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Dynamics of an elementary quantum system outside a radiating Schwarzschild black hole
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We study, in the framework of open quantum systems, the dynamics of a radially polarizable two-level
atom in multipolar coupling to fluctuating vacuum electromagnetic fields which is placed at a fixed radial
distance outside a radiating Schwarzschild black hole, and we analyze the transition rates between atomic
energy levels and the steady state the atom is driven to. We find that the atom always thermalizes toward a
steady state at an effective temperature between zero and the Hawking temperature of the black hole.
Remarkably, the thermalization temperature depends on the transition frequency of the atom, so that
atoms with different transition frequencies essentially thermalize to different temperatures. This counter-
intuitive behavior is however in close analogy to what happens for a two-level atom in a stationary
environment out of thermal equilibrium near a dielectric body of certain geometry and dielectric
permittivity. Our results thereby suggest in principle a possible analogue system, using engineered
materials with certain desired dielectric properties to verify features of Hawking radiation in tabletop

experiments.
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In 1974, Hawking showed, in the framework of quantum
field theory in curved spacetime, that a black hole is not
completely black, but emits particles in a blackbody spec-
trum via a quantum instability [1]. This amazing discovery
has attracted widespread attention and since then extensive
work has been done trying to rederive and understand it in
a variety of different physical contexts [1-10]. On one
hand, the Hawking effect has been considered as a
Rosetta stone to relate quantum theory, general relativity,
and thermodynamics, and it is expected to be an indispens-
able part of a yet-to-be-found full theory of quantum
gravity; on the other hand, a direct experimental verifica-
tion of it, as well as other quantum effects unique to curved
spacetime which arise as a consequence of the combination
of general relativity and quantum theory, still remains
elusive. Yet, an indisputable detection of this amazing
effect has a far-reaching impact in many areas of physics
such as astrophysics [11], cosmology [12], and string
theory that intends to unite everything [13] and is becom-
ing one of the main experimental challenges of our time.
As aresult, there have been, in recent years, many attempts
to observe them in analogue systems' [15-19], such as the
Bose-Einstein condensate [17], optical fibers [18], and
superconducting transmission line [19]. Such efforts, pri-
marily driven by our curiosity and desire to meet the
challenge of experimentally observing the Hawking radia-
tion, are also expected to shed light on some unanswered
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ISee also attempts to find, instead, corrections to quantum
effects already existing in flat spacetime caused by the spacetime
curvature [10,14], as opposed to those which are unique to
curved spacetime.
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questions associated with Hawking’s original calculation
itself, such as the trans-Planckian problem [20].

The purpose of this paper is to study the dynamics of an
elementary two-level quantum system, e.g., a two-level
atom, coupled to fluctuating vacuum electromagnetic fields
outside a radiating Schwarzschild black hole, and to com-
pare it with a situation where the two-level atom is placed
near a dielectric body at finite temperature, so as to suggest
a possible electromagnetic system where features of the
Hawking radiation might be experimentally verified via the
dynamical behaviors of the two-level atom. Here, let us
note that a two-level system, despite its simplicity, has
been widely used as a prototype to understand and predict
many QED phenomena, such as the occurrence of finite
lifetimes, the appearance of coherences, Lamb shift, and
Rabi oscillations in atom-photon interactions [21], and it
has also become increasingly important in the arena of
quantum optics [22] and quantum information [23].
Moreover, two-level quantum systems have gone from
toy models used for an easy grasp of basic features of the
theories being studied to an experimental reality that can
be implemented in actual experiments due to rapid
progress in artificial atoms made from superconducting
circuits in recent years [24]. In fact, interesting experi-
ments using superconducting circuits to test fundamental
quantum effects, such as Lamb shift [25] and the dynami-
cal Casimir effect [26,27] have been reported.

The dynamical evolution of the atom is strongly con-
nected with quantum decoherence and dissipation induced
by the environment [28,29], which is taken as a bath of
fluctuating electromagnetic fields outside a radiating black
hole in the present paper, and so it can be dealt with in
the framework of open quantum systems by studying the
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reduced density matrix. One expects that the transition
rates between energy levels and the thermalization process
of the atom will be influenced by the presence of the
Hawking radiation and the spacetime curvature which
backscatters the fluctuating electromagnetic fields the
atom is coupled to. We will examine how the transition
rates or lifetimes are modified outside a black hole and
what effective temperature the thermalization brings the
atom to. We are particularly interested in finding out how
this compares to what happens to a two-level atom near a
dielectric body at finite temperature.

Our model is a radially polarizable two-level atom placed
at a radial distance r from a radiating Schwarzschild black
hole which is in multipolar coupling to the fluctuating
vacuum electromagnetic fields. A black hole that is radiating
into empty space is, as is well known, best characterized by
the Unruh vacuum which was first defined using a scalar
field [30], and recently the definition has been extended to
the electromagnetic case [31] based on the Gupta-Bleuler
quantization of free electromagnetic fields in a static spheri-
cally symmetric spacetime of arbitrary dimension in a
modified Feynman gauge [32]. So, the Hamiltonian of the
total system (the atom plus a bath of fluctuating electromag-
netic fields in the Unruh vacuum) takes the form H = H, +
Hy + H;. Here H, is the Hamiltonian of the two-level
atom, which, in general, can be written as H, =
32 | w,|nXn|, where |1) and |2) represent the ground
and excited states, and wy = w, — w; is the energy level
spacing of the atom. Hp is the Hamiltonian of the environ-
ment, in our case, a bath of fluctuating electromagnetic
fields in the Unruh vacuum. The explicit form of Hp is
not needed here. In the multipolar coupling scheme [33],
the interaction Hamiltonian H; takes the form H,(7) =
—D - E(x(7)), in which D is the electric dipole moment
of the atom, and E(x) the electric field strength. The space-
time metric of a Schwarzschild black hole reads ds*>=
(1—=2M/r)dt>* — (1 —=2M/r)"'dr* — r*(d6* + sin*0d ¢?).

Initially, the state of the whole system is characterized
by the total density matrix p,,, = p(0) ® pg, in which p(0)
is the initial reduced density matrix of the atom, and pp
describes the state of the environment. The evolution of the
total density matrix p,, in the frame of the atom satisfies
the quantum Liouville equation
J

- w))T (o —1 (wo)T
( (pzz(o)e T (@) +r(,<—w0°>)(1 — ¢ Tiwyr)
p(r) =

plz(o)efr,(mo)T/ZJriQT

where () is the energy level spacing of the two-level atom,
including the correction of the Lamb shift, and I',(wg) =
I'(wg) + I'(—wy) is the total transition rate. Equation (7)
shows the effects of decoherence and dissipation on the atom.
After evolving for a sufficiently long period of time 7 >
1/T',(wy), the atom will be thermalized to a steady state,
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dptot(T) _
dr

We define A;(w) = Y . _.—,I1(e)D;I1(€’), where the op-
erator Il(e) denotes the projection onto the eigenspace
belonging to the eigenvalue € of Hy and i € {r, 6, ¢}, the
Fourier transform G;;(w) of the field correlation function

(Ei(s)E;(0)),

—i[H(7), por(7)} (D

Gyl0)= [ dse E(E O @
and the one-side Fourier transform ;;(w)

yis(@) = jo " dseE () E,(0)). 3)

One can show that the reduced density matrix p governing
the dynamics of the atom which can be obtained by tracing
over the field degrees of freedom takes, in the limit of weak
coupling, the following form [28,34]:

L p(r) = ~ilHy + Hi, p(7)]
+ T(=ag)pul2)@l - 0L ()

+ o (p2l01] = 02010}, @

where the Lamb shift Hamiltonian

Hys = Z Z l(% Gij(w) — yl-j(a))>AlT(w)Aj(w), 5)

w ij

pi; = (ilplj), and I'(w() and I'(—w,) are the spontaneous
emission and excitation rates, which, respectively, take the
form

[wy) = zgij(wo)<2|Di|1><1|Dj|2>,
b ()
[(—w) = ZGij(_w0)<1|Di|2><2|Dj|1>-

Then the time-dependent reduced density matrix of the atom
can be worked out as

pzl(o)e—r,(a)o)’r/2—iﬂﬂ'
T (wo)r 1 T(wy) —T(wo)T ) @)
p11(0)e™ 0T + LS (1 — e e0)T)
|
1 I'—wy) 0
p(7) = ° : 8)
I (wg) 0 F(wo)

Now let us analyze the behavior of the transition rates,
I'(wg), I'(— ), and the steady state the atom thermalizes
to. To this end, we need the field correlation function
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(E;(s)E;(0)). Notice that we have, for simplicity, assumed
the atom to be radially polarizable, so only the component
with i = j = r contributes to the summation in Eq. (6).
The Wightman function of the radial component of the
electric fields in the Unruh vacuum is given by [31]

<0|E<x>E<x'>|o>—— f dowe 1Y, (6, )1
[1"?#)'/ o)k 0.1

€))

where k = 1/4M is the surface gravity of the black hole,
and 6(A) is the step function. So, the Fourier transform of
the Wightman function (9) with respect to the proper time is

G0 = [ M OIE WE, ()0
=T+ 1 d0EwIR O E

|R1()\\/800, 2 10
1 — e—277)\/:<, (10)

in which «, = //2e0. R/(w, 1), R/(w,r) in the above
equations are the radial functions of the first class of
physical modes which satisfy

1 d[u-—mwﬁ) (R (0.0)]

w2 l(l + l) (n)

+ - R (w,r) =0, (11

[I—ZM/V r? ] R (I
with n =«, — labeling the modes incoming from the past
null infinity and those outgoing from the past horizon,
respectively (see Ref. [32] for details). If we rewrite the
radial function as
|

() = g3 S+ D@L+ DIT (o yEm)P
r— 2M: :
ag(wg) =
ap(wy) =
T anton) = S+ D2+ DIT o0 yEP

So, the transition rates of the atom are position dependent
since a and ng are both functions of » and this variation
with the position is a reflection of the physical characters of
the black hole. To be specific, the transition rates are
determined by the coefficients az(w), ag(w) reflecting
how propagation of the field modes is affected by the
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JIL+1) goi')’l)(r)
w2
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R (w,r) =

then Eq. (11) becomes
2
[+ o= (1 -2 et 0. ay
r

dr? r

where r, = r + 2M1In(r/2M — 1) is the Regge-Wheeler
tortoise coordinate. This equation is exactly the standard
spin-1 Regge-Wheeler equation for electromagnetic
perturbations of a Schwarzschild black hole.

Let us now note that the transition rates of the atom
[Eq. (6)] can also be cast into the following form:

INw
(F(( 0 )= To(wo)(@g(wy) + ap(w))

— )
% ( 1 + neg(wo) ) (14)

”eff(wo)

where Ty(wq) = w3l(1|D[2)|*/37 is the spontaneous
emission rate in flat spacetime, and we have defined

3
ap(wy) = gOOZ (21 + DIR (0o /500 NP (15)

apl@p) = 3“”002(21 + VIR (0ozm NP, (16)

which are associated with the incoming (environment) and

outgoing (black hole) field modes, and an effective photon

number

ag(wo)n(wy, k,/2)
ap(wp) + ag(wy)

(e®/T —1)71,

negr(wg) = (17)

with n(w, T) =
regions, we have

In the two asymptotic

ﬁzl(l + D@L+ DL+ R (0080)I* + Ri(woy/Fap)e 2B + R} (wg/Gop)eX /B ],
]

(18)

S0l 421(1 + DRI+ D1+ |'R1(w0\/go )7 + R (w0/F0)e2“VE0" + R} (w0 /Zop)e 2o ],

(19)

curved geometry of the spacetime, and the photon number
n(w, k,/2) characterizing the Hawking radiation of the
black hole. The result takes the same form as that of a
two-level atom in a stationary environment out of thermal
equilibrium formed by a body of arbitrary geometry and
dielectric permittivity at temperature 7, surrounded by
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walls at a different temperature Ty, [35], where the coef-
ficients ay(wg), ay(wo) determined by the reflection and
transmission scattering operators exhibit the modification
of the fields caused by the body, and the effective photon
number ng;(wy) is a weighted average of the radiation
contributed by the body, as well as the surrounding walls.
So the transition rates of the atom are modified by the
presence of a material body because of the changes of
the local fields caused both by the emission of the fields
and scattering of those coming from the environment by
the body. So our case is analogous to the situation of a zero
wall temperature, where the effects of the Hawking radia-
tion and the spacetime backscattering of vacuum electro-
magnetic fields are mimicked by the thermal radiation and
the scattering of the fields caused by the material body.
Using the properties of the radial functions [Eqgs. (59)
and (60) of Ref. [31]], one can show that az(w,), az(w),
i.e., Egs. (15) and (16), take the following approximate
forms in the asymptotic regions:
|

Fo(wo)[<1 + W)
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{r—> 2M: ap(wg) = f(wy, 2M), ap(wy) =1 + %,
0

r— o0 ag(wg) = 1, ap(wy) = f(wy, 1),

(20)
where f(w, r) is given by
3
flor) = o5 YU+ DL DIT (0Bl 21
1
and
M M
= = 22
4o N/ r’J1—2M/r (22

is the proper acceleration of the static atom at position r.
With the help of Egs. (14) and (20), we obtain, in the two
asymptotic regions, the transition rates of the atom

1+ %) + flwo, 2M)], r—2M,
0

1ﬂo(wo)l:l + (1 + W)f(wo, F):I, r— o,
[
Fo(wo) <1 + m) r— M o — e Ha/Te 25)
2wy /Ky wZ y > 0 = — —,
1—‘(_(‘)0) ~{° Ve 0 24) Tr[e HA/Tcll]

(o)

mf((uo, l"), r — 00,

The appearance of a Planckian factor in the transition rates
suggests that there is thermal radiation from the black hole,
and it is this thermal radiation that leads to a nonzero
spontaneous excitation rate I'(—wg). In the vicinity of the
horizon, there is an additional term proportional to a” in
the transition rates as compared to the scalar field case [7].
Such a term is also present in the spontaneous excitation
[36] and energy level shifts [37] of an accelerated atom
coupled with electromagnetic fluctuations in the Minkowski
vacuum. Far away from the black hole, the thermal terms in
the transition rates are modified by a grey-body factor
f(wq, r) which vanishes at spatial infinity. This indicates
that the thermal flux is backscattered by the spacetime
curvature. The grey-body factor also exists in the sponta-
neous emission rate near the horizon, which is the contribu-
tion of the vacuum fluctuations of the ingoing modes.
However, such a term is absent in the spontaneous excitation
rate since it cancels out with the corresponding radiation
reaction parts [31].

As the spontaneous transition process persists for a
sufficiently long time (7 > I';'!), the ratio of population
of the atoms in the ground and excited states reaches a
steady value, and the equilibrium state of the atom [Eq. (8)]
can be described as a mixed thermal state

with an effective temperature T (wg) = wo/In(1 +
1/nq4(wg)). Therefore, regardless of its initial state, a
static two-level atom outside the black hole is asymptoti-
cally driven to a thermal state at temperature 7.
Remarkably, here the thermalization temperature is de-
pendent on the transition frequency w, of the atom,
which implies that atoms with different transition fre-
quencies thermalize to different temperatures. This may
seem surprising and pose a conceptual challenge to our
common physical understanding at first glance. It is,
however, in close analogy to what happens for a two-
level atom in a stationary environment out of thermal
equilibrium recently studied in Ref. [35]. This is a
reflection of the fact that the situation we are considering
is a black hole radiating into empty space, which exhib-
its a nonequilibrium nature.

Now we examine how the effective temperature T ()
varies with the radial position 7. It can be inferred from
Egs. (17) and (20) that the effective temperature is related to
the grey-body factor f(w, r) in the asymptotic regions.
Although the explicit form is unknown, we can analyze its
behaviors in the limit of low and high frequencies. At low
frequencies Mo < 1, the transmission coefficient takes the

following form: | T (w)|> = 4[%]2(2Mw)21+2 [38],

then f(w, r) = g3,M*/r*. At high frequencies Mw > 1,
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we can apply the geometrical optics approximation
T (@ /8o0) ~ 0(V2TMw Jgoo — 1) [39]; thus, we also
have f(w, r) « g3,M*/r*. In both cases, only the leading
term is kept in the summation. Here let us note that, since
the frequency appearing in the transmission coefficient is
multiplied by a factor ,/gg in the definition of the grey-
body factor Eq. (21), the low frequency condition Mo < 1
will always be fulfilled for atoms placed close enough
to the horizon. Meanwhile, for a given frequency, the
grey-body factor always tends to zero as long as the
atom is placed far enough from the black hole, since it
decays with r as 1/r*. So, we conclude that the grey-body
factor f(w, r) vanishes in both asymptotic regions and is
independent of the transition frequency wq. Therefore, for
a given atom, the effective temperature tends to «,/2
when the atom is placed close to the horizon, and to zero
when the atom is placed infinitely far from the black hole.
For an arbitrary position r, we can see from Eq. (17) and
the expression for T (w() that the effective temperature of
the atom always lies between zero and «, /27, and more-
over it depends on the transition frequency wg. The situ-
ation is similar to that of an atom in front of a dielectric
slab in a stationary environment out of thermal equilibrium
[35]. When the atom is placed close to the slab, the
effective temperature tends to the temperature of the slab.
For the atom placed far from the slab, the effective tem-
perature is generally dependent on the temperature and the
geometric and dielectric properties of the slab. However, if
the slab is free of energy dissipation, i.e., its permittivity is
real, then the effective temperature tends to the temperature
of the environment. So, the dynamical behaviors of a two-
level atom outside a radiating black hole, such as its life-
time and the steady state it thermalizes to, closely resemble
those near a dielectric body with desired real permittivity
in a stationary environment out of thermal equilibrium,
and this in principle opens up a possibility of verifying
Hawking radiation of black holes in experiment, using
artificially engineered dielectric materials.

Let us now discuss in detail the possibility of testing
our results in a simulated fashion. One may choose to test
the behaviors of atoms outside a black hole at a radial
position r = ry. Here ry denotes a position close to the
horizon. A dielectric body kept at a temperature /2m
in vacuum with its ambient temperature close to zero
forms the desired analogue stationary environment out
of thermal equilibrium. With the geometry and dielectric
permittivity appropriately designed, the peculiar transition
frequency dependence of the dynamical behaviors of two-
level atoms at a radial distance r = r( outside the black
hole can then be simulated by those at a position z = z,
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from the dielectric body. Superconducting qubits can be
applied as frequency-tunable artificial two-level atoms,
since unlike real atoms, their characteristics can be
tailored at will. In practice, the designing of such meta-
materials may not be an easy task, since it is difficult to
deduce both the geometric and dielectric properties re-
quired to generate dynamical behaviors of a nearby atom
which are the same as that of an atom outside a radiating
black hole. However, the deduction of the dielectric prop-
erties for a body with certain geometry may be possible.
For example, in the case of a slab, as studied in Ref. [35],
the coefficients «,;, ay which directly relate to the
dynamics of the atom can be derived as functions of the
dielectric permittivity e(w). Therefore, the behaviors of
atoms with different transition frequencies at a certain
distance outside a black hole can be demonstrated by
those in front of a dielectric body of certain geometry,
e.g., a slab, made of metamaterials with a required
dispersion relation &(w).

In summary, we have studied the dynamical evolution
of a radially polarizable two-level atom coupled with
quantum vacuum electromagnetic fields at a fixed radial
distance outside a radiating Schwarzschild black hole, and
calculated the atomic transition rates and the effective
temperature of the steady state. We have found that, re-
gardless of its initial state, the atom will be asymptotically
driven to a thermal state at an effective temperature which
is dependent on the transition frequency of the atom. The
dynamical behaviors of the atom, such as its lifetimes and
the thermalization process, are similar to those near a
dielectric body in a stationary environment out of thermal
equilibrium. Our results therefore suggest, in principle, a
possibility to verify the peculiar features of the Hawking
radiation by observing the dynamical behaviors we find
here for a two-level atom in tabletop experiments using
engineered materials with desired dielectric properties and
superconducting circuits for an experimental implementa-
tion of two-level atoms.
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