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We construct a fermion system in a multi-kink-antikink soliton background, and present in an explicit

form all its trapped configurations (bound state solutions) as well as scattering states. This is achieved by

exploiting an exotic N ¼ 4 centrally extended nonlinear supersymmetry of completely isospectral pairs of

reflectionless Schrödinger systems with potentials to be n-soliton solutions for the Korteweg–de Vries

equation. The obtained reflectionless Dirac system with a position-dependent mass is shown to possess its

own exotic nonlinear supersymmetry associated with the matrix Lax-Novikov operator being a Darboux-

dressed momentum. In the process, we get an algebraic recursive representation for the multi-kink-

antikink backgrounds, and establish their relation to the the modified Korteweg–de Vries equation.

We also indicate how the results can be related to the physics of self-consistent condensates based on the

Bogoliubov–de Gennes equations.
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I. INTRODUCTION AND SUMMARY

Fermion systems in soliton backgrounds describe a
variety of phenomena in particle, condensed matter, and
atomic physics. The applications include, inter alia, had-
ron physics, charge and fermion number fractionalization,
conducting polymers, superfluidity, superconductivity, and
Bose-Einstein condensation [1–10]. The properties of such
systems are inherently related to different aspects of sym-
metries of the very diverse nature. Much attention to
investigation of fermions in soliton backgrounds was given
in the context of supersymmetry [11–17].

Classical solitons and quantum reflectionless systems
are known to be intimately related [18,19]. Reflectionless
potentials associated with the soliton solutions to the
Korteweg–de Vries (KdV) equation can be constructed,
particularly, by applying Darboux-Crum transformations
to a free Schrödinger particle [20]. In this picture there
appear two distinct differential operators of the even and
odd orders, which intertwine a reflectionless Hamiltonian
supporting n bound states with the Schrödinger
Hamiltonian of the same n-soliton type [21]. Any pair of
n-soliton Schrödinger systems can be described then by an
exotic nonlinear supersymmetry. This is generated not by
two, as it should be expected for an ordinary supersym-
metric pair of Hamiltonians, but by four higher-order
differential supercharges alongside with the two bosonic
integrals having the nature of the Lax-Novikov operators
of the KdV hierarchy. Such exotic supersymmetry was
studied by us recently in [21], where we found that its
general structure, particularly the differential order of the
irreducible supercharges, depends essentially on a relation

between the scattering data of the partner Hamiltonian
operators.
In this paper we show that, within a family of completely

isospectral pairs of the n-soliton systems, there is a peculiar
subset for which two of the four supercharges are the first
ordermatrix differential operators, while the other two have
the differential order 2n. The first order supercharges are
composed from differential operators intertwining the iso-
spectral reflectionless partners directly. The supersymmetry
associated with them is spontaneously broken, and the scale
of the breaking is correlated with a relative shift of soliton
phases of the partner potentials. Another pair of super-
charges is constructed from the operators that intertwine
the Hamiltonians via a virtual free particle Schrödinger
system. One of the two nontrivial bosonic integrals, which
are the Lax-Novikov differential operators of order 2nþ 1,
transmutes, in comparison with a general case of n-soliton
paired systems, into a central charge of the nonlinear super-
algebra. The condition of commutativity of the central
charge with any of the two first order supercharges can be
interpreted as a stationary equation of the hierarchy of the
modified Korteweg–de Vries (mKdV) system represented
according to the Zakharov-Shabat–Ablowitz-Kaup-Newell-
Segur (ZS-AKNS) [22,23] 2� 2 matrix scheme. The sec-
ond nontrivial bosonic integral generates a kind of rotation
between the two types of supercharges.
A remarkable possibility for alternative interpretation of

one of the two first order supercharges as a Hamiltonian of
a Dirac particle with a position-dependent mass provides
us then with a fermion system in a multi-kink-antikink
soliton background. All the scattering and bound states
(trapped configurations) of the fermion system are con-
structed by Darboux dressing of the free massive Dirac
particle. The obtained reflectionless Dirac system is shown
to possess its own exotic nonlinear supersymmetry that
effectively encodes its spectral peculiarities. In the process,
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we get a recursive representation for the multi-kink-antikink
backgrounds. We also indicate how to relate the results to
the physics of self-consistent condensates based on the
Bogoliubov–de Gennes (BdG) equations. In this context,
the multi-kink-antikink backgrounds we construct and study
correspond to a generalization of the fermion-antifermion
bound state solutions of Dashen, Hasslacher, and Neveu [2]
for the Gross-Neveu model [1]. In the past years, investiga-
tion of self-consistent solutions to the Gross-Neveu model
and physics related to them experiences a renovation of
interest [8,9,24–29].

The paper is organized as follows. In the next section
we summarize shortly the general properties of the
Schrödinger n-soliton potentials constructed by the inverse
scattering method, and their relation to the KdV evolution
equation and to the stationary KdV hierarchy. Then we
discuss a construction of the corresponding reflectionless
n-soliton systems from a free Schrödinger particle by
means of the Darboux-Crum transformations, and show a
relation of them to the nonlinear Schrödinger equation. We
also obtain a recursive representation for the multisoliton
potentials, and describe briefly how the exotic supersym-
metric structure of a general form emerges in the extended
quantum systems composed from the pairs of reflectionless
n-soliton Schrödinger Hamiltonians. In Sec. III we prove
that for any value of n, there is a very special (2nþ 1)-
parametric 2� 2matrix quantum system given by a pair of
completely isospectral n-soliton Schrödinger partners
intertwined by the first order differential operators. We
also present there the explicit form of the superalgebra of
the corresponding exotic N ¼ 4 centrally extended nonlin-
ear supersymmetry. We reinterpret the obtained special class
of supersymmetric systems in Sec. IV by considering one of
its two first order supercharges as a Dirac Hamiltonian. The
obtained fermion system in a multi-kink-antikink back-
ground is associated then with the mKdV evolution system
presented in the ZS-AKNS 2� 2 matrix scheme. In Sec. V
the reflectionless fermion system is treated as a Darboux-
dressed form of the free massive Dirac particle, and its own
exotic nonlinear supersymmetry is identified. Section VI is
devoted to the concluding comments, where we discuss
briefly some further interesting developments and applica-
tions of the results. We indicate, particularly, how they can
be related to the physics of self-consistent condensates with
both zero and nonzero values of a topological charge. In two
Appendices we summarize shortly some aspects of the
Dabroux and Miura transformations, which are used in the
main text.

II. REFLECTIONLESS SCHRÖDINGER
POTENTIALS AND EXOTIC SUPERSYMMETRY

We review here briefly some properties of the soliton
solutions to the KdV equation, and identify the exotic
nonlinear supersymmetric structure of the extended sys-
tems composed from the reflectionless pairs of n-soliton

Schrödinger Hamiltonians. In the process we observe a
relation of the bound state eigenvalue problem for the
n-soliton potential with the coupled system of nonlinear
Schrödinger equations, and obtain a recursive representa-
tion for multisoliton potentials.

A. Reflectionless potentials and the KdV

There exists a variety of possible ways to construct
reflectionless quantum mechanical systems. This can be
done, particularly, by the inverse scattering method
[18,19], by Bäcklund [30,31], and by Darboux-Crum [20]
transformations. In the inverse scattering method, a reflec-
tionless potential supporting n bound states can be presented
in a form [18,19],

UnðxÞ ¼ �2
d

dx
Knðx; xÞ; Knðx; xÞ ¼ d

dx
ln ½detK�:

(2.1)

Here K is the n� n matrix with elements

Kij ¼ �ij þ
�i�j

�i þ �j

e�ð�iþ�jÞx (2.2)

given in terms of 2n real parameters �j and �j, j ¼
1; . . . ; n, �n > �n�1 > � � ��1 > 0, �j > 0. Parameters �j

correspond to the energies of the bound states, Ej ¼ ��2
j ,

and �j are associated with their normalization constants.

Reflectionless potential UnðxÞ satisfies an ordinary nonlin-
ear differential equation of order 2nþ 1, that is a so-called
Novikov equation, or a stationary equation of the KdV
hierarchy [32].
Introducing a dependence of �j on an evolution parame-

ter t in the form �jðtÞ ¼ �jð0Þe4�3
j t, we obtain a function

Unðx; tÞ, which describes an n-soliton solution to the KdV
equation [18],

ut � 6uux þ uxxx ¼ 0;

where ut ¼ @
@t u, ux ¼ @

@x u. For large positive and negative

values of t, theUnðx; tÞ decouples into a linear sum of the n
one-soliton solutions of the amplitudes 2�2

j , which move to

the right at the speeds vj ¼ 4�2
j ,

Unðx; tÞ ¼ �Xn
j¼1

2�2
jsech

2�jðx� 4�2
j t� x�0jÞ

as t ! �1:
(2.3)

The phases, or centers x�0j of solitons are expressed in terms

of the�jð0Þ and scaling parameters �j. At finite values of t,

the Unðx; tÞ describes a nonlinear interaction of n solitons.
As a result of the soliton scattering, the phases suffer
certain displacements, xþ0j � x�0j ¼ �x0jð�Þ, which depend
only on the scaling parameters [33].
A choice of �jðtÞ ¼ �jð0Þ exp ðP2‘þ1ð�jÞtÞ instead of

�jðtÞ ¼ �jð0Þe4�3
j t, where P2‘þ1ð�Þ is an odd polynomial
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P2‘þ1ð�Þ ¼ a‘�
2‘þ1 þ a‘�1�

2‘�1 þ � � � þ a1�
3 þ a0�

given in terms of a set of constants a0; . . . ; a‘, generates an
n-soliton potential which will evolve in time in accordance
with some equation of the KdV hierarchy.

B. Darboux-Crum transformations, reflectionless
potentials, and nonlinear Schrödinger equation

Another representation of the soliton systems, which is
based on the Darboux transformations, is more convenient
for the supersymmetric structure we are going to study.
The Schrödinger Hamiltonian Hn ¼ H0 þUnðxÞ of a re-
flectionless system with n bound states can be obtained by
applying the Darboux-Crum transformation, which is a
composition of n Darboux transformations, to a free par-

ticle described byH0 ¼ � d2

dx2
. A reflectionless potential in

this case is represented as

UnðxÞ ¼ �2
d2

dx2
lnWnðxÞ (2.4)

in terms of the Wronskian WnðxÞ ¼ Wðc 1; . . . ; c nÞ,
Wðf1; . . . ; fnÞ ¼ detWij, Wij ¼ di�1

dxi�1 fj, which is con-

structed from nonphysical, exponentially divergent at in-
finity eigenfunctions c j of the free particle Hamiltonian,

H0c j ¼ ��2
jc j,

c jðx;�j; �jÞ ¼
� cosh�jðxþ �jÞ; j ¼ odd

sinh�jðxþ �jÞ; j ¼ even:
(2.5)

The scaling parameters �j, 0<�1<�2<���<�j�1<�n,

are the same here as in (2.2), while the translation parame-
ters �j, j ¼ 1; . . . ; n, may take arbitrary real values, and can

be related with the parameters �j in representations (2.1)

and (2.2). The subsets of wave functions (2.5) with even and
odd values of index j can be transformed mutually into each
other by a complex shift of the translation parameters,
cosh�jðxþ �j þ i �

2�j
Þ ¼ i sinh�jðxþ �jÞ, or by a differ-

entiation. A specific choice of the free particle Hamiltonian
eigenstates in (2.5) guarantees that the Wronskian WnðxÞ
is a nodeless function that generates a nontrivial,
2n-parametric nonsingular potential (2.4) [21], Un ¼
Unðx;�1; . . . ; �n; �1; . . . ; �nÞ. The Wronskian here can be
related to the determinant in representations (2.1) and (2.2),
WnðxÞ ¼ Ce�x detK, where C ¼ Cð�; �Þ and � ¼ �ð�; �Þ
are some constants.

According to the Darboux-Crum construction, the
eigenstates c ½n; �� of the Schrödinger operator Hn,
Hnc ½n; �� ¼ �c ½n; ��, are obtained from the free particle
eigenfunctions c ½0; ��, H0c ½0; �� ¼ �c ½0; ��,

c ½n;�� ¼ Wðc 1; . . . ; c n; c ½0;��Þ
Wðc 1; . . . ; c nÞ : (2.6)

Unnormalized physical bound states c ½n;��2
j �, j ¼

1; . . . ; n are constructed, particularly, from the nonphysical
free particle eigenfunctions,

c ½0;��2
j �ðxÞ � c 0

jðx;�j; �jÞ

¼
� sinh�jðxþ �jÞ; j ¼ odd

cosh�jðxþ �jÞ; j ¼ even:
(2.7)

Functions (2.7) form a set complementary to (2.5),
H0c

0
j ¼ ��2

jc
0
j. As it was noted, the set (2.7) can be

related to (2.5) by a simple complex shift of translation
parameters, or by a differentiation,

c 0
jðx;�j; �jÞ ¼ 1

�j

d

dx
c jðx;�j; �jÞ: (2.8)

Relation (2.6) can be presented in an equivalent form,

c ½n;�� ¼ Anc ½0;��; An ¼ AnAn�1 . . .A1; (2.9)

which will play a key role in the further analysis. Here the
first order differential operators Aj are defined recursively

in terms of the functions (2.5),

A1 ¼ c 1

d

dx

1

c 1

¼ d

dx
� ðln c 1Þx; (2.10)

Aj ¼ ðAj�1c jÞ ddx
1

ðAj�1c jÞ
¼ d

dx
� ðln ðAj�1c jÞÞx; j ¼ 2; . . . : (2.11)

Indeed, the equivalence of (2.9) to (2.6) for n ¼ 1, 2 is
checked directly. Assuming that

Anc ½0;�� ¼ Wðc 1; . . . ; c n; c ½0;��Þ
Wðc 1; . . . ; c nÞ (2.12)

is valid for n > 2, Eqs. (2.11) and (2.12) give

Anþ1c ½0;�� ¼ Anþ1ðAnc ½0;��Þ
¼ ðAnc nþ1Þ ddx

�
1

ðAnc nþ1ÞAnc ½0;��
�
;

(2.13)

and

Anþ1c ½0;�� ¼ Wð1; . . . ; n; nþ 1Þ
Wð1; . . . ; nÞ

�
Wð1; . . . ; nÞ

Wð1; . . . ; n; nþ 1Þ
�Wð1; . . . ; n; 0Þ

Wð1; . . . ; nÞ
�
x

¼ WðWð1; . . . ; n; nþ 1Þ;Wð1; . . . ; n; 0ÞÞ
Wð1; . . . ; nÞWð1; . . . ; n; nþ 1Þ ;

(2.14)

where Wð1;...;n;nþ1Þ¼Wðc 1;...;c nþ1Þ, Wð1;...;n;0Þ¼
Wðc 1;...;c n;c ½0;��Þ. The Wronskian identity
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Wðf1; . . . ; fn; g; hÞWðf1; . . . ; fnÞ
¼ WðWðf1; . . . ; fn; gÞ;Wðf1; . . . ; fn; hÞÞ; (2.15)

which is true for any choice of the functions f1; . . . ; fn, g
and h [34], allows us to represent the fraction (2.14) in the
form of the right-hand side of (2.12) with n changed for
nþ 1. This proves the equivalence of (2.9) to (2.6) by
induction.

Definition (2.11) and relation (2.12) provide also the
following alternative representation for the operator An:

An ¼ d

dx
� ðlnAn�1c nÞx

¼ d

dx
�
�
ln

Wn

Wn�1

�
x

� d

dx
þW n; (2.16)

where

W n ¼ �n ��n�1; �n ¼ �ðlnWnÞx: (2.17)

Then (2.17) together with Eq. (2.4) gives one more useful
representation for the n-soliton potential,

Un ¼ 2�nx: (2.18)

Having in mind this relation, we call �n a prepotential of
the n-soliton system. Coherently with Eqs. (2.12) and
(2.10), in (2.16) and (2.17) we assume W0 ¼ 1, �0 ¼ 0,
V0 ¼ 0, and have W1 ¼ cosh�1ðxþ �1Þ,

�1 ¼ ��1 tanh�1ðxþ �1Þ;

U1 ¼ � 2�2
1

cosh 2�1ðxþ �1Þ
:

(2.19)

As follows from (2.11), the first order differential opera-
tor Aj annihilates a nodeless nonphysical eigenfunction

Aj�1c j of Hj�1 of eigenvalue ��2
j . On the other hand,

Ay
j annihilates a function 1=ðAj�1c jÞ, which is a physical

bound (ground) state ofHj of energy��2
j . This means that

Un and Un�1 are related by the Darboux transformation,
see Appendix A. Explicitly, we have the relations

Un ¼ W 2
n þW nx � �2

n;

Un�1 ¼ W 2
n �W nx � �2

n;
(2.20)

AnA
y
n ¼ Hn þ �2

n; Ay
nAn ¼ Hn�1 þ �2

n: (2.21)

In correspondence with (2.21), the first order Darboux

generators An and A
y
n intertwine the n- and (n� 1)-soliton

systems,

AnHn�1 ¼ HnAn; Ay
nHn ¼ Hn�1A

y
n ;

and relate their eigenstates,

c ½n;�� ¼ Anc ½n� 1;��;
Ay
nc ½n;�� ¼ ð�þ �2

nÞc ½n� 1;��;

cf. (2.9). The order n differential operators An and Ay
n

intertwine, on the other hand, Hn with a free particle
Hamiltonian H0,

AnH0 ¼ HnAn; Ay
nHn ¼ H0A

y
n : (2.22)

As follows from (2.9), the free particle’s plane wave
states eikx are mapped into the eigenfunctions of Hn of
the form c nðx; kÞ ¼ Pnðx; kÞeikx, where Pn is a polynomial
of order n in k, Hnc nðx; kÞ ¼ k2c nðx; kÞ. This means that
UnðxÞ is a Bargmann-Kay-Moses reflectionless potential
[19], for which the transmission coefficient can be easily

computed. For functions (2.5) we have c jðxÞ � e��jðxþ�jÞ

as x ! �1. Then we find that Aj ! d
dx � �j as x ! �1,

and in these limits Pn ! Pn� ¼ Q
n
j¼1ðik� �jÞ. For the

transmission amplitude tðkÞ ¼ Pnþ=Pn� this gives

tðkÞ ¼ Yn
j¼1

�
kþ i�j

k� i�j

�
: (2.23)

A class of reflectionless systems we consider turns out
also to be related naturally to another completely inte-
grable system, namely, to the nonlinear Schrödinger
equation.
To see this, we first show that the reflectionless potential

UnðxÞ can be presented in the form

UnðxÞ ¼ �4
Xn
j¼1

�j ĉ
2
n;jðxÞ (2.24)

in terms of the normalized bound states of the
Hamiltonian Hn,

ĉ n;jðxÞ ¼ N �1
j c ½n;��2

j �ðxÞ;

N 2
j ¼ 2�j

Yn
‘¼1;‘�j

j�2
‘ � �2

j j;
Z þ1

�1
ĉ 2

n;jðxÞdx ¼ 1; (2.25)

where it is assumed that at n ¼ 1 the product in expression

for N 2
1 is reduced to 1. Using relation d

dxWn ¼P
n
j¼1 Wðc 1; . . . ;

dc j

dx ; . . . ; c nÞ, we can rewrite Eq. (2.4) in

a form UnðxÞ ¼ �2
P

n
j¼1 WðWn;Wðc 1; . . . ;

dc j

dx ; . . . ;

c nÞÞ=W2
n. The Wronskian identity (2.15) allows us to

represent the potential equivalently as
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UnðxÞ ¼ �2
Xn
j¼1

Wðc 1; . . . ; c j;
dc j

dx ; . . . ; c nÞWðc 1; . . . ; c j�1; c jþ1; . . . ; c nÞ
W2

n

: (2.26)

A relation

W
�
c 1; . . . ; c j;

dc j

dx
; . . . ; c n

�

¼ 1

2
�jN 2

jWðc 1; . . . ; c j�1; c jþ1; . . . ; c nÞ; (2.27)

where N 2
j is defined in (2.25), follows from basic identi-

ties of determinants. Using this last relation together with

Eqs. (2.6), (2.7), and (2.8), we rewrite (2.26) in terms of
unnormalized bound states of Hn,

UnðxÞ ¼ �4
Xn
j¼1

�jN �2
j c 2½n;��2

j �ðxÞ: (2.28)

Employing once more the identity (2.15) we get

d

dx

�Wðc 1; . . . ;
dc j

dx ; . . . ; c nÞ
Wn

�
¼ Wðc 1; . . . ; c j�1; c jþ1; . . . ; c n; c j;

dc j

dx ÞWðc 1; . . . ; c j�1; c jþ1; . . . ; c nÞ
W2

n

: (2.29)

Equation (2.27) gives us then d
dxðWðc 1;...;

dc j

dx ;...;c nÞ=
WnÞ¼2�jN �2

j c 2½n;��2
j �ðxÞ. Integrating this equality

from �1 to þ1, and using relations lim x!�1Wðc 1; . . . ;
dc j

dx ; . . . ; c nÞ=Wn ¼ ��j, we reproduce (2.25), and
present (2.28) in the form (2.24).

Because of relation (2.24), the equations Hn ĉ n;j ¼
��2

j ĉ n;j for n normalized bound states can be presented

in a form of the system of n coupled nonlinear ordinary
differential equations:

�ĉ n;jxx � 4
Xn
i¼1

�i ĉ
2
n;i ĉ n;j þ �2

j ĉ n;j ¼ 0: (2.30)

Introduce an evolution parameter t, and define qjðx; tÞ ¼
exp ði�2

j tÞĉ n;jðxÞ. Then we find that these functions satisfy
a system of n coupled nonlinear Schrödinger equations,

iqjt ¼ �qjxx � 4
Xn
i¼1

�ijqij2qj: (2.31)

In the simplest case n ¼ 1, this reduces to a focusing case
of the nonlinear Schrödinger equation,

iqt þ qxx þ 4�jqj2q ¼ 0: (2.32)

So, n bound state solutions to the linear time-dependent
quantum Schrödinger equation for reflectionless time-
independent n-soliton potential provide also a solution to
the system of n coupled nonlinear Schrödinger equations.

C. Recursions for n-soliton prepotentials and potentials

Here we obtain a recursion representation for n-soliton
potentials of a general form. This will allow us in what
follows to get also a recursion representation for multi-
kink-antikink backgrounds, which are reflectionless Dirac
potentials.

Let us take a sum of two relations in (2.20) with making
use of (2.17),

Un þUn�1 ¼ 2ð�n ��n�1Þ2 � 2�2
n: (2.33)

Changing in (2.33) n for j, we multiply both sides of the
equality by ð�1Þn�j, and sum up from j ¼ 1 to j ¼ n. As a
result we obtain

1

2
Un ¼ �2

n þ
Xn
j¼1

ð�1Þn�jþ1ð2�j�j�1 þ �2
j Þ: (2.34)

Assume now that the chain of reflectionless potential Uj

with j ¼ 1 . . . ; n is constructed by using the same chain of
states (2.5) in which, however, the last two states, c n�1 and
c n, are permuted. In such a way we get a chain of func-
tions �1ð1Þ; . . . , �n�2ð1; . . . ; n� 2Þ, �n�1ð1; . . . ; n�
2; nÞ, �nð1; . . . ; n� 2; n; n� 1Þ. Since Wð1; . . . ; n�
2; n; n� 1Þ ¼ �Wð1; . . . ; n� 2; n� 1; nÞ, we have
�nð1;...;n�2;n;n�1Þ¼�nð1;...;n�2;n�1;nÞ, and in the
indicated chain of prepotentials only the penultimate
term �n�1ð1; . . . ; n� 2; nÞ is different from the corre-
sponding term �n�1ð1; . . . ; n� 2; n� 1Þ in the initial,
nonpermuted chain. The same is valid for the correspond-
ing chain of potentials by virtue of relation (2.18).

Notice that �]
n�1 � �n�1ð1; . . . ; n� 2; nÞ and U]

n�1 �
Un�1ð1; . . . ; n� 2; nÞ are singular functions of x 2 R.
Particularly,

�]
1 ¼ �1ð2Þ ¼ ��2 coth�2ðxþ �2Þ;

U]
1 ¼ U1ð2Þ ¼ 2�2

2

sinh 2�2ðxþ �2Þ
:

(2.35)

Let us write the analog of relation (2.34) assuming that we
construct Un via the described chain with permuted two
last states,
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1

2
Un ¼ �2

n þ
Xn�2

j¼1

ð�1Þn�jþ1ð2�j�j�1 þ �2
j Þ

þ ð2�]
n�1�n�2 þ �2

nÞ � ð2�n�
]
n�1 þ �2

n�1Þ:
(2.36)

Subtracting (2.36) from (2.34), we get the equality

2�nð�]
n�1 ��n�1Þ þ 2�n�2ð�n�1 ��]

n�1Þ þ 2ð�2
n�1 �

�2
nÞ ¼ 0, which gives a recursive relation for the prepoten-

tials �n,

�n ¼ �n�2 þ �2
n�1 � �2

n

�n�1 ��n�1

; n 	 2: (2.37)

Equation (2.37) for the first two cases n ¼ 2, 3 gives

�2 ¼ �2ð1; 2Þ ¼ �2
1 � �2

2

�1ð1Þ ��1ð2Þ ;

�3 ¼ �3ð1; 2; 3Þ ¼ �1ð1Þ þ �2
2 � �2

3

�2ð1; 2Þ ��2ð1; 3Þ ;
(2.38)

and corresponding singular prepotentials are obtained from

these by changing the last arguments, �]
2 ¼ �2ð1; 3Þ,

�]
3 ¼ �3ð1; 2; 4Þ. Reflectionless n-soliton potential Un

with n 	 2 can be calculated now recursively, by employ-
ing Eqs. (2.18), (2.19), and (2.37),

Un ¼ Un�2 þ 2
d

dx

�
�2
n�1 � �2

n

�n�1 ��]
n�1

�
; n ¼ 2; . . . :

(2.39)

Particularly, for n ¼ 2, Eqs. (2.39), (2.19), and (2.35) give

U2 ¼ �2ð�2
2 � �2

1Þ
�

�2
1

cosh 2�1

þ �2
2

sinh 2�2

�
� ð�2 coth�2 � �1 tanh�1Þ�2; (2.40)

where �j ¼ �jðxþ �jÞ, j ¼ 1, 2.

Relation (2.39) together with (2.37) corresponds to the
recursive representation of n-soliton solutions of the KdV
equation obtained by Wahlquist and Estabrook by employ-
ing Bäcklund transformations [30,31].

D. Exotic supersymmetry of reflectionless
n-soliton pairs

In this subsection we describe shortly an exotic N ¼ 4
supersymmetric structure that appears in the pairs of
n-soliton Schrödinger systems of the most general form
[21], and observe the peculiarity of the case of completely
isospectral soliton partners. These results will be used then
in the next sections to identify within the family of iso-
spectral n-soliton pairs a very special subfamily related to
reflectionless Dirac systems, which correspond to a fer-
mion in a multi-kink-antikink soliton background.

Let us consider two reflectionless systems Hn and ~Hn

constructed by using two sets of the parameters,

(�1; . . . ; �n, �1; . . . ; �n) and (~�1; . . . ; ~�n, ~�1; . . . ; ~�n). Each
of these two Hamiltonians can be related to the free particle
system H0 by the corresponding intertwining operators of

order n, An and
~An, and by the conjugate operators A

y
n and

~Ay
n . Relations (2.22) and similar relations for ~Hn together

with the observation that d
dx is the integral of the free

particle allow us to construct the operators which inter-
twine the n-soliton reflectionless systems Hn and ~Hn,

Yn ¼ An
~Ay
n ; Xn ¼ An

d

dx
~Ay
n ; (2.41)

Jn ~Hn ¼ HnJn;

JynHn ¼ ~HnJ
y
n ;

where Jn ¼ Yn;Xn:

(2.42)

Operator Yn is the differential operator of the even order
2n, while Xn is the differential operator of the odd order
2nþ 1. On the other hand, differential operators of
order 2nþ 1,

Zn ¼ An

d

dx
Ay

n ; ~Zn ¼ ~An

d

dx
~Ay
n ; (2.43)

being the Darboux-dressed forms of the free particle
integral d

dx , are the integrals for Hn and ~Hn,

½Zn; Hn� ¼ 0; ½~Zn; ~Hn� ¼ 0: (2.44)

Operator Zn can be presented in a form Zn ¼ ð�1Þn �
d2nþ1

dx2nþ1 þP
2n
j¼1 a2n�jðxÞ d2n�j

dx2n�j , where coefficients a2n�jðxÞ
are some functions of the potential Un and its derivatives

Unx; . . . ,
d2n�1

dx2n�1 Un. The relation of commutativity of Zn and

Hn, ½Zn; Hn� ¼ 0, is the Novikov equation, or, equiva-
lently, a stationary higher equation of the KdV hierarchy,
which defines an algebro-geometric potential UnðxÞ
[33,35]. In correspondence with the Burchnall-Chaundy
theorem [36], commuting differential operators Zn and
Hn of the mutually prime orders 2nþ 1 and 2 satisfy
identically a relation Z2

n ¼ P2nþ1ðHnÞ, where
P2nþ1ðHnÞ ¼ Hn

Q
n
j¼1ðHn þ �2

j Þ2 is a degenerate spectral
polynomial of the n-soliton system [21]. In correspondence
with this relation, integral Zn annihilates all the singlet
physical states, which are bound states of energies Ej ¼
��2

j , j ¼ 1; . . . ; n, and the state c ½n; 0� ¼ An1 of zero

energy being the lowest state of the continuous part of the
spectrum, cf. Eq. (2.9). Other n states annihilated by Zn are
the nonphysical eigenstates of Hn of energies Ej ¼ ��2

j ,

which can be related to the corresponding bound states by
an equation of the form of (A5).
In the simplest case n ¼ 1, the pre-prepotential and

potential are given by Eq. (2.19), and we have Z1 ¼ 1
4Z1 þ

�2
1Z0, where Z0 ¼ d

dx and Z1 ¼ �4 d3

dx3
þ 6U1

d
dx þ 3U1x

are the Lax operators corresponding to the first two evolu-
tionary equations from the KdV hierarchy, ut � ux ¼ 0
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and ut � 6uux þ uxxx ¼ 0. Relation ½Z1; H1� ¼ 0
reduces here to the Novikov equation of the form
� 1

4 ðU1xx � 3U2
1 � 4�2

1U1Þx ¼ 0, which is satisfied due

to the equality

U1xx � 3U2
1 � 4�2

1U1 ¼ 0; (2.45)

valid for the one-soliton potential (2.19).
By virtue of relations (2.42) and (2.44), the composed

system, described by the matrix 2� 2 HamiltonianH n ¼
diagðHn; ~HnÞ, possesses six nontrivial self-adjoint
integrals,

Sn;1 ¼
0 Xn

Xy
n 0

 !
;

Qn;1 ¼
0 Yn

Yy
n 0

 !
;

P n;1 ¼ �i
Zn 0

0 ~Zn

 !
;

(2.46)

and Sn;2 ¼ i	3Sn;1, Qn;2 ¼ i	3Qn;1, P n;2 ¼ 	3P n;1. A

choice of the diagonal Pauli sigma matrix 	3 as the
Z2-grading operator identifies integrals Sn;a andQn;a, a ¼
1, 2, as the fermion operators, f	3;Sn;ag ¼ f	3;Qn;ag ¼ 0,
while P n;a are identified as the boson ones, ½	3;P n;a� ¼ 0.
Together withH n they generate a nonlinear superalgebra,
in which the Hamiltonian H n plays a role of the multi-
plicative central charge. The superalgebraic structure given
by the anticommutation relations of these integrals, whose
explicit form can be found in [21], is insensitive to trans-
lation parameters �j and ~�j. Here we only write down the

explicit form of the commutation relations of the bosonic
integrals with the supercharges,

½P n;1;Sn;a� ¼ iH nP
�
n ðH n; �; ~�ÞQn;a;

½P n;1;Qn;a� ¼ �iP�
n ðH n; �; ~�ÞSn;a;

(2.47)

and the commutators for P n;2 have a similar form but

with P�
n ðH n; �; ~�Þ changed for Pþ

n ðH n; �; ~�Þ, where
P�

n ðH n; �; ~�Þ � PnðH n; �Þ � PnðH n; ~�Þ, and

PnðH n; �Þ ¼
Yn
j¼1

ðH n þ �2
j1Þ; (2.48)

with 1 to be a unit 2� 2 matrix. From definition of P�
n it

follows that while thePþ
n is always a polynomial of order n

in the matrix HamiltonianH n, the P
�
n in a generic case is

a polynomial of order (n� 1) in H n. Moreover, in a
completely isospectral case given by the conditions �j ¼
~�j, j ¼ 1; . . . ; n, P�

n reduces to the zero operator. This

means that in such a completely isospectral case the bo-
sonic integral P n;1 transmutes into the central charge of the

nonlinear superalgebra. In the next section we show that
the family of the systems H n composed from completely
isospectral pairs Hn and ~Hn with pairwise coinciding

bound states energies Ej ¼ ~Ej ¼ ��2
j , j ¼ 1; . . . ; n,

contains a special subset of Schrödinger supersymmetric
systems in which the supercharges Sn;a, a ¼ 1, 2, of

differential order (2nþ 1) are reduced to the two super-
charges to be matrix differential operators of the first order.

III. SPECIAL FAMILY OF ISOSPECTRAL
n-SOLITON SYSTEMS AND THEIR

EXOTIC SUPERSYMMETRY

The described intertwining operators and, as a conse-
quence, fermionic integrals for the extended system H n

are irreducible as soon as all the discrete energy levels of
the subsystem Hn are different from those for the subsys-
tem ~Hn, i.e., when �j � ~�j0 for any values of j and j0, j,
j0 ¼ 1; . . . ; n. As it was shown in [21], when any r, 0<
r 
 n, discrete energy levels of one subsystem coincide
with any r discrete energy levels of another subsystem, one
or both of the intertwining operators (2.41) are reducible in
such a way that the total order of the two basic intertwining
generators reduces to 4n� 2rþ 1. The superalgebraic
structure acquires then a dependence on the corresponding
r relative translation parameters. As we have just seen, the
case of a complete pairwise coincidence of the discrete
energy levels, �j ¼ ~�j, j ¼ 1; . . . ; n, is detected by trans-

formation of the bosonic integral P n;1 into the central

charge of the superalgebra. It was also made an observation
in [21] that within such a class of the systems, there is a
special, infinite family H n, n ¼ 1; 2; . . . , such that the
corresponding completely isospectral reflectionless part-
ners Hn and ~Hn are intertwined by the first order differen-

tial operators Xn and Xy
n . The first order intertwiners Xn

and Xy
n replace the reducible operators Xn and Xy

n of the
odd order 2nþ 1, while the intertwining generatorsYn and

Yy
n of the even order 2n remain to be the same as in (2.41).

More precisely, in [21,37] it was found that the reflectionless

systems H1 ¼ H1ð�1; �1Þ and ~H 1 ¼ H1ð�1; ~�1Þ can be

related by the first order intertwining operators X1 and Xy
1 ,

X1 ¼ d

dx
þ�1 � ~�1 þ C1; (3.1)

so that

X1X
y
1 ¼ H1 þ C21; Xy

1X1 ¼ ~H1 þ C21; (3.2)

where ~�1 ¼ �ð�1; ~�1Þ and
C1 ¼ �1 coth�1ð�1 � ~�1Þ: (3.3)

Similarly, for the next case of n ¼ 2, completely isospec-

tral Hamiltonians H2 and ~H2 satisfy the relations X2X
y
2 ¼

H1 þ C22 and Xy
2X2 ¼ ~H2 þ C22 if ’1 � �1 � ~�1 is fixed in

terms of ’2 � �2 � ~�2 � 0 by a condition C1 ¼ C2, where
C2 and X2 are given by relations of the form (3.3) and (3.1)
with the index 1 changed for 2. Based on these two special
cases with n ¼ 1 and n ¼ 2, it was conjectured in [21] that
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such a picture with the first order intertwining generators
can be generalized for the case of arbitrary n.

We will show now that any two completely isospectral
reflectionless Hamiltonians Hn and ~Hn with translation
parameters constrained by a condition

C1 ¼ C2 ¼ � � � ¼ Cn ¼ C; (3.4)

are indeed related by the first order operators Xn and Xy
n ,

Xn ¼ d

dx
þ�n � ~�n þ C; (3.5)

XnX
y
n ¼ Hn þ C2; Xy

nXn ¼ ~Hn þ C2; (3.6)

Xy
nHn ¼ ~HnX

y
n ; Xn

~Hn ¼ HnXn; (3.7)

where Cj ¼ �j coth�jð�j � ~�jÞ, and C is a real parameter

restricted by inequality C2 > �2
n.

To prove the validity of the statement, we first rewrite
Eq. (3.3) in the form

C1 ¼ �1
~�1 � �2

1

�1 � ~�1

(3.8)

by using the elementary identity coth ð
� �Þ ¼
ð1� tanh
 tanh�Þ=ðtanh
� tanh�Þ. The chain of con-
straints (3.4) can be presented equivalently as

Cj ¼
�1ðjÞ ~�1ðjÞ � �2

j

�1ðjÞ � ~�1ðjÞ
¼ C; j ¼ 1; . . . ; n: (3.9)

Relations (3.5) and (3.6) imply two equalities

Un þ C2 ¼ ð�n � ~�n þ CÞ2 þ ð�n � ~�nÞx; (3.10)

~Un þ C2 ¼ ð�n � ~�n þ CÞ2 � ð�n � ~�nÞx: (3.11)

To prove (3.6) under condition (3.4) we have to demon-
strate the validity of relations (3.10) and (3.11). A differ-
ence of these two relations gives Un � ~Un ¼
2ð�n � ~�nÞx, that is true because of (2.18). Denoting

Un � Un þ ~Un � 2½ð�n � ~�n þ CÞ2 � C2�, we have to
show that Un ¼ 0. For n ¼ 1, the equality U1 ¼ 0 is
checked directly by using (2.19) and (3.3). Then it is
sufficient to prove that Un þUn�1 ¼ 0 for any n > 1.
From Eq. (2.33) we have Un þUn�1 � 2½ð�n �
�n�1Þ2 � �2

n� ¼ 0. Let us add this last equality to its
analog obtained by changing �j ! ~�j. Subtracting the

obtained left-hand side expression (equal to zero) from
Un þUn�1, we arrive finally at the equality

�n � ��2
n þ ð�n � ~�n�1Þð ~�n ��n�1Þ

� Cð�n þ�n�1 � ~�n � ~�n�1Þ ¼ 0; (3.12)

which has to be proved. Remembering that�0 ¼ ~�0 ¼ 0,
the validity of �1 ¼ 0 follows from (3.8). Assume that the
relation �n ¼ 0 is valid for an arbitrary value of n > 1with

any admissible set of parameters satisfying the constraint
(3.4). Some algebraic manipulations with employing re-
cursive relation (2.37) with n ! nþ 1 gives rise to the
equality

�nþ1 ¼ �n þ �2
nþ1 � �2

n

ð�n ��]
n Þð ~�n � ~�]

n Þ
ð�n � �]

n Þ; (3.13)

where �]
n is obtained from �n by changing in (3.12)�n and

~�n for �]
n and ~�]

n , and �n for �nþ1, and we have taken
into account here constraint (3.4) extended for the case
n ! nþ 1. The equality �nþ1 ¼ 0 follows then from
�n ¼ 0, which proves the validity of relations (3.6) for
completely isospectral pairs of reflectionless n-soliton
Hamiltonians with translation parameters constrained by
the condition (3.4).
Condition (3.4) allows us to fix the shifts ’j ¼ �j � ~�j,

j ¼ 1; . . . ; n, in terms of the free parameter C, C2 > �2
n,

and �j,

’jð�j; CÞ ¼ 1

2�j

ln
Cþ �j

C� �j

¼ 1

�j

arctanhð�j=CÞ: (3.14)

A reflectionless system H n from the special infinite
family characterized by the properties (3.4), (3.5), (3.6),
and (3.7) is given therefore by 2nþ 1 parameters.
Denoting

�nðxÞ¼�nðx;�j;�j;CÞ
��nð�jðxþ�jÞÞ��nð�jðxþ�j�’jð�j;CÞÞÞþC;

(3.15)

we present the first order intertwining operator in the form

Xnðx;�j; �j; CÞ ¼ d

dx
þ �nðx;�j; �j; CÞ; (3.16)

which can be compared with the structure of the first order
differential operator An ¼ d

dx þ�n ��n�1 ¼ d
dx þW n.

In correspondence with (3.10), we have

�2
n þ �nx ¼ Un þ C2; �2

n ��nx ¼ ~Un þ C2; (3.17)

cf. (2.20). It is worth noting here that the change

C ! �C; �j ! �j � ’jð�j; CÞ ¼ ~�j (3.18)

induces the changes �nðxÞ ! ��nðxÞ, UnðxÞ $ ~UnðxÞ.
Note also that the points x�, where the values of potentials
Un and ~Un coincide, Un ¼ ~Un, correspond in general to
local extrema of �n, see Fig. 1 illustrating the cases n ¼ 1
and n ¼ 2 with C> 0.

The first order operators Xn, An, and ~An satisfy the
intertwining relation,

AnXn�1 ¼ Xn
~An: (3.19)

To show this, we note that (3.19) is equivalent to the
equality
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ðCþ�n�1 � ~�nÞð�n � ~�n ��n�1 þ ~�n�1Þ
¼ ð ~�n ��n�1Þx: (3.20)

By virtue of relations Un ¼ 2�nx and (3.11), and the
second equality from (2.20), we have

ð ~�n ��n�1Þx ¼ ð�n�1 � ~�nÞð2�n � ~�n ��n�1Þ
þ 2Cð�n � ~�nÞ þ �2

n: (3.21)

As a consequence, (3.20) is reduced to the equality �n ¼ 0,
see Eq. (3.12), which proves the validity of relation (3.19).
Having in mind the definition (3.6), intertwining relation
Xn

~Hn ¼ HnXn, and that Hn ¼ Hnð�j; �jÞ, ~Hn ¼
Hnð�j; ~�jÞ, it is convenient to write Xn ¼ Xnð�j; ~�jÞ.
Then Xy

n ð�j; ~�jÞ ¼ �Xnð~�j; �jÞ, and a conjugation of

(3.19) after the change �j $ ~�j gives us also the intertwin-

ing relation,

Xn�1
~Ay
n ¼ Ay

nXn: (3.22)

Using (3.19) and (3.22), we find that the intertwining
operator Xn of order 2nþ 1 defined in (2.41), in the
present case of the special isospectral pairs of the
Hamiltonians reduces as

Xn ¼ �CYn þ
Yn
j¼1

ðHn þ �2
j Þ � Xn: (3.23)

Equivalently, this can be presented in the form

AnX0
~Ay
n ¼ Yn

j¼1

ðHn þ �2
j Þ � Xn; X0 ¼ d

dx
þ C: (3.24)

Equation (3.24) shows that the intertwining operator Xn is a
Darboux-dressed form of the operator X0. The operator X0

intertwines the Hamiltonian H0 of the free particle with
itself, ½X0; H0� ¼ 0.

Because of the reducible character of the operator Xn,
integrals Sn;a of the system H n ¼ diagðHn; ~HnÞ from the

special family we consider are also reducible, Sn;a ¼
�CQn;a þ

Q
n
j¼1ðH n þ �2

j Þ �Sn;a, where �Sn;a have a struc-

ture as in (2.46) but with differential operators Xn and Xy
n

of the order 2nþ 1 changed for the first order operators Xn

and Xy
n . The nontrivial integrals �Sn;a, Qn;a and P n;a gen-

erate together with the HamiltonianH n a nonlinear super-
algebra with the following nontrivial (anti)commutation
relations:

f �Sa; �Sbg ¼ 2�abðH n þ C2Þ;
fQa;Qbg ¼ 2�abP

2
n;

f �Sa;Qbg ¼ 2�abCPn þ 2�abP 1;

(3.25)

½P 2; �Sa� ¼ 2iððH n þ C2ÞQa � CPn
�SaÞ;

½P 2;Qa� ¼ 2iPnðCQa � Pn
�SaÞ;

(3.26)

where Pn ¼ PnðH n; �Þ is the operator defined in
Eq. (2.48), and to simplify expressions, we omitted index

n in notation of the integrals �Sn;a, Qn;a, and P n;a. Integral

P n;1 commutes with all other integrals, and plays a role of

the central charge of the superalgebra.
As follows from (3.25) and (2.48), and relation C2 > �2

j ,

the first order supercharges �Sa are the positive definite
operators, and the part of supersymmetry associated with
them is spontaneously broken. According to the first rela-
tion from (3.25), the kernels of these two supercharges are
formed by nonphysical eigenstates of H n. On the other
hand, each of the two supercharges Qa detects all the
doubly degenerate discrete eigenvalues of H n by annihi-
lating all the 2n bound states of the matrix Hamiltonian
operator. The central supercharge P n;1, generated via the

anticommutation of supercharges �Sa and Qb with a � b,
annihilates not only all the bound states, but also detects
two zero energy states at the edge of the continuum part of
the spectrum of H n by annihilating them. The rest of the
continuous part of the spectrum of H n with E> 0 is the
fourth-fold degenerate. The second nontrivial bosonic inte-
gral,P n;2, not appearing in the anticommutation relations of

the supercharges, plays a role of the operator acting on the

pairs of supercharges ð �Sa;QaÞ with a ¼ 1 and a ¼ 2 as a
rotation-type operator. Note that from (3.26) it follows,

particularly, that ½P 2; CQa � Pn
�Sa� ¼ �2iPnH nQa.

IV. DIRAC REFLECTIONLESS SYSTEMS
AND THE mKdV SOLITONS

Let us look at the obtained results from a completely
different, though related, perspective. Take one of the two

integrals �Sn;a, say �Sn;1, and identify it as a Dirac-type

Hamiltonian,

H D
n ¼ 0 Xn

Xy
n 0

 !
¼ 0 @x þ �n

�@x þ �n 0

 !
: (4.1)

According to Eq. (3.24), in the case n ¼ 0 operator (4.1)
describes a free Dirac particle of the mass jCj, H D

0 ¼
�i d

dx 	2 þ C	1, while H D
n with n 	 1 is a Darboux-

dressed form of H D
0 , AnH D

0 A
y
n ¼H D

n

Q
n
j¼1ððH D

n Þ2þ
ð�2

j�C2Þ1Þ, where An ¼ diagðAn; ~AnÞ, see Eq. (3.24). In
the last section it will be indicated that the first order matrix
reflectionless operator H D

n can also be considered as the
BdG Hamiltonian in Andreev approximation [38]. Then
function �nðxÞ appearing in its structure has, in depen-
dence on a physical context, a meaning of a gap function, a
condensate, an order parameter, or just a position-
dependent mass. Note that relations (3.16), (3.14), (2.37),
(2.19), and (2.38), allow us to construct �nðxÞ recursively
for any n.
The Dirac reflectionless system (4.1) has a nontrivial

matrix integral P n;1 given by Eqs. (2.46) and (2.43), which

is a dressed form of the linear momentum integral �i d
dx1

FERMION IN A MULTI-KINK-ANTIKINK SOLITON . . . PHYSICAL REVIEW D 88, 085034 (2013)

085034-9



of the free Dirac particle H D
0 , P n;1 ¼ Anð�i d

dx1ÞAy
n .

The relation of commutativity ½H D
n ;P n;1� ¼ 0, following

immediately from the Darboux-dressed nature of the ma-
trix operators H D

n and P n;1 is equivalent to the intertwin-

ing relation,

ZnXn ¼ Xn
~Zn; (4.2)

and to the conjugate relation, Xy
nZn ¼ ~ZnX

y
n , which fol-

lows from (4.2) under the change �j $ ~�j.

Consider as an example in more detail the simplest
nontrivial case n ¼ 1 [2]. We have

� ¼ �ð� tanh�ðxþ �Þ þ tanh�ðxþ ~�ÞÞ þ C;

C ¼ � coth�ð�� ~�Þ; (4.3)

and so the sign of C coincides with the sign of (�� ~�). To
simplify notations, we omitted here index 1 in �, � and �.
This gap function satisfies an ordinary nonlinear differen-
tial equation,

�2
x ¼ ð�� CÞ2ð�� �þÞð�� ��Þ;

where �� ¼ �C� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � �2

p
:

(4.4)

From (4.3) it follows that �ðxÞ is an even function with
respect to the point x ¼ x� � � 1

2 ð�þ ~�Þ, where it takes a
minimum (ormaximum) value�þ (or ��) for C> 0 (C<0).
Its form for the case C> 0 is shown in Fig. 1.

As a consequence of (4.4), �ðxÞ satisfies also equations

�xx ¼ 2�3 þ 2�ð2�2 � 3C2Þ þ 4CðC2 � �2Þ; (4.5)

�xxx ¼ 6�2�x þ 2�xð2�2 � 3C2Þ: (4.6)

With taking into account relation (2.45), we find that for
n ¼ 1 the intertwining relation (4.2) is equivalent, as a

condition of equality to zero of the coefficients at
d2=dx2, d=dx and 1, to the three equations: U� ~U ¼
2�x, 2ðU� ~UÞ�þ ðUx � 3 ~UxÞ ¼ 4�xx and ð6Uþ
4�2Þ�x þ 3ðUx � ~UxÞ�� 3 ~Uxx ¼ 4�xxx. The first two
of these equations are satisfied by virtue of (3.17). The
third equation is then satisfied by taking into account (2.45)
and the relation of the same form for ~U.
Let us present equality (4.6) satisfied by the function

� ¼ �ðx; �; CÞ in the form 6�2�x ��xxx ¼ ð6C2 �
4�2Þ�x. Assume now that � depends additionally on an
evolution parameter t in such a way that �ðx; t ¼ 0Þ ¼
�ðx; �; CÞ, and fix such a dependence in the form

�ðx; tÞ � �ðxþ ð6C2 � 4�2Þt; �; CÞ: (4.7)

Then �t ¼ �xð6C2 � 4�2Þ, and function �ðx; tÞ will sat-
isfy the mKdV equation �t � 6�2�x þ �xxx ¼ 0.
Equation (4.6) in this case will be a stationary equation
of the mKdV hierarchy.
The described observation can be generalized for the

case of arbitrary n. For this we first note that ifUnðx;�j; �jÞ
is a general 2n-parametric n-soliton potential constructed
in accordance with the inverse scattering method for t ¼ 0,
the dependence on t in correspondence with the KdV
equation is obtained by the substitution �j ! �4�2

j tþ
�0j , where �0j , j ¼ 1; . . . ; n, are constant parameters. The

KdV equation possesses Galilean symmetry: if uðx; tÞ is a
solution of the KdV equation, then Uðx; tÞ ¼ uðxþ
6ct; tÞ þ c is also a solution for any value of a constant c.
Let us make a shift x ! xþ 6ct in both sides of two
relations in (3.17), and rewrite the obtained right-hand
sides in equivalent forms ðUnðxþ 6ctÞ þ cÞ � cþ C2

and ð ~Unðxþ 6ctÞ þ cÞ � cþ C2. Put now c ¼ C2 and de-
note Unðxþ 6C2tÞ þ C2 ¼ uþðx; tÞ, ~Unðxþ 6C2tÞ þ C2 ¼
u�ðx; tÞ, �nðxþ 6C2tÞ ¼ vðx; tÞ. Exploiting then a relation

FIG. 1 (color online). Left: One-soliton isospectral potentials of the Pöschl-Teller form (2.19), and corresponding superpotential
(kink-anti-kink background) �1. Relative phase �1 � ~�1 coincides here with the distance between minima of potentials ~U1 andU1, and
defines the asymptotic value C of the superpotential via the relation (3.3). The �1ðxÞ has a mirror-symmetric form, and n ¼ 1 is a
unique case for which ~Un is a simple translation of Un. Right: Isospectral two-soliton potentials of the general form (2.40), with
relative soliton phases subjected to the condition (3.4), or, equivalently, with the translation parameters shifts related by Eq. (3.14). The
values of potentials coincide in three different points, where the corresponding superpotential �2 has three extrema, two of which
correspond to two local minima. Note that �n with n > 1 not obligatorily has n minima. For instance, the potential U2 with �2 ¼ 2�1

and �2 ¼ �1 will have a symmetric form, similar to the form (2.19) of the one-soliton Pöschl-Teller potential U1 with the amplitude
coefficient�2�2

1 changed for�6�2
1. In this case the isospectral potential

~U2 with translation parameters given by Eq. (3.14) will have a

form different from that of U2 and will coincide with it only in one point, and corresponding superpotential (reflectionless Dirac
potential, see below) �2 will have only one minimum.
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between the KdV and the mKdV equations, which is
described in Appendix B, we conclude that the function

�nðx; tÞ ¼ �nð�jÞ ��nð~�jÞ þ C; (4.8)

where �j ¼ �jðxþ ð6C2 � 4�2
i Þtþ �0j Þ, ~�j¼�j��j’j

ð�j;CÞ, j¼1;...;n, is the n-soliton solution of the mKdV

equation vt � 6v2vx þ vxxx ¼ 0. In the particular case
n ¼ 1, Eq. (4.8) corresponds to (4.7).

V. FERMION SYSTEM IN A MULTI-KINK-
ANTIKINK BACKGROUND AS A DARBOUX-
DRESSED FREE MASSIVE DIRAC PARTICLE

Here we show that the reflectionless Dirac system
described by the first order matrix Hamiltonian (4.1), or
which is the same, a fermion system in a multi-kink-
antikink background, possesses its own exotic supersym-
metry that is rooted in the peculiar supersymmetry of the
associated Schrödinger system studied in Sec. III. It can be
understood as a dressed form of the supersymmetric struc-
ture of the free massive Dirac particle. This also will allow
us to present the trapped configurations (bound states) and
scattering states of our fermion system in an explicit
analytic form.

Consider a free Dirac massive particle described by the
Hamiltonian,

H D
0 ¼ 0 @x þ C

�@x þ C 0

 !
: (5.1)

Its eigenfunctions and corresponding eigenvalues are

�k
0;�ðxÞ ¼

eikx

�eikðxþ’ðk;CÞÞ

 !
; E�ðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ k2

p
:

(5.2)

Here

’ðk; CÞ ¼ 1

2ik
ln
C� ik

Cþ ik
(5.3)

is the function even in k, ’ð�k; CÞ ¼ ’ðk; CÞ, and odd in C,
’ðk;�CÞ ¼ �’ðk; CÞ, and the quantity eik’ðk;CÞ ¼ C�ikffiffiffiffiffiffiffiffiffiffi

C2þk2
p is

a pure phase, jeik’ðk;CÞj ¼ 1. The wave numbers þk and
�k, k > 0, correspond to the same, doubly degenerate
energy value. The plane wave states (5.2) with k > 0 and
k < 0 are distinguished by the momentum integral �i d

dx 1.

The eigenvalues E�ð0Þ ¼ �jCj at the edges of the upper
and lower continuous bands are nondegenerate. The inter-
val �jCj< E < jCj corresponds to the energy gap in the
spectrum of the free massive Dirac particle.

Consider now the Dirac reflectionless system (4.1). The
Hamiltonian H D

n anticommutes with 	3. Coherently with
Eq. (5.2) corresponding to the n ¼ 0 case, this implies that
if�E is an eigenstate ofH D

n ,H D
n�E ¼ E�E , then 	3�E

is an eigenstate of eigenvalue �E.

The eigenstates from the upper and lower continuums in
the spectrum of H D

n are obtained by Darboux dressing of
the plane wave states (5.2) of the free particle, �k

n;�ðxÞ ¼
An�

k
0;�ðxÞ, H D

n�
k
n;�ðxÞ ¼ E�ðkÞ�k

n;�ðxÞ, where An is

the diagonal 2� 2matrix,An ¼ diagðAn; ~AnÞ. The bound
states of H D

n are constructed by Darboux dressing of the
appropriate nonphysical eigenstates from the energy gap of
H D

0 . First, we note that function (5.3) for pure imaginary

values k ¼ i�j, �j > 0, reduces to the relative soliton shifts

’jð�j; CÞ given by Eq. (3.14). Taking linear combinations

of the states of the form (5.2) with k ¼ þi�j and k ¼
�i�j, j ¼ 1; . . . ; n, 0< �1 < � � ��n�1 < �n < jCj, we

construct the formal, nonphysical eigenstates of H D
0 of

eigenvalues E0;�ðjÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � �2

j

q
,

�j
0;�ðxÞ ¼

cosh�jðxþ �jÞ
� cosh�jðxþ ~�jÞ

 !
;

�j
0;�ðxÞ ¼

sinh�jðxþ �jÞ
� sinh�jðxþ ~�jÞ

 !
;

(5.4)

H D
0 �

j
0;�ðxÞ¼E0;�ðjÞ�j

0;�ðxÞ, where ~�j ¼ �j � ’jð�j; CÞ.
Here the first (second) set of the states has to be taken for
the odd (even) values of the index j, cf. (2.5). The set of 2n
functions (5.4) forms a kernel of the matrix differential
operator An of the order n. The unnormalized bound

states of H D
n are given by �j

n;�ðxÞ ¼ An
1
�j

d
dx�

j
0;�ðxÞ,

cf. (2.8). The normalized bound states of H D
n can be

expressed in terms of eigenstates of the associated super-

symmetric Schrödinger pair of the systems, �̂jT
n;�ðxÞ¼ 1ffiffi

2
p �

ðĉ n;jðxÞ;� ~̂c n;jðxÞÞ, H D
n �̂

j
n;�¼En;�ðjÞ�̂j

n;�, En;�ðjÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � �2

j

q
, j ¼ 1; . . . ; n, where ĉ jðxÞ is given by

Eq. (2.25), and ~̂c jðxÞ are the corresponding eigenstates

of ~Hn. The spectra for the cases n ¼ 1 and n ¼ 2 are
illustrated by Figs. 2 and 3.
The nontrivial integral for the Dirac system H D

n

is P n ¼ Anð�i d
dx1ÞAy

n , which is the central charge

P n;1 of the associated reflectionless supersymmetric

Schrödinger system H n. It is this operator that distin-
guishes the degenerate eigenstates �k

n;�ðxÞ with k > 0
and k < 0 in the continuum part of the spectrum of H D

n ,
P n�

k
n;�ðxÞ ¼ k

Q
n
j¼1ðEn;�ðkÞ þ �2

j Þ�k
n;�ðxÞ. It also de-

tects all the 2ðnþ 1Þ nondegenerate eigenstates of H D
n

by annihilating them. The 2n of these states correspond to
the bound states inside the energy gap between the positive
and negative continuums in the spectrum ofH D

n . The two
other states are the states �0

n;�ðxÞ at the edges of the gap.
The trivial Lie-algebraic relation ½H D

n ;P n� ¼ 0 does
not show by itself a special nature of the higher-order
matrix integral P n. This can be revealed by identification
of its own supersymmetric structure of the Dirac reflection-
less system H D

n . Consider the following operator:
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� ¼ RxR�;C	3: (5.5)

Here Rx is a reflection operator for variable x, Rxx ¼
�xRx, R

2
x ¼ 1, whereas R�;C makes the same job for the

parameters �j and C, R�;C�j ¼ ��jR�;C, j ¼ 1; . . . ; n,

R�;CC ¼ �CR�;C, R2
�;C ¼ 1. Operator (5.5) commutes

with the Hamiltonian H D
n and anticommutes with P n,

½�;H D
n � ¼ 0, f�;P ng ¼ 0. Since �2 ¼ 1, (5.5) can be

treated as the Z2-grading operator, which identifies H D
n

and P n as bosonic and fermionic operators, respectively.
So, the reflectionless Dirac system H D

n is described by its
own exotic supersymmetry given by a nonlinear super-
algebraic relation,

fP n;P ng ¼ 2PD
2ðnþ1Þ;

PD
2ðnþ1Þ � ððH D

n Þ2 � C2ÞYn
j¼1

ððH D
n Þ2 þ �2

j � C2Þ:
(5.6)

The roots of the polynomial PD
2ðnþ1ÞðH D

n Þ correspond

to the 2ðnþ 1Þ nondegenerate eigenvalues of the
Hamiltonian H D

n . Denoting PD
n;1 ¼ P n and defining

PD
n;2 ¼ i�PD

n;1 as a second supercharge, a nonlinear N ¼
2 superalgebra is generated for the n-soliton Dirac system:
fPD

n;a;PD
n;bg ¼ 2�abP

D
2ðnþ1Þ, ½H D

n ;PD
n;a� ¼ 0, a, b ¼ 1, 2.

It may seem that the nature of the grading operator (5.5)
is rather unusual1 since it includes in its structure the
operator anticommuting with C, that in the case n ¼ 0 is
just a mass parameter. Recall that C can be presented in
terms of the parameters �j and ~�j constrained by the

relation (3.4), i.e., C ¼ �j coth�jð�j � ~�jÞ, j ¼ 1; . . . ; n.

Then we see that the operator R�;C can alternatively be

treated in a more symmetric way as the operator R�;~�,

which reflects the soliton translation parameters,R�;~��j ¼
��jR�;~�, R�;~�~�j ¼ �~�jR�;~�, R2

�;~� ¼ 1.

VI. CONCLUDING COMMENTS AND OUTLOOK

We have constructed a quantum reflectionless fermion
system, which corresponds to the Dirac particle in a fixed
background of a multi-kink-antikink soliton �nðxÞ. The
(2nþ 1)-parametric function �nðxÞ can be considered as
an ‘‘instant photograph’’ of a 2n-soliton solution vðx; tÞ ¼
�nðx; tÞ to the mKdV equation given by Eq. (4.8).
Parameter C corresponds here to the same nonzero asymp-
totic, �nðxÞ ! C � 0, as x ! �1 and x ! þ1, while
other 2n parameters, �j and �j, are the scaling and trans-

lation soliton parameters. As we saw, this mKdV solution
can be related to two distinct solutions uþ ¼ Unðxþ
6C2tÞ þ C2 and u� ¼ ~Unðxþ 6C2tÞ þ C2 of the KdVequa-
tion by means of relations v2 � vx ¼ u�. The second

order Schrödinger operators H� ¼ � d2

dx2
þ u� are factor-

ized then in terms of the first order operators A ¼ d
dx þ v

and Ay ¼ � d
dx þ v,Hþ ¼ AAy,H� ¼ AyA, which have a

sense of the Darboux intertwining operators, AyHþ ¼
H�Ay, AH� ¼ HþA. In the most generic case of real

FIG. 2 (color online). Left: The form of reflectionless Dirac
potential �1ðxÞ is shown by a continuous curve for the case
C> 0, while the dashed curve corresponds to isospectral kink-
antikink background ��1ðxÞ obtained by means of (3.18).

Horizontal lines show two nondegenerate energy levels E ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � �2

1

q
of the bound states, and two nondegenerate energy

levels E ¼ �C at the edges of the doubly degenerate continuum
part of the spectrum with E > C and E <�C. Right: Dependence
of the spectrum for reflectionless Dirac system H D

1 on the

parameter �1. The curves correspond to the discrete energy

levels �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � �2

1

q
of the bound states. Two nonzero energy

levels at 0< �1 < C transform into one zero energy level in
the limit case �1 ¼ C. The kink-antikink background described
by �1ðxÞ transforms into an antitank background W 1 ¼
��1 tanh�1ðxþ �1Þ in the indicated limit (see also the discus-
sion in the last section). In another limit, �1 ! 0, C ¼ const,
�1ðxÞ transforms into the homogeneous background �0 ¼ C.

FIG. 3 (color online). Left: The form of the potential and
corresponding spectrum of the reflectionless Dirac system H D

2

with the same notations as in Fig. 2. Right: Spectrum of reflec-
tionless Dirac system H D

2 in dependence of the parameter �2

varying in the interval �1 < �2 < C. In the limit case �2 ¼ �1,
inhomogeneous reflectionless Dirac potential �2 transforms into
the homogenous background �0 ¼ C, see Eqs. (2.38) and (3.15),

and the corresponding discrete energy levels�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � �2

1

q
, shown

by blank circles, disappear from the spectrum. In another limit
�2 ¼ C, H D

2 transforms into a reflectionless Dirac system with

three nondegenerate energy levels, one of which has zero value.
The square of H D

2 in this second limit gives a pair of almost

isospectral reflectionless Schrödinger systems, one of which is
described by a two-soliton potential supporting the bound state
of zero energy, the potential of the other subsystem is one-soliton
with nonzero energy of the bound state.

1For other appearances of exotic supersymmetric structures
based on the grading operators related to reflections, see
[27,37,39,40].
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nonsingular potentials uþ and u�, the first order scalar
Darboux intertwining operators may relate either

(i) a completely isospectral pair of 1D Schrödinger
Hamiltonians, or

(ii) almost isospectral Hamiltonians with spectra differ-
ent only in one bound (ground) state.

When nonsingular uþ and u� are two distinct finite-gap
solutions to the KdV equation, the first possibility (i) may
correspond either to the case of two completely isospectral
finite-gap periodic (or almost periodic) systems, or to a pair
of completely isospectral n-soliton systems. We investi-
gated here the soliton case with A ¼ Xn, H

þ ¼ Hn þ C2

and H� ¼ ~Hn þ C2, which can be considered as an
infinite-period limit of some isospectral pair of finite-gap
periodic systems. The exotic supersymmetric structure of
isospectral one-gap periodic pairs of the Schrödinger
(Lamé) systems, and the corresponding Dirac particle in
the kink-antikink crystal were investigated in [27] in the
context of physics related to the Gross-Neveu model. It
would be very interesting to generalize the analysis for the
case of periodic finite-gap systems with the number of
prohibited bands n > 1.

The second possibility (ii) corresponds to the situation
when the quantum systems Hþ andH� are given by n- and
(n� 1)-soliton reflectionless potentials having, respec-
tively, n and n� 1 bound states of the same energy, except
the ground state of the n-soliton potential having in this case
zero energy. In the simplest case, such a picture is realized
by the pairs of reflectionless Pöschl-Teller systems [40]. The
general case of almost isospectral soliton pairs given by
Eqs. (2.20) and (2.21) requires a separate consideration.
This, particularly, will give us a possibility to relate fermion
systems in multi-kink-antikink backgrounds considered
here and characterized by zero topological number, with
fermion systems in the kink-type backgrounds with nonzero
values of a topological charge, and to investigate exotic
supersymmetric structure appearing in the extended Dirac
systems. Such a generalization of the results obtained here
seems to be interesting, particularly, from the perspective of
their application to the physics of carbon nanostructures.

We considered the quantum mechanics of the Dirac
particle in a fixed background of a multi-kink-antikink
soliton. The multi-kink-antikink, as well as kink-type sol-
itons are also interesting from another perspective, related
to the physics associated with the BdG equations [41,42].

In many physical applications reflectionless potentials
�ðxÞ appear as stationary solutions for fermion self-
consistent inhomogeneous condensates. These are given
by the system of ð1þ 1ÞD Dirac equations

ði6@��Þc 
 ¼ 0; (6.1)

subject to the constraint

� ¼ �g2
XN

¼1

X
occ

�c 
c 
; (6.2)

where
P

N

¼1 corresponds to summation in degenerate states,

with 
 denoting a generalized flavor (possibly, including
spin) index, and

P
occ is a sum over the energy levels

occupied by each flavor.2 Particularly, these equations ap-
pear in the superconductivity, in the physics of conducting
polymers, and in the Gross-Neveu model [1,2,4,9,38,43,44].
In the context of the Bardeen-Cooper-Schrieffer theory of

superconductivity,� corresponds to a ‘‘pair potential.’’ It is a
phonon field generated by moving electrons via their inter-
action with ions. Dirac Eq. (6.1) with N ¼ 1 appears in the
BdG method after diagonalizing the effective mean field
Hamiltonian by application of Bogoliubov transformations,
and by making use of the Andreev approximation, which
corresponds to linearization of the nonrelativistic energy
dispersion near the Fermi points, or, equivalently, by neglect-
ing second derivatives of the Bogoliubov amplitudes [45].
The so-called gap equation, or self-consistency equation (6.2)
for the pair potential appears in the theory from a condition of
stationarity of the free energy [38]. In the physics of conduct-
ing polymers, � corresponds to the order parameter. The
order parameter is related to the Peierls instability, which
underlies the phenomenon of charge and fermion-number
fractionalization [3,4,7]. In the Gross-Neveu model [1],
being a ð1þ 1ÞD toy model for strong interactions that
mimics several important properties of QCD, the term
�g2

P
N

¼1

�c 
c 
 corresponds to a nonlinear interaction of

fermions with N flavors. As it was demonstrated by Dashen,
Hasslacher, and Neveu [2], in the t’Hooft limitN ! 1, with
g2N fixed, the model can be reduced to the quasiclassical
model (6.1) and (6.2) [44]. Particularly, they showed that for
stationary solutions, the Schrödinger potentials V� ¼ �2 �
�x � �2

0 have to be reflectionless. Their results were devel-

oped in diverse directions in [8,9,24–29].
In the stationary case the Dirac equation (6.1) takes the

form ð0Eþ i1@x � �Þc ðxÞ ¼ 0, where we omitted the
generalized flavor index 
. With the choice 0 ¼ 	1 and
1 ¼ �i	3, this is reduced to the equation H D

n c ¼ Ec ,
where H D

n is given by Eq. (4.1). Therefore, to relate the
system we studied with the BdG system it is necessary to
provide an appropriate interpretation for the consistency
equation (6.2) by making use of the obtained results. We
are going to present the corresponding investigation else-
where, having also in mind a relation between condensates
with zero and nonzero topological charges that has been
indicated above.
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APPENDIX A: DARBOUX TRANSFORMATIONS

Here we summarize shortly the basic aspects of Darboux
transformations used in the main text and in Appendix B.

Let c ðxÞ be an eigenstate of the second order

Schrödinger operator H ¼ � d2

dx2
þ uðxÞ of eigenvalue E,

Hc ¼ Ec . Then

u� E ¼ �2 þ�x; where � � ðln c Þx: (A1)

Define the first order differential operator A � c d
dx

1
c ¼

d
dx ��. By definition, c is a kernel of A, Ac ¼ 0, while 1

c

is a kernel of the Hermitian conjugate operator Ay ¼
� 1

c
d
dx c ¼ � d

dx ��. By Eq. (A1), shifted for a constant

Hamiltonian H is factorized as

AyA ¼ H � E: (A2)

Define another Hamiltonian operator Ĥ ¼ � d2

dx2
þ û by

AAy ¼ Ĥ � E; (A3)

so that û� E ¼ �2 ��x. If potential uðxÞ is nonsingular,
and eigenfunction c ðxÞ is nodeless, then û ¼ u� 2�x is
also a nonsingular potential; otherwise it will have singu-
larities at zeros of c ðxÞ. Note that the function � can be
expressed in terms of the pair of potentials u and û as

� ¼ 1

2

ux þ ûx
u� û

: (A4)

In accordance with (A2) and (A3), operators A and Ay

intertwine the Hamiltonians H and Ĥ, AH ¼ ĤA, AyĤ ¼
HAy. As a consequence, if c � is an eigenstate of H of

eigenvalue � � E, Hc � ¼ �c �, then Ac � � ĉ � is an

eigenstate of Ĥ of the same eigenvalue, Ĥĉ � ¼ �ĉ �.

The operator Ay acts in the opposite direction as Ay ĉ � ¼
ð�� EÞc �.

The described picture corresponds to the Darboux trans-
formation generated by the first order differential operators
A and Ay, which transform mutually the eigenstates of the

Schrödinger operators H and Ĥ with any eigenvalue � �
E. For eigenvalue E, the second, linear independent from
c solution of the Shcrödinger equation can be presented as

~c ðxÞ ¼ c ðxÞ
Z x d�

c 2ð�Þ ; (A5)

Wðc ; ~c Þ ¼ 1. The action of the A on it produces the kernel

of Ay, A ~c � ~̂c ¼ 1
c , A

y ~̂c ¼ 0. As a consequence,H ~c ¼
ðAyAþ EÞ ~c ¼ E ~c , and, on the other hand, Ĥ ~̂c ¼
ðAAy þ EÞ ~̂c ¼ E ~̂c . Analogously, the second eigenstate

of Ĥ of the eigenvalue E is

~̂~c ðxÞ ¼ 1

c ðxÞ
Z x

c 2ð�Þd�: (A6)

The application of Ay to it produces the kernel of A,

Ay ~̂~c ¼ �c .

APPENDIX B: KdVAND mKdV EQUATIONS,
AND MIURATRANSFORMATION

Here we describe shortly the relation between the KdV
equation,

ut � 6uux þ uxxx ¼ 0; (B1)

and the modified KdV equation (mKdV),

vt � 6v2vx þ vxxx ¼ 0: (B2)

Given a function v ¼ vðx; tÞ, let us define another
function uþ ¼ uþðx; tÞ by

uþ ¼ v2 þ vx: (B3)

Assume that v ¼ vðx; tÞ satisfies the mKdVequation (B2).
Then uþt ¼ ð2vþ @xÞð6v2vx � vxxxÞ and �6uþuþx þ
uþxxx ¼ �ð2vþ @xÞð6v2vx � vxxxÞ, and so function (B3)
defined in terms of some solution of the mKdV equation
satisfies automatically the KdV equation.
The mKdV equation (B2) is invariant under the change

v ! �v, while (B3) transforms into

u� ¼ v2 � vx: (B4)

Therefore, function u� defined by (B4) in terms of a
solution of the mKdV equation also satisfies the KdV
equation.
Consider now relations (B3) and (B4) from another

perspective. Let us assume that we are given a function
uþðx; tÞ, and treat relation (B3) as a nonlinear Riccati
equation that defines function v. If we assume that uþ ¼
uþðx; tÞ satisfies the KdV equation (B1), then we find that
the function vðx; tÞ defined by (B3) satisfies not the mKdV,
but the equation

ð2vþ @xÞðvt � 6v2vx þ vxxxÞ ¼ 0: (B5)

From the latter it follows a relation vt � 6v2vx þ vxxx ¼
CðtÞ exp ð�2

R
x vð�; tÞd�Þ, where CðtÞ is an arbitrary func-

tion. This is reduced to the mKdV equation only in a
particular case of CðtÞ ¼ 0. In the described interpretation,
relation (B3) corresponds to the Miura transformation
uþ ! v [46], which can be compared with Eq. (A1).
If instead of (B3) we define a function v by (B4),

and assume that u�ðx; tÞ satisfies the KdV equation, then
instead of (B5) we obtain the equation

ð2v� @xÞðvt � 6v2vx þ vxxxÞ ¼ 0: (B6)

For each of the two Miura transformations, (B3) or (B4), a
KdV solution generates a function v which satisfies not the
mKdV equation, but the equation of a more general form,
(B5) or (B6).
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Let us assume now that we have two different functions

uþ ¼ uþðx; tÞ and u� ¼ u�ðx; tÞ given by (B3) and (B4) in
terms of one functionvðx; tÞ, and suppose that both functions
uþ and u� satisfy the KdV equation. In this case function

vðx; tÞ has to satisfy simultaneously the two equations (B5)

and (B6). Adding these equations, we obtain 4vðvt �
6v2vx þ vxxxÞ ¼ 0, which implies that v has to satisfy the

mKdV equation (B2). Note that in this case the solution of
themKdVequation can be expressed in terms of solutionsuþ

and u� of the KdVequation as v ¼ 1
2
uþx þu�x
uþ�u� , cf. (A4).

We conclude therefore that, if two different solutions uþ
and u� of the KdVequation can be expressed by means of
relations (B3) and (B4) in terms of one function v, the
latter ought to be a solution of the mKdV equation.
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