shorthand notationsR
i ¼

R
d4zi, Âi ¼ Âai

�i
ðziÞ, and ��i

¼ ��
ai
�i
ðziÞ have been

used.
We stress that Eq. (5.14) reproduces the correct depen-

dence of the 1-PI vertex functional on Â in the gauge sector
only. The background dependence of amplitudes involving
scalar and fermionic matter fields as well as other external
sources can be recovered by making use of the full canoni-

cal transformation generated by the functional ��
�� .

The first two terms of Eq. (5.14) yield (notice that in the

following equations Â is set equal to zero, while further
differentiations w.r.t. A are possible)

�Â
a1
�1
ðx1Þ ¼ �

Z
d4z1��

a1
�1

A
�b1

1

ðx1; z1Þ�A
b1

1

ðz1Þ; (5.16)

and

�Â
a1
�1

Â
a2
�2
ðx1; x2Þ ¼ 1

2

Z
d4z1

Z
d4z2½��

a2
�2

A
�b2

2

ðx2; z2Þ��
a1
�1

A
�b1

1

A
b2

2

ðx1; z1; z2Þ�A
b1

1

ðz1Þ þ �
�

a2
�2

A
�b2

2

ðx2; z2Þ��
a1
�1

A
�b1

1

ðx1; z1Þ
� �

A
b2

2
A
b1

1

ðz2; z1Þ � �
�

a1
�1

A
�b1

1

Â
a2
�2

ðx1; z1; x2Þ�A
b1

1

ðz1Þ� þ ða1�1 $ a2�2Þ; (5.17)

while the third term gives for the three point function �Â Â Â (we suppress the space-time arguments)

�Â
a1
�1

Â
a2
�2

Â
a3
�3

¼ 1

3!

Z
d4z1

Z
d4z2

Z
d4z3½��

�
a3
�3

A
�b3

3

�
�

a2
�2

A
�b2

2

�
�

a1
�1

A
�b1

1

A
b2

2

�
A
b3

3
A
b1

1

� �
�

a3
�3

A
�b3

3

�
�

a2
�2

A
�b2

2

A
b3

3

�
�

a1
�1

A
�b1

1

�
A
b2

2
A
b1

1

� �
�

a3
�3

A
�b3

3

�
�

a2
�2

A
�b2

2

�
�

a1
�1

A
�b1

1

A
b3

3

�
A
b2

2
A
b1

1

� �
�

a3
�3

A
�b3

3

�
�

a2
�2

A
�b2

2

�
�

a1
�1

A
�b1

1

�
A
b3

3
A
b2

2
A
b1

1

þ �
�

a3
�3

A
�b3

3

�
�

a1
�1

A
�b1

1

Â
a2
�2

�
A
a3
�3

A
b1

1

þ �
�

a2
�2

A
�b2

2

Â
a3
�3

�
�

a1
�1

A
�b1

1

�
A
b2

2
A
b1

1

þ �
�

a2
�2

A
�b2

2

�
�

a1
�1

A
�b1

1

Â
a3
�3

�
A
b2

2
A
b1

1

� þ symm; (5.18)

where complete symmetrization of the r.h.s. of the
above equation w.r.t. the ai, �i indices is understood.
Compatibility of the diagrammatic identity in Fig. 1(b)
with Eq. (5.18) follows by taking the appropriate deriva-
tives w.r.t. the quantum fields A of Eqs. (5.16) and (5.17) in
order to eliminate recursively the background insertions in
the amplitudes of the second and third lines of Fig. 1(b).

Notice in particular the presence of the amplitudes
��A�Â. The latter arise due to the dependence of the gen-

erating functional �� on the background Â. The amplitudes
��A�Â can be fully fixed either by the ST or the anti-ST

identities. Their Â dependence is the cause of the failure of
the simple exponentiation in order to derive the solution to
Eq. (5.11), which in turn can be overcome by using the
appropriate Lie series in Eq. (5.15).

VI. PRACTICAL CONSEQUENCES

A. Two-point ghost sector

The presence of the antighost equation allows one to
fully constrain the ghost two-point sector in any gauge. In
this sector there are four superficially divergent Green’s
functions, namely, �ca �cb , ��ca�b

�
, �caA�b

�
, and, finally, ��a

�A
�b
�

(in the following we prefer to switch back to the familiar
notation of� rather than using its anti-BRST source name
A#). The first two functions are constrained by the ghost
equation (we factor out the trivial color structure �ab)

�c �cðqÞ ¼ �iq��cA�
�
ðqÞ;

��� �cðqÞ ¼ iq� � iq����A
�
�
ðqÞ:

(6.1)

On the other hand, differentiating the antighost equa-
tion (4.6) with respect to a gluon antifield and an anti-
ghost, one gets the deformed identities

�A�
�cðqÞ ¼ iq� þ iq��A�

���
ðqÞ � ��A�

�b
#ðqÞ;

��ccðqÞ ¼ iq���c��
ðqÞ � ���cb#ðqÞ;

(6.2)

and the functions�b#A�
�
and�b# �c related through the identity

�b# �cðqÞ ¼ �iq��b#A�
�
ðqÞ: (6.3)

Contracting the first equation in (6.2) with q� and next
using the first of the identities (6.1) as well as Eq. (6.3), we
find the relation

�c �cðqÞ ¼ q2 � q�q����A
�
�
ðqÞ � ��b# �cðqÞ; (6.4)

which shows the appearance of the extra function �b# �c with
respect to the Landau gauge, where the ghost sector is
entirely determined by ��A� alone.
Then, observing that

�c �cðqÞ ¼ q2F�1ðq2Þ; (6.5)

where F is the ghost dressing function related to the ghost
propagator D through Dðq2Þ ¼ Fðq2Þ=q2, and introducing
the Lorentz decompositions

�cA�
�
ðqÞ ¼ iq�Cðq2Þ; ��c��

ðqÞ ¼ iq�Eðq2Þ;
�b# �cðqÞ ¼ �q2Kðq2Þ;

���A
�
�
ðqÞ ¼ �g��Gðq2Þ �

q�q�

q2
Lðq2Þ;

(6.6)
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we finally find the relations

Cðq2Þ ¼ Eðq2Þ þ �Kðq2Þ ¼ F�1ðq2Þ;
F�1ðq2Þ ¼ 1þGðq2Þ þ Lðq2Þ þ �Kðq2Þ:

(6.7)

In particular, the last equation above represents the
generalization to any � of the corresponding well-known
identity in the Landau gauge [31,43,44].

B. (Lattice) Kugo-Ojima confinement criterion

The function G appearing in the identity (6.7) can be
obtained by considering the correlation function corre-
sponding to the time-ordered product of two covariant
derivatives, one acting on a ghost and one on an antighost
field:

Gab
��ðy� xÞ ¼ hT½ðDbm

� cmÞxðDan
� �cnÞy�i

¼ � �2W

��a
�ðyÞ�A�b

� ðxÞ ; (6.8)

where W is the generating functional for the connected
graphs defined in Eq. (5.1).

Now, as shown in Fig. 2, there are only two possible
connected contributions to the Green’s function above;
using then Eq. (6.7) and passing to a momentum space
representation (while factoring out the trivial color struc-
ture �ab), one finds

G��ðqÞ¼����A
�
�
ðqÞ���� �cðqÞDðqÞ�cA�

�
ðqÞ

¼g��Gðq2Þþq�q�

q2
Lðq2Þ�q�q�

q2
Eðq2ÞFðq2ÞCðq2Þ

¼P��ðqÞGðq2Þ�
q�q�

q2
; (6.9)

where the transverse projector P��ðqÞ ¼ g�� � q�q�=q
2

has been defined.
The important point here is that the relation (6.9) is

precisely the same one has in the Landau gauge; therefore
knowledge of the G�� Green’s function translates into a

direct determination of G also in a R� gauge.

In addition it turns out that the connected function G
can be obtained from the correlator of a gluon field A and

a background gluon Â, for the ST identity satisfied by W
yields

�2W

�JAb
�
ðxÞ�Âa

�ðyÞ
��������J�¼�#¼0

¼ �2W

��a
�ðyÞ�A�b

� ðxÞ
��������J�¼�#¼0

:

(6.10)

Notice that the correlator on the left-hand side of the above
equation does not involve Green’s functions of the ghosts;
therefore it can be measured on the lattice whenever a
background field is introduced (even in the absence of
dynamical ghosts).
Given that the the condition Gð0Þ ¼ �1 represents the

generalization of the Kugo-Ojima confinement criterion
in the case of linear covariant gauges studied here [45], it
would be extremely interesting to study on the lattice its
dependence on �, and in particular determining its behav-
ior as q goes to zero.

C. Two-point gluon sector

Let us conclude this section by providing a simple proof
for the relation [43]

Zg

ZQ

¼ 1þGð0Þ; (6.11)

where Zg and ZQ are the charge and (quantum) gauge

boson renormalization constants (with a 0 subscript indi-
cating bare quantities)

g ¼ Zgg0; Q ¼ ZQQ0: (6.12)

This relation, which is valid for any value of the gauge-
fixing parameter, was first noticed by Kugo [43] where
however it was proved in a simplified way using classical
currents. Below we offer a fully quantum all-order proof.
From the ST identity (4.10) one obtains the relations

�Âa
�Â

b
�
ðqÞ ¼ ��A#a

� A�c
�
ðqÞ�A�

c Â
b
�
ðqÞ;

�Âa
�A

b
�
ðqÞ ¼ ��A#a

� A�c
�
ðqÞ�A

�
cA

b
�
ðqÞ:

(6.13)

Using then the identifications (3.11), and reintroducing
the background-quantum splitting, one obtains the familiar
background-quantum identities [46,47]

�Âa
�Â

b
�
ðqÞ ¼ ½g�� � ��a

�A
�c
�
ðqÞ��Q

�
c Â

b
�
ðqÞ;

�Âa
�Q

b
�
ðqÞ ¼ ½g�� � ��a

�A
�c
�
ðqÞ��Q

�
cQ

b
�
ðqÞ:

(6.14)

Next, we combine the two equations above taking into
account the transversality of the two-point gluon function,
as well as the Lorentz decomposition (6.6) of the function
��A� , to get

�Â Âðq2Þ ¼ ½1þGðq2Þ�2�QQðq2Þ; (6.15)

where the color (�ab) and Lorentz (P��) structures have

been factored out. If we are interested only in the UV part
of this identity one can set q2 ¼ 0, thus obtaining5

FIG. 2. The connected Green’s function G��. Grey blobs in-
dicate 1-PI functions, while white ones indicate connected
functions (propagators).

5Notice that a possible renormalization factor Zc for G has
been entirely reabsorbed in the definition of this quantitiy.
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Z�2
Â

¼ ½1þGð0Þ�2Z�2
Q ; (6.16)

where we have introduced the background field renormal-

ization constant Â ¼ ZÂÂ0. We now take advantage of the

residual background gauge invariance which implies the
QED-like relation

Z�1
Â

¼ Zg; (6.17)

to get finally the desired relation (6.11).
When originally derived in [43] this relation was dis-

cussed in the context of the so-called Kugo-Ojima confine-
ment criterion [48], which predicts that, in the Landau
gauge, a sufficient condition for color confinement is
1þGð0Þ ¼ 0 (which would in turn imply an IR divergent
ghost dressing function). It turns out, however, that lattice
data (see [49] for the most recent lattice analysis of the
Yang-Mills ghost sector) in conjunction with Schwinger-
Dyson techniques [44], show that 1þGð0Þ � 0 and thus
that there is nothing special about the ratio (6.11) (apart
obviously from the fact that it constitutes a universal, albeit
gauge-dependent, quantity).

VII. CONCLUSIONS

In this paper we have shown that the (R�) BFM naturally

emerges once the requirement of BRST and anti-BRST
invariance of the action is fulfilled: indeed, background
fields are unequivocally identified as the sources associated
to the operator s�s. Correspondingly the existence of the
anti-BRST symmetry implies background gauge invari-
ance (and, consequently, a background Ward identity) as
well as a (new) local antighost equation, which, when used
in conjunction with the local ghost equation enforced by
the BRST symmetry, completely determines the algebraic
structure of the ghost sector of the theory for any gauge-
fixing parameter. In addition, the background fields have
been shown to be an extremum of the background effective
action obtained by integrating out the quantum fields.

In hindsight, the correspondence

BRSTþ anti-BRST � BFM (7.1)

might not appear all that unexpected, as in the BFM
background sector the ghost trilinear vertex is proportional
to the sum of the ghost and antighost momentum while a
quartic vertex involving two background fields and a ghost
and an antighost (proportional to the metric tensor) is also
generated. Thus the ghost and antighost are treated in a
symmetric fashion, exactly as required by the BRST and
anti-BRST invariance. It should be stressed however that
Eq. (7.1) works only in the R� gauges (which is anyway the

only practically relevant case); choosing, e.g., a noncovar-
iant background gauge breaks irremediably the anti-BRST
symmetry of the theory.

In Chapter 15 of the second volume of his ‘‘Quantum
Theory of Fields’’ [50], Weinberg noticed: ‘‘The discovery
of invariance under an ‘anti-BRST’ symmetry showed that,

despite appearances, there is a similarity between the roles
of [the ghost field] !A and [the antighost field] !�A which
remains somewhat mysterious.’’
We hope that this paper helps to shed some light on the

mystery.
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APPENDIX: FUNCTIONAL IDENTITIES IN THE
PRESENCE OF SCALAR AND FERMIONIC

MATTER FIELDS

We give here the relevant functional identities in the
presence of scalar and fermionic matter fields. The ST
identity takes the form

Z
d4x

�
��

�A�a
�

��

�A
�
a
þ ��

�c�a
��

�ca
þ A#a

�

��

�Âa
�

þ c#a
��

�ĉa

þ �c#a
��

�b#a
þ ba

��

� �ca
þ ��

���y
��

��
� ��

���
��

��y

þ ��

� �c �
��

�c
� ��

�c �
��

� �c
��# ��

��̂
þ�#y ��

� ~�#y

� c # ��

�ĉ
þ �c # ��

� �̂c

�
¼ 0: (A1)

The anti-ST identity is

Z
d4x

�
��

�A#a
�

��

�A�
a
þ ��

�c#a

��

�ca
þ ��

� �c#a

��

� �ca
þ ��

�b#a

��

�ba

� A�a
�

��

�Âa
�

� c�a
��

�ĉa
þ ��

��#y
��

��
� ��

��#

��

��y

þ ��

� �c #

��

�c
� ��

�c #

��

� �c
þ�� ��

��̂
���y ��

� ~�#y

þ c � ��
�ĉ

� �c � ��

� �̂c

�
¼ 0: (A2)

Proceeding in the same way as for the derivation of
Eqs. (4.6) and (4.8), we obtain the local antighost equation

��

�ca
¼ �fabc

��

�bb
�cc � �

��

�b#a
þ D̂ab

�

��

�A#b
�

þDab
� A

��
b

þ fabcc�bc
c þ fabcĉb

��

�c#c
þ fabcb#b

��

� �c#c

þ i
��

��#
ta�̂þ i ~�#yta

��

��#y þ i
��

�c #
ta ĉ

þ i �̂c ta
��

� �c #
� i�yta�� � i��yta�

þ i �c tac � þ i �c �tac ; (A3)
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and the ghost equation

��

� �ca
¼ Dab

� A#�
b � D̂ab

�

��

�A�b
�

� fabcĉb
��

�c�c
þ fabcc#bc

c

þ fabc �c#b �c
c � fabcb#bb

c � i
��

��� t
a�̂

� i ~�#yta
��

���y � i
��

�c � t
a ĉ � i �̂c ta

��

� �c �

� i�yta�# � i�#yta�þ i �c tac # þ i �c #tac :

(A4)

Finally the b equation becomes

��

�ba
¼D̂ab

� ðA�
b � Â�

b Þ��ba�fabcb#b �c
c�c#a�fabcĉbc

c;

þ i�̂yta�� i�̂ta�yþ i �̂c tac � iĉ ta �c ; (A5)

while the background Ward identity yields

W a�¼�Dab
�

��

�Ab�

�D̂ab
�

��

�Âb�

þfabccc
��

�cb

þfabc �cc
��

� �cb
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��

�bb
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��

�c�b
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��
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��

� �c#b
þfabcA�

�c
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�b
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�c

��

�A#
�b
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��

�ĉb
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��

�b#b
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��

��
�i�yta

��

��yþitac
��

�c
�i �c ta

��

� �c
¼0:

(A6)
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